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Abstract Let H>° (2, X) be the space of bounded analytic functions f(z) = > 77z, 2"™ from a proper
simply connected domain €2 containing the unit disk D := {z € C: |z| < 1} into a complex Banach space

X with ||fll oo (o, x) < 1. Let ¢ = {dn(r)}5Ly with ¢o(r) <1 such that > omro ¢n(r) converges locally

uniformly with respect to r € [0,1). For 1 < p, ¢ < oo, we denote

o] q
Rypq,0(f,9, X) = sup {7“ 20 [lzol[” ¢o(r) + (Z llznll %(T)) < ¢o(r)}
n=1
and define the Bohr radius associated with ¢ by

Ry q,6(9X) = inf { Ry g, (£,2,X) : 1fll oo ) <1}

In this article, we extensively study the Bohr radius R, 4 4(€2, X), when X is an arbitrary Banach space,
and X = B(H) is the algebra of all bounded linear operators on a complex Hilbert space H. Furthermore,
we establish the Bohr inequality for the operator-valued Cesédro operator and Bernardi operator.

Keywords: Banach space; operator valued; simply connected domains; Bohr radius; Cesdro operator;
Bernardi operator
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1. Introduction

Let H>°(D,C) be the space of bounded analytic functions from the unit disk D := {z €
C : |z| < 1} into the complex plane C, and we denote ||f| ., := sup <1 [f(2)]. The
remarkable theorem of Harald Bohr of a universal constant r = 1/3 for functions in
H>(D,C) is as follows.
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Theorem A. Let f € H>(D,C) with the power series f(z) = Y.~ anz". If
1flle < 1, then

oo
D lanlr™ <1 (1.1)
n=0

for |z| = r < 1/3, and the constant 1/3, referred to as the classical Bohr radius, is the
best possible.

The Bohr’s theorem has become popular when Dixon [19] has used it to disprove
a long-standing conjecture that if the non-unital von Neumann’s inequality holds for
a Banach algebra, then it is necessarily an operator algebra. It is important to note
that Equation (1.1) can be written in the following equivalent form:

Jaol@o(r) + D lan|én(r) < do(r) (1.2)

for r < R := 1/3, where ¢,(r) = r™ and R is the smallest root of the equation
Go(r) =207 dn(r) in (0,1). We observe that {¢,(r)}72 is a sequence of non-negative
continuous functions in [0, 1) such that the series >~ ¢y, (r) converges locally uniformly
with respect to r € [0,1). This fact leads to the following question.

Question 1.3. Can we establish the inequality (1.2) for any sequence {¢, (1)}, of
non-negative continuous functions in [0,1) such that the series >~ 1, (r) converges
locally uniformly with respect to r € [0,1).

We give the affirmative answer to this question in Theorem 1.3. In order to generalize
the inequality (1.2), we first need to introduce some basic notations. Let G denote the
set of all sequences ¢ = {¢,(r)}22, of non-negative continuous functions in [0,1) such
that the series > 7 ¢, (r) converges locally uniformly with respect to r € [0,1). Now
we want to define a modified Bohr radius associated with ¢ € G.

Definition 1.1. Let f € H*(D,C) with f(z) = Yoo yanz" such that || f| . <1 in
D. For ¢ € G, we denote

R4(f,C) =sup {r >0: Z |an|Pn(r) < (;50(7")} . (1.4)

n=0

Define Bohr radius associated with ¢ by

Ry(C) = mf{Ry(f,C) : [ fllc <1} (1.5)
Clearly, R4(C) coincides with the classical Bohr radius 1/3 for ¢, (r) = r™ for r € [0,1).

In this article, we are interested in studying the operator-valued analogue of the Bohr
radius R, (C), which we discuss in Definition 1.2.
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Over the past two decades, there has been significant interest on several variations of
Bohr inequality (1.1) (see [1-4, 6-8, 10, 12, 13, 15-18, 23, 30, 33]). In 2000, Djkaov and
Ramanujan [20] extensively studied the best possible constant r,, for 1 < p < oo, such
that

oo 1/p
(Z |an|p(7“p)"p> <l (1.6)

where f(z) = Y77 an,z"™. For p =1, r, coincides with the classical Bohr radius 1/3. Using
Haussdorf-Young’s inequality, it is easy to see that 7, = 1 for p € [2, 00). Computing the
precise value of r, for 1 < p < 2 is difficult in general. This fact leads to estimate the
value of r,. The following best known estimate has been obtained in [20]

=p _ aP\l/p
1+ <2> : <r,< inf (1= a") - (1.7)
P 0<a<l ((1 — a2)P 4 aP(1 — aP)) /P

For further generalization of Equation (1.1), replacing H*°-norm by the HP-norm, we refer
o [11]. Paulsen et al. [32] have considered the another modification of Equation (1.1)
and have shown that

oo 1 n
ool + 3l (5) <1 (18)

where f(z) = Y07 ja,z™ and || f||,, < 1. Moreover, the constant 1/2 is sharp. Several
authors have extended the inequality (1.8) to harmonic mappings in the unit disk and
obtained several interesting results. For more intriguing aspects of Equation (1.8) for har-
monic mappings, we refer to [22, 28, 29] and references therein. Using the same approach
in [32], Blasco [14] has extended Equation (1.8) for the range of p € [1,2] and has
shown that

Py I 1.9
oo + 3l (5) <1 (19)

The constant p/(p + 2) is sharp.

The study of Bohr radius has also been extended for functions defined on a proper
simply connected domain of the complex plain. Throughout this paper, {2 stands for a
simply connected domain containing the unit disk D. Let 7 (€2) denote the class of analytic
functions in €2, and let B(Q) be the class of functions f € H(Q) such that f(2) C D. The
Bohr radius Bgq for the class B(2) is defined by (see [24])

Bq :=sup {r € (0,1) : My(r) < 1forall f(z) = Zanz" eB), z € ]D)},
n=0
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where My(r) := Y07 |a,|r"™ is the associated majorant series of f € B(Q) in D. It is
easy to see that when Q =D, Bp = 1/3, which is the classical Bohr radius for the class
B(D).

For 0 < v < 1, we consider the following disk defined by

Q,Y:—{ZGC: 2+L <1}.

1—x 1—x

Clearly, €2, contains D and €2, reduces to D for v = 0. In 2010, Fournier and Ruscheweyh
[24] studied Bohr inequality (1.1) for the class B(2,).

Theorem 1.1. ([24]). For 0 <~ <1, let f € B(2,), with f(z) = > organz" in D.
Then,

E a,lr" <1 forr< = —

n=0

Moreover, 3" lan|p? = 1 holds for a function f(z) = Y0 anz" in B(Q,) if, and
only if, f(z) = c with |c| = 1.

The main aim of this paper is to study the vector-valued analogue of Equations (1.4),
(1.5) and (1.9) on simply connected domains and its connection with Banach space and
Hilbert space theories. For discussing this, we first need to introduce some basic notation
and give some definitions. Let H*° (DD, X') be the space of bounded analytic functions
from I into a complex Banach space X, and we write || f| ;oo (p, x) = SUP|<1 [ f(2)]. For
p € [1,00), H?(D, X) denotes the space of analytic functions from D into X such that

27 o dt 1/p
v = s, ([ Iseen) 58) < (1.10)
o<r<1 0 ™

Throughout this paper, B(#) stands for the space of bounded linear operators on a
complex Hilbert space H. For any T' € B(H), ||T|| denotes the operator norm of 7. Let
T € B(H). Then the adjoint operator T* : H — H of T defined by (T'z,y) = (x,T*y) for
all z,y € H. T is said to be normal if T*T = TT™*, self-adjoint if T* = T, and positive
if (Tx,z) > 0 for all x € H. The absolute value of T is defined by |T| := (T*T)l/27
while S/2 denotes the unique positive square root of a positive operator S. Let I be the
identity operator on H.

Now we define the vector-valued analogue of Definition 1.1 on arbitrary simply con-
nected domain containing the unit disk D. Let H*° (£, X) be the space of bounded
analytic functions from € into a complex Banach space X and |[|f|[focq x) =

sup.eq [1f(2)]-
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Definition 1.2. Let f € H*(Q,X) be gwen by f(z) = Y o zp2" in D with
11l zroe (0, x) < 1. For ¢ € G, we denote

Ry(f,Q,X) =sup {7‘ >0: Z lzn || & (1) < ¢o(r)} . (1.11)

n=0

Define Bohr radius associated with ¢ by
Ry(@,X) = inf { Ro(/,2,X) « | fllyoea ) < 1} - (1.12)

It is important to note that for = Q. and ¢, (r) = ", by embedding C into X, from
Theorem 1.1, Ry(2y,X) < (1 ++)/(3+ ) for every complex Banach space X. Clearly,
R4(D, X) < 1/3. However, this notion is not much significant in the finite-dimensional
case for dimension greater than one. As usual, for 1 < p < oo, CJ' stands for the space
C™ endowed with the norm [lwl|, = >, |wi|p)1/p and [|w|| o = sup;<; <, |wi|, where
w = (w1, wy,...,w,) € C™. In [14], Blasco has shown that Ry(D,C}') = 0 for ¢, = r"
in [0,1) when 1 < p < co. By considering the same functions as in [14], we show that,
for m > 2, Ry(DD,C}') need not be always non-zero for all ¢ € G. In particular, we see
that Rg(ID,C') becomes zero for some particular choices of ¢. For m =1, we observe
that [|wl]|, = [[w|,, for 1 < p < oo for any w € C. Thus, Ry(D,C}") = Ry(D,CY). In
the following proposition, we show that R,(ID,C™) > 0 for m =1 under some suitable
conditions on ¢, ().

Proposition 1.13. Let ¢ = {¢, (1)}, € G.

(1) Form > 2, Ry(D,Ct) = 0 when r= 0 is the only zero of ¢1(r) in [0,1).

(2) For1<p< oo andm >2, Rg(D,C") =0 when ¢o(r) =1 and ¢1(r) = ar? for
r€[0,1) and o, B € (0,00).

(3) For m=1, let f € H>®(D,C) be given by f(z) = Y., z,2" in D with
1 () oo,y < 1. Also let ¢ = {dn(r)}nlo € G satisfy the inequality

oo(r) > 2 Z on(r) forr €[0,R), (1.14)
n=1
where R is the smallest root in (0,1) of the equation
Go(z) =2 du(x). (1.15)
n=1

Then, we have Ry(D,C) > R. That is, Rg(D,C) > 0.
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Proof. It is sufficient to prove for the case m =2.

(1) We consider the function f(z) = (1,2) = e1 + €2z, z € D, where e; = (1,0) and
es = (0,1). Clearly, Hf||HOO(D 2.y = SUP|z|<1 | f(2)]l = 1. Then from Equation (1.11),
we have

Ry(f,D,C3) =sup{r = 0 [|zoll do(r) + 21l d1.(r) < o(r)},
where g = e; and x; = es. Clearly, ||zol|, = ||z1], = 1. Then
20l 0(7) + 21l 21(r) = Go(r) + d1(r) < Po(r) (1.16)
only when ¢1(r) < 0 for r € [0,1). Thus, to obtain Ry(f,D,C% ), we need to find the
supremum of all such r such that ¢1(r) < 0 for r € [0,1). Since ¢ € G, each ¢,(r) is
non-negative for all » € [0,1). Therefore, Equation (1.16) holds only when ¢1(r) = 0
for r € [0,1). By the hypothesis, we have ¢1(r) = 0 if, and only if, =0, which yields
that Equation (1.16) holds only for r =0. Thus, Rg(f,D,C%)) = 0 and so Rg(D,C2) =0
This shows that Ry (D, CZ) = 0.
(2) For 1 < p < oo, using the fact lim, ;o s*/? — (s — 1)1/ = 0, for each € > 0, one can
easily find a value ¢ € (0,1) such that
1—(1-0)YP < ae? s/, (1.17)
We now consider the function
fz) = ((1 _§)W/p gt/ z) = (1-8)Pe; + 6P ey,

It is easy to see that

= — _ »\1/p) _
190w 0.3y = o8 1), = sup (1= 0) +8r7)'7) =1,

and hence Equation (1.11) becomes
Ry(f,D,€3) = sup {r > 0: [lzoll, 60(r) + 21, 61.(r) < d0(r)} . (L.18)
In view of the assumptions ¢o(r) = 1 and ¢;(r) = ar?, we have
lzoll, do(r) + llall, ¢1(r) = (1= O)YP + 6"/Par. (1.19)
Using Equation (1.19) in Equation (1.18), we obtain
R¢(f,]D>,(Cf,) =sup{r>0:(1- 5)1/;) +6YParf < 1}. (1.20)

Therefore, Equations (1.17) and (1.20) show that Ry (f, D, C2) < e. Hence, Ry(ID,C2) = 0
for 1 < p < oo. Thus, Rg(D,C}') = 0.
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Now for p =1, using the fact lims_, /s — v/s — 1 = 0, for each € >0, one can easily
find a value ¢ € (0,1) such that

1—V1-6<aé®Vo. (1.21)

We consider the following function

1-6 ) 1
£ = 000+ 0, s = L (VT4 VB VT - VB2,
A simple computation shows that

£l = 5 (VT84 V62| + [VI=5 - V32|

IN

) ) o\ 1/2
ﬁ(‘m+xﬁ$z’ +‘\/ﬁ\féz’> 1

By the similar lines of argument as above for the case 1 < p < o0, we obtain
Ry(f,D,C3%) < ¢, and hence Ry(D,C?) = 0. Thus, Ry(D,CT*) = 0.
(3) Let H*(D,C) with [|f(2)llgoopc) = Supsep |f(2)] < 1. Then, by Weiner’s

inequality, we have |z,,| < 1 — |z¢|? for n > 1. Using this inequality, we obtain

|zo|o(r) + Z || n(r) < laoldo(r) + (1 — |xol?) (Z On(r ) (1.22)
< |zoldo(r) +2(1 — [zol) Z )

provided
2 ¢ulr) < do(r). (1.23)

Now, by the given assumption (1.14), the inequality (1.23) holds for r € [0, R), where R is
the smallest root in (0,1) of ¢o(r) =23 | ¢n(r). Thus, we obtain that Equation (1.22)
holds for r € [0, R). Hence, Ry(f,D,C) > R and so Ry(D,C) > R. Since R € (0,1), we
have Ry(D,C) > 0. O

Remark 1.1.

(1) If ¢ = {pn(r)}22, with ¢, (r) = r™, then each ¢,, is non-negative in [0,1) and so ¢ €
G. Clearly, ¢1(r) = r has only zero at r =0 in [0,1). In view of Proposition 1.13(1),
the corresponding Bohr radius associated with ¢ is Ry(D,CZ) = 0. Furthermore,
it is easy to see that ¢o(r) = 1 and ¢1(r) = ar? with a = 8 = 1, and hence by
Proposition 1.13(2), we have Ry(D,C}') = 0 for 1 < p < oo and m > 2.
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(2) Similarly, when ¢ = {¢,(r)}2>, with ¢,,(r) = (n+1)r", nr™, n?r™, Proposition 1.13
gives the corresponding Bohr radius associated with ¢, R4(D,CZ) = 0 and
R¢(D,C;”) =0for1<p<ooandm>2.

The above fact leads us to consider the vector-valued analogue of Equation (1.8) in
a simply connected domain for a given Banach space X and parameters 0 < p,q <
o0o. We define a modified Bohr radius, which need not be zero for all ¢ € G even for
infinite-dimensional Banach spaces.

Definition 1.3. Let f € H™(Q,X) be gwen by f(z) = Y . xp2" in D with
[l zroe (0, x) < 1. For ¢ = {én(r)}nlo € G with ¢o(r) <1, 1 < p,q < oo, we denote

0o q
Rp,q.6(f, €, X) = sup {7“ >0 lol” do(r) + (Z [ %(T)) < 2(150(7‘)} - (1.24)
n=1
Define Bohr radius associated with ¢ by

Ry0(9,X) = it { Ry (1,2, X) £ | f o) < 1 (1.25)

Clearly, R1,1,6(2,X) = Ry(Q,X). For p1 < py and ¢1 < g2, we have the following
inclusion relation:

RP1,EJ1,¢(Q’X) < RP27q27¢(97X)' (1'26)

Finding the exact value of R, 4 4(€Q, X) is very difficult in general, even for & = D and
X = Ci. In 2002, Paulsen et al. [32] proved that Rz 1 4(D,C) = 1/2 for ¢ = {¢, (1)},
with ¢, () = r™. Later, for the same ¢, Blasco [14] has shown that Ry 1 4(D,C) = p/(p+2)
for 1 < p < 2. By considering the same example as in Proposition 1.13, we have the
following interesting result.

Proposition 1.27. Let ¢ = {¢,(r)}32y € G. For m > 2 and 1 < p,q < o0,
Ry 4.6(D,C2) =0 when r= 0 is the only zero of ¢1(r) in [0,1).

It is important to note that C7 is not a Hilbert space. Indeed, let = (1,0,...,0)
and y = (0,1,...,0) be in C. Then |z| =yl = lz+ vl =z —yllo =1 and
lx + szo + [z — y||io =2#4=2 ||33Hio +2 ||y||i0 Hence, Parallelogram law is violated.
Blasco [14] has shown that for m > 2, R, , 4(D,C5") > 0 if, and only if, p > 2 when
¢n(r) = r™. It is worth mentioning that X = CJ' is a Hilbert space with the inner
product (.), where |||, = v/(x, x). This fact leads us to the following question.

Question 1.28. Does the radius R, 4 (D, B(#)) have to be always positive for 2 <
p<gq?

We give an affirmative answer to the Question 1.28 in the following form. In the
following theorem, we show that R, , 4(Q, B(H)) is strictly positive for p > 2. Then
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by the inclusion relation (1.26), we obtain that R, 4 (D, B(#)) is strictly positive for
2<p=q

Theorem 1.2. Let B(H)) be complex Hilbert space with H being one-dimensional and
fe H>®(D,B(H)) be given by f(z) = > 0" s Apz" in D with A,, € B(H) forn € NU{0}

and || ()|l oo .50y < 1 Also let, forp > 2, ¢ = {¢u(r)}olo € G with 307, ¢7:(r)
converges locally uniformly in [0,1) and satisfies the inequality

r)>2 Z 2(r)  forr €[0,R(p)), (1.29)

where R(p) is the smallest root in (0,1) of the equation
z) =2 ¢k(x). (1.30)
n=1

Then, for p > 2, we have Ry, (D,B(H)) > R(p). That is, R, 4(D,B(H)) > 0 for
p=>2.

Proof. In view of the inclusion relation (1.26), it is enough to show that
Ry 2,4(D,B(H)) > 0. By the given assumption, f is in the unit ball of H>(D, B(H)),

i.e., | fll oo om0y < 1. In particular, we have || 1525 30 = Yoneo | 4n® < 1. Using
Cauchy—Schwarz inequality, we obtain

[ Aol| po(r) (Z [ Anll @n(r) ) < | 4ol po(r) (Z | An |l > (Z ¢721(7“)> (1.31)
< [[4oll do(r) + (1 = [|4o]*) Z¢2 ) < ¢o(r
< [l Aol ¢o(r) + 2(1 — [l Aol]) Z o7 (r) < dolr),
n=1

provided
22(;52 < do(r (1.32)

Now, by the given assumption (1.29), the inequality (1.32) holds for r € [0, R(p)),
where R(p) is the smallest root in (0,1) of ¢o(r) = 2> .-, #2(r). Thus, we obtain
that Equation (1.31) holds for r € [0, R(p)). Hence, Ry 2,4(f,D,B(H)) > R(p) and so
R12.4(D,B(H)) > R(p). Since R(p) € (0,1), we have Ry 2 4(D, B(#)) > 0. Therefore, by
the inclusion relation (1.26), for p > 2, we obtain Ry, , 4(D, B(#)) > 0. This completes
the proof. O
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Remark 1.2. By the virtue of the inclusion relation (1.26) and Theorem 1.2, we
conclude that R 4.4(D, B(#)) > 0 for 2 < p < ¢ under the same assumption on ¢ as in
Theorem 1.2.

As we have discussed, the existence of the ‘strictly’ positive radius Ry, 4 4(ID, B(H)) for
2 < p < g, it is natural to ask the following question.

