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Abstract Machine learning has already shown promising potential in tilled-aperture 

coherent beam combining (CBC) to achieve versatile advanced applications. By sampling 

the spatially separated laser array before the combiner and detuning the optical path delays, 

deep learning techniques are incorporated into filled-aperture CBC to achieve single-step 

phase control. The neural network is trained with far-field diffractive patterns at defocus 

plane to establish one-to-one phase intensity mapping, and the phase prediction accuracy is 

significantly enhanced thanks to the strategies of sin-cos loss function and two-layer output 

of phase vector that are adopted to resolve the phase discontinuity issue. The results 

indicate that the trained network can predict phases with improved accuracy, and phase-

locking of 9-channel filled-aperture CBC has been numerically demonstrated in a single 

step with a residual phase of λ/70. To the best of our knowledge, this is the first time that 

machine learning has been made feasible in filled-aperture CBC laser systems.  

https://doi.org/10.1017/hpl.2025.24 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2025.24


Accepted Manuscript 

 2

Key words: machine learning; coherent beam combining; phase control 

___________________________________________________________________________ 
Correspondence to: R. Tao, Laser Fusion Research Center, China Academy of Engineering 
Physics, Mianyang 621900, China. Email: supertaozhi@163.com 

I. INTRODUCTION 

Coherent beam combining (CBC) is one of the most promising techniques for laser power 

scaling, which can break through the physical limitations of a single beam while maintaining 

excellent laser characteristics [1-3]. Due to internal and external perturbations, such as 

spontaneous emission [4], quantum defect [5], environment temperature fluctuation [6], 

mechanical and acoustical vibrations [7], and so on, laser phases change dynamically in practical 

operation [8], which severely impairs the combining efficiency and makes the CBC laser system 

unstable even disable [9]. Active phase control is an efficient solution to phase synchronization 

and stabilization of multiple lasers in real time, and various control methods have been 

developed and demonstrated [10-15]. Facilitated by the rapid development of active phase 

control techniques, several milestones of CBC have been achieved. The maximal average power 

of 10 kW has been achieved in the ultrashort pulse regimes, while active control of up to 1000 

channels has been demonstrated [16, 17]. For some advanced applications, such as laser particle 

accelerators and coherent amplification networks, higher power and more channels are required 

[18-23]. Generally, faster active phase control is demanded as the channel number scales, and 

traditional control methods encounter great challenges in terms of phase-control bandwidth or 

complexity [24-26].  

To further increase the phase-control bandwidth while maintaining simple configuration, 

machine learning, including reinforcement learning and deep learning, has been applied in the 

field of CBC phase control [27-32]. Machine learning is a versatile technique that automatically 
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learns and extracts complicated features from data, enabling the agent/network to make phase 

predictions based on system state information such as diffractive patterns or other intensity 

observations [33, 34]. Direct phase recovery is achievable once the mapping from system state to 

phase action is established through learning, offering significant advantages of simple optics 

structure and minimal convergence steps without time-consuming iterations [35]. Theoretically, 

only one step is required to optimize the phase, which is independent of the number of the 

channels, making it the most promising control technology for large-scale CBC applications [31, 

36]. Deep learning is initially integrated into CBC systems by utilizing non-focal-plane data for 

training, and 7- and 19-channel CBC phase control is numerically demonstrated with Strehl 

ratios of 0.98 and 0.84, respectively [37]. 100 channel CBC has been experimentally achieved 

with a residual phase of λ/30, which represents the maximal number of beams controlled by 

machine learning [35]. To date, the majority of applications have focused on tiled-aperture CBC 

systems [29-32, 35-37]. In contrast, filled-aperture CBC offers the highest combining efficiency 

as it eliminates energy loss due to sidelobes [38-40], which is particularly crucial for power 

scaling applications. However, in filled-aperture CBC, all sub-beams overlap completely in both 

near-field and far-field, resulting in a combined beam pattern that contains minimal phase 

information, which has limited the utilization of machine learning in filled-aperture CBC. It is 

noteworthy that machine learning methods typically yield a larger residual phase compared to 

traditional approaches, prompting researchers to devise a two-stage control scheme to improve 

accuracy, albeit with increased complexity [28]. 

In this paper, deep learning algorithm is modified to suppress the residual phase and applied 

in filled-aperture CBC system with an innovative design in optics structure and control scheme 

that can achieve phase-locking in a single step with high accuracy. The trained network can 
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predict phase with an error of λ/70 in a single-step for a 9-channel filled-aperture CBC, 

illustrating the effectiveness of the proposed method. To the best of our knowledge, this 

represents the first demonstration of machine learning phase control in fill-aperture CBC 

scenario with high accuracy. 

II. PRINCIPLE 

A. System Setup  

The system structure of filled-aperture CBC based on deep learning phase control is depicted in 

Fig. 1. The seed laser is split into multiple beam channels by a beam splitter (BS), and each beam 

path passes through a phase modulator (PM), amplifier, and collimator (CO). All beams are tiled 

in a dense array, such as square shape [25], hexagon shape [15], or others [41], and are then 

emitted in the same direction. The laser array is sampled before coming into the filled-aperture 

beam combiner to obtain the tiled-aperture combined pattern by a camera, which is input into the 

neural network to make phase prediction and compensate phase noise with high-bandwidth 

operation. The combiner can take a variety of forms, such as diffractive optical element (DOE) 

[42], intensity beam splitter based binary tree or segmented mirror [16], and so on, which 

transforms spatially separated beams into an overlapped beam. The segmented mirror combiner 

is employed in this paper since it is easy to combine a laser array of linear or square tiling, which 

will be superimposed into a single beam at one output port if amplitudes match the splitting 

ratios and phases are locked, and it is only represented by a box in Fig. 1 for simplicity, and its 

specific architecture can be found in [43]. A liquid crystal (LC) is inserted in the sampled path of 

each spatially separated beam, so the optical path delays of all beams can be artificially adjusted. 

The laser array of main power illuminates on the beam combiner and is combined into a single 

aperture beam in the near-field, and the central intensity of the combined beam is sampled by a 
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photodetector (PD), which is used to drive the delay controller and monitor the combining 

efficiency. 

 

Figure 1. System setup of deep learning phase control for filled-aperture CBC. 

As the beam combiner needs to fill the aperture, each beam passes through its own 

combining route, which results in different optical paths and laser phases. Therefore, the phase 

relationships at the camera are not consistent with those at the PD due to optical path differences, 

which accounts for why the delay control is essential to compensate for the static path-related 

phases. It should be noted that although the optical path difference dominantly occurs inside the 

combiner, it can be eliminated by adjusting the phase delays in the sampled path instead, which 

is consistent with high-power operation since the avoidance of manipulation on high-power 

beams. The delay control is an optimization problem of multiple variables, thus stochastic 

parallel gradient descent (SPGD) can be employed to address the issue conveniently. The process 

of delay control can be described in the flow chart of Table 1, where Tp/Td denotes the time step 

of phase/delay update, and γ and σ are gain coefficient and perturbation amplitude of SPGD 

algorithm. As SPGD algorithm requires two-way perturbations before parameter update, one step 

of delay control is divided into three mini-steps, so the current step of delay control is calculated 

according to Td/3 as shown in line 4 of Table 1. The phase control is much faster than delay 

control (Tp ≪ Td), so phase-locking is achieved immediately after the delays are perturbed or 
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updated. It should be emphasized that PD signal does not change directly with delays of LCs but 

changes with phases of PMs, since the neural network will dynamically drive PMs to 

compensate for the delay changes and maintain phase-locking at the camera. 

Table 1. Procedure for delay control. 

Require: Parameters Tp, Td, γ, and σ are defined. 

1: for step = 1 to ∞ do  

2: capture an image and feed into neural network 

3: update phases φ ← φ – φpred 

4: calculate delay control step s = step·Tp/(Td/3)  

5: if (s modulo 3) = 1 then 

6: generate random vector δτ of variance σ2 

7: apply positive perturbation τ + δτ 

8: get PD signal as metric J+ = IPD (τ + δτ) 

9: else if (s modulo 3) = 2 then 

10: apply negative perturbation τ - δτ 

11: get PD signal as metric J- = IPD (τ - δτ) 

12: else 

13: calculate metric change: ΔJ = (J+ - J-)/(J+ + J-) 

14: update delays τ ← τ + γδτΔJ /σ2 

15: end if 

16: end for 

With the delay control done, the phase relationships at the tiled-aperture path (camera) are 

the same as the filled-aperture path (PD), thus the filled-aperture combining efficiency will be 

maximized when laser phases are synchronized at the camera by neural network. Therefore, 

filled-aperture phase control can be converted into tiled-aperture phase control with proper delay 

control. In addition, optical path length differences in the combiner are generally piston errors, so 

the delay control can be implemented in a once and forever manner theoretically, and only phase 

control is required in the end. 
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B. Training Strategies 

Although the mapping from combined pattern to laser phases can be interpreted as a pattern 

recognition problem, there are two barriers to cross when applying deep learning to the phase 

control of CBC. The first is the phase periodicity induced discontinuity, where φ and φ + 2kπ (k 

= 0, ±1, ±2, ⋯) represent the same phase, but their distance is 2kπ. In general, phase is limited to 

a single period [-π, π) so that every value will correspond to a unique phase, but this does not 

work well in the training of neural networks as the distance between label and output is usually 

used to calculate loss. For instance, if the network predicts 0.9π as -π, the prediction is actually 

nice because it is equivalent to -1.1π and -π with a real distance of 0.1π, but it will result in a 

large loss due to that the network interprets the distance as 1.9π. To deal with this, a sin-cos loss 

is introduced and defined as follows 
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where φ* and φ are the true phase and the predicted phase, respectively, and subscribe n denotes 

the beam number (total is N-1 as one beam is set as reference), and superscript (m) denotes the 

sample number (total is batch size M).  

The proposed loss function calculates both sine and cosine distances between network 

output and true phase, which is inducive to overcome the aforementioned phase discontinuity 

since phase is not compared directly. However, if the network is requested to output phase 

predictions φ, the discontinuity remains unsolved. More specifically, phases of around -π and π 

should be predicted using similar image features with the same network parameters, so the 

network will struggle to minