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Flows with free boundaries and hydrodynamic
singularities
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Plane unsteady potential flows of an ideal incompressible fluid with a free boundary
are considered in the absence of external forces and surface tension. Examples of exact
solutions in situations where the entire boundary of the domain occupied by the fluid is
completely free are constructed. There may be polar singularities of the complex velocity
function inside the fluid, which corresponds to the presence of a source or a sink there.
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1. Introduction

There are only a few exact solutions that describe unsteady fluid flows with a free
boundary. A class of flows with a linear velocity field was studied by Dirichlet (1861),
Ovsiannikov (1967) and Longuet-Higgins (1972). Interesting examples of exact solutions
and a semi-Lagrangian algorithm for finding these solutions were demonstrated by John
(1953). A new class of flows with zero acceleration on the free boundary was considered
by Karabut & Zhuravleva (2014) and Karabut, Zhuravleva & Zubarev (2020). Liu & Pego
(2021) proposed the use of the term ‘flows with ballistic free boundaries’ for such flows.
Advantages of the proposed method of constructing exact solutions are the simplicity of
its application and the possibility of studying the behaviour of the singular points of the
solution. The need to perform such studies was noted many times. Dyachenko et al. (2019)
showed that new additional constants of motion can be obtained by integration around
singularities located outside the fluid. By studying singularities, Dyachenko et al. (2021)
developed an asymptotic theory that allows one to find an approximate solution in the
case of a small distance between two singularities. The necessity of studying singularities
is also proved by the fact that such points, which are initially located outside the fluid,
can migrate with time and can reach the free surface, resulting in solution breakdown
(Kuznetsov, Spector & Zakharov 1994; Zubarev & Kuznetsov 2014; Lushnikov & Zubarev
2018; Liu & Pego 2021). However, it is not always the case that finding singularities in the
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fluid means solution breakdown. If singular points are complex velocity poles, they can be
located inside the flow region because some physical meaning can be assigned to them in
this case. Such a problem (sink located in a fluid circle) was considered for the first time by
Polubarinova-Kochina (1945). An exact solution that describes the fluid flow containing a
sink of a given constant intensity was derived in the Hele–Shaw approximation. A solution
having a singularity at the boundary of the domain occupied by the fluid was considered
by Mestnikova & Starovoitov (2019). Though a steady flow with allowance for the gravity
force was investigated there, the behaviour of the free boundary was qualitatively similar
to the unsteady solution obtained in the present study, which describes a two-dimensional
flow of an ideal fluid located on a horizontal bottom containing a sink. In this case, a cusp
point is formed on the free boundary.

A new algorithm for deriving exact solutions with ballistic free boundaries is proposed
in the present paper. The algorithm is based on using conformal mappings. It seems to us
that it is more convenient to study flows with hydrodynamic singularities in such a way
because this method allows one to control the initial positions of singularities both outside
and inside the flow region. Exact solutions that describe fluid flows in domains containing
a source or a sink are found; moreover, the source or sink intensity and location may vary.

2. Algorithm of constructing the exact solution

Let the fluid occupy a certain domain Dz0 in a physical plane z = x + iy at the initial
time. The boundary of this domain is free, and its evolution in time is not known. Let
us take an auxiliary complex plane ζ = ξ + iη. In this plane, we choose a certain simple
canonical domain Dζ (circle, half-plane or strip). One of the advantages of this approach
is the fact that the flow region in the auxiliary plane ζ is fixed in time. The goal is to
find the conformal mapping of the domain Dζ to a variable domain Dz occupied by the
fluid in the plane z. This mapping is described by the formula z = Z(ζ, t), where Z(ζ, t) is
an unknown function. Another sought function is the complex velocity U(ζ, t) = u − iv,
where (u, v) are the components of the fluid velocity vector v.