Question 1.33. Does the radius R, 4.4(ID, B(H)) have to be always positive for 1 <
p,q <27

We give the affirmative answer to the Question 1.33. We prove that R, ; 4(ID, B(H)) is
strictly positive for 1 < p, ¢ < 2. Although finding the exact value of Ry, 4 (D, B(H)) for
1 < p,q < 2 is very much complicated, we can find a good estimate of the Bohr radius
R, 4.6(Q, B(H)) on simply connected domain €2 containing D. In the following theorem,
we show that Ry 1 4(Q, B(H)) is strictly positive for 1 < p < 2. Then by the inclusion
relation (1.26), we obtain that R, 4 (D, B(#)) is strictly positive for 1 < p,q < 2. Let
[ : Q2 — B(H) be a bounded analytic function, i.e., f € H™(Q,B(H)) with f(z) =
oo o Anz™ in D such that A, € B(H) for all n € NU{0}. We denote

[[An||
Ay = A (Q) = sup — Ay Z f(z A" zeDy. (1.34)
rer@sm) | 11— Ao Z
I£(=)lI<1

Theorem 1.3. For fized p € [1,2]. Let f € H>®(Q,B(H)) be given by f(z) =
S0 o Anz™ in D, where Ay = agl for |ag| < 1 and A, € B(H) for all n € NU {0}
with || f | groo (@, 52y) < 1- If & = {on(r)}nlg € G satisfies the inequality,

poo(r >2AHZ¢n forr € [0, Ra(p)), (1.35)

n=1

then the following inequality

Mg(¢,p,7) = || Aol” ¢o(r) +ZHA | n(7) < do(r) (1.36)

holds for |z| = r < Ra(p), where Rq(p) is the smallest root in (0,1) of the equation

pdo(r) = 2Ay Z Gn(r (1.37)

Then, Ro(p) < Rp1,¢(Q,B(H)). That is, Rp1,4(Q,B(H)) >0 for1 <p<2.
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Proof. Let f € H™(Q,B(H)) be given by f(z) = >~ A,2" in D with
[ () oo,y < 1. We note that Ag = agl. Then, by Equation (1.34), we have

1AL < Mo 1T = |42] || = M HI - |a0|21H = (1 —|ag)?) forn>1.  (1.38)

Using Equation (1.38), we obtain

M (¢,p,7) < Jaol” $o(r) + A (L = |aol*) Y én(r)

n=1
«
— 60(r) + An(1 — [ao]?) (Z% —";'))%(r)) .
To obtain the inequality (1.36), we now estimate the lower bound of (1 — |ag|?)/Ay (1 —
|ag|?). Let
(1—2P)
B(z) = ——=  fi 1).
(x) (= 27) orz e [0,1)

For p =2, we have B(z) = 1/)\H For p € [1,2), let n(z) = (2 — p)aP + pxP~2 — 2. Then
B'(z) = —(1/Ay) zn(x)/(1—22)? for x € (0,1). We note that 7/(x) = —p(2—p)zP~3(1 —
2?) < 0 for z € (0,1) and p € [1,2), which shows that 7 is decreasing function in (0, 1)
and thus n(z) > n(1) = 0 for z € (0, 1). Therefore, B'(z) < 0in (0, 1), i.e., B is decreasing
in [0,1) and hence

B(z) > lim B(z)=—— forpe|l,2).
1 2>\7—¢

Thus, B(x) > p/2Ay for p € [1,2], which leads to

My(¢,p,r) < do(r) + Ay (1 - |Oéo\2) (Z Pn(r) — 21{%(7")) ;
n=1

and hence by Equation (1.35), we obtain M (¢,p,r) < ¢o(r) for |z| = r < Rq(p). Thus,
RQ(p) < Rp,1,¢(QvB(H))' U

Remark 1.3. By the virtue of the inclusion relation (1.26) and Theorem 1.3, we
conclude that Ry, ; (D, B(H)) > 0 for 1 < p,q < 2 under the same assumption on ¢ as
in Theorem 1.3.

When p=1 and ¢,(r) = r"™, Theorem 1.3 gives the following result, which is an

analogue of classical Bohr inequality for operator-valued analytic functions in a simply
connected domain.
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Corollary 1.39. Let f € H®(Q,B(H)) be given by f(z) = > .7 Apz™ in D, where
Ao = aol for |ag| <1 and A, € B(H) for alln € NU{0} with || f| oo (q 52y < 1- Then

1

1.4
1+ 2X (1.40)

ZHA |7 <1 forr < ———0

n=0

As a consequence of Theorem 1.3, we wish to find the Bohr radius R 1 4(2y, B(H))
for the shifted disk €. For this, we need to compute the precise value of Ay, which in
turn is equivalent to study the coefficient estimates for the functions f € H*(Q, B(H))
of the form f(z) = 377 An2" in D with || f|| oo (o 53y < 1. To obtain the coefficient

estimates, we shall make use of the following lemma from [9].

Lemma 1.41. ([9]). Let B(z) be an analytic function with values in B(H) and
satisfying ||B(z)|| <1 on D. Then

B) (a)
n!

(1= lah"

‘ _ 1= B(a)*B@)|'"* |l - B(a)B(a)*|""?
- L af?

for eachaeD andn=1,2,....
Using Lemma 1.41, we obtain the following coefficient estimates.

Lemma 1.42. Let f : Q, — B(H) be analytic function with an expansion f(z) =
S0 o Anz™ in D such that A, € B(H) for alln € NU{0} and Ay is normal. Then

— 4o

1 < 12
T+~

Proof. Let ¢ : D — Q, be analytic function defined by ¥(z) = (2 —7)/(1 —~). Then,
we see that the composition g = f o : D — B(H) is analytic and

o0

6(5) = F(=) =Y (1‘_:“ — ) forlz—nl<1-n.

We note that g(v) = f(0) = Ag is normal and

(n)
9" (2) (n) 1
= — 1.43
n! =/ (1_ ) ( )
For z = v, from Equation (1.43), we obtain
(n) (n)

29"y M)

(1=7) o A, forn>1. (1.44)
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As g(v) = Ap is normal, using Equation (1.44), Lemma 1.41 gives

forn > 1.

1Al < (1= [£20) H M =1g)Pll _ I = 140

n! 14+~ 1+~

This completes the proof. O
For Q = Q,, by making use of Lemma 1.42 and Equation (1.34), we obtain

1
= < — .
M= M) < (1.45)

Now, we are in a position to find the Bohr radius R, 1,4(€2, B(H)) for the shifted disk 2.

Theorem 1.4. Fiz p € [1,2]. Let f € H®(Q, B(H)) be given by f(z) =Y o0y Anz"
in D with ||fHHOO(Q%B(H)) < 1, where Ay = apl for |ag| < 1 and A, € B(H) for all
n e NU{0}. If ¢ = {¢pn(r)}22, € G satisfies the inequality

2 o0
po(r) > P01 ;%(T) forr €10, R(p,v)), (1.46)

then the inequality (1.36) holds for |z| = r < R(p,~), where R(p,7) is the smallest root
in (0,1) of the equation

2 oo
¢o(r) = m;%(@- (1.47)

Moreover, when ¢o(x) < (2/(p(1+7))) Yovey dn(x) in some interval (R(p,7), R(p,7) + €)
for €> 0, then the constant R(p,y) cannot be improved further. That is, Rp1,4(S2y, H) =

R(p,7).

Proof. For Q = Q,, A\yy =1/(1 +~), the condition (1.35) becomes
bo(r) > 23" 6(r) forr € [0, B(p. 7))
0 ) AP
where R(p,~) is the smallest root in (0,1) of the equation

2 oo
¢o(x) = m ;@z(ﬂ?)

