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Quivers with potentials for Grassmannian
cluster algebras
Wen Chang and Jie Zhang
Abstract. We consider a quiver with potential (QP) (Q(D), W(D)) and an iced quiver with
potential (IQP) (Q(D), F(D), W(D)) associated with a Postnikov Diagram D and prove that their
mutations are compatible with the geometric exchanges of D. This ensures that we may define a
QP (Q , W) and an IQP (Q , F , W) for a Grassmannian cluster algebra up to mutation equivalence.
It shows that (Q , W) is always rigid (thus nondegenerate) and Jacobi-finite. Moreover, in fact, we
show that it is the unique nondegenerate (thus rigid) QP by using a general result of Geiß, Labardini-
Fragoso, and Schröer (2016, Advances in Mathematics 290, 364–452).

Then we show that, within the mutation class of the QP for a Grassmannian cluster algebra,
the quivers determine the potentials up to right equivalence. As an application, we verify that the
auto-equivalence group of the generalized cluster category C(Q ,W) is isomorphic to the cluster
automorphism group of the associated Grassmannian cluster algebra AQ with trivial coefficients.

1 Introduction

Since having been introduced by Fomin and Zelevinsky in the year 2000 [FZ02],
cluster algebras have been seeing a tremendous development. It is believed that the
coordinate rings of several algebraic varieties related to semisimple groups have
cluster structures. This has been verified for various cases, such as double Bruhat
cells [BFZ05], partial flag varieties and their associated unipotent radicals [GLS08],
and Richardson varieties of complete flag varieties [Lec16]. An important and early
example is the Grassmannians [S06]. In this paper, we study the quivers with potentials
associated with Grassmannian cluster algebras.

Recall that, as a subalgebra of a rational function field, a (skew-symmetric) cluster
algebra is generated by cluster variables in various seeds, where a seed is a pair
consisting of a quiver and a set of indeterminates in the rational function field.
Different seeds are related by an operation so-called mutation. In some sense, the
rich combinatorial structures on cluster algebras are given by mutations. There is a
representation-theoretic interpretation of quiver mutations given by Derksen, Wey-
man, and Zelevinsky [DWZ08]. They introduced the notion of quivers with potentials
and their decorated representations, where potentials can be considered as sum of
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cycles in the quiver, and the mutations of decorated representations can be viewed as
a generalization of Bernstein–Gelfand–Ponomarev reflection functors.

On the other hand, the Postnikov diagram D, which is a certain planar graph on a
disk, corresponds to a special cluster in a Grassmannian cluster algebra, which consists
of Plücker coordinates. The strands of the diagram cut the disk into some oriented
regions and alternating oriented regions. Then the quiver Q(D) of D can be viewed
as certain dual of the Postnikov diagram, with the alternating oriented regions as the
vertices and the crossings of the strands as the arrows.

It is proved by Scott [S06] that the mutation of the quiver Q(D) at a vertex with
two arrows going out and two arrows going in is compatible with a transformation
on the Postnikov diagram D, called geometric exchange, at an alternating oriented
quadrilateral cell. By viewing the boundary regions as frozen vertices, we get an iced
quiver (Q(D), F). Note that each oriented region in D yields a fundamental cycle with
minimal length up to cyclically equivalence in the quiver. Then we define the potential
W(D) for the iced quiver as an alternating sum of these fundamental cycles. We then
have the following theorem, which is a certain generalization of the result in [S06] (see
Theorem 3.4 for more details).

Theorem 1.1 The geometric exchanges of the Postnikov diagram D are compatible with
the mutations of (Q , W) and (Q(D), F , W(D)) up to right equivalence.

Note that the concept of the mutation of an iced quiver with potential (IQP) we
used here is the one recently introduced by Pressland in [P18]. We should also say
that besides the work of Scott mentioned above, there already exist some other related
works which compare the mutations of the quivers with other operations, like that
stated in the above theorem. For example, Vitória compared in [V09] the mutation
of the quiver with potential (QP) and the Seiberg duality; Buan, Iyama, Reiten, and
Smith proved in [BIRS11] that the mutations of cluster tilting objects in the generalized
cluster category arising from (Q , W) and the mutations of the QPs are compatible,
whereas Pressland proved the case for iced quivers with potentials [P18]; and Baur,
King, and Marsh proved that the boundary algebra of the dimer algebra arising from
a Postnikov diagram is invariant under the geometric exchange [BKM16]. Note that
the completion of the dimer algebra is isomorphic to the Jacobian algebra of the IQP
associated with the Postnikov diagram.

The above theorem allows us to define the quivers with potentials (up to right
equivalence and mutation equivalence) for a Grassmannian cluster algebra by con-
sidering a fixed Postnikov diagram. Note that the mutation of a QP can only be
operated at a vertex which is not involved in 2-cycles, and even when the initial quiver
has no 2-cycles, there may appear 2-cycles after mutations [DWZ08]. A QP is called
nondegenerate if there exist no 2-cycles after any iterated mutations. A more “generic”
condition called rigidity implies the nondegeneration. So a rigid QP can be viewed as
a kind of “good” QP, respecting to the mutations. We study the rigidity of the QP of a
Grassmannian cluster algebra (see Theorem 3.14).

Theorem 1.2 The QP (Q , W) associated with a Grassmannian cluster algebra is rigid,
and it is the unique rigid QP with underlying quiver Q up to right equivalence and
mutation equivalence.
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We would like to mention that the rigidity of (Q , W) has already been studied by
several authors such as Buan, Iyama, Reiten, and Smith [BIRS11] by using an algebraic
method, and Kulkarni [K19] by using a topological method. The method we used
in this paper is also topological, which is different from that used in [K19]. In fact,
Kulkarni got the rigidity for a larger class of quivers with potentials arising from
dimer models, whereas we only consider the Grassmannian cluster algebras and get
the conclusion by explicitly describing a special QP. This description is also used in
the proof for the uniqueness of the rigid QP of a Grassmannian cluster algebra.

The problem of classifying all nondegenerate (or rigid) potentials on a 2-acyclic
quiver is systematically studied in [GLS16], where they proved that most quivers
arising from triangulations of surfaces have unique nondegenerate potentials up to
right equivalence. On the other hand, there do exist 2-acyclic quivers arising from
surfaces admits infinitely many nondegenerate potentials that are pairwise not right-
equivalent (see, for example, in more recent work [GLM20]). We also refer the reader
to [GLM20] for detailed explanations on how this classification problem plays a role
in algebraic geometry and in symplectic geometry.

We can easily get the following corollary from the above theorem.

Corollary 1.3 Inside the mutation-equivalent class of QP of a Grassmannian cluster
algebra, the quiver determines the potentials up to right equivalence. More precisely,
assume that (Q′ , W ′) and (Q , W) are two quivers with potentials of a Grassmannian
cluster algebra. Then:
(1) (Q′ , W ′) is right-equivalent to (Q , W) if Q′ ≅ Q;
(2) (Q′ , W ′) is right-equivalent to (Qop , W op) if Q′ ≅ Qop .

As an application, we also consider the cluster automorphism group associated with
the Grassmannian cluster algebras introduced in [ASS12] and the auto-equivalence
group of the corresponding cluster category. It is proved in [ASS12, BIRS09] that if the
cluster algebra is of acyclic type, then the cluster automorphism group is isomorphic
to the auto-equivalence group of the corresponding cluster category. We provide a
similar isomorphism between these two groups for the Grassmannian cluster algebra
with trivial coefficients (see Theorem 4.5). Note that most of Grassmannian cluster
algebras are nonacyclic.