The function U is an analytical function. The validity of the Cauchy–Riemann
conditions for this function follows from satisfying the conditions of potentiality and
continuity of the flow of an ideal incompressible fluid:

rot v = 0 ⇒ ∂u
∂y

= ∂v

∂x
, (2.1)

div v = 0 ⇒ ∂u
∂x

= −∂v

∂y
. (2.2)

Thus, finding the evolution of the fluid flow is reduced to finding two functions U(ζ, t)
and Z(ζ, t) that are analytical in the domain Dζ and satisfy the kinematic and dynamic
conditions on the free boundary. These conditions are usually written in terms of a
conformal mapping and a complex potential (see, e.g. Dyachenko et al. 2019). In our
studies, we proposed to use a complex velocity instead of a complex potential. This was
done for the first time by Karabut (1991) and then discussed in more detail in Karabut,
Petrov & Zhuravleva (2019). Let us consider derivation of these conditions in more detail.

The kinematic condition means that the free boundary is a fluid line, i.e. it consists of
the same particles; hence, the projection of the velocity Ū of the fluid particle located
on the free boundary and the projection of the velocity of the boundary itself Zt onto the
normal to the free boundary coincide with each other. In other words, the vector Zt − Ū
is directed tangentially to the free boundary. Let us recall that the vector tangential to the
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Flows with free boundaries and hydrodynamic singularities

free boundary is defined as Zs (therefore, the normal vector is iZs). Here, s is the length
of the arc corresponding to the free boundary in the plane ζ . The scalar product of two
vectors Z1 and Z2 is defined by the formula Re[Z1Z̄2]. Therefore, the kinematic condition
can be written as

Im[Zs(Z̄t − U)] = 0. (2.3)

The dynamic condition means that the pressure on the free boundary is constant. In view
of the Euler equation, this means that the acceleration vector is orthogonal to the free
surface. To derive this condition, we denote the time by the letters T , τ and t, while the
remaining independent variables are the Lagrangian coordinates, the Euler coordinates
x, y and the complex variable ζ , respectively. In such a way, it is possible to avoid the
confusion in writing partial derivatives with respect to time. Thus, though T = τ = t,
the partial derivatives with respect to these variables have different meanings and do not
coincide, i.e.

∂

∂T
/= ∂

∂τ
/= ∂

∂t
. (2.4)

As the acceleration is defined as ŪT , we obtain the dynamic condition

Re(ZsUT) = 0. (2.5)

As Z and τ are independent variables, then Zτ = 0, and

Zτ = Zt + Zζ ζτ = 0 ⇒ ζτ = − Zt

Zζ

. (2.6)

Therefore, we have
∂

∂τ
= ∂

∂t
− Zt

Zζ

∂

∂ζ
. (2.7)

Taking into account that
∂

∂Z
= ∂ζ

∂Z
∂

∂ζ
, (2.8)

we obtain
∂

∂T
= ∂

∂τ
+ ∂Z

∂T
∂

∂Z
= ∂

∂τ
+ Ū

∂

∂Z
= ∂

∂τ
+ Ū

∂ζ

∂Z
∂

∂ζ
, (2.9)

and, hence,
∂U
∂T

= ∂U
∂t

− Zt

Zζ

∂U
∂ζ

+ Ū
∂ζ

∂Z
∂U
∂ζ

. (2.10)

Substituting the resultant expression (2.10) into condition (2.5) and noting that Uζ ζZZs =
Us, we can write the dynamic boundary condition as

Re(ZsUT) = Re(ZsUt − ZtUζ ζZZs + ŪUζ ζZZs) = Re(ZsUt − Us(Zt − Ū)) = 0. (2.11)

Thus, the kinematic and dynamic boundary conditions take the form

Im[Zs(Z̄t − U)] = 0,

Re[ZsUt − Us(Zt − Ū)] = 0.

}
(2.12)

Let us consider the special case of general boundary conditions (2.12). It should be
noted that both boundary conditions (dynamic and kinematic conditions) are satisfied if
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the sought functions on the free boundary satisfy the following system of equations:

Zt = Ū,

Ut = 0.

