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The slow motion of a small buoyant sphere near a right dihedral corner made by
tangentially sliding walls is investigated. Under creeping-flow conditions the force and
torque on the sphere can be decomposed into eleven elementary types of motion involving
simple particle translations, particle rotations and wall movements. Force and torque
balances are employed to find the velocity and rotation of the particle as functions
of its location. Depending on the ratio of the wall velocities and the gravitational
settling velocity of the sphere, different dynamical regimes are identified. In particular, a
non-trivial line attractor/repeller for the particle motion exists at a location detached from
both the walls. The existence, location and stability of the corresponding two-dimensional
fixed point are studied depending on the wall velocities and the buoyancy force. The impact
of the line attractors/repellers on the motion of small particles in cavities and its relevance
for corner cleaning applications are discussed.
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1. Introduction

Small particles suspended in an incompressible fluid are frequently employed in
microfluidic systems (Lenshof & Laurell 2010), drug delivery (Edwards et al. 1997) and
lab-on-a-chip devices (Wang & Zhe 2011). The flow in these confined systems is typically
characterised by small length and velocity scales. It is, therefore, essential to investigate the
particle dynamics for small particle Reynolds numbers, usually approximated as Stokesian,
with a focus on the interaction of a particle with rigid or deformable boundaries, e.g. with
other particles, walls and fluid–fluid interfaces.
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Since the pioneering work of Lorentz (1907), who investigated the motion of a sphere
towards a distant rigid wall, several other authors considered similar problems, including a
particle rotating parallel or tangent to a plane wall (Jeffery 1915; Goldman, Cox & Brenner
1967a), two particles moving towards each other (Stimson & Jeffery 1926), a particle
moving towards a plane surface (either a wall or a free surface, see e.g. Brenner (1961)),
parallel to a wall (Faxén 1927) or in a shear flow (Goldman, Cox & Brenner 1967b). A
comprehensive overview of all such fundamental flows involving particle–wall interactions
is provided by Chaoui & Feuillebois (2003), who discuss the exact solutions, whenever
available, and the matching of various asymptotic regimes (lubrication approximation) for
a particle moving far from or near a plane wall. These studies include tabulated results
derived by numerical approximations, analytical solutions and asymptotic expansions
that characterise the augmentation of the Stokes drag and torque on the particle due to
the presence of a nearby boundary. Since all these investigations imply Stokes flow, the
near-boundary corrections to the classical drag and torque for a particle in an unbounded
domain can be superimposed to compute the particle dynamics near a wall, a free surface
or another particle (Chaoui & Feuillebois 2003). A generalisation of the particle–wall
interaction which takes into account the wall curvature has recently been reported in
Papavassiliou & Alexander (2017). Other generalisations, applicable in the creeping-flow
regime, include the effect of a parabolic shear stress near a slip (Feuillebois et al. 2011)
or no-slip wall (Yahiaoui & Feuillebois 2010). The parabolic part of the velocity profile
gives rise to a lift force, which is absent in the creeping-flow approximation when the
velocity field near the boundary is expanded only up to linear order (Goldman et al.
1967b). Other generalisations of the classical problems take into account forces acting
on a particle moving near a Brinkman medium. Damiano et al. (2004) have shown that the
boundary-induced force and torque corrections to those acting in an unbounded domain
reduce significantly when the dimensionless permeability of the Brinkman medium is
increased.

Common simplifying assumptions concern (i) the creeping-flow approximation,
eventually extended to include weak inertia effects via asymptotic expansions (see e.g.
Cox & Mason 1971), and (ii) perfectly smooth symmetric surfaces (planar, cylindrical or
spherical) of the interacting solid bodies. A step towards more general geometries has
recently been made by Dauparas & Lauga (2018), who investigated the Stokes flow past a
sphere moving far from a stationary dihedral corner of arbitrary angle. Romanò, des Boscs
& Kuhlmann (2020a) further extended the results of Dauparas & Lauga (2018) considering
a particle near a right dihedral corner between a stationary and a tangentially sliding wall,
i.e. near a singular corner.

The main focus of all these studies was directed on the forces and torques exerted by
the surrounding fluid on the particle due to the presence of a boundary, either a wall, a
free surface or other particles. Such forces and torques become increasingly important
the closer the particle approaches the boundary. The presence of a boundary can strongly
affect the particle trajectory (Kuehn, Romanò & Kuhlmann 2018): in two-dimensional
recirculating flows, the boundary effect can cause limit cycles of the particle motion if the
flow is driven by moving walls (Romanò & Kuhlmann 2016) or by a constant (Romanò
& Kuhlmann 2017) or a variable shear stress along a free surface (Orlishausen et al.
2017; Romanò et al. 2017). In laminar micro- or millimetric three-dimensional flows,
the particle–boundary interaction may lead to non-trivial accumulation phenomena such
as finite-size Lagrangian coherent structures which have been observed experimentally
(Schwabe, Hintz & Frank 1996; Kuhlmann et al. 2016; Romanò, Wu & Kuhlmann 2019b;
Wu, Romanò & Kuhlmann 2021) and computed numerically (Hofmann & Kuhlmann 2011;
Mukin & Kuhlmann 2013; Muldoon & Kuhlmann 2013; Romanò & Kuhlmann 2018;
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Stokesian motion of a spherical particle near a right corner
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Figure 1. Sketch of the general problem: a sphere moving in Stokes flow near a semi-infinite right dihedral
corner made by two moving walls.

Romanò, Kunchi Kannan & Kuhlmann 2019a) for boundary-driven flows. We refer to
Romanò & Kuhlmann (2019) for a corresponding review. The forces of interaction between
a particle and a confining surface also play an important role in applications such as
particle trapping (Donolato et al. 2009), particle sorting (Karimi, Yazdi & Ardekani 2013)
or corner cleaning, which is crucial for several micro- and nanofluidic devices.

In this study we use the forces and torques on a sphere in Stokes flow numerically
computed by Romanò et al. (2020a) for a right dihedral corner to construct the force and
torque fields for more general wall motions. Taking into account buoyancy forces, the
trapping of a small particle near a right dihedral corner is investigated. As near-corner
corrections to the forces and torques exerted on a particle have become available only
recently, our study aims at investigating the boundary effect on the near-corner particle
dynamics, eventually uncovering a counter-intuitive trapping phenomenon for inertialess
particles. The paper is structured as follows. Section 2 formulates the mathematical
problem. In § 3 the particle translational and rotational velocities are obtained by balancing
forces and torques at the particle centroid. The particle dynamics is analysed in § 4, while
§ 5 summarises the results and draws conclusions.

2. Problem formulation

A rigid spherical particle moves with translational and rotational velocity Ũ = (Ũ, Ṽ, W̃)

and Ω̃ = (Ω̃x, Ω̃y, Ω̃z), respectively, near a semi-infinite dihedral corner. The sphere has
radius ap and density ρp. The surrounding fluid is Newtonian with constant density ρf
and kinematic viscosity ν. The dihedral corner is formed by two orthogonal plane walls
at x̃ = 0 (wall 1) and z̃ = 0 (wall 2), hence the corner edge is located at x̃ = (0, ỹ, 0).
Both walls move tangentially in their own planes, but with different velocities Ũ1 =
(0, Ṽ1, W̃1) and Ũ2 = (Ũ2, Ṽ2, 0) for wall 1 and wall 2, respectively. Owing to the density
difference Δρ = ρp − ρf between particle and fluid and the gravitational acceleration
g = g(cos φx, cos φy, cos φz), buoyancy affects the motion of the sphere, with φx, φy and
φz being the yaw, pitch and roll angles the vector g makes with the axes (x̃, ỹ, z̃) of the
Cartesian coordinate system, such that cos2 φx + cos2 φy + cos2 φz = 1 (figure 1).
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Variable x̃, x̃p, x̃s Ũ , Ũ1, Ũ2 Ω̃ p̃

Scale ap ν/ap ν/a2
p ρf ν

2/a2
p

Table 1. Scaling of the dimensional variables.

Let us consider a finite region of length scale L in the vicinity of the corner such that the
Reynolds numbers of the global flow ũ in this region will be small with Re1 = |Ũ1|L/ν �
1 and Re2 = |Ũ2|L/ν � 1. We also assume a small local particle Reynolds number R̂ep =
|Ũ + Ω̃ × (x̃s − x̃p) − ũ|ap/ν � 1, where x̃s and x̃p = (x̃p, ỹp, z̃p) denote the position
vectors of the particle’s surface and centroid, respectively. In this case, the inertial term in
the Navier–Stokes equation can be neglected and the incompressible flow past the particle
can be described by Stokes flow.

Scaling length, velocity and pressure by ap, ν/ap and ρf ν
2/a2

p (table 1), respectively,
and dropping the tilde for all non-dimensional quantities, the continuity and momentum
equations read

∇ · u = 0, ∇p = ∇2u, (2.1a,b)

where u and p are the non-dimensional fluid velocity and reduced pressure fields,
respectively. The flow field must satisfy the no-slip boundary conditions on the walls and
the surface of the particle:

x = 0 : u = U1, (2.2a)

z = 0 : u = U2, (2.2b)

x = xs : u = U + Ω × (xs − xp). (2.2c)

Considering the particle motion close to the corner edge such that |xp| � L/ap, the effect
of the moving sphere on the flow at a distance L/ap from the corner is vanishingly small.
Therefore, the mathematical problem can be closed, as in Romanò et al. (2020a), by
considering a finite domain bounded at a distance ∼ L/ap from the corner on which
the known Stokes flow solution to (2.1a,b) in the absence of the particle in which
the flow is driven by the moving walls only (Taylor 1962) is imposed. For the case
U1 ≡ 0, the analytic far field at |x| = O(L/ap) only depends on the polar angle θ =
cos−1(x/

√
x2 + z2):

u = U2
[

f ′(θ) cos(θ) + f (θ) sin(θ)
]
, (2.3a)

v = V2(1 − 2θ/π), (2.3b)

w = U2
[

f ′(θ) sin(θ) − f (θ) cos(θ)
]
, (2.3c)

where f (θ) = [θ sin(π/2 − θ) − π/2(π/2 − θ) sin θ ]/(1 − π2/4). In case U2 ≡ 0 and
U1 /= 0, the far field is given by (2.3) reflected about the bisector θ = π/4 with U2
replaced by U1. Finally, owing to the linearity of (2.1a,b), the boundary condition for
U1 /= 0 and U2 /= 0 is obtained as a linear combination of (2.3) and its mirror-symmetric
counterpart.

Owing to the linearity of the Stokes problem, the general problem sketched in figure 1
can be decomposed into eleven cases, illustrated in figure 2, which can be reduced to seven
elementary subproblems by symmetry arguments:
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Stokesian motion of a spherical particle near a right corner

(I) a sphere moving parallel to the edge of a stationary corner,

U1 = 0, U2 = 0, U = Vey, Ω = 0, g = 0; (2.4)

(II) a sphere rotating about an axis parallel to the edge of a stationary corner,

U1 = 0, U2 = 0, U = 0, Ω = Ωyey, g = 0; (2.5)

(III) a sphere moving normal to one of the walls of a stationary corner,

(a) U1 = 0, U2 = 0, U = Uex, Ω = 0, g = 0, (2.6)

(b) U1 = 0, U2 = 0, U = Wez, Ω = 0, g = 0; (2.7)

(IV) a sphere rotating about an axis normal to one of the walls of a stationary corner,

(a) U1 = 0, U2 = 0, U = 0, Ω = Ωxex, g = 0, (2.8)

(b) U1 = 0, U2 = 0, U = 0, Ω = Ωzez, g = 0; (2.9)

(V) a stationary sphere near a corner with one wall moving parallel to the edge,

(a) U1 = V1ey, U2 = 0, U = 0, Ω = 0, g = 0, (2.10)

(b) U1 = 0, U2 = V2ey, U = 0, Ω = 0, g = 0; (2.11)

(VI) a stationary sphere near a corner with one wall moving normal to the edge,

(a) U1 = W1ez, U2 = 0, U = 0, Ω = 0, g = 0, (2.12)

(b) U1 = 0, U2 = U2ex, U = 0, Ω = 0, g = 0; (2.13)

(VII) and a stationary sphere near a stationary corner subject to a gravitational field,

U1 = 0, U2 = 0, U = 0, Ω = 0, g = ga3/ν2(cos φx, cos φy, cos φz);
(2.14)

where the velocities of the walls and the sphere, i.e. U1, U2 and U , have already been
non-dimensionalised by ν/ap, the particle rotation rate Ω is normalised by ν/a2

p, and the
acceleration due to gravity g is scaled by ν2/a3

p.

3. Dynamics of a sphere free to translate and rotate

Owing to the quasi-steady motion holding under the creeping-flow approximation, the
resultant of forces and torques on the particle must be null. The corresponding balances
can be expressed by superimposing forces and torques which arise due to the subproblems
illustrated in figure 2. In terms of force and torque coefficients F = (Fx, Fy, Fz) and T =
(Tx, Ty, Tz), i.e. forces and torques scaled by the Stokes drag 6πρf νapU and the couple
8πρf νa2

pU, respectively, the force and torque balances are linear in U = (U, V, W) and
Ω = (Ωx, Ωy, Ωz), respectively, and can be written in the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

FIIIa
x 0 FIIIb

x 0 FII
x 0

0 FI
y 0 FIVa

y 0 FIVb
y

FIIIa
z 0 FIIIb

z 0 FII
z 0

0 TI
x 0 TIVa

x 0 TIVb
x

TIIIa
y 0 TIIIb

y 0 TII
y 0

0 TI
z 0 TIVa

z 0 TIVb
z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎝
U
V
W
Ωx
Ωy
Ωz

⎞⎟⎟⎟⎟⎟⎠
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Figure 2. Decomposition of the general problem into elementary subproblems: (a) problem I, (b) problem
II, (c) problem IIIa, (d) problem IIIb, (e) problem IVa, ( f ) problem IVb, (g) problem Va, (h) problem Vb,
(i) problem VIa, ( j) problem VIb and (k) problem VII. The arrows show the translational and rotational
motions.

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W1FVIa
x + U2FVIb

x + (2/9)(1 − �)Fr−2 cos φx

V1FVa
y + V2FVb

y + (2/9)(1 − �)Fr−2 cos φy

W1FVIa
z + U2FVIb

z + (2/9)(1 − �)Fr−2 cos φz

V1TVa
x + V2TVb

x

W1TVIa
y + U2TVIb

y

V1TVa
z + V2TVb

z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0, (3.1)

where the superscript of the force and torque coefficients indicates the respective
subproblem from figure 2(a–k), � = ρp/ρf is the particle-to-fluid density ratio, and

Fr = ν/
√

ga3
p is the Froude number. Hence, Ug = (2/9)(1 − �)Fr−2 = 2(1 − �)ga3

p/9ν2

is the non-dimensional settling velocity which is positive if � < 1 and negative if � > 1.
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Stokesian motion of a spherical particle near a right corner

The force and torque coefficients in (3.1) only depend on the position xp of the particle.
For the above elementary subproblems (I) to (VI), the forces and torques on the sphere as
functions of the sphere’s position have recently been computed on a dense grid by Romanò
et al. (2020a) using fully resolving spectral-element simulations. By test calculations and
selecting the length L/ap to be sufficiently large, Romanò et al. (2020a) have ensured that
the results obtained for the force and torque coefficients have become independent of the
length L/ap selected for the computational domain. The numerical data for the force and
torque coefficients obtained were fitted by closed-form expressions, which account for the
symmetries of each problem as well as for its exact and asymptotic lubrication solutions
valid near the walls and far away from the corner edge. As a result, the dependence of the
forces and torques on xp and zp was characterised.

With the fit functions of Romanò et al. (2020a) available, (3.1) can be solved to obtain
explicit expressions for the velocity and rotation rate of the sphere. Exploiting the structure
of the left-hand side of (3.1), one can split the linear system of six equations into two linear
systems of three equations each:⎛⎜⎝FIIIa

x FIIIb
x FII

x

FIIIa
z FIIIb

z FII
z

TIIIa
y TIIIb

y TII
y

⎞⎟⎠
︸ ︷︷ ︸

:=M1

·
⎛⎝ U

W
Ωy

⎞⎠ = −

⎛⎜⎝W1FVIa
x + U2FVIb

x + (2/9)(1 − �)Fr−2 cos φx

W1FVIa
z + U2FVIb

z + (2/9)(1 − �)Fr−2 cos φz

W1TVIa
y + U2TVIb

y

⎞⎟⎠

= −(A1 A2 A3)
T, (3.2a)⎛⎜⎝FI

y FIVa
y FIVb

y

TI
x TIVa

x TIVb
x

TI
z TIVa

z TIVb
z

⎞⎟⎠
︸ ︷︷ ︸

:=M2

·
⎛⎝ V

Ωx
Ωz

⎞⎠ = −

⎛⎜⎝V1FVa
y + V2FVb

y + (2/9)(1 − �)Fr−2 cos φy

V1TVa
x + V2TVb

x

V1TVa
z + V2TVb

z

⎞⎟⎠

= −(B1 B2 B3)
T. (3.2b)

The solutions of the two linear systems read⎛⎝ U
W
Ωy

⎞⎠ = α1

⎛⎜⎝ FII
z TIIIb

y − FIIIb
z TII

y

FIIIa
z TII

y − FII
z TIIIa

y

FIIIb
z TIIIa

y − FIIIa
z TIIIb

y

⎞⎟⎠ + α2

⎛⎜⎝ FIIIb
x TII

y − FII
x TIIIb

y

FII
x TIIIa

y − FIIIa
x TII

y

FIIIa
x TIIIb

y − FIIIb
x TIIIa

y

⎞⎟⎠

+ α3

⎛⎜⎝ FII
x FIIIb

z − FIIIb
x FII

z

FIIIa
x FII

z − FII
x FIIIa

z

FIIIb
x FIIIa

z − FIIIa
x FIIIb

z

⎞⎟⎠ , (3.3a)

⎛⎝ V
Ωx
Ωz

⎞⎠ = β1

⎛⎜⎝TIVb
x TIVa

z − TIVa
x TIVb

z

TI
xTIVb

z − TIVb
x TI

z

TIVa
x TI

z − TI
xTIVa

z

⎞⎟⎠ + β2

⎛⎜⎝FIVa
y TIVb

z − FIVb
y TIVa

z

FIVb
y TI

z − FI
yTIVb

z

FI
yTIVa

z − FIVa
y TI

z

⎞⎟⎠

+ β3

⎛⎜⎝FIVb
y TIVa

x − FIVa
y TIVb

x

FI
yTIVb

x − FIVb
y TI

x

FIVa
y TI

x − FI
yTIVa

x

⎞⎟⎠ , (3.3b)
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where αi = Ai/det(M1) and βi = Bi/det(M2), with M1 and M2 as defined in (3.2). This
form of the balance equations enables a direct computation of the motion of the sphere
based on the fit functions provided by Romanò et al. (2020a).