By the virtue of Theorem 1.3, the required inequality (1.36) holds for r € [0, R(p,7)).
This gives that Ry 1,4(2y,H) > R(p,v). Our next aim is to show that R, 1 (2, H) =
R(p, ). For this, it is enough to show that the radius R(p,~y) cannot be improved further.

https://doi.org/10.1017/50013091523000688 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091523000688

126 V. Allu and H. Halder

That is, || Ao||” ¢o(r) + Doy [[Anl| én(r) > ¢o(r) holds for any r > R(p,~), i.e., for any
€ (R(p,v), R(p,v) + €). To show this, we consider the following function

F.(z) = (1(1:@77__(;(11) )> I forzeQ,andac€ (0,1). (1.48)

Define ¢y : D — D by ¢1(2) = (a — 2)/(1 — az) and ¢2(z) : Qy — D by 1(z) =
(1—7)z+~. Then, the function f, = 11 01, maps €2, univalently onto D. Thus, we note
that F,(2) = fa(2)I is analytic in Q, and ||F,(2)|| < |fa(z)| < 1. A simple computation
shows that

Fo(z) = (f_;_(;(l_) )I A—ZAz for z € D,

where a € (0,1) and

a—- 1—a®> [a(1—79)\"
= = > . .
Ay 1 —a’yI and A, (a(l mp ( oy I forn>1 (1.49)

For the function F,, we have

[ Aol ¢o(r) +ZHA | n(r (1.50)

#(parna-ar (£21) 1) )
= ¢o(r) + (1 —a) (22% p(1+7)¢o(r )) +0((1-a)?)

as a — 17. Also, we have that 22 | ¢,,(r) > p(1+7)¢o(r) for r € (R(p,7), R(p,7) +e€).
Then it is easy to see that the last expression of Equation (1.50) is strictly greater than
¢o(r) when a is very close to 1, i.e., a — 17 and r € (R(p,7), R(p,v) + €), which shows
that the constant R(p,v) cannot be improved further. This completes the proof. O

The following are the consequences of Theorem 1.4.

https://doi.org/10.1017/50013091523000688 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091523000688

Bohr radius for banach spaces on simply connected domains 127

Corollary 1.51. For ¢, (r) =" forn € NU{0}. Let f be as in Theorem 1.4, then

p(1+7)

ST 43 (1.52)

o0
1Aol” + > | Aull 7™ <1 for|o| = r < Ri(p,v) =

n=1

and the constant Ry(p,v) cannot be improved. Furthermore, if we consider complex
valued analytic function f € B(Qy) such that f(z) = >0~ janz" in D, then from
Equation (1.52), we deduce that

- p(1+7)
p n n <1 =r <R , = . 1.53
oo+ Sl 1 forlel =r < Rip) = T

We note that when ., =D, i.e., y=0, Equation (1.53) holds for Ri(p) := p/(p + 2),
which has been independently obtained in [14].

Corollary 1.54. Let ¢ (r) = (n+ 1)r™ for n € NU{0}. Let f be as in Theorem 1.4.
Then we have the following sharp inequality

s 2
Aoll? + n+1)||A,||r" <1 forlzl=r < Ra(p,y):=1— ] ———.
| Aol ;( ) 14z ]| |z (p,7) P07 +2
An observation shows that
o0 o0
" r o T(147)
;nr = a=ne and T;n r’ = a=rp (1.55)

Using Equation (1.55) and Theorem 1.4, we obtain the following corollary.

Corollary 1.56. Let ¢g(r) = 1 and 1, (r) = n*r™ forn > 1 and k = 1,2. Then the
following sharp inequalities hold

p(14+7)+1—/2p(1+7)+1
p(1+7)

1All” + > nllAull " <1 for|z| =7 < Ry(p,7) :=

n=1
and
[Aoll” + Y - n® [ Anllr™ <1 for|z[ =7 < Ra(p,7),
n=1

where Ry(p, ) is the smallest positive root of the equation G, (r) :=p(1+7)(1 —r)3 —
2r(1+7)=01n (0,1).

From Tables 1-4, for fixed wvalues of p, we observe that Bohr radius
Ri(p,7v), Ra(p,7), R3(p,7), and Ry4(p,v) are monotonic increasing in v € [0,1). In these
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Table 1. Values of Ri(1,7v), Ri1(1.5,7), R1(1.7,7) and R1(2,7) for various values of v € [0, 1).

¥ Ry(1,7)

Ry(1.5,7)

R1(1'77 ’Y)

Rl (277)

[0,0.2)  [0.3333 0.3750

0.4285 * 0.4736

[0.4594  0.5050

0.5000  0.5454

[0.2,0.4) [0.3750 * 0.4118

0.4736 ,* 0.5122

[0.5050  0.5434

0.5454 ,* 0.5833

(0.6,0.8) [0.4444 * 0.4736

0.5454 7 0.5744

[0.5762 7 0.6047

0.6154 7 0.6428

)
)
0.4,0.6) [0.4118  0.4444)
)
)

(0.8,1)  [0.4736  0.5000

[ )
[ )
[0.5122 7 0.5454)
[ )
[ )

0.5744  0.6000

)
)
0.5434 7 0.5762)
)
)

[0.6047 7 0.6296

[ )
[ )
0.5833 7 0.6154)
[ )
[ )

0.6428 " 0.6666

Table 2. Values of R2(1,7v), R2(1.4,7), R2(1.8,7) and R2(2,~) for various values of v € [0,1).

v Ry(1,7)

R1(1'47 ’Y)

R1(1'87 ’7)

Rl (27’7/)

(0,0.2)  [0.1835  0.2094

0.2330 * 0.2628

0.2745 , 0.3066

0.2928  0.3258

[0.2,0.4) [0.2094 7 0.2330

0.2628 ,* 0.2893

0.3066 ,* 0.3348

0.3258  0.3545

[0.6,0.8) [0.2546 ~ 0.2745

0.3132 " 0.3348

0.3598 " 0.3822

0.3798 " 0.4023

)
)
0.4,0.6) [0.2330 * 0.2546)
)
)

(0.8,1)  [0.2745 * 0.2928

[ )
[ )
(0.2893  0.3132)
[ )
[ )

0.3348 * 0.3545

[ )
[ )
0.3348 * 0.3598)
[ )

)

0.3822 7 0.4023

[ )
[ )
[0.3545 ,* 0.3798)
[ )
[ )

0.4023 " 0.4226

Table 3. Values of Rs(1,v), Rs(1.5,7v), R3(1.8,7) and Rs(2,~) for various values of v € [0,1).
v R3(1,7) R3(1.5,7) R3(1.8,7) Ri1(2,7)
[0,0.2) [0.2679 " 0.2967) [0.3333 * 0.3640) [0.3640  0.3951) [0.3820  0.4132)
[0.2,0.4) [0.2967 " 0.3218) [0.3640  0.3903) [0.3951 " 0.4216) [0.4132 " 0.4396)
0.4,0.6) [0.3218 % 0.3441)  [0.3903 * 0.4132)  [0.4216 A 0.4444)  [0.4396 ~ 0.4624)
[ ) | ) ) )
[ ) ) ) )

[0.6,0.8) [0.3441 * 0.3640 0.4132 * 0.4334)  [0.4444 7 0.4645 0.4624  0.4823
[0.8,1) [0.3640 * 0.3820 0.4334 7 0.4514)  [0.4645 * 0.4823 0.4823 7 0.5000

tables, the notation (R;(p,v1) ,/* Ri(p,72)] means that the value of R;(p,~) is monoton-

ically increasing from limv%ﬁﬂ_ = R;(71) to R;i(y2) when v < v < 79, where i =1, 2,
1

3 and 4. Figures 1 and 2 are devoted to the graphs of G, ,(r) for different values of p

and 7.

2. Bohr inequality for Cesaro operator

In this section, we study the Bohr inequality for the operator-valued Ceséro operator.
For a € C with Rea > —1, we have

1

7—2();:21@ where (& — (a+1)-(a+k)
k=0

k!

(1= z)ott
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Table 4. Values of Ra(1,7v), Ra(1.3,7), R4(1.6,7) and R4(2,7) for various values of v € [0,1).

¥ R4(1,7)

R4(1.3,7)

R4(1.6,7)

R4(277)

[0,0.2) [0.2068 * 0.2264

0.2353 " 0.2558

[0.2588 1 0.2799

0.2848 7 0.3064

[0.2,0.4) [0.2264 * 0.2436

0.2558 " 0.2737

[0.2799 * 0.2982

0.3064 " 0.3250

0.6,0.8) [0.2588 7 0.2724

0.2894 " 0.3034

[0.3141 7 0.3284

0.3412 7 0.3555

)
)
[0.4,0.6) [0.2436 * 0.2588)
)
)

[0.8,1) [0.2724 0.2848

[ )
[ )
0.2737 7 0.2894)
[ )
[ )

0.3034 " 0.3160

)
)
0.2082 7 0.3141)
)
)

[0.3284 7 0.3412

[ )
[ )
[0.3250 7 0.3412)
[ )
[ )

0.3555 " 0.3684

G,(r) G13,y(r)
0.81 0.8 R

0.6
0.4

0.2

0.0 0‘0\

> N N /N
0.2068 02363

o4l 02264 ol 0.2588

r) and G1.3,(r) in (0,1) when v =0,0.2,0.4,0.6,0.8, 1.

Figure 1. The graph of G1 (

g?sely(f) Ga,y(r)

0.279

Figure 2. The graph of G1.6,,(r) and G2, (r) in (0,1) when v =0,0.2,0.4,0.6,0.8, 1.

Comparing the coefficient of 2" on both sides of the following identity

1 11
(1—2)ot1 1 —2z  (1—z)at2’
we obtain
« . (e} : 1
Cott=3"Cp e s ch =1. (2.1)
k=0 n k=0
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This property leads to consider the Cesdro operator of order o or a-Cesdro operator
(see [34]) on the space H(D) of analytic functions f(z) = Y..” ja,z™ in D, which is
defined by

cofz) =3 (ciﬂ S cp ak> . (2.2)

n=0 n k=0

A simple computation with power series gives the following integral form (see [34])

1
Co (= a+1/ftz (L=t (2.3)
0

1—1t2) a‘*‘l

with Rea > —1. For a =0, Equations (2.2) and (2.3) give the classical Cesdro operator

0 1
<ﬁ@y=@ﬂ@=§:<nil ) :/
0

dt zeD. (2.4)
n=0

In 1932, Hardy and Littlehood [25] considered the classical Cesdro operator, and later,
several authors have studied the boundedness of this operator on various function
spaces (see [5]). In 2020, Bermudez et al. [35] extensively studied the Cesiro mean and
boundedness of Ceséro operators on Banach spaces and Hilbert spaces.

In the same spirit of the definitions (2.2) and (2.3), we define the Cesédro operator on
the space of analytic functions f : D — B(H) by

cww:2<

n=0

1
(1—t)
Ca+1ZCkAk) =(a+1) /ftz 1—tza+1dt (2.5)
0

" k=0

where f(z) =307 A,z" in D and A, B, € B(H) for all n € NU{0}. In [26] and [27],
Kayumov et al. have established an analogue of the Bohr theorem for the classical Cesaro
operator Cf(z) and a-Cesaro operator Cf, f(z), respectively. For an analytic function
f:D — B(H) with f(z) = Y07, Ayz™ in D, where A,, B,, € B(H) for all n € NU {0},
we define the Bohr’s sum by

CH(r) == Z(CQHZC‘k |Ak||> " for |z] =1 (2.6)

" k=0
Now we establish the counterpart of the Bohr theorem for C; f(%).

Theorem 2.1. Let f : Q, — B(H) be an analytic function with ||f(z)]] < 1 in Q,
such that f(z) =Y. Apz" in D, where Ay = agl for |ag| <1 and A, € B(H) for all
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n € NU{0}. Then for a > —1, we have

T

> r" (a+1) e

@ < — .

cf(r)7<a+1)§0:a+n+1 st /1_tdt 2.7)
n= 0

for |z| =7 < R(v,a), where R(7y,a) is the smallest root in (0,1) of C, o(r) = 0, where

oo

Cralr) =B+ +a))

n=0

r’ 2

atn+1 1—7r

The constant R(7y,a) cannot be improved further.

Proof. Let a-Cesaro operator Cf, f(z) be expressed in the following equivalent form
C%f(z) = Z Ann(2), (2.8)
n=0
where ¢,,(z) can be obtained by collecting the terms involving only A, in the right hand

side of Equation (2.5). Then it is easy to see that

On(2) = Z Cin P (2.9)

a+1
k=n Ck?

and hence by using the definition of C, for a-Cesdro operator C§, f(z), we obtain

_ E__k _ z
fle) = 2 g =l D ) gy 2 el (2.10)
It is easy to see that
C?(r) = Z ||AnH (bn(r) (2.11)
n=0

By setting f(z) = fi(z) := (1/(1 — 2))I in Equation (2.8), using Equations (2.1) and
(2.5), we obtain

1—=2

> 16,(:) = Cifile) = (125 ) (2.12)
n=0

By using Equations (2.11) and (2.12), we obtain

1

CH(r)=> Ipn(r) = — (2.13)
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Table 5. Values of R(v,0), R(v,10), R(v,20) and R(y,30) for various values of v € [0,1).
gl R(v,0) R(v,10) R(v,20) R(v,30)

[0,0.3) [0.5335 7 0.6054)  [0.9860  0.9876)  [0.9937 0.9943)  [0.9961  0.9966)
[0.3,0.5) [0.6054 7 0.6434)  [0.9876 ~ 0.9885)  [0.9945 ~ 0.9949)  [0.9966  0.9968)
[0.5,0.7) [0.6434 7 0.6756)  [0.9885 ~ 0.9892)  [0.9949 4 0.9952)  [0.9968  0.9970)
(0.7,0.9) [0.6756 7 0.7031)  [0.9892 *0.9899)  [0.9952 ~ 0.9955)  [0.9970  0.9972)
(0.9,1) [0.7031 *0.7153)  [0.9899 *0.9902)  [0.9955 7 0.9956)  [0.9972  0.9973)