Theorem 1.4 Let (Q , W) be a QP for a Grassmannian cluster algebra. Then the auto-
equivalence group of the generalized cluster category C(Q ,W) is isomorphic to the cluster
automorphism group of the associated Grassmannian cluster algebra AQ with trivial
coefficients.

In fact, we have a more general result: this isomorphism is valid for a generalized
cluster category whose potentials are determined by the quivers. Note that, on the
one hand, these two groups describe both the symmetries of the cluster structures in
the category and the algebra, respectively. On the other hand, the cluster structure
in the cluster algebra only depends on the quiver, rather than the potential over the
quiver. So we conjecture that these two groups are isomorphic for all generalized
cluster categories (see Conjecture 4.2). We also conjecture that the quivers always
determine the potentials in the mutation-equivalent classes of quivers with potentials
(see Conjecture 4.3).
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The paper is organized as follows: In Section 2, we recall some preliminaries
on cluster algebras, quivers with potentials, and Grassmannian cluster algebras. In
Section 3, we define the quivers with potentials for Grassmannian cluster algebras
and prove their rigidity and uniqueness. Section 4 is devoted to an application of our
main results to the generalized cluster categories, namely, we prove the isomorphism
between the auto-equivalence group of the category and the cluster automorphism
group in Section 4.2.

2 Conventions

Throughout the paper, we use Z as the set of integers, N as the set of positive integers,
and C as the set of complex numbers. Arrows in a quiver are composed from right to
left, that is, we write a path j

β
→ i α
→ k as αβ.

2.1 Preliminaries

In this section, we briefly recall some definitions on quivers with potentials and
Grassmannian cluster algebras.

2.2 Quivers with potentials

The references of this subsection are [BIRS11, DWZ08, GLS16, P18], especially [P18]
for the case of IQPs.

2.2.1 Quivers

Recall that a quiver is a quadruple Q = (Q0 , Q1 , s, t), consisting of a finite set of vertices
Q0, of a finite set of arrows Q1, and of two maps s, t from Q1 to Q0 which map each
arrow α to its source s(α) and its target t(α), respectively. An iced quiver is a pair
(Q , F)where Q is a quiver and F = (F0 , F1 , s, t) is a subquiver (not necessarily full) of
Q, where F0 ⊆ Q0 and F1 ⊆ Q1. The vertices in F0 are called the frozen vertices, whereas
the vertices in Q0/F0 are called the exchangeable vertices. The arrows in F1 are called
the frozen arrows, whereas the arrows in Q1/F1 are called the unfrozen arrows. The full
subquiver of Q with vertex set Q0/F0 is called the principal part of Q, denoted by Q pr .

Let (Q , F) be an iced quiver without loops nor 2-cycles. A mutation of (Q , F) at
exchangeable vertex i is an iced quiver (μ i(Q), F), where μ i(Q) is obtained from
Q by:

• inserting a new unfrozen arrow γ ∶ j → k for each path j
β
→ i α
→ k;

• inverting all arrows passing through i;
• removing the arrows in a maximal set of pairwise disjoint 2-cycles (2-cycles moves).

2.2.2 Cluster algebras

Let (Q , F) be an iced quiver with Q0 = {1, 2, . . . , n +m} and F0 = {n + 1,
n + 2, . . . , n +m}. By associating with each vertex i ∈ Q0 an indeterminate element
x i , one gets a set x̃ = {x1 , x2 , . . . , xn+m} = {x1 , x2 , . . . , xn} ⊔ {xn+1 , xn+2 , . . . ,
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xn+m} = x⊔. We call the triple Σ = (Q , F , x̃) a seed. An element in x (resp. in ) is
called a cluster variable (resp. coefficient variable), and x is called a cluster.

Let x i be a cluster variable, and the mutation of the seed Σ at x i is a new seed
μ i(Σ) = (μ i(Q), F , μ i(x)), where μ i(x) = (x/{x i}) ⊔ {x′i} with

x i x′i = ∏
α∈Q1 ;

s(α)=i

xt(α) + ∏
α∈Q1 ;
t(α)=i

xs(α) .(2.1)

Denote by X the union of all possible clusters obtained from an initial seed
Σ = (Q , F , x̃) by iterated mutations. Let P be the free abelian group (written mul-
tiplicatively) generated by the elements of . Let F = QP(x1 , x2 , . . . , xn) be the field
of rational functions in n independent variables with coefficients in QP. The cluster
algebra A(Q ,F) is a ZP-subalgebra of F generated by cluster variables in X , that is,

A(Q ,F) = ZP[X ].

2.2.3 Quivers with potentials

Let (Q , F) be an iced quiver without loops. We denote by C⟨Q⟩ the path algebra
of Q over C. By length(p), we denote the length of a path p in C⟨Q⟩. The complete
path algebra C⟨⟨Q⟩⟩ is the completion of C⟨Q⟩ with respect to the ideal m generated
by the arrows of Q. A potential W on Q is an element in the closure Pot(Q) of the
space generated by all cycles in Q. We say that two potentials W and W ′ are cyclically
equivalent if W −W ′ belongs to the closure C of the space generated by all differences
αs ⋅ ⋅ ⋅ α2α1 − α1αs ⋅ ⋅ ⋅ α2 coming from cycles αs ⋅ ⋅ ⋅ α2α1. Denote by [l] the set of cycles
which are cyclically equivalent to a cycle l. We call a triple (Q , F , W) an IQP, if no two
terms in W ∈ Pot(Q) are cyclically equivalent. Moreover, if each term in W includes
at least one unfrozen arrow, then we call the IQP irredundant. If F = ∅, then we call
the pair (Q , W) a QP, and as for the quiver, we also view a QP as a special IQP.

2.2.4 Jacobian algebras

For an arrow α of Q, we define ∂α ∶ Pot(Q) → C⟨⟨Q⟩⟩ the cyclic derivative with respect
to α, which is the unique continuous linear map that sends a cycle l to the sum
∑l=pαq pq taken over all decompositions of the cycle l. Let J(Q , F , W) be the closure
of the ideal of C⟨Q⟩ generated by cyclic derivatives in {∂α W , α unfrozen}. We call
J(Q , F , W) the (frozen) Jacobian ideal of (Q , F , W) and call the quotient

P(Q , F , W) = C⟨⟨Q⟩⟩/J(Q , F , W)

the (frozen) Jacobian algebra of (Q , F , W).
For an IQP (Q , F , W), we call it trivial if each term in W is a 2-cycle and

P(Q , F , W) is a product of copies of C, and we say it is reduced if each term of W
includes at least one unfrozen arrow and ∂βW ∈ m2 for any unfrozen arrow β.
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2.2.5 Right-equivalences and reductions

Two IQPs (Q , F , W) and (Q′ , F′ , W ′) are right-equivalent if Q and Q′ have the
same set of vertices and frozen vertices, and there exists an algebra isomorphism
φ ∶ C⟨⟨Q⟩⟩ → C⟨⟨Q′⟩⟩whose restriction on vertices is the identity map, ϕ(C⟨⟨F⟩⟩) =
C⟨⟨F′⟩⟩, and φ(W) and W are cyclically equivalent. Such an isomorphism φ is called
a right-equivalence.

It is proved in [P18, Theorem 3.6] (in [DWZ08, Theorem 4.6] that for QP) that,
for any irredundant IQP (Q , F , W), there exist a reduced IQP (Qred , Fred , Wred)
such that the Jacobian algebras P(Q , F , W) and P(Qred , Fred , Wred) are isomorphic.
Furthermore, the right-equivalence class of (Qred , Fred , Wred) is determined by the
right-equivalence class of (Q , F , W). The operation to producing (Qred , Fred , Wred)
is called the reduction, which consists of the following steps (see Lemma 3.14 of [P18]
and the proof of Theorem 3.6 of [P18]):

Step I: we can write

W =
M
∑
i=1

α i β i +
N
∑

i=M+1
α i(β i + p i) +W1(2.2)

up to right equivalence, for some arrows α i and β i and elements p i ∈ m2, where:

• α i is unfrozen for all 1 ≤ i ≤ N , and β i is frozen if and only if i > M,
• the arrows α i and β i with 1 ≤ i ≤ M each appear exactly once in the expression,
• the arrows β i , for 1 ≤ i ≤ N , do not appear in any of the p j , and
• the arrows α i and β i , for 1 ≤ i ≤ N , do not appear in the potential W1, which has no

length 2 terms.

Step II: Let Q′ be the subquiver of Q consisting of all vertices and those arrows
which are not α i and β i , 1 ≤ i ≤ M, and

W ′ =
N
∑

i=M+1
α i(β i + p i) +W1 .

Then (Q′ , F , W ′) is an IQP.
Step III: Let (Qred , Fred) be the iced quiver obtained from (Q′ , F) by deleting β i

and freezing α i for each M + 1 ≤ i ≤ N . Let

Wred =
N
∑

i=M+1
α i p i +W1 .

Then (Qred , Fred , Wred) is the reduced IQP we want.

2.2.6 Mutations of iced quivers with potentials

Let (Q , F , W) be an irredundant IQP, and let i be an exchangeable vertex of Q
such that there is no 2-cycles at i and no cycle occurring in the decomposition of
W starts and ends at i. The premutation μ̃ i(Q , F , W) of (Q , F , W) is a new QP
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(μ̃ i(Q), μ̃ i(F), μ̃ i(W)) = (Q̃ , F̃ , W̃) defined as follows. The new iced quiver (Q̃ , F̃)
is obtained from (Q , F) by:

• adding a new unfrozen arrow [αβ] ∶ j → k for each path j
β
→ i α
→ k;

• replacing each arrow α incident to i with an arrow α∗ in the opposite direction.
The new potential W̃ is the sum of two potentials W̃1 and W̃2. The potential W̃1

is obtained by replacing each factor αpαp+1 by [αpαp+1] with s(αp) = t(αp+1) = i for
any cyclic path α1 ⋅ ⋅ ⋅ αs occurring in the expansion of W . The potential W̃2 is given by

W̃2 = ∑
α ,β
[αβ]β∗α∗ ,

where the sum ranges over all pairs of arrows α and β with s(α) = t(β) = i. Then
μ̃ i(Q , F , W) is an irredundant IQP. We denote by μ i(Q , F , W) the reduced part of
μ̃ i(Q , F , W), and call μ i the mutation of (Q , F , W) at the vertex i. We call two IQPs
mutation-equivalent if one can be obtained from another by iterated mutations. Note
that the mutation equivalence is an equivalent relation on the set of right-equivalence
classes of IQPs.

2.3 Grassmannian cluster algebras

We recall in this subsection some definitions on Grassmannian cluster algebras, and
we refer to [P06, S06] for more details on Postnikov diagrams and Grassmannian
cluster algebras, respectively.

Let Gr(k, n) be the Grassmannian of k-planes in Cn , and let C[Gr(k, n)] be
its homogeneous coordinate ring. When k = 2, Fomin and Zelevinsky proved that
C[Gr(k, n)] has a cluster algebra structure [FZ03]. Scott generalized this result to
the case of any Grassmannian Gr(k, n), where the proof relies on a correspondence
between a special kind of clusters in the cluster algebra and certain planar diagram.

2.3.1 Postnikov diagrams

For k, n ∈ N with k < n, a (k, n)-Postnikov diagram D is a collection of n oriented
paths, called strands, in a disk with n marked points on its boundary, labeled by
1, 2, . . . , n in clockwise orientation. The strands, which are labeled by 1 ⩽ i ⩽ n, start at
point i and end at point i + k. These strands obey the following conditions:
• Any two strands cross transversely, and there are no triple crossings between

strands.
• No strand intersects itself.
• There are finitely many crossing points.
• Following any given strand, the other strands alternately cross it from left to right

and from right to left.
• For any two strands i and j, the configuration shown in Figure 1 is forbidden.

Postnikov diagrams are identified up to isotopy. We say that a Postnikov diagram
is of reduced type if no untwisting move shown in Figure 2 can be applied to it.

The fourth condition ensures that the strands divide the disk into two types of
regions: oriented regions, where all the strands on their sides circle clockwise or
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Figure 1: Forbidden crossing.
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Figure 2: Untwisting move.
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712

123

234

345

456

567 267
126

256 125

356 235

Figure 3: A (3, 7)-Postnikov diagram.

anticlockwise, and alternating oriented regions, where the adjacent strands alternate
directions. A region is said to be internal if it is not adjacent to the boundary of the
disk, and the other regions are referred to as boundary regions. A boundary region
contains a part of boundary as side is viewed as an alternating oriented region. Denote
by Ro(D) and Ra(D) the set of all oriented regions and alternating oriented regions
in D, respectively. See Figure 3 for an example of (3, 7)-Postnikov diagram.

Given a Postnikov diagram D and an alternating oriented quadrilateral cell R
inside D, a new Postnikov diagram μ̃R(D) is constructed by the local rearrangement
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j

i s

t

R

D

j

i s

t

μ̃R(D)

Figure 4: Pregeometric exchange.

Figure 5: Arrow orientations in the quiver Q(D).

shown in Figure 4. We call μ̃R a pre-geometric exchange at R. Note that there may
appear new configurations in μ̃R(D) as shown in the left side of Figure 2. Let
μR(D) be the Postnikov diagram obtained from μ̃R(D) after untwisting these new
configurations. We call μR a geometric exchange at R. Note that if D is of reduced type,
then so is μR(D).

2.3.2 Grassmannian cluster algebras

For a Postnikov diagram D, one may associate it with a quiver Q(D), whose vertices
are indexed by Ra(D), and whose arrows correspond to crossings of stands that
bound two alternating regions, with orientation inherited from that of the stands (see
Figure 5). Let (Q(D), F(D)) be an iced quiver, where the exchangeable vertices of
Q(D) are given by internal regions in Ra(D), whereas the frozen vertices correspond
to the boundary regions inRa(D), and the frozen arrows are all the arrows connecting
two boundary alternating oriented regions, which are shown in red in Figure 5. We
denote by Q(D) the principal part of Q(D).

Example 1 See Figure 6 for the quiver (Q(D), F(D)) associated with the Postnikov
diagram D in Figure 3.

It has been proved in [S06] that the coordinate ring C[Gr(k, n)] has a cluster
algebra structure, more precisely, the localization of C[Gr(k, n)] at consecutive
Plücker coordinates is isomorphic to the complexification of A(Q(D),F) as cluster
algebras.
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Figure 6: The iced quiver (Q(D), F(D)) of the Postnikov diagram D in Figure 3, where the
red arrows are the frozen arrows.

Remark 2.1 Note that the frozen arrows in the iced quiver (Q(D), F(D)) have no
influence on the “cluster structure” of the cluster algebraA(Q(D),F(D)). However, these
arrows appear naturally in the (Frobenius) categorification of the cluster algebras
in [BKM16, GLS08, JKS16]. In particular, it is proved by Buar, King, and Marsh in
[BKM16] that (Q(D), F(D)) is the Gabriel quiver of the endomorphism algebra of
the cluster tilting object in the Frobenius category (see Section 4 for more information
about this).

3 Quivers with potentials of Grassmannian cluster algebras

We introduce in this section two quivers with potentials (Q(D), F(D), W(D))
and (Q(D), W(D)) for each Postnikov diagram D, and verify the compatibility of
geometric exchanges of D and the mutations of these quivers with potentials. This
ensures we may define quivers with potentials (Q , W) and IQP (Q , F , W) for a
Grassmannian cluster algebra up to mutation equivalence. Then we prove the rigidity
of (Q , W) and the finiteness of the dimension of the corresponding Jacobian algebra
P(Q , W). We also show that (Q , W) is the unique rigid QP over the quiver Q of
the Grassmannian cluster algebras up to right equivalence, and for each QP in the
mutation class of (Q , W), we show that the quiver determines the potentials up to
right equivalence.
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Figure 7: The fundamental cycle, where the horizonal dashed line is the boundary of the
diagram, and other dashed lines are the strands. The omitted part is at the interior of the
diagram. The regions are anticlockwise. When the regions are clockwise, the figures occur
in the opposite sense, which means inverting the orientations of the strands and the arrows
simultaneously. The first cycle is an internal fundamental cycle, whereas the second one is a
boundary fundamental cycle.

3.1 The definition

We write C .W . (resp. A.C .W .) for clockwise (resp. anticlockwise) for brevity. Then
each oriented region r, bounded by m stands in D, is either C .W . or A.C .W ., and it
yields a unique fundamental cycle (up to cyclic equivalence) ωr of length m in the
quiver (see Figure 7 for example). We call ωr the internal fundamental cycles if r is an
internal region, and boundary fundamental cycles if r is a boundary region.

Definition 3.1 For the quivers Q(D) and (Q(D), F(D)), let W(D) and W(D) be
potentials in the corresponding quivers, which are signed sums of representatives of
fundamental cycles in the quivers, that is,

W = ∑
r ∈Ro(D) C .W .
internal region

ωr − ∑
r ∈Ro(D) A.C .W .

internal region

ωr ∈ Pot(Q),

W = ∑
r ∈Ro(D) C .W .

ωr − ∑
r ∈Ro(D) A.C .W .

ωr ∈ Pot(Q).

It is obvious that there are no two cyclically equivalent cycles appearing in the
potential simultaneously, and there is at least one unfrozen arrow in each term of the
potential. So (Q(D), W(D)) is a QP and (Q(D), F(D), W(D)) is an IQP. Note that
these (iced) QPs are also reduced by definition.

Remark 3.2 In a more general setting of dimer models, the potentials are always
picked in such signed sum over the fundamental cycles. In particular, in the settings of
Grassmannian cluster algebras, the IQP (Q(D), F(D), W(D)) has been introduced
and studied in [BKM16, P18]. The Jacobian algebra of the IQP is realized in [BKM16] as
the endomorphism algebra of the cluster tilting object in the JKS’s Frobenius category.

In order to prove that mutations of (Q(D), W(D)) and (Q(D), F , W(D)) are
compatible with geometric exchanges of the Postnikov diagrams D, we need the
following lemma.
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Lemma 3.3 Let D be a Postnikov diagram. Let ε ∶Ro(D) → {±1} be a function on the
set of oriented regions in D. Define potentials

Wε(D) = ∑
r ∈Ro(D) C .W .
internal region

ε(r)ωr − ∑
r ∈Ro(D) A.C .W .

internal region

ε(r)ωr ∈ Pot(Q),

W ε(D) = ∑
r ∈Ro(D) C .W .

ε(r)ωr − ∑
r ∈Ro(D) A.C .W .

ε(r)ωr ∈ Pot(Q).

Then (Q(D), Wε(D)) and (Q(D), F(D), W ε(D))) are right-equivalent to
(Q(D), W(D)) and (Q(D), F(D), W(D)), respectively.

Proof We only deal with the case of Q(D), and the case of Q(D) is similar. Because
the underlying graph of Q(D) is a planar graph with nontrivial boundary, as stated for
the QP arising from surfaces in Section 10 of [L16], for any ε, there exists a function

ε ∶ Q1(D) → {±1}

on the arrows of Q(D) such that, for any r with ωr = αm ⋅ ⋅ ⋅ α2α1, we have
m
∏
i=1

ε(α i) = ε(r).

So the map

ϕ ∶ Q1(D) → Q1(D), α ↦ ε(α)α

induces an algebra isomorphism Φ from C⟨⟨Q(D)⟩⟩ to C⟨⟨Q(D)⟩⟩ which maps
W(D) to Wε(D). Then Φ is a right equivalence which completes the proof. ∎

Now, we are ready to give the main result in this subsection.

Theorem 3.4 Let D be a reduced Postnikov diagram with an alternating oriented
quadrilateral cell R, which associates with an exchangeable vertex a in the quiver Q(D).
Then the mutations of (Q(D), W(D)) and (Q(D), F(D), W(D)) are compatible
with the geometric exchanges of the Postnikov diagram. More precisely, up to right
equivalence, we have:
(1) μa(Q(D)) = Q(μR(D)) and μa(W(D)) =W(μR(D));
(2) μa(Q(D), F(D)) = (Q(μR(D)), F(μR(D))) and μa(W(D)) =W(μR(D)).

Proof Note that (Q(D), W(D)) is the “principal part” of (Q(D), F(D), W(D)),
where Q(D) is the principal part quiver of (Q(D), F(D)) and W(D) is obtained
from W(D) by deleting the potentials which contain the frozen arrows. Thus, the
statement (1) follows from the statement (2). So we only prove the statement (2).

Since R is a quadrilateral cell in D, there are four arrows α, β, γ, δ in the quiver
(Q(D), F(D)) whose endings are the associated vertex a. On the other hand, since a
is exchangeable, these arrows are all unfrozen. Without loss of generality, we assume
that a = s(α) = t(β). Let ωr = αβp be a fundamental cycle in W(D) corresponding
to an oriented region r of D that contains both α and β, where p is a path from t(α)
to s(β).
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(a) (b) (c)

Figure 8: Local configuration of a fundamental circle through the vertex a up to rotations and
reflections. The path p in the first picture is an unfrozen arrow, whereas the path p in the third
picture is a frozen arrow. The path p in the second picture is a path with length at least 2.

Up to rotations and reflections, there are essentially three possibilities of ωr , which
are shown in Figure 8. If length(p) = 1, then the local configuration of D is as shown
in Figure 8a,c, where the arrow p is unfrozen in Figure 8a, whereas it is frozen in
Figure 8c. If length(p) > 1, then the local configuration is as shown in Figure 8b, where
the length of the path p is at least 2 and it may contain frozen arrows.

Now, we consider the local configuration of D around a depicted in the first picture
of Figure 9, which contains all the above three possibilities. We only prove the result
for this situation. Other situations can be proved similarly.

Up to a cyclic equivalence, we may write the potential

W(D) = ζαδ − sγδ + ξγβ − ηαβ − ξt +W ′
(D),

where length(s) ⩾ 2, length(t) ⩾ 2, and each cycle in W ′
(D) does not contain any of

the following arrows α, β, γ, δ, ξ, ζ , and η. Then, by a pregeometric exchange μ̃R on D
and a premutation μ̃a on (Q(D), F(D)), we obtain the second picture in Figure 9.
Note that the new arrows appearing in the iced quiver μ̃a(Q(D)), μ̃a(F(D)) are
all unfrozen. Meanwhile, by applying the premutation μ̃a on W(D), we get a new
potential

μ̃a(W(D)) = ζ[αδ] + δ∗α∗[αδ] − s[γδ] − δ∗γ∗[γδ] + ξ[γβ]
+β∗γ∗[γβ] − η[αβ] − β∗α∗[αβ] − ξt +W ′

(D).