}
(2.13)

Certainly, using the boundary conditions (2.13) instead of the dynamic and kinematic
conditions (2.12), we reduce the set of solutions. However, (2.13) can be integrated, which
allows finding exact solutions of the original problem. It follows from the second equation
of system (2.13) that the function U is independent of t; hence, U(ζ, t) = U(ζ, 0) ≡ f (ζ ).
Here f (ζ ) is the initial complex velocity of the fluid. Integrating the first equation of system
(2.13) on the free boundary, we obtain Z(ζ, t) = tf (ζ ) + g(ζ ). Here g(ζ ) ≡ Z(ζ, 0) is the
initial conformal mapping.

Thus, the following relations are satisfied on the free boundary:

U(ζ, t) = f (ζ ),

Z(ζ, t) = tf (ζ ) + g(ζ ).

}
(2.14)

As the left and right sides of the first equation of system (2.14) are analytical functions of
the complex variable ζ , which coincide on a certain line, then, by virtue of the analytical
continuation principle, they coincide everywhere in the domain Dζ ; therefore, we have
found the function of the complex velocity U(ζ, t) = f (ζ ) everywhere in the domain. To
continue the second equation, we need information about the domain shape and about
the function f (ζ ). Knowing the value of f (ζ ) on the free boundary, we have to find an
analytical function F(ζ ) that coincides with f (ζ ) on the free boundary. Then, by virtue
of the analytical continuation principle, we can argue that the equation Z(ζ, t) = tF(ζ ) +
g(ζ ) is satisfied everywhere in the domain and coincides with the initial equation on the
free boundary.

Thus, the following algorithm is proposed for finding exact solutions that describe the
flow of an ideal fluid in the domain whose boundary is free.

1. In the auxiliary plane ζ , we choose a domain Dζ corresponding to the domain
occupied by the fluid in the plane z. In fact, this choice means setting the initial
conformal mapping, i.e. the function g(ζ ) ≡ Z(ζ, 0).

2. We define the fluid velocity at the initial time. The initial complex velocity is
taken to be an arbitrary analytical function or a function having pole-type singular
points in the flow domain (these singular points can be interpreted as sources or
sinks located in the flow domain). However, one has to understand that we can
estimate whether the entire procedure of obtaining an exact solution for the chosen
initial velocity was successful only after the last stage of the procedure (studying
whether the resultant solution is analytical) is finalized. Knowing the form of the
initial conformal mapping and the fluid velocity at t = 0, we determine the function
f (ζ ) ≡ U(ζ, 0).

3. Using the first equation of system (2.14), we find the explicit form of the complex
velocity functions U(ζ, t) on the free boundary in the auxiliary plane ζ . The
principle of analytical continuation allows us to conclude that in this way we
determined the complex velocity function everywhere in the domain where this
function is analytical.

4. We find the function F(ζ ) coinciding with f (ζ ) on the free boundary and obtain a
function performing the conformal mapping Z(ζ, t) = tF(ζ ) + g(ζ ).

5. We study singular points of the resultant functions. If the function of the conformal
mapping is analytical in the flow domain, while the function of the complex velocity
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Flows with free boundaries and hydrodynamic singularities

is analytical or has a pole-type singular point, we can conclude that the exact solution
of the original problem was successfully derived.

For solutions found by this method, the acceleration UT is equal to zero on the free
boundary. Indeed, it follows from (2.10) that

∂U
∂T

= ∂U
∂t

− Uζ

Zζ

(Zt − Ū), (2.15)

whence it follows in view of conditions (2.13) that the acceleration on the free boundary
is ∂U/∂T = 0.

3. Initial position of the fluid inside or outside the unit circle

Let us consider some examples of exact solutions obtained by the method described above.
Let g(ζ ) = ζ . This means that Dζ is chosen to be the domain occupied by the fluid at the
initial time Dz0. One of the simplest cases is the exterior |ζ | > 1 or the interior |ζ | < 1 a
unit circle. Let the initial complex velocity have a pole

U(z, 0) = A
z − ζ0

(Im A = 0, Im ζ0 = 0). (3.1)

Here, A is the initial intensity of the source or sink, and ζ0 is a constant defining the
source or sink position. Let us choose ζ0 in such a way that it is located in the domain
Dz0. Thus, there is a source (A > 0) or a sink (A < 0) in the flow region at the initial time.
Situations with the singularity ζ0 located inside the unit circle |z| < 1 or outside it |z| > 1
are principally different.