4. Results

4.1. Existence of an attractor
While the velocity field u of the fluid according to (2.1a,b) is solenoidal and does not
exhibit sources or sinks, the velocity field U of the particle according to (3.3) is not
solenoidal. In particular, the linear dynamical system ẋp = U(xp) governing the motion of
the particle centroid may exhibit stationary points which could arise as sinks or sources.
Owing to the linearity of the problem, every particle attractor turns into a particle repeller
if the direction of the motion of the walls and of the gravity vector is reversed. Here we
target the existence and characterisation of stationary points of the particle velocity field
U .

Due to the symmetry of the problem, the forces and torques acting on the particle
are independent of y. Hence, the translational and rotational velocities of the particle are
invariant in y, and the dynamics is a superposition of a trivial one-dimensional dynamics
in y and a two-dimensional dynamics in the (x, z) plane. Since ∇ · U = ∂xU + ∂zW /= 0
attractors/repellers may exists in the (x, z) plane. This implies the particle flow field admits
critical lines parallel to the corner edge. Finally, since any critical line only depends on U
and W, we only need to consider the parameters affecting the forces acting in the (x, z)
plane, i.e. the settling velocity Ug, the z-component W1 of the velocity of wall 1, the
x-component U2 of the velocity of wall 2, and the angles φx and φz the acceleration of
gravity makes with the x and z axes, respectively.

Without loss of generality we use the normalisation U2 = −1 and set φy =
90◦. In this case φz = 90◦ − φx and the remaining parameter space is made
by (W1, φx, Ug). Therefore, we screen the particle dynamics on the grid W1 ∈
{−1, −0.75, −0.5, −0.25, 0, 0.25, 0.5, 0.75, 1}, φx ∈ {45◦, 50◦, 55◦, 60◦, 65◦, 70◦,
75◦, 80◦, 85◦, 90◦}, and Ug ∈ [−10, 10] in steps of ΔUg = 0.01. Positive values of Ug
are included in our investigation, because we consider W1 < 0 and, hence, an attractor
may possibly exist due to a balance between the fluid entertainment from the vertical wall
and the gravitational settling. However, as demonstrated in the following, there are no
attractors for Ug > 0 in (δx, δz) ∈ [0.1, 1] × [0.1, 1]. To satisfy the condition |x| � L/ap
the particle motion is considered near the corner edge such that the distances δx and
δz of the particle’s surface from the two walls are restricted to δx = xp − 1 ∈ [0, 1] and
δz = zp − 1 ∈ [0, 1]. Due to the validity limits of the fit functions provided by Romanò
et al. (2020a) our results are strictly valid only for particles at a distance δ ≥ 0.1 from
the wall. Therefore, conclusions will be drawn only for (δx, δz) ∈ [0.1, 1] × [0.1, 1]. We
expect, however, the results can well be extended for practical purposes beyond the strict
validity limits of the fit, because the fit includes the classical lubrication asymptotics, valid
for either δx → 0 or δz → 0 (Romanò et al. 2020a).

Typical phase portraits for (W1, Ug) = (0, −1) (gravity force acting in the negative z
direction) and φx = 90◦, 75◦, 65◦, and 60◦ are depicted in figure 3. Particle trajectories
in the particle phase space are shown by thin solid lines with arrows indicating the flux
vector (U, W). Obviously, the particle is attracted to a sink x∗

p for the current parameters.
The white bullet marks the spiral sink which is a stagnation point of the particle flow field
in the (x, z) subspace. The thick solid lines indicate the zeros of the z- and x-components
of the velocity field of the particle, i.e. W = 0 (light blue) and U = 0 (light green).
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Stokesian motion of a spherical particle near a right corner
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1

Ug
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–1

1

0
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δx
0

1

1
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∇·U

∇·U
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δx
0

1
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∇·U

∇·U

(a) (b)

(d )(c)

Figure 3. Phase portraits of ẋp = U in the (δx, δz) plane for (W1, Ug) = (0, −1) and (a) φx = 90◦, (b) 75◦,
(c) 65◦, (d) 60◦ with spiral sinks x∗

p indicated by the white bullets. The arrows show the particle velocity field
U and the solid black lines are the particle trajectories spiralling into the attractor. Since the phase portrait is
depicted in terms of δx and δz, the walls are located at δx = −1 and δz = −1. The thick solid lines indicate
U = 0 (light green) and W = 0 (light blue). The colour maps represents the local expansion/contraction rate
∇ · U .

For φx = 90◦, the stationary point is located at (δx, δz)
∗ = (0.418, 0.346), detached from

the walls. Apart from this spiral sink, a saddle point attracting in z and repelling in
x is identified at (δx, δz)

∗ = (0, 0.794). However, due to the aforementioned limitations
(δx > 0.1 and δz > 0.1) we only characterise stationary points located sufficiently far from
the walls. For φx = 75◦, the sink is located at (δx, δz)

∗ = (0.289, 0.755), for φx = 65◦
at (δx, δz)

∗ = (0.046, 0.958), while no attractor has been found for φx = 60◦ within the
domain (δx, δz) ∈ [0.1, 1] × [0.1, 1]. From the colour maps provided in figure 3, the flux
field has a negative divergence ∇ · U < 0, except, possibly, near the stationary vertical
wall, and the particle phase space is contracting.

4.2. Local flow and stress distribution
As an example, we computed the local flow near a sphere for U2 = −1, φx = 90◦, Ug =
−1 and W1 = 0 corresponding to figure 3(a), using the code of Romanò et al. (2020a).
Figure 4 shows the flow field in the vicinity of the sphere in the symmetry plane y = 0
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z
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(a) (b)

(d )(c)

Figure 4. Flow near a sphere in its fixed point (δx, δz) = (0.418, 0.346) for (W2, Ug, φx) = (0, −1, 90◦).
Outside of the sphere the velocity magnitude |u| (blue shading) and streamlines (dark grey) are shown in
the plane y = const. through the sphere’s centre (a–c). Inside the circle delineating the sphere the local stresses
fx in the x direction (a), fz in the z direction (b) and torque ty in the y direction (c) on the surface of the sphere
are shown, projected to the plane y = const. Streamlines and absolute value of the velocity |u| are shown in
panel (d) for the case when the centre of the sphere is fixed and it rotates in the y direction with the same
angular velocity Ωy as in panels (a–c) but with all walls being stationary.

after it has been attracted to its fixed point. While U = W = 0, the particle rotates with
Ωy = 0.15. Therefore, the total flow is a linear combination of problem II (particle rotation
in the y direction) and problem VIb (bottom wall motion in the x direction).