Note that W ′
(D) is not changed because a is not an end point of any arrow appearing

in each potential of W ′
(D).

Recall the processes of the reduction of an IQP stated in Section 2.1, to reduce the
IQP (μ̃a(Q(D)), μ̃a(F(D)), μ̃a(W(D))), we should firstly find a right equivalence
and use it to rewrite the potential as the canonical form (2.2). Let us consider a
unitriangular automorphism ϕ on C⟨⟨μ̃a(Q(D))⟩⟩, where

ϕ([γβ]) = [γβ] + t, ϕ(ξ) = ξ − β∗γ∗ , ϕ([αβ]) = −[αβ], ϕ(u) = u
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Figure 9: Mutations and geometric exchanges.

for other arrows u in μ̃a((Q(D)). Then

ϕ(μ̃a(W(D))) = ξ[γβ]
+[αδ](ζ + δ∗α∗) + [αβ](η + β∗α∗)
+β∗γ∗t − s[γδ] − δ∗γ∗[γδ] +W ′

(D).

On the one hand, note that ϕ gives a right equivalence between the IQPs

(μ̃a(Q(D)), μ̃a(F(D)), μ̃a(W(D)))

and

(μ̃a(Q(D)), μ̃a(F(D)), ϕ(μ̃a(W(D)))),

in particular,

ϕ(C⟨⟨F(D)⟩⟩) = C⟨⟨μ̃a(F(D))⟩⟩.
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On the other hand, ϕ(μ̃a(W(D))) is of the canonical form (2.2) with the reduced
part

ϕ(μ̃a(W(D)))red = [αδ]δ∗α∗ + [αβ]β∗α∗ + β∗γ∗t − s[γδ] − δ∗γ∗[γδ] +W ′
(D).

Then, after the reduction, we get the mutation

(μa(Q(D)), μa(F(D)), μa(W(D))),

where the iced quiver (μa(Q(D)), μa(F(D))) is obtained from
(μ̃a(Q(D)), μ̃a(F(D))) by deleting the arrows ξ, [γβ], ζ , and η, and freezing
the arrows [αβ] and [αδ]. Note that this iced quiver is exactly the iced quiver of the
final Postnikov diagram μR(D) depicted in the third picture of Figure 9, that is, we
have Q(μR(D)) = μa(Q(D)).

On the other hand, by the definition,

W(μR(D)) = −[αδ]δ∗α∗ + [αβ]β∗α∗ − β∗γ∗t − s[γδ] + δ∗γ∗[γδ] +W ′
(D).

Furthermore, by Lemma 3.3, there is a sign change of arrows ε on C⟨⟨μa(Q(D))⟩⟩
such that

ε(μa(W(D))) = ε(ϕ(μ̃a(W(D)))red) =W(μR(D))

up to the equality μa(Q(D)) = Q(μR(D)). So, by the right-equivalent εϕ, we obtain
the final mutation μa(Q(D), F(D), W(D)), as well as the desired equalities

(μa(Q(D)), μa(F(D)) = (Q(μR(D)), F(μR(D))) and μa(W(D)) =W(μR(D)).

∎

The compatibility stated in the above theorem ensures the following
definition.

Definition 3.5 Let D be any (k, n)-Postnikov diagram, and let C[Gr(k, n)] be the
Grassmannian cluster algebra. We call:
• a QP which is mutation-equivalent to (Q(D), W(D)) a QP of C[Gr(k, n)], and

denote it by (Q , W);
• an IQP which is mutation-equivalent to (Q(D), F(D), W(D)) an IQP of
C[Gr(k, n)], and denote it by (Q , F , W).

3.2 Rigidity and finite dimension

We prove in this subsection that each QP of a Grassmannian cluster algebra
C[Gr(k, n)] is rigid and Jacobi-finite. We would like to mention that the techniques
used in this subsection to describe the properties of the quivers with potentials
associated with Grassmannian cluster algebras is inspired by the work of Labardini
for the surface cluster algebras [L09, L16]. The philosophy behind this is that as for
the surface cluster algebras, some quivers of the Grassmannian cluster algebras are
“two-dimensional,” which implies that they can be embedded into a disk. Notice that
these quivers are the dual of the Postnikov diagrams. Therefore, from this point of
view, our main results in Section 3, especially the uniqueness of the rigid QP, and thus

https://doi.org/10.4153/S0008414X22000281 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000281


1214 W. Chang and J. Zhang

the following application to the cluster automorphism groups, can be established in
a more general settings, for example, for the cluster algebras arising from the dimer
models [B12], from the unipotent groups [BIRS09], and from the double Bruhat cells
[FZ07]. However, we restrict our interests to the Grassmannian cluster algebras in this
paper.

Recall that a QP (Q , W) is said to be 2-acyclic if there are no 2-cycles in the quiver.
Note that there may appear 2-cycles in the quiver of μ i(Q , W) after mutations, even
if (Q , W) is 2-acyclic. If all possible iterations of mutations are 2-acyclic, then we say
that (Q , W) is nondegenerate. We call (Q , W) rigid if every cycle in Q is cyclically
equivalent to an element of the Jacobian ideal J(Q , W). It is known that a rigid QP is
always nondegenerate [DWZ08]. We call (Q , W) Jacobi-finite if the Jacobian algebra
P(Q , W) is finite-dimensional.

For the further study, we need some special Postnikov diagram (see Figure 10),
where the diagrams depend on the parities of k and n, and any pair (k, n) matches
a unique diagram shown in these figures. These diagrams are of special importance,
and they are used by Scott as the initial diagrams, which give the initial quivers of the
Grassmannian cluster algebras [S06].

Denote by (Q ini , Fini , W ini) and (Qini , Wini) the IQP and the QP associated with
the initial Postnikov diagram, respectively. In what follows, we always assume that
both k and n are odd. The statements and the proofs for the other cases are similar.
The quiver Q is certain grid as shown in Figure 11, where we endow the points of the
quiver with coordinates, and label the position of a fundamental cycle by its row Rj
and column Ci. For example, the bottom-left fundamental cycle lies at R1 row and C1
column. We denote by a(i , j) the vertex with coordinate (i , j).

Let l be a path which forms a cycle in Qini. Let a(i1 , j1) be a vertex on l, and we say
that it is a leftmost vertex of l if i1 ⩽ i for any vertex a(i , j) on l. Similarly, we define
the rightmost vertex, lowest vertex, and highest vertex of l as a(i2 , j2), a(i3 , j3), and
a(i4 , j4) respectively. We call width(l) = i2 − i1 the width of l, and call height(l) =
j4 − j3 the height of l.

Lemma 3.6 Let l be a cycle in Qini with end point (i0 , j0). There exists a positive
integer m such that l − ωm ∈ J(Qini , Wini) for any fundamental cycle ω with end point
(i0 , j0).

Proof Without loss of generality, we may assume that (i0 , j0) is at the top-left corner
of ω. So ω is located at R( j0 − 1) and Ci0 of Qini. The proof is proceeded in two
steps.

Step 1: We claim that there exists a cycle ξ satisfying the following conditions:
(1) the end point of ξ is (i0 , j0);
(2) l − ξ ∈ J(Qini , Wini);
(3) any highest vertex of ξ is located at the top of the j0-th level of Qini.

Let a = a(i , j) be a highest vertex of l. If j = 2, then l itself already satisfies the
conditions of ξ. So we assume that j ≥ 2. Then, up to the left–right symmetries, we
may assume that the local configuration of l is as in Figure 12, where the bold arrows
form a subpath of a cycle which is cyclically equivalent to l. Now, we construct a new
cycle l ′ from l with end point (i0 , j0) such that l − l ′ ∈ J(Qini , Wini).
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Figure 10: Initial Postnikov diagram.