As the conformal mapping at t = 0 is performed by the function Z(ζ, 0) = g(ζ ) = ζ ,
the initial complex velocity in the plane ζ has the form

U(ζ, 0) = f (ζ ) = A
ζ − ζ0

. (3.2)

Knowing the function f (ζ ), we determine the complex velocity for any value of t,

U(ζ, t) = A
ζ − ζ0

. (3.3)

Let us consider the second equation of system (2.14). Let us recall that it is satisfied on
the free boundary corresponding to a unit circumference in the plane ζ , i.e. |ζ | = 1, which
means that ζ = eiθ . In this case, we have

ζ̄ = e−iθ = 1
ζ

. (3.4)

Thus, it follows from the second equation of system (2.14) that the function Z(ζ, t) on the
free boundary ζ = eiθ has the form

Z(ζ, t) = tf (ζ ) + g(ζ ) = ζ + At
1/ζ − ζ0

, here ζ = eiθ . (3.5)

Now it is possible to apply the analytical continuation principle to this function. Therefore,
the problem is completely solved in the domain Dζ ,

U(ζ, t) = A
ζ − ζ0

, Z(ζ, t) = ζ + At
1/ζ − ζ0

. (3.6a,b)
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Eliminating the variable ζ from system (3.6), we obtain the form of the complex velocity
in the physical plane z,

U(z, t) = A(At + zζ0 − 2ζ 2
0 ) ± A

√
(zζ0 + At − 1)2 + 4At

2(z(1 − ζ 2
0 ) − ζ0(At + 1 − ζ 2

0 ))
. (3.7)

Let us recall that the free boundary corresponds to the unit circumference |ζ | = 1 in the
plane ζ . Assuming that ζ = eiθ in the second equation of system (3.6) and separating the
real and imaginary parts, we obtain a parametric equation of the free boundary in the
physical plane

x = Re
[

eiθ + At
e−iθ − ζ0

]
, y = Im

[
eiθ + At

e−iθ − ζ0

]
, here θ ∈ [0, 2π]. (3.8a,b)

However, for the solution to describe a certain fluid flow adequately, its singular
points should either be located outside the flow region or allow some hydrodynamic
interpretation. Obviously, the function U(ζ, t) in the plane of the complex variable ζ has
a pole at the point ζ0. Let us demonstrate that the corresponding point z0 = Z(ζ0, t) in the
physical plane z is also a pole of the complex velocity. For this purpose, we calculate the
limit, which is equal to the source (sink) intensity in the physical plane,

lim
z→z0

U(z − z0) = lim
z→z0

A
ζ − ζ0

(
ζ − ζ0 + At

1/ζ − ζ0
− At

1/ζ0 − ζ0

)
= A + A2t

(1 − ζ 2
0 )2

≡ B. (3.9)

It should be noted that the pole in the physical plane

z0 = Z(ζ0, t) = ζ0 − Aζ0

ζ 2
0 − 1

t, (3.10)

moves along the real axis with a constant velocity. This fact is difficult to explain from the
physical point of view, but it is easily eliminated by transition to a new coordinate system
moving relative to the initial one with constant velocity u0 = Aζ0/(ζ

2
0 − 1). Indeed, let

us use the Galilean transformation, denoting the new complex variable – z̃, the complex
velocity in the new coordinate system – Ũ. We denote the time in the new coordinate
system by τ̃ . By virtue of the Galilean transformation, we have

τ̃ = τ,

z̃ = z + u0τ,

Ũ = U + u0.