In addition to the flow field, figure 4(a) displays the local stress fx in the x direction
evaluated on the surface of the sphere. The local stress is scaled consistently with the
creeping-flow scaling, hence fx is non-dimensionalised with ρf ν

2/a2
p. The flow in the

negative x direction leads to a net force component Fx (integral of surface stresses
fx) in the negative x direction, while the flow passing behind the sphere generates a
counter-balancing force, resulting in an equilibrium in the x direction. From figure 4(b) the
surface stresses fz in the positive z direction, non-dimensionalised with ρf ν

2/a2
p, dominate.

They are, however, balanced by the gravitational force in the negative z direction. It is
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Stokesian motion of a spherical particle near a right corner

apparent that the stress distribution causes a torque (the local contribution to the torque in
the y direction ty, non-dimensionalised with ρf ν

2/a3
p, is shown on the particle surface in

figure 4c) which leads to a clockwise rotation of the sphere. The absolute value of the flow
velocity near the right-hand side of the sphere is particularly weak, because the flow due
to the rotation of the sphere locally balances the flow due to the wall motion.

As the sphere is rotating and not translating in the fixed point, it is interesting to compare
the situation with problem II in which all walls are at rest, but the sphere is assumed to
rotate with the same angular velocity as a sphere caught in the fixed point (figure 4a–c).
The corresponding flow field is shown in figure 4(d). Apart from the modification of the
exterior flow due to the absence of the entrainment effect of the wall motion, we find
a small counter-rotating vortex located at the corner edge. This resembles a localised
three-dimensional version of a two-dimensional Moffatt eddy (Moffatt 1964) and is, in
fact, a three-dimensional saddle focus, similar to what is found in a three-dimensional
lid-driven cavity flow (see e.g. figure 6c in Romanò, Türkbay & Kuhlmann (2020b)).
Obviously, the small counter-rotating vortex in figure 4(d) does not arise in the case of
a sphere in its fixed point when the wall moves towards the edge (figure 4a–c), because the
velocity a fixed sphere rotating with the same angular velocity induces at the periphery of
the corner eddy is much smaller than the velocity induced by the moving wall at the same
location.

4.3. Dependence of the attractor location on the parameters
The location (δx, δz)

∗ of the spiral sink is shown in figure 5 as a function of the settling
velocity Ug for different vertical wall velocities W1 = 0.25, 0, −0.25, −0.5, −0.75 and
−1. The dependence on the angle φx is indicated by colour. No attractors/repellers are
found for W1 = 0.5, W1 = 0.75 and W1 = 1 in the range φx ∈ [45◦, 90◦] for (δx, δz) ∈
[0.1, 1] × [0.1, 1]. The stationary point has been obtained by numerically searching for
the stagnation points of the two-dimensional particle velocity field (U, W) in the range
1 ≥ δx ≥ 0.02 and 1 ≥ δz ≥ 0.02 by integrating ẋp forward and backward in time with
initial conditions covering the whole domain. The attractor/repeller x∗

p is identified by
the condition |ẋp| < 10−4. Within the neighbourhood of ẋp = 0, such that |ẋp| < 10−4,
the fixed point is found by considering a structured grid with Δδx = Δδz = 10−3 and
identifying minx(|ẋp|). The tolerance of Δδx and Δδz for x∗

p is of the order of accuracy of
the fit functions provided by Romanò et al. (2020a). For the present normalisation U2 =
−1 the attractor always arises as a spiral sink (∇ · U |xp < 0), whereas for U2 = 1, with
the signs of W1 and Ug reversed, the critical point becomes a spiral source (∇ · U |xp > 0).

Within the range of parameters considered, the free attractor near the edge at (x, z) =
(0, 0) is always found for a heavy particle (Ug < 0) if the magnitude of the settling velocity
|Ug| = O(1) is not too large. The range of existence is always found to be confined to
the interval Ug ∈ [−2.2, −0.7] (note the ranges in figure 5). For W1 = 0 the attractor
results from a balance between the gravitational settling at an angle φx from the horizontal
wall (wall 2) and the forces and torques exerted by the fluid on the particle owing to the
finite size of the particle and the fluid entrainment due to the sliding wall (U2 = −1).
In particular, the only fundamental problems contributing to the particle dynamics in the
(x, z) subspace are problems II, IIIa, IIIb, VIb and VII (see (3.3a)). Decreasing the angle φx
from 90◦ to 45◦ reduces the z and increases the x component of the gravity force opposing
the viscous forces that repel the particle from the walls. As a result the location of the
line attractor moves away from wall 2 and towards wall 1. When the absolute value of
the settling velocity decreases, the particle attractor moves away from the corner, because
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(a) (b)

Figure 5. Coordinates δ∗
x (a) and δ∗

z (b) of the locus of the spiral sink as functions of the settling velocity
Ug and W1 (indicated at the top left of the right panel of each subfigure). Different angles φx are indicated
by colour. The grey strip at the bottom indicates the region outside of the strict domain of validity of the fit
functions of Romanò et al. (2020a).

the equilibrium of forces on the particle is found for smaller fluid flow velocities. This
behaviour can also be recognised from figure 6 which shows projections of the path upon
a variation of Ug of the attractor x∗

p in the particle phase space (δx, δz) for constant φx and
W1 as indicated in the figure. No attractors/repellers are found for W1 = 0.5, W1 = 0.75
and W1 = 1 in the range φx ∈ [45◦, 90◦] for [0.1, 0.1] < [δx, δz] < [1, 1].

When the wall 1 slides at a constant velocity W1, problem VIa also contributes to the
particle attractor (see (3.3a)), which results from the balance between the settling effect
and the entrainment by the two walls. Increasing W1 from zero, the forces and torques
exerted by the fluid due to the entrainment from wall 1 have a net opposing effect to the
gravitational settling and the locus of the attractor moves closer to wall 1. On the other
hand, decreasing W1 from zero, the attractor location moves closer to wall 2. This can be
seen from the different panels in figure 6. From this figure it also appears as if the free
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Stokesian motion of a spherical particle near a right corner
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φx

W1 = –0.5

0

1

1
δx

δz

W1 = –0.75

φx

0 1
δx

φx

W1 = –1

φx = 45°

φx = 50°

φx = 55°

φx = 60°

φx = 65°
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Ug = –1

Ug = –1.5

φx = 90°

Figure 6. Location of the attractor x∗
p = (1 + δ∗

x , 1 + δ∗
z ) for different angles φx (indicated by colour) and

wall velocities W1 (indicated at the bottom right of each subfigure). As the settling velocity Ug is increased, the
attractor x∗

p travels towards the apex (lower left) along the curves shown. The green and orange markers denote
the attractor location for Ug = −1 and Ug = −1.5, respectively. The grey strips at the bottom and on the left
indicate the region outside of the strict domain of validity of the fit functions of Romanò et al. (2020a).

particle attractors originate, for large absolute values of the (negative) settling velocity,
from wall 2 for W1 � −0.5, whereas they originate from wall 1 for W1 � −0.5. For
W1 > 0.25 no detached particle attractor is found in (δx, δz) ∈ [0.1, 1] × [0.1, 1], because
the entrainment due to wall 1 is too strong to allow for a free equilibrium near the corner.
Similarly, if the angle of the gravitational acceleration is too small, i.e. φx < 75◦ for
W1 = 0.25, the component of the gravity force opposing the particle uplift is not strong
enough to allow for a free equilibrium near the corner. The non-monotonic variation of
the location of the attractor as a function of the governing parameters, like for example
δz, results from a delicate balance between opposing individual forces. Even though the
Cartesian components of the individual forces to the total force may depend monotonically
on a parameter, the Cartesian components of the resulting total force, hence the attractor
location, can vary non-monotonically.
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Figure 7. (a) Three-dimensional reconstruction of the location of the attractor in form of hypersurfaces
reconstructed for constant W1. (b) Cross-section of the hypersurfaces at Ug = −1.2.

To illustrate the region in which the particle attractors arise, figure 7(a) shows a
three-dimensional view of the subspace spanned by δx, δz and Ug. For constant W1 the
attractor then lies on a surface which is characterised by Ug and φx. In figure 7(a) these
surfaces are distinguished by colour (parameterising W1), while the dependence of the
locus of the attractor on φx is not explicitly given; merely, the direction of increasing φx is
indicated. The nested structure of these hypersurfaces is demonstrated in figure 7(b) which
depicts a cross-section at Ug = −1.2 with the same colour coding as in figure 7(a).

4.4. Application to a non-Stokesian flow in a finite domain
The results obtained for the behaviour of a particle in Stokes flow near a semi-infinite
right corner can be applied to improve the one-way coupled particle motion in a closed
flow at a finite Reynolds number. This is demonstrated by considering the particle
motion in a two-dimensional incompressible flow in a two-sided lid-driven square
cavity (Albensoeder, Kuhlmann & Rath 2001) as sketched in figure 8. The approach
is demonstrated using a variant of the Maxey–Riley equation for the particle motion
in the bulk. Since the Maxey–Riley approximation breaks down near the walls, we
introduce extra forces in the Maxey–Riley equation such that the correct particle dynamics
is recovered as a wall or a singular corner is approached. Similar approaches have
widely been used in the literature to complement the Maxey–Riley equation by dedicated
particle–boundary models (Kharlamov, Chára & Vlasák 2008; Yang 2010; Agarwal,
Rallabandi & Hilgenfeldt 2018; Davies et al. 2018; Romanò 2019; Romanò et al. 2019a;
Agarwal et al. 2021; Magnaudet & Abbas 2021).

In the present approach the extra forces near the boundary are based on the fit
provided by Romanò et al. (2020a) which takes into account the exact solutions and the
asymptotic lubrication theory for a particle moving towards/away from a wall. Therefore,
the correction to the Maxey–Riley equation is expected to be valid not only in the strict
corner region within which the fit was made (red square in figure 8), but also farther away
from the corner when the particle approaches one of the two walls much closer than the
other (further details can be found in Romanò et al. (2020a)). By this approach weak
inertial effects on the corner attractor can be identified.
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Stokesian motion of a spherical particle near a right corner

z

x

UgL

φx = 90°

Re

Re

1

2a

Figure 8. Sketch of a two-dimensional square cavity within which a global flow is driven by an antisymmetric
wall motion (arrows). The motion of a particle is considered when its centroid is located inside the red square
which outlines the region of validity of the force and torque coefficients provided by Romanò et al. (2020a).
In units of the non-dimensional particle radius a = ap/L the square has a size a × a and a distance a from
both walls, where L is the cavity height. The particle is shown for the case when its centroid is located at its
maximum distance, admitted by Romanò et al. (2020a), from the lower left corner. UgL is the settling velocity
based on the length L instead of ap.

The steady flow induced by the moving walls of the cavity must satisfy the
Navier–Stokes equations

(u · ∇) u = −∇p + Δu, (4.1a)

∇ · u = 0, (4.1b)

where we used a viscous scaling, as in table 1, but with the relevant length scale given
by the width L of the square cavity instead of the particle radius ap. In this scaling the
velocity field u must satisfy the boundary conditions

u(z ± 1/2) = (±Re, 0)T, (4.2)

u(x ± 1/2) = 0, (4.3)

where the Reynolds number of the flow is defined as

Re = ULL
ν

, (4.4)

with UL the magnitude of the lid velocity. The following analysis will be restricted to
moderate Reynolds numbers (Re ≤ 100), for which the flow is steady and two-dimensional
(Albensoeder & Kuhlmann 2003).

In the limit Re → 0 and with the acceleration of gravity g = (0, −g)T, a small particle
would not find a stationary point near the corners (x, z) = (0.5, ±0.5) (on the right-hand
side in figure 8). From the analysis reported in § 4.1, an attractor for the particle motion is
expected near the corner (x, z) = (−0.5, −0.5), while near (x, z) = (−0.5, 0.5) a repeller
is expected.

Here we focus on the particle motion near (x, z) = (−0.5, −0.5) and its approach to
the attractor when the Reynolds number is Re = O(1). For a small particle Reynolds
number R̂ep � 1 and if the time scale of the particle τp is much smaller than that of the
fluid, i.e. if τp/τf = (a2

p/ν)(UL/L) � 1, the particle motion in the bulk can be modelled
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by one-way coupling. In this approach the flow field is independent of the presence of
the particle and can be computed beforehand. Here we use a simplified version of the
Maxey–Riley equation (Maxey & Riley 1983) as in (Babiano et al. 2000)

ẍ = 1
� + 1/2

[
− �

St
(ẋ − u) + 3

2
Du
Dt

− (� − 1)
ez

Fr2
L

]
, (4.5)

where the Stokes and the Froude numbers based on the length of the side walls are defined
by

St = 2
9
�a2, Fr2

L = ν2

gL3 , (4.6a,b)

and a = ap/L is the relative particle radius.
The form of the Stokes drag in (4.5) is not correct when the particle moves near the

boundaries. In order to incorporate the correct viscous effects on the particle motion near
the corner (x, z) = (−0.5, −0.5), the Stokes part uS of the total velocity field u is separated
by writing

u = uS + u′, (4.7)

where u′ is the inertial remainder. The term (ẋ − uS) in the drag force due to the Stokes
part uS of the flow, which is contained in (ẋ − u) of (4.5), is now replaced by the numerical
approximation of the correct drag forces acting on the sphere obtained by Romanò et al.
(2020a) and used in the previous sections. Taking into account the different scalings used
here and in § 3 we obtain

ẍ = 1
� + 1/2

[
�

St

(
ẋ · exF IIIa + ẋ · ezF IIIb + ReF VIb + aF IIa ω

2
+ u′

)

+3
2

Du′

Dt
− � − 1

Fr2
L

ez

]
. (4.8)

By replacing the Stokes part of the drag force, the rotation rate Ωy of the particle enters
(4.8). Because this quantity is not available through the Maxey–Riley equation (4.5), it is
modelled here by ω/2, with ω = (∇ × u) · ey the vorticity of the total flow.

Note (4.8) is valid only within the region (shown as a red square in figure 8) for
which the correlations of Romanò et al. (2020a) have been obtained and within which the
particle attractor is located in the Stokes flow limit u′ → 0. It is expected that the attractor
can be found in this region also for weakly inertial flow (u′ /= 0) in the framework of
approximation (4.8). For all simulations carried out, the local particle Reynolds number is
moderate with R̂ep � 1 (see figure 9b below), as required by the Maxey–Riley equation.

To be able to simulate particle trajectories using the corner-improved model (4.8), first
the total flow field u is computed in the whole domain (x, z) ∈ [−1/2, 1/2] × [−1/2, 1/2]
for Re ∈ [10−4, 10−2, 1, 25, 50, 75, 100], using the finite element library FEniCS (Alnæs
et al. 2015) and a 200 × 200 basic mesh which is further refined by reducing the grid
spacing by a factor of two at each of the distances 0.05, 0.01 and 0.005 from all walls. The
velocity and pressure are discretised using Taylor–Hood elements in which the velocity
is approximated by piecewise quadratic polynomials, while the pressure is represented by
piecewise linear polynomials. Using the Stokes flow solution (2.3) valid near the corner
(x, z) = (−1/2, −1/2) the inertial part of the flow u′ near this corner is obtained from
(4.7).
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Figure 9. (a) Particle trajectories converging towards the corner attractor near (x, z) = (−0.5, −0.5), and
initialised velocity matched on a 31 × 31 tensor grid defined with the bounds (δx, δz) ∈ [0.025, 0.975] ×
[0.025, 0.975] for Re = 100 and a = 0.005, 0.01 and 0.02 (solid lines). The colour map corresponds to the
non-dimensional flow velocity magnitude. (b) Blue shades indicate the magnitude of the deviation from the
Stokes corner flow, while red shading indicates the local particle Reynolds R̂ep number computed along every
ninth particle trajectory as a function of time.

To probe the attractor, particles were initiated velocity matched to the flow on a regular
11 × 11 grid within [−1/2 + 1.025a, −1/2 + 1.975a] × [−1/2 + 1.025a, −1/2 +
1.975a], inside the red square in figure 8, and (4.8) was integrated in time
using the fourth-order 3/8-rule Runge–Kutta method for different particle radii a ∈
[0.02, 0.01, 0.005]. The relative density is kept constant at � = 1.01.

Figure 9(a) shows three sets of particle trajectories (lines) for a = 0.005, 0.01 and
0.02, respectively, together with the velocity magnitude of the flow. For a reduced set of
trajectories shown in figure 9(b), the saturation of the red colour indicates the local particle
Reynolds number R̂ep = |Ũ + Ω̃ × (x̃s − x̃p) − ũ|ap/ν along the particle trajectories
together with the magnitude of the inertial remainder (blue).

After a short transient all particles were found to be attracted to the same unique
attractor, depending on the particle size and on the Reynolds number Re. In the case of
a = 0.02, owing to the larger Stokes number, some particles initialised in the upper part
of the seeding region, shown in red in figure 8 and 9(a), briefly leave the region of validity
of the model (4.8). To treat the particle motion outside of the strict domain of validity (red
square in figure 8) the correlations for FIIIa, FIIIb, FVIb and FIIa of Romanò et al. (2020a)
have been extrapolated slightly beyond the original domain of validity by employing the fit
also for δz > 1. However, very similar results are obtained when abruptly switching from
the model of Romanò et al. (2020a) to a particle–boundary interaction which only takes
into account forces from the plane stationary and moving walls (Jeffery 1915; Brenner
1961; Chaoui & Feuillebois 2003), not taking into account the entrainment effect of the
corner flow. In all cases, however, the fixed point is practically unaffected by the exterior
model and the phase portraits near the fixed point are qualitatively equivalent to the one
shown in figure 3(a). Therefore, the attraction dynamics predicted under the creeping-flow
approximation is robust with respect to the addition of small inertial effects and to the
particle–boundary interaction model used outside of the red region. Because all particles
of the same kind initialised in one of the red regions are attracted to the same unique
attractor, the prediction of the Stokesian attractor can be safely generalised to realisable
systems such as the present cavity flow.
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Figure 10. Displacements in the x direction (turquoise) and in the z direction (violet) of the attractor near the
corner (x, z) = (−1/2, −1/2) as functions of the global particle Reynolds number and for different particle
sizes (symbols). The full line is the quadratic fit (4.9) whose linear part is indicated by the dashed line.

The location of the attractor is shown in figure 10 in terms of the displacement (δx,z −
δSt

x,z) relative to the attractor in Stokes flow (δSt
x , δSt

z ) = (0.418, 0.346) (see figure 4(a)).
The displacements in the x and z direction for different particles sizes and flow Reynolds
numbers Re nearly collapse on a single curve satisfying

δx,z − δSt
x,z ≈ 0.04408 Rep + 0.00495 Re2

p, (4.9)

which asymptotes to (δx,z − δSt
x,z) ≈ 0.044 Rep for Rep → 0 (dashed line in figure 10),

where Rep denotes the global particle Reynolds number Rep = aRe. The collapse of all
data to the almost linear curve (4.9) indicates that the relevant parameter measuring the
displacement is indeed the global particle Reynolds number Rep (here Rep ≤ 2) and that
the position of the attractor is shifted away from the corner under an angle of ≈ 45◦ with
respect to the x axis.