Thus, Equation (1.47) with p =1 takes the following form

(oo} l‘k 2 1 o0 Jfk
1 = — 1
(o + )];Jk+oz+l 1+’y<1x (o + )kz_ok+a+1>’

which is equivalently

xk _ 2
a+1 1—-z

B+v)(a+1)
7 I;)kJr

Now the inequality (2.7) follows from Theorem 1.4. Sharpness part follows from
Theorem 1.4. This completes the proof. 0

From Table 5, for fixed values of a, we observe that Bohr radius R(7, «) is monotonic
increasing in y € [0,1). In Table 5, the notation (R(vy1,®) ,/* R(y2,@)] means that the
value of R(7, @) is monotonically increasing from hmv—w’L = R(v1, @) to R(y2,) when

1

71 <7 < 2. Figures 3 and 4 are devoted to the graphs of C, ,(r) for various values of
v and «.

Corollary 2.14. Let f : Q, — D be an analytic function with f(z) = > " anz" in
D. Then for a > —1, the inequality (2.7) holds for |z| = r < R(y, a), where R(7y, a) is as
in Theorem 2.1. In particular, for a =0, we have

Ch(r) < % 1n<11r) (2.15)

for |z] =1 < Ro(v), where Ro(v) is the smallest root in (0,1) of C(r) =0, where

C(r) =B +7)(1-r)ln (11> _ o,

The constant Ro(y) cannot be improved further.
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0 r
0982 0984 0. 9%\\ B\\o 992 0994

Figure 3. The graph of C, o(r) and Cy,10(r) in (0,1) when v =0,0.3,0.5,0.7,0.9, 1.

Cy, 20 Cy,30(r

W T

Figure 4. The graph of C 20(r) and C4 30(r) in (0,1) when v = 0,0.3,0.5,0.7,0.9, 1.
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For Q, = D, i.e., y=0, using Corollary 2.14, we obtain the Bohr inequality for the
Cesaro operator for analytic functions f : D — D.

Corollary 2.16. Let f : D — D be an analytic function with f(z) = > " apz" in D.
Then for a > —1, the inequality (2.7) holds for |z| = r < R(0,a), where R(0, @) is as in
Theorem 2.1. In particular, for a= 0, we have

C9(r) < i In (13«) (2.17)

for |z| =1 < Ry(0), where Ry(0) is the smallest root in (0,1) of Co(r) = 0, where

Co(r) =3(1 —r)In (1;) —or.

The constant Ry(0) cannot be improved further.
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3. Bohr inequality for Bernardi operator

In similar fashion to the Bohr-type radius problem for the operator-valued a-Ceséaro
operator, we also study the Bohr-type radius problem for the operator-valued Bernardi
operator. For f : D — B(H) analytic function with f(z) = > 2 ~A,z" in D, where
A, € B(H) for all n > m and m > 0 is an integer with 8 > —m, we define Bernardi
operator by

o 1
L ulf1(2) =(1+5) /f )Pt dt for » € D.
n=m 0
For f(z) = >0, anz" is complex-valued analytic function in D, Lgy reduces to

complex-valued Bernardi operator Lg (see [31]). For =1 and m =0, we obtain the
well-known Libera operator (see [31]) defined by

1
”:2/f(tz)dt for z € D.
0

For =0, m=1 and g(z) = Y .-, b,z", we obtain the well-known Alexander operator
(see [21]) defined by

O“

1

/g —z” for z € D,
n

0

n= 1

which has been extensively studied in the univalent function theory.

In this section, we study Bohr inequality for Barnardi operator Lg %[f] when analytic
functions f : Q@ — B(H) for f(z) = Y.,-, A,2" in D. Before going to establish Bohr
inequality for the operator Lg ;, we prove the following results, which are more general
versions of Theorem 1.3 and Theorem 1.4.

Theorem 3.1. Fiz m € N U {0}. Let f € H™(Q,B(H)) be given by f(z) =
Yoo Apz™ in D with 1f () oo @,530y) < 1. where Apy = amI for |oy,| < 1 and
A, € B(H) for alln >m. If ¢ = {¢n(r)}22,, € G satisfies the inequality

POm(r) >2X » ¢ulr)  forr €0, Ra(p)), (3.1)
n=m+1

then the following inequality

oo

M (¢, p,m,7) = | Al $m(r) + D 1 Au]l é0(r) < dp(r) (3-2)

n=m-+1
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holds for |z| = r < Rq(p,m), where Rq(p,m) is the smallest root in (0,1) of the
equation

n=m+1

Proof. Let f € H>(Q,B(H)) be of the form f(z) = >.0° A,z in D with
[f(2) groo(@,2p < 1. Then we have A, = oy,l. We observe that f(z) = z"h(z),
where h : Q — B(H) is analytic function of the form h(z) > Anz™ ™™ in D
with [|A(2)| o0 0,21y < 1. Then, in view of Definition (1.34), we have

Al < M HI - |Am|2H = \n HI - |am|21H = (1 —|aml?) forn>m+1. (34)

Using Equation (1.38), we obtain

My (4, p,m, 1) < | P Y (r) + A (1 — |am|?) Z n(r

n=m-+1

— (1) + Mg (1 — |am2)< S ) - me(r))

n=m+1 H(l o |am|

Since |y, | < 1, from the proof of Theorem 1.3, we have (1 — | |P) /A (1 — |oun|?)) >
p/2XMy for p € (0,2], which leads to

2 = p
My (6, ,m,7) < () + Mo (1= ) (2_)1 Un(r) = mw,n(r))
and hence by Equation (3.1), we obtain Ms(¢,p,m,7) < y(r) for
2| = 7 < Ra(p,m). O

Theorem 3.2. Let f € H*(Q,,B(H)) be of the form f(z) =Y oo Anz" in D with
||fHH<>0(QA,,B(H)) <1, where Ay, = a1 for |am| <1 and A, € B(H) for alln > m + 1.
If g = {on(r)}22,, € G satisfies the following inequality

Gm (1) > 1 ) ) zm;rl dn(r) forr €0, R(p,m,7)), (3.5)

then the inequality (3.2) holds for |z| = r < R(p,m,~), where R(p, m,~) is the smallest
root in (0,1) of the equation

Sm(z) = 1"1"7 Z bn(w (3.6)

n=m-+1
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Moreover, when ¢m(x) < (2/p(1 + 7)) >0,y @ulx) in  some interval
(R(p,m,7), R(p,m,v) +€) for e>0, then the constant R(p,m,vy) cannot be improved
further.

Proof. For Q = Q,, Ay =1/(1+ 7), the condition (3.1) becomes

Gm (1) > Z ¢n(r) forr e [0,R(p,m,7)),

n=m-+1

1+7

where R(p, m,~) is the smallest root in (0, 1) of the equation

1+v Z onlz

n=m+1

bm(z) =

Then, by the virtue of Theorem 1.3, the required inequality (3.2) holds for r €
[0, R(p, m,7)). Our aim is to show that the radius R(p, m,~) cannot be improved fur-
ther. That is, | Ap||” ¢m (1) +> o i1 [ Anll én(r) > ¢m(r) holds for any r > R(p,m,~),
ie., for any r € (R(p,7), R(p,v) +€). To show this, we consider the function F,,, :
Qy — B(H) defined by Fi ,(z) = 2™F,(z), where F, is defined by Equation (1.48).
From the proof of Theorem 1.3, ||[Fo(2)|| < 1, and hence ||F,n(2)|| < 1. Since
Fu(z)=A¢— > ._; Ayz™ in D, where Ay, A, are as in Equation (1.49), then

a— & anfmfl(l . ,y)nfm .
Fym(z) = <1—a7> Iz — (1 —a?) Z ( [ ayym )Iz for z € D.

n=m-+1

For the function Fj ,,, we have

oo

[ Amll” ¢ (r) + Z [ An|l n(r) (3.7)
n=m-+1
<1a_—a7) Gm (1) + (1 —a® nz+1 a(l_ 711—)1 b ()

=¢m(r) +(1—a) ( Z On(r) = p(L 4+ 7)Pm(r ))
n=m-+1

rama (3 e *“Zﬁlml?)"*mw) SPRt)

n=m-+1 CL’)/) n=m-+1
a—v\"

a0+ (151) 1) ént)

= om(r) + (1 —a) (2 > onlr) —p(+ ’Y)¢m(7’)> +0((1 - a)*)
n=m-+1
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as a — 17. Also, we have that

2 Z Gn(r) > p(1+7)pm(r)

n=m-+1

for r € (R(p,m,v),R(p,m,vy) + €). It is easy to see that the last expression of
Equation (3.7) is strictly greater than ¢,,(r) when a is very close to 1, i.e., a — 1~
and r € (R(p,m,~), R(p, m,7) + €). This shows that the constant R(p, m,~) cannot be
improved further. This completes the proof. a

Now we are in a position to establish Bohr inequality for Barnardi operator Lg 3[f]
for analytic functions f : Q, — B(H) of the form f(z) => -  A,z" in D.

Theorem 3.3. Let f > —m and f : Q, — B(H) be an analytic function with || f(z)| <
1in Q. such that f(z) =Y oo A,z" inD, where A, = a,I for || < 1 and A,, € B(H)
for all n € m, then

A 1
140 n rm (3.8)

M,
pu(r n+6 “m+p

for|z| =r < R(m, B3,7), where R(m, 3,7) is the smallest root in (0,1) of By, g(r) =0,
where

oo m

2 r’ T
B,, = — - 3.9
7ﬁ77(7") 1 +’Y n§+1 n+5 m+ﬁ ( )

The constant R(m, 3,7) is the best possible.

Proof. We note that Mgz 3/(r) can be expressed in the following form

A, > N
Mpg 3((r Z ,Lg Z | An || dn(r)  with ¢ (r) = n:ﬂ

and hence the condition (3.5) becomes

oo
r’m 2 r’

_Z f 0
s 1+7n:§m:+1”+6 orr € [0, R(m, 3,7)),

where R(m,3,7) is the smallest root of the Equation (3.9). Now the inequality (3.8)
follows from Theorem 3.2. The sharpness of the constant R(m,[,~) follows from
Theorem 3.2. This completes the proof. O
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Table 6. Values of R(0,1,7), R(0,2,7), R(1,2,7) and R(4,0,7) for various values of v € [0, 1).

v R(0,1,7)

R(0,2,7)

R(1,2,7)

R(4,0,7)

[0,0.2) [0.5828 *0.6419

0.4742 7 0.5789

[0.4317 ,0.4833

0.4090 " 0.4587

[0.2,0.4) [0.6419 7 0.6912

0.5289 " 0.5759

[0.4833  0.5282

0.4587 1 0.5021

[0.6,0.8) [0.7324 7 0.7672

0.6168 " 0.6525

[0.5675 7 0.6023

0.5403 " 0.5743

)
)
[0.4,0.6) [0.6912  0.7324)
)
)

[ )
[ )
[0.5759 7 0.6168)
[ )
[ )

0.6525 " 0.6838

)
)
0.5282 7 0.5675)
)
)

[0.6023 7 0.6331

[ )
[ )
[0.5021 7 0.5403)
[ )
[ )

0.5743 7 0.6045

(0.8,1) [0.7672 0.7968

Remark 3.1. We observe that Equation (3.9) can also be written in the following
form

n+m m

o0
r r
B, = E — .
8(7) 1+7n:1n+m+6 m+

Thus, the root R(m, ,7) of By, 3,4(r) = 0 is same as that of L, g (r) = 0, where

2
1+~

r _ 1
n+m+p8 m+p

NE

L g~(r) = (3.10)

n=1

Therefore, Equation (3.10) yields that the roots of L, g(r) = 0 are same when the
corresponding sums m + 3 of m and [ are the same. That is, for each fixed i € N,
if R(mg,Bi,7) is the root of Ly, g, ,(r) = 0, then R(m,B;,v) = R(m;,3;,7) when
m; + i = m; + p;. For instance, R(0,1,7) = R(1,0,7) = R(2,-1,7v), R(0,2,7) =
R(L,1,7).

From Table 6, for fixed values of m and 8, we observe that Bohr radius R(m, 3,7)
is monotonic increasing in vy € [0,1). In Table 6, the notation (R(m,S3,71)
R(m,,72)] means that the value of R(m,f,7) is monotonically increasing from

lim’y_er R(m, B,v) = R(m,B,71) to R(m,S,72) when v; < v < 75. Figures 5 and 6
1

are devoted to the graphs of B,, g (r) for various values of m, 8 and ~.

Corollary 3.11. Let f be as in Theorem 3.8 with m= 0 and 5= 1. Then

IA ||

for |z| =r < R(0,1,7), where R(0,1,~) is the smallest Toot in (0,1) of

T
— =1. 3.12
1+vzn+1 ( )
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Bo,2,y(r)
3 -

Bo,1,4(r)

Figure 5. The graph of Bo,1,~(r) and Bo,2,(r) in (0,1) when v =0,0.2,0.4,0.6,0.8,0.9, 1.

Bi,2,y(r) By,0,y(r)
1.0 0.201
0.5
0.0 - . . 017 r

-05f

Figure 6. The graph of B1,2,~(r) and Bao,(r) in (0,1) when v =0,0.2,0.4,0.6,0.8,0.9, 1.

The constant R(0,1,~) is the best possible.

Corollary 3.13. Let f be as in Theorem 3.3 with m=1 and 3 =0. Then

>

[Anll n

for |z| =r < R(1,0,7), where R(1,0,) is the smallest root in (0,1) of

2
—_— — = (3.14)
1—|—’yn:2 n

The constant R(1,0,~) is the best possible.
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