⎫⎬⎭ (3.11)

The pole position in the new system will be fixed,

z̃0 = z0 + u0τ = ζ0 − Aζ0

ζ 2
0 − 1

+ u0t = ζ0. (3.12)

It is seen from presentation (3.7) that, in addition to the pole z0, the function U(z, t)
has two more singular points of the square root type z1 and z2, which are the roots of the
equation

(zζ0 + At − 1)2 + 4At = 0. (3.13)

If there is a sink at the singular point z0, i.e. A < 0, then the singularities z1 and z2 move
along the real axis z1,2 = (

√−At ± 1)2/ζ0. In view of the free boundary equation (3.8),
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Figure 1. Evolution of a droplet with a sink.

we can determine that one of the singularities in this case reaches the free boundary at the
time instant t∗ = −(1 − ζ0)

2/A. Thus, the solution breaks down within a finite time due
to the formation of the cusp point on the free boundary.

Figure 1 shows an example of such a flow. The domain occupied by the fluid is coloured
grey, and the streamlines are shown there. At the initial time, the fluid occupies a unit
circle. In the fluid region, at the point z0 = 1/2 − 2t/3, there is a singular point, which
is a sink of intensity A = −1. This point is marked by the star in the figure. Two other
singularities of the square root type have the form z1,2 = 2(

√
t ± 1)2. Arising at the initial

time at the point z = 2, they move along the real axis in the opposite directions (at t < 1).
One of them passes to infinity and does not affect the solution. The other one, which is
shown by the dot in the figure, approaches the free boundary and reaches it at t∗ = 1/4,
leading to solution breakdown. Thus, we obtain an example of the solution broken within
a finite time due to the fact that the singular point initially located outside the flow region
reaches the free boundary.

Another situation is observed if there is a source in the fluid at the initial time, i.e. A > 0.
In this case, it is more convenient to study the behaviour of singularities in the plane ζ .
Let us recall that the complex velocity function is not analytical at points where Zζ = 0
because Uz = Uζ /Zζ . The second equation of system (3.6) yields

Zζ = 1 + At(1 − ζ ζ0) + ζ0Atζ
(1 − ζ ζ0)2 = 0 ⇒ (1 − ζ ζ0)

2 = −At ⇒ ζ = 1
ζ0

± i

√
At

ζ0
.

(3.14)

Therefore, there are two singularities in the plane ζ at A > 0, which are formed at the
initial time on the real axis at the point ξ = 1/ζ0 and move along the straight line ξ = 1/ζ0
in the opposite directions to infinity. There may be two principally different cases here.
In the first case, the fluid occupies a unit circle at the initial time and there is a source
at a certain point ζ0 located on the real axis inside this circle (|ζ0| < 1); therefore, the
singularities are always outside the fluid because the flow region is bounded by the unit
circle and the singular points move along the straight line ξ = 1/ζ0 > 1. We obtain droplet
spreading with a source, which is an example of the solution that exists for an unlimited
time. Figure 2 illustrates the evolution of such a droplet at A = 1, ζ0 = 1/2. The domain
occupied by the fluid is coloured grey, and the streamlines are shown. The source position
is marked by the star.

The second case with the fluid initially occupying the exterior of the unit circle is much
more interesting. There is a source in the flow region (|ζ0| > 1). We actually consider
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Figure 2. Growth of the droplet containing a source.

a bubble of a unit radius located in an unbounded fluid with a source. In this case,
the singularities are formed inside the circle because ξ = 1/ζ0 < 1 and reach the free
boundary |ζ | = 1 at the time t∗ = (ζ 2

0 − 1)/A. The solution breaks down, and the bubble
collapses. Let us study the shape of the free boundary in the plane z at the instant of
solution breakdown t∗. Substituting t = t∗ into the second equation of system (3.6), we
find that the free boundary in the plane z at the solution breakdown instant is defined by

z = ζ + Atζ
1 − ζ ζ0

= ζ ζ0(ζ0 − ζ )

1 − ζ ζ0

∣∣∣∣
ζ=eiθ

. (3.15)

As |ζ | on the free boundary is equal to unity, we obtain that |z| for the free boundary points
has the form

|z| = |ζ ||ζ0|
∣∣∣∣ ζ0 − ζ

1 − ζ ζ0

∣∣∣∣ = |ζ0|
∣∣∣∣ ζ0 − ζ

1 − ζ ζ0

∣∣∣∣ . (3.16)

Let us calculate the absolute value assuming that ζ = eiθ ,∣∣∣∣ ζ0 − ζ

1 − ζ ζ0

∣∣∣∣ =
∣∣∣∣ ζ0 − cos θ − i sin θ

1 − ζ0 cos θ − iζ0 sin θ

∣∣∣∣ =
∣∣∣∣∣ (ζ0 − cos θ)2 + sin2 θ

(1 − ζ0 cos θ)2 + ζ 2
0 sin2 θ

∣∣∣∣∣ = 1. (3.17)

Substituting the absolute value (3.17) into (3.16), we find that the equality |z| = |ζ0| is valid
for the points located on the free boundary at the solution breakdown instant. Therefore,
the free boundary at the bubble collapse instant transforms to an arc of a circumference
of radius |ζ0| with the centre at the origin of the coordinate system. Let us determine the
degree measure of this arc. For this purpose, we study the smoothness of the free boundary
in the plane z at the time t∗. Let us recall that the equation of the free boundary in the
physical plane can be derived as a parametrically defined curve. Assuming that z = x + iy
in (3.15) and separating the real and imaginary parts, we obtain

x = ζ0

(
2 sin2 θ

ζ 2
0 − 2ζ0 cos θ + 1

− 1

)
, y = 2ζ0 sin θ(ζ0 − cos θ)

ζ 2
0 − 2ζ0 cos θ + 1

. (3.18a,b)

If the curve y(x) is defined parametrically, then its smoothness is violated at those points
where the derivative xθ with respect to the parameter θ vanishes. After differentiating the
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Figure 3. Evolution of the bubble located in an unbounded fluid with a source.

first equation of system (3.18) with respect to θ and some transformations, we obtain

xθ = 0 ⇔ (cos θ − ζ0)(1 − ζ0 cos θ) = 0. (3.19)

In the case considered here, we have |ζ0| > 1; then it follows from (3.19) that θ =
± arccos(1/ζ0). For certainty, let us assume that ζ0 = 2. Substituting the found values of
the parameters into (3.15), we see that the free boundary smoothness in this case is violated
at the points z = −1 ± i

√
3. It is of interest that the singularities z1,2, which reached the

free boundary at the time t∗, are also located at the points z = −1 ± i
√

3.
Figure 3 illustrates the evolution of the bubble located in an unbounded fluid. The

domain occupied by the fluid is coloured grey, and the streamlines are shown. There is
a source of intensity A = 1 in the fluid at the point ζ0 = 2 at the initial time. Its position
is marked by the star. Two other singularities are formed at the initial time at the point
z = 1/2. Then they separate from each other and move inside the bubble. Their positions
are marked by the dots in the figure. At the time t∗ = 3, the singularities reach the free
boundary, and the bubble collapses into an arc of a circumference of radius 2 (the value of
this arc is 120◦). The solution breaks down.

4. Initial form of the fluid is a strip

Let the fluid at the initial time occupy a strip

Dz0 =
{
(x, y) : −∞ < x < +∞, −π

4
< y <

π

4

}
, (4.1)

bounded by free boundaries. We assume that a pole of the first order of intensity A is
located in the flow region at the origin and the velocity field at t = 0 is defined by the
complex velocity of the form

U(z, 0) = A
tanh z

, (Im A = 0). (4.2)

The flow domain in the auxiliary plane Dζ is taken to be a unit circle with the centre at the
origin of the coordinate system ζ = 0. It is known that the strip Dz0 is mapped to a unit
circle by the function ζ = tanh z; therefore, the function g(ζ ) ≡ Z(ζ, 0) is taken to be an
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inverse function to the hyperbolic tangent

g(ζ ) = tanh−1 z = 1
2

ln
(

1 + ζ

1 − ζ

)
. (4.3)

The initial complex velocity in the plane ζ has the form U(ζ, 0) = A/ζ . According to the
solution algorithm described above, it follows that, for any t,

U(ζ, t) = A
ζ

. (4.4)

Let us find the function that performs conformal mapping. Let us recall that conditions
(2.13) are satisfied on the free boundary corresponding to the unit circumference |ζ | = 1
in the plane ζ ; therefore, the following transformations are valid for ζ = eiθ (θ ∈ [0, 2π]):

Zt = Ū ⇒ Zt = A
ζ

= Aζ ⇒ Z = Aζ t + g(ζ ). (4.5)

This function is analytical; therefore, it may be continued from the free boundary to the
entire plane ζ . Thus, we obtain the problem solution in the auxiliary plane ζ ,

U(ζ, t) = A
ζ

, Z(ζ, t) = 1
2

ln
(

1 + ζ

1 − ζ

)
+ Aζ t. (4.6a,b)

After the mapping defined by the second equation of system (4.6), the segment of the real
axis ξ ∈ [−1, 1] in the complex plane ζ is mapped into the abscissa axis in the plane z.
The non-penetration condition is satisfied on this line, i.e.

U(ξ, t) = A
ξ

= u − iv ⇒ v ≡ 0. (4.7)

Thus, it is possible to consider not only the flow in a strip bounded by two free boundaries,
which was initially declared, but it is also possible to talk about the flow of a fluid layer on
a motionless solid wall.

Let us study the singular points of the constructed solution. In the auxiliary plane ζ ,
the complex velocity has a pole at the point ζ = 0. This point corresponds to z = 0 in the
physical plane. Let us calculate the limit limz→0(zU) and show that there is also a pole in
the plane z at the origin of the coordinate system:

lim
z→0

zU = lim
ζ→0

(
A
2ζ

ln
1 + ζ

1 − ζ
+ A2t

)
= lim

ζ→0

(
A
2ζ

ln
(

1 + 2ζ

1 − ζ

)
+ A2t

)
= A + A2t. (4.8)

Thus, the complex velocity function in the physical plane has a source or a sink of variable
intensity linearly increasing with time at the origin of the coordinate system.

In addition to the pole, the analytical character of the complex velocity function is
violated at the points Zζ = 0. Let us study these points in the plane ζ ,

Zζ = ∂

∂ζ

(
1
2

ln
(

1 + ζ

1 − ζ

)
+ Aζ t

)
= 1

1 − ζ 2 + At = 0 ⇒ ζ 2 = 1 + 1
At

. (4.9)

If the fluid at the initial time contains a source (A > 0), then the singularities defined by
(4.9) arise at infinitely distant points and move along the real axis. However, these singular
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Figure 4. Fluid flow on a solid substrate containing a source.
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Figure 5. Fluid flow on a solid substrate containing a sink.

points reach the boundaries of the flow region |ζ | < 1 only as t → ∞ because

lim
t→∞

(
1 + 1

At

)
= 1. (4.10)

Therefore, there is only one singularity (source) inside the flow region at any finite
time instant. Thus, we constructed an example of the exact solution that describes the
fluid flow with a free boundary located on a motionless solid surface with a source. As a
result, a droplet growing with time is formed on the free surface. This process is illustrated
in figure 4. The domain occupied by the fluid is coloured grey, and the streamlines are
shown. The source marked by the star is located at the origin of the coordinate system.
Two singularities (marked by the dots in the figure) move outside the flow region, form the
line of the free boundary and approach it as t → ∞.

If there is a sink (A < 0) at the initial time on the solid wall bounding the flow region,
the singular points defined by (4.9) move at t ∈ (0, −1/A) along the imaginary axis toward
each other from infinity to the origin:

ζ ∗ = ±i
√

−1 − 1/(At). (4.11)

Obviously, they will cross the free boundary |ζ | = 1 at a certain time instant and enter the
flow region. The instant of solution breakdown is easily calculated, i.e.

ζ ∗ = i
√

−1 − 1/(At�) = i ⇒
√

−1 − 1/(At�) = 1 ⇒ t� = − 1
2A

. (4.12)

Thus, we constructed an example of the solution that describes the fluid flow with a
free boundary on a solid substrate with a sink. The solution breaks down within a finite
time with the formation of a cusp point on the free boundary. The evolution of such a
flow at A = −1 is illustrated in figure 5. The domain occupied by the fluid is coloured
grey, and the streamlines are shown. The sink located at the origin of the coordinate
system is marked by the star. Two other singularities, as was shown above, move along
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the imaginary axis. One of them, which has a negative coordinate, does not affect the
flow at all. The other one, which is marked by the dot in the figure, approaches the free
boundary and forms a dip on it. At the time t� = 1/2, the singular point reaches the flow
region boundary, thus breaking the solution.

5. Method of conformal mappings and Hopf equation

In our previous publications (Karabut & Zhuravleva 2014; Karabut et al. 2020), we found
exact solutions that describe flows with zero acceleration on the free boundary by using
the Hopf equation Uτ + UUz = 0 or its generalization in the form

Uτ + C(U)Uz = 0, (5.1)

where C(U) is a rational function depending on the complex velocity. Solutions were found
for the cases with C(U) = U, C(U) = −U and C(U) = 1/U. It is of interest to note that
the solutions found in the present study also satisfy the generalized Hopf equation (5.1).
Let us demonstrate this fact. According to (2.7), we have

Uτ = Ut − Zt

Zζ

Uζ . (5.2)

Let us recall that we tried to find solutions satisfying system (2.13); hence, Ut = 0 for
them. Then, taking into account that Uζ /Zζ = Uz, we can rewrite (5.2) in the form

Uτ = −ZtUz ⇒ Uτ + ZtUz = 0. (5.3)

Comparing (5.1) and (5.3), we see that the solutions obtained in the present study satisfy
the generalized Hopf equation with the function C(U) = Zt.

Let us find the explicit form of the function C(U) for solutions where the free boundary
in the physical plane at the initial time is a unit circumference. According to the second
equation of system (3.6), we have

Z(ζ, t) = ζ + At
1/ζ − ζ0

⇒ Zt = A
1/ζ − ζ0

. (5.4)

From the first equation of system (3.6), we express ζ via U and substitute it into the
expression for Zt, thus obtaining

U(ζ, t) = A
ζ − ζ0

⇒ ζ = A
U

+ ζ0 ⇒ Zt = A
U

A + Uζ0
− ζ0

= A2 + AUζ0

(1 − ζ 2
0 )U − Aζ0

. (5.5)

Therefore, the solutions found in the present study for which the free boundary at the initial
time is a unit circle satisfy the generalized Hopf equation (5.1) with the function C(U) of
the form

C(U) = A2 + AUζ0

(1 − ζ 2
0 )U − Aζ0

. (5.6)

Thus, we extended the family of the functions C(U) for which the solutions of the
generalized Hopf equation describe the ideal fluid flow with a free boundary. However, if
we apply the Galileo transformation (3.11) and pass to the coordinate system with respect
to which the pole of the complex velocity is stationary, it turns out that the found flows are
described by the generalized Hopf equation for which

C(Ũ) = A2

(1 − ζ 2
0 )2Ũ

. (5.7)
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6. Conclusions

Researchers have always been interested in obtaining exact solutions. They are not only
valuable in themselves. Their analysis also allows one to confirm or disprove hypotheses
dealing with properties of ideal fluid flows, in particular, the hypothesis put forward by
academician V.E. Zakharov on integrability of the Euler equations for problems with a
free boundary.

In the present study, we propose a new algorithm of finding exact solutions based on
using conformal mappings. This method allows one to construct solutions that describe
the behaviour of a fluid in a region containing a source or sink. Several exact solutions
of a plane potential unsteady problem of motion of the fluid with a free boundary are
constructed.

An interesting fact is that the solutions obtained by the new method also satisfy the
generalized Hopf equation (5.1). However, the following question is still open: Are there
other rational functions C(U) for which the solutions of the generalized Hopf equation
describe the flows with a free boundary?
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