In creeping cavity flow a particle repeller is located near (x, z) = (−1/2, 1/2) (near the
upper left-hand corner in figure 8), symmetrically placed with respect to the horizontal
cavity midplane (z = 0) to the attractor in the lower left-hand corner. Upon an increase
of the particle Reynolds numbers, this symmetry is broken: the bottom left attractor
moves away from the corner, whereas the top left repeller moves towards the corner.
Preliminary computations indicate the same linear asymptotic scaling of the displacement
of the repeller for small particle Reynolds number, albeit with a different sign.

The model (4.8) based on the Maxey–Riley equation predicts the existence and location
of the corner attractor also for inertial flow. Based on the results obtained it is expected
that the attractor is robust and, for moderate Reynolds numbers, will neither be destroyed
by higher-order inertial effects not included in (4.8) nor by the nonlinear interaction of the
flow with the particle. Therefore, the attractor should also be observable in experiments.
A thorough experimental proof, however, is pending.

5. Discussion and conclusion

The Stokesian dynamics of a freely translating and rotating spherical particle near a right
dihedral corner was studied for the case when both walls are sliding tangentially to their
planes and the gravitational force acts on the particle in an arbitrary direction. By making
use of the quasi-steady approach valid for creeping flows, the particle’s translational and
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rotational velocities were expressed by the forces and torques acting on the particle. Based
on the fit functions for the forces and torques provided by Romanò et al. (2020a) for the
same set-up, the translational and rotational velocities of the particle could be expressed
explicitly. This allowed for an extensive parametric study to determine particle trajectories
for more than 180 000 configurations.

We find a non-trivial particle attractor in the (x, z) plane in the form of a spiral
sink detached from the walls for U2 = −1, W2 ∈ [−1, 0.25], Ug ∈ [−2.2, −0.7] and
φx ∈ [45◦, 90◦]. The attracting line in the flow field U of the particle results from a
stable balance between lift forces on the particle due to the fluid entrained by the sliding
walls and the gravitational force directed towards the walls. Far away from the corner, the
Stokesian lift decays (in creeping flow a particle near a plane does not experience any lift
force) and the particle settles on one of the two walls, depending on Ug, φx and its initial
location. Owing to the symmetry of the Stokesian flow, corresponding repellers are found
by inverting the sign of W1, U2 and Ug. As the flow field for dihedral corners (without
particles) does not experience abrupt changes of its topology upon a smooth variation of
the dihedral angle, we expect our results are robust with respect to small deviations of the
corner angle from the 90◦ considered in this study. This expectation is supported by the
results of Dauparas & Lauga (2018), who found that the forces and torques on a particle
far from the corner vary smoothly with the dihedral angle.

The particle attractor/repeller cannot be inferred from the velocity field u of the fluid
alone. The velocity of the particle U is strongly influenced by gravity, the strength of which
is measured by the settling velocity Ug, whereas the fluid flow field u is independent of
the gravitational acceleration for isothermal incompressible flows.

Based on the definition of Ug, i.e. Ug = 2(1 − �)ga3/9ν2, the range Ug ∈ [−2.2, −0.7]
for heavy particles can be relevant for small particles (a ∈ [10−4, 10−3] m) in liquids
(ν ∼∈ [10−6, 10−3] m2 s−1), for which several combinations of a and ν can be found
such that a3/ν2 = O(1) s2 m−1 and (1 − �) ≈ O(1). As discussed further below, cavity
and junction flows of characteristic lengths up to a few hundreds micrometres represent
optimal set-ups for observing corner particle trapping of micron-sized particles.

Several examples of non-trivial finite-size particle attractors in non-chaotic Stokes flows
have been reported in the literature. For instance, Sauma-Pérez et al. (2018) studied the
emergence of a limit cycle for a particle in a rotating drum. For asymptotically small
particle Reynolds numbers the theory predicts equilibrium positions resulting from the
balance between gravitational, history, inertial forces and Stokes drag. However, owing to
the finite-size of the particle, the particle trajectory undergoes a Hopf bifurcation which
leads to a stable limit cycle whose size depends on the particle Reynolds number. This
non-trivial attractor relates to the finite-size effects in the bulk. Other non-trivial limit
cycles are reported for cavity flows (either shear- or lid-driven), where the limit cycle
results from a balance between particle inertia and particle–boundary interaction due to
the finite particle size. Examples of such limit cycles are reported in Romanò & Kuhlmann
(2016), Romanò et al. (2017) and Romanò & Kuhlmann (2017). Similar non-trivial limit
cycles have recently been reported by Romanò (2021), where inertial and Coriolis forces
are balanced by particle–boundary interactions leading to particle limit cycles in a confined
periodically rotating flow. The present study does complement the current literature by
demonstrating that particle attractors/repellers exist in two-sided lid-driven cavities near
two of the four corners as a result of a balance between gravitational settling and flow
entrainment due to the finite particle size.

Apart from closed cavity flows as the one presented in § 4.4, similar corner attractors are
expected for microfluidic set-ups, such as, for example, a T-junction used as a flow splitter.
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In this case, the midplane would be equivalent to a free surface playing the role of a sliding
wall, with the difference that the velocity would increase radially from the stagnation
line rather than being constant along the driving boundary. In such a set-up, the corner
attractor can be observed near the wall at the midplane of symmetry (see figure 3 of
Chan, Haward & Shen (2018)). Another related set-up is a channel flow past an open
microcavity (groove). The flow inside such cavity is driven by the shear layer formed
between the channel flow and the recirculating flow inside the cavity. A particle clustering
corresponding to our corner attractor has been experimentally observed by Hur, Mach
& Di Carlo (2011) right before the complete release of particles in the channel. Another
example of particle clustering near a corner with a driving surface has been experimentally
observed for D-junctions by Volpe et al. (2017).

We expect the particle attraction/repulsion mechanism unravelled by our study will have
an impact on those microfluidic applications in which the flow can be considered Stokesian
and is seeded with non-interacting density-mismatched particles. Our study suggests that
the positioning of a particle in a free stationary point can be controlled near a singular
corner by the orientation of the device with respect to the gravity vector and by the wall
velocities. This provides a novel strategy for corner-cleaning applications in microfluidic
devices, where the microscopic chips can easily be inclined. In fact, our parametric
study shows no corner attractors are formed beyond specific inclination angles φx of the
walls. Moreover, as the Stokesian flow considered admits repellers as counterpart of the
attractors, conditions can be identified for which the corner flow admits a repeller such that
particles cannot be attracted to the corner. Finally, based on our point-particle simulations,
we demonstrated that the attractors/repellers predicted in a semi-infinite corner can be
relevant for mildly inertial flows in realisable geometries such as driven cavities.
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