Note that we may assume that none of the end points of γ is (i0 , j0). Otherwise, a
is already located at the top of the j0-th level of Qini, so it is unnecessary to consider
such a. Therefore, δγβ is a subpath of l, and we may write l = qδγβp with p and q the
subpaths of l, where p and q maybe trivial paths. Let l ′′ = qνμρp. Then the end point
of l ′′ is still the (i0 , j0), and l − l ′′ = q(δγβ − νμρ)p = p(∂α Wini)q ∈ J(Qini , Wini). If
a is still a vertex on l ′′, we repeat the above construction until a is never a vertex on a
cycle l ′, which makes sense since the length of l is finite. The final cycle l ′ is what we
want. Note that the cycle l ′ has the following properties:
(1) l − l ′ ∈ J(Qini , Wini);
(2) a is never a highest vertex of l ′;
(3) no new highest vertex arises in l ′ with respect to l.
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Figure 11: Initial quiver Qini (k odd, n odd).

a γ

α

μ

ρ ν

δβ

Figure 12: Local configuration neighboring the highest vertex a of a cycle.

Thus, by inductively constructing the cycle l ′, we may find a cycle ξ satisfies the
conditions in the claim.

Step 2: For the cycle ξ produced in Step I, we consider the lowest, the leftmost, and
the rightmost vertices, similar to the analysis used in Step I, and we obtain a cycle ζ
such that:

(1) the end point of ζ is (i0 , j0);
(2) l − ζ ∈ J(Qini , Wini);
(3) ζ lies at R( j0 − 1) and Ci0, with width(ζ) = height(ζ) = 1.

By item (3), ζ is a power of a fundamental cycle ω′ which lies at R( j0 − 1) and
Ci0. By the assumption of ω, it is a fundamental cycle starting at (i0 , j0) and lies at
R( j0 − 1) and Ci0. So we have ω′ = ω by item (1). Therefore, we have proved that there
exists a positive integer m such that l − ωm ∈ J(Qini , Wini). ∎

Theorem 3.7 Any QP (Q , W) of a Grassmannian cluster algebra is rigid.
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Because the QP-mutations preserve rigidity, it suffices to prove the theorem for the
initial QP (Qini , Wini). So we have to show that any cycle in Qini is cyclically equivalent
to a cycle in the Jacobian ideal J(Qini , Wini). This is easy for the case k = 2 or k = n − 2.
Now, we assume that k ≠ 2 and k ≠ n − 2. The following lemma is useful.

Lemma 3.8 Let ω1 and ω2 be two fundamental cycles of Qini sharing a common arrow
α. For any positive integer m, if ωm

2 is cyclically equivalent to an element in J(Qini , Wini),
then ωm

1 is also cyclically equivalent to an element in J(Qini , Wini).

Proof Recall that C is the closure of the span of all elements of the form

αs ⋅ ⋅ ⋅ α2α1 − α1αs ⋅ ⋅ ⋅ α2 ,

where αs ⋅ ⋅ ⋅ α2α1 is a cycle. Since ωm
2 is cyclically equivalent to an element in the ideal

J(Qini , Wini), there is a potential ω ∈ J(Qini , Wini) such that ωm
2 − ω ∈ C. Assume that

αp1 (resp. αp2) is the fundamental cycle which is cyclically equivalent to ω1 (resp.
ω2), where p1 and p2 are paths with head t(α) and tail h(α). Then we use the partial
derivation ∂α to obtain that

αp1 − αp2 ∈ J(Qini , Wini).

Moreover, since αp1 − αp2 is a factor of (αp1)m − (αp2)m ,

(αp1)m − (αp2)m ∈ J(Qini , Wini).

Note that (αp2)m − ωm
2 ∈ C and ωm

2 − ω ∈ C, and thus (αp2)m − ω ∈ C. Therefore,

ωm
1 − [(αp1)m − (αp2)m + ω] = [ωm

1 − (αp1)m] + [(αp2)m − ω] ∈ C ,

where (αp1)m − (αp2)m + ω ∈ J(Qini , Wini). This completes the proof. ∎

Proof Proof of the theorem: We divide the proof into three steps.
Step 1: See Figure 11, and note that there exist an arrow α and a fundamental cycle

αp such that the only fundamental cycles that contain α are those in the cyclically
equivalent set [αp]. Actually, one may always choose the arrow α from a(2, 1) to
a(1, 1) and the bottom-left fundamental cycle of the quiver. So

(αp)m = (α∂α W)m ∈ J(Qini , Wini)

for any positive integer m. That means that, for any fundamental cycle ω1 in [αp] and
any positive integer m, ωm

1 is cyclically equivalent to an element in J(Qini , Wini).
Step 2: For any fundamental cycle ω2 and any positive integer m, by recursively

using Lemma 3.8, we find a fundamental cycle ω1 appearing in Step I, such that
ωm

2 is cyclically equivalent ωm
1 . Thus, ωm

2 is cyclically equivalent to an element in
J(Qini , Wini).

Step 3: For any cycle l in Q ini, by Lemma 3.6, there is a power ωm
2 of fundamental

cycle with l − ωm
2 ∈ J(Qini , Wini). By Step II, there is an element ωm

1 in J(Qini , Wini)
such that ωm

2 − ωm
1 ∈ C. That is,

l − [l − ωm
2 + ωm

1 ] = ωm
2 − ωm

1 ∈ C ,

where l − ωm
2 + ωm

1 ∈ J(Qini , Wini). This means that l is cyclically equivalent to an
element in J(Qini , Wini). Thus, the QP (Qini , Wini) is rigid. ∎
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Remark 3.9 Similar to the rigidity of a QP, one may also consider the rigidity for
an IQP, which is defined in [P18]. It is easy to see that (Q ini , F , W ini) is not rigid. In
particular, any fundamental cycle in (Q ini , F , W ini) is not cyclically equivalent to a
cycle in J(Q ini , F , W ini).

Theorem 3.10 For each QP (Q , W) of the Grassmannian cluster algebra, the Jacobian
algebra P(Q , W) is finite-dimensional.

Proof Since the Jacobi-finiteness of an QP is invariant under QP-mutations, we only
prove this for the initial QP (Qini , Wini). We have to prove that if the length of a cycle
l is large enough, then the cycle belongs to the Jacobian ideal.

By Lemma 3.6, there exist a fundamental cycle ω and a positive integer m such that
l − ωm ∈ J(Qini , Wini). On the other hand, note that, by the construction of ω, we have
length(l) = m length(ω). So we only need to show that, for any fundamental cycle ω,
there is a positive integer n such that

ωn ∈ J(Qini , Wini).

This can be done by iteratively using the relations in J(Qini , Wini). For example, we
consider ωn with ω shown in Figure 13, where the end points of fundamental cycles
ω, ω1, and ω2 are a, a, and b, respectively. Then we have

ωn − ωn
1 ∈ J(Qini , Wini),

ωn
1 − δωn−1

2 γβα ∈ J(Qini , Wini),

and thus

ωn − δωn−1
2 γβα ∈ J(Qini , Wini).

As long as n is large enough, repeating this process, we can find a fundamental cycle
ω′ locating at the row R1, which belongs to J(Qini , Wini), such that

ωn − q(ω′)n′ p ∈ J(Qini , Wini),

where n′ is a positive integer, and p and q are paths in Qini. Therefore, ωn ∈
J(Qini , Wini), which completes the proof. ∎

Remark 3.11 Unlike the case for the QP (Qini , Wini), the IQP (Q ini , F , W ini) is not
Jacobi-finite. In particular, any power of a fundamental cycle of Q ini is nonzero in the
Jacobian algebra P(Q ini , F , W ini).

3.3 The uniqueness

We study in this subsection the uniqueness of the QPs of a Grassmannian cluster
algebra. This is based on a general result of Geiß, Labardini, and Schröer [GLS16].
They give a criterion which guarantees the uniqueness of a nondegenerate QP.

We first recall some definitions in [GLS16]. If W is a finite potential, i.e., the
potential with finite items in the its expansion, then we denote by long(W) the length
of the longest cycle appearing in W. For a nonzero element u ∈ C⟨Q⟩, denote by
short(u) the unique integer such that u ∈ mshort(u) but u ∉ mshort(u)+1, where m is the
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Figure 13: Jacobi-finiteness of the QP.

ideal generated by all arrows. We also set short(0) = +∞ (see [GLS16, Section 2.5]).
The following two propositions are important for our main result.

Proposition 3.12 [GLS16, Proposition 2.4] Let (Q , W) be a QP over a quiver Q, and
let I be a subset of Q0 such that the following hold:
(1) The full subquiver Q∣I of Q with vertex set I contains exactly m arrows α1 , . . . , αm ;
(2) l ∶= α1 . . . αm is a cycle in Q;
(3) The vertices s(α1), . . . , s(αm) are pairwise different;
(4) W is nondegenerate.
Then the cycle l appears in W.

Proposition 3.13 [GLS16, Theorem 8.20] Suppose that (Q , W) is a QP over a quiver
Q that satisfies the following three properties:
(1) W is a finite potential;
(2) Every cycle l in Q of length greater than long(W) is cyclically equivalent to an

element of the form∑α∈Q1 ηα ∂α W with short(ηα) + short(∂α W) ⩾ length(l) for
all α ∈ Q1;

(3) Every nondegenerate potential on Q is right-equivalent to W +W ′ for some poten-
tial W ′ with short(W ′) > long(W).

Then W is nondegenerate, and every nondegenerate QP on Q is right-equivalent to W.

Theorem 3.14 Let Q be a quiver of a Grassmannian cluster algebra, then the QP
(Q , W) is the unique nondegenerate QP on Q up to right equivalence, and thus the
unique rigid QP on Q up to right equivalence.

Proof By Theorem 3.7, (Q , W) is rigid, so if it is unique as a nondegenerate QP, then
it must be unique as a rigid QP. Since the mutations of two right-equivalent QPs are
still right-equivalent, we only need to prove the theorem for the initial QP.

To do this, we check that the conditions (1)–(3) in Proposition 3.13 hold for
(Qini , Wini). The condition (1) is clear. Since the cluster algebra of Gr(2, n) is of
acyclic type, so there is a unique rigid QP. Otherwise, there exists at least one internal
fundamental cycle on Qini, and long(Wini) = 4. We prove the condition (2) in two
steps (see Figure 11).
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Figure 14: Uniqueness of the QP.

Step I: Let ω be a fundamental cycle of Qini, and let m be a positive integer number.
We claim that ωm is cyclically equivalent to ∑α∈Q1 ηα ∂α Wini, where the length of a
path appearing in nonzero ηα is 4m − 3, and the length of all paths appearing in ∂α Wini
is 3.

We prove this by induction on the level of ω. Assume that the level of ω is 2 and α
be the bottom arrow of ω, then it is cyclically equivalent to α∂α Wini. Moreover,

ωm is cyclically equivalent to ((α∂α Wini)m−1α)∂α Wini ,

where ηα = (α∂α Wini)m−1α and ∂α Wini satisfy the conditions in the claim.
Now, let ω be a fundamental cycle located at level t. Assume that the claim

holds for the fundamental cycle αρνμ, which is located at level t − 1 (see Figure 14).
Here, we only consider the clockwise cycle αρνμ, and another case is similar. So we
may assume that (αρνμ)m is cyclically equivalent to a potential ∑α′∈Q1 ηα′∂α′Wini
satisfying the claim. Then ωm is cyclically equivalent to (αδγβ)m , which equals to
(αρνμ − α∂α Wini)m .

Note that we may write the expansion of (αρνμ − α∂α Wini)m as the form of
(αρνμ)m +∑k Sk , where Sk is a multiplication of αρνμ and −α∂α Wini with the term
−α∂α Wini appearing in it at least once. We write Sk = S′k α∂α WiniS′′k , where S′k and S′′k
are multiplications (maybe empty) of αρνμ and −α∂α Wini. Then Sk − S′′k S′k α∂α Wini ∈
C. Thus,

(αδγβ)m − [ ∑
α′∈Q1

ηα′∂α′Wini + (∑k S′′k S′k α)∂α Wini]

=[(αρνμ)m +∑k Sk] − [ ∑
α′∈Q1

ηα′∂α′Wini + (∑k S′′k S′k α)∂α Wini]

=[(αρνμ)m − ∑
α′∈Q1

ηα′∂α′Wini] +∑k(Sk − S′′k S′k α∂α Wini) ∈ C .

So (αδγβ)m , and therefore ωm is cyclically equivalent to

∑
α′∈Q1

ηα′∂α′Wini + (∑k S′′k S′k α)∂α Wini ,

which satisfies the conditions in the claim.
To sum up, for any fundamental cycle ω and any positive integer number m, ωm

is cyclically equivalent to ∑ ηα ∂α Wini, where ηα = 0 or each path in ηα has length
4m − 3, and each path in ∂α Wini has length 3. So short(ηα) = +∞ or 4m − 3, and
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short(∂α Wini) = 3. Therefore,

short(ηα) + short(∂α Wini) ⩾ 4m = length(ωm),

and the condition (2) holds for ωm .
Step II: Let l be a cycle of Q. We use the notations appearing in Lemma 3.6. In

particular, l ′ is the new cycle which shares an arrow α with l, and p and q are two
subpaths of l such that l = l ′ ± q∂α Wini p. At last, we find a fundamental cycle ω with

l − ωm ∈ J(Q , Wini).

Assume that l ′ is cyclically equivalent to∑ ηα′∂α′Wini and condition (2) holds for l ′,
that is,

short(ηα′) + short(∂α′W) ⩾ length(l ′).

On the other hand, by the construction of l ′ given in Lemma 3.6, we have

length(l) = length(l ′) and length(l) = length(pq) + short(∂α Wini).

Therefore, l is cyclically equivalent to ∑ ηα′∂α′Wini ± pq∂α Wini, which satisfies the
condition (2). This proves the condition (2) for all cycles over Q.

Finally, the condition (3) follows immediately from the following two observa-
tions. By Proposition 3.12, all of the fundamental cycles appear in Wini. For any cycle
l, excepting the fundamental cycles, length(l) > 4 = long(Wini). ∎

4 Applications

4.1 Categorification

An “additive categorification” of a cluster algebra has been well studied in recent years.
Roughly speaking, it lifts a cluster algebra structure on a categorical level, that is, one
may find a cluster structure (see [BIRS09] for precise definition) on the category. Such
category always has a duality property called 2-Calabi–Yau property. In particular, the
cluster category is an important example of 2-Calabi–Yau triangulated category with
cluster structure, which gives a categorification for the cluster algebra of acyclic type
with trivial coefficients. In [A09], for a QP (Q , W), Amiot constructed a generalized
cluster category C(Q ,W).

Some stably 2-Calabi–Yau Frobenius category also has cluster structure (see
[BIRS09, FK09]), which gives categorification of a cluster algebra with nontrivial
coefficients. In our context, such Frobenius category is always certain subcategory of
module categories. For the cluster algebra structure on the coordinate ring

C[Gr(k, n)]/(ϕ{1,2,. . . ,k} − 1)(4.1)

of the affine open cell in the Grassmannian, where ϕ{1,2,. . . ,k} is the consecutive Plücker
coordinate indexed by k-subset {1, 2, . . . , k}, Geiss, Leclerc, and Schröer have given in
[GLS08] a categorification in terms of a subcategory Sub Qk of the category of finite-
dimensional modules over the preprojective algebra of type An−1. Note that the cluster
coefficient ϕ{1,2,. . . ,k} in C[Gr(k, n)] is not realized in the category. More recently,
Jensen, King, and Su (JKS) [JKS16] have given a full and direct categorification of the
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cluster structure on C[Gr(k, n)], using the category CM(B) of (maximal) Cohen–
Macaulay modules over the completion of an algebra B, which is a quotient of the
preprojective algebra of type Ãn−1.
Remark 4.1 It has been proved in [BKM16] that, for a cluster tilting object T in
CM(B) corresponding to a Postnikov diagram, the cluster-tilted algebra End(T) is
isomorphic to the Jacobian algebra P(Q , F , W). Note that CM(B) is Hom-infinite
and End(T) is of infinite dimension, which is compatible with the Hom-infiniteness
of P(Q , F , W) (see Remark 3.11).

On the other hand, Amiot, Reiten, and Todorov showed in [ART11] that the
generalized cluster category has some “ubiquity” (see also in [A11, AIR15, Y18]). In
our situation, this means that the stable categories of both SubQk and CM(B) are
equivalent to a generalized cluster category, which is exactly the generalized cluster
category defined by the QP (Q , W).

4.2 Auto-equivalence groups and cluster automorphism groups

Recall that for a cluster algebra A, we call an algebra automorphism f a cluster auto-
morphism, if it maps a cluster x to a cluster x′, and is compatible with the mutations
of the clusters. Equivalently, an algebra automorphism f is a cluster automorphism
if and only if Q′ ≅ Q or Q′ ≅ Qop , where Q′ and Q are the associated quivers of
x′ and x, respectively. We refer to [ASS12, CZ16, CZ16b] for the details of cluster
automorphisms.

Let C be a 2-Calabi–Yau triangulated category with cluster structure. In particular,
there is a cluster tilting object T and a cluster map ϕ which sends cluster tilting objects,
which are reachable by iterated mutations from T in category C, to clusters in algebra
Aϕ(T), where Aϕ(T) is the cluster algebra with initial cluster ϕ(T). In fact, Aϕ(T) is
the cluster algebra defined by the Gabriel quiver of EndC(T).

Denote by AutT(C) a quotient group consisting of the (covariant and contravari-
ant) triangulated auto-equivalence on C that maps T to a cluster tilting object which
is reachable from T itself, where we view two equivalences F and F′ the same if
F(T) ≅ F(T ′).

Let F be an auto-equivalence in AutT(C). Denote by Q and Q′ the Gabriel quivers of
EndC(T) and EndC(F(T)), respectively. Then Q is naturally isomorphic to Q′ since F
is a triangulated equivalence. Moreover, since F(T) is reachable from T, ϕ(F(T)) is a
cluster inAϕ(T), so there is a cluster automorphism f in Aut(Aϕ(T))which maps ϕ(T)
to ϕ(F(T)). Thus, AutT(C) can be viewed as a subgroup of Aut(Aϕ(T)). Conversely,
we have the following.
Conjecture 4.2 There is a natural isomorphism AutT(C) ≅ Aut(Aϕ(T)).

If C is algebraic and Q is acyclic, then Keller and Reiten proved in [KR08] that
C is a (classical) cluster category. Then the conjecture has been verified in [ASS12,
Section 3] and [BIRS11, Theorem 2.3]. For the case of generalized cluster categories, the
conjecture is related to the following conjecture, which says that the quivers determine
the potentials up to right equivalences.
Conjecture 4.3 Let (Q , W) be a nondegenerate QP. Assume that (Q′ , W ′) is a QP
which is mutation-equivalent to (Q , W). Then:
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(1) (Q′ , W ′) is right-equivalent to (Q , W) if Q′ ≅ Q;
(2) (Q′ , W ′) is right-equivalent to (Qop , W op) if Q′ ≅ Qop .

Proposition 4.4 If Conjecture 4.3 is true for a Jacobi-finite QP (Q , W), then Conjec-
ture 4.2 is true for the generalized cluster category C(Q ,W).

Proof Since (Q , W) is Jacobi-finite, recall from [A09] that there is a canonical
cluster titling object T in C(Q ,W) whose endomorphism algebra is isomorphic to the
Jacobian algebra J(Q , W). Because we already have

AutT(C(Q ,W)) ⊂ Aut(Aϕ(T)),

it suffices to show that any cluster automorphism f can be lifted as an auto-equivalence
on C which maps the canonical cluster tilting object to a reachable one. Assume that
f maps ϕ(T) to a cluster μ(ϕ(T)) with quiver Q′ ≅ Q, where μ(ϕ(T)) is obtained
from ϕ(T) by iterated mutations. Denote by (Q′ , W ′) = μ(Q , W) the QP obtained
from (Q , W) by the same steps of mutations.

On the one hand, by [KY11, Theorem 3.2], there is an equivalence Φ from C(Q ,W)
to C(Q′ ,W′) which maps T to μ(T ′), where T ′ is the canonical cluster tilting object in
C(Q′ ,W′) whose endomorphism algebra is isomorphic to J(Q′ , W ′).

On the other hand, Conjecture 4.3 ensures that there is a right equivalence between
(Q′ , W ′) and (Q , W), and then by [KY11, Lemma 2.9], there is a covariant equivalence
Ψ from C(Q′ ,W′) to C(Q ,W). Note that Ψ maps T ′ to T, and thus maps μ(T ′) to μ(T),
since the mutations are obtained by exchanged triangles (see, e.g., [BIRS09]) and the
equivalence Ψ is triangulated. Finally, the auto-equivalence ΨΦ is what we wanted,
which gives a lift of f. We have a similar proof for the case Q′ ≅ Qop . See the following
diagram for the equivalences.

C(Q ,W)

ΨΦ ���
�

�
�

�
Φ �� C(Q′ ,W′)

Ψ�����
��
��
��

C(Q ,W)

∎

Theorem 4.5 For the nondegenerate QPs arising from the Grassmannians cluster
algebra, Conjecture 4.3 is true. So, for the associated generalized cluster category C, we
have an isomorphism AutT(C) ≅ Aut(Aϕ(T)).

Proof Let (Q , W) be a nondegenerate QP of the Grassmannians cluster algebra,
and let (Q′ , W ′) be a QP which is mutation-equivalent to (Q , W). Then (Q′ , W ′)
is nondegenerate. On the other hand, Theorem 3.14 implies that (Q , W) is the unique
nondegenerate QP on Q, up to right equivalence. So (Q′ , W ′) is right-equivalent
to (Q , W) if Q ≅ Q′. Note that (Qop , W op) also has the nondegenerate uniqueness
property since (Q , W) does. Thus, similarly, (Q′ , W ′) is also right-equivalent to
(Qop , W op), if Q′ ≅ Qop . So Conjecture 4.3 is true, and AutT(C) ≅ Aut(Aϕ(T)). ∎

Remark 4.6 For the QPs arising from a marked Riemann surface with some “tech-
nical conditions,” [GLS16, Theorem 1.4] ensures the nondegenerate uniqueness. So we
have a similar isomorphism as in Theorem 4.5 for this case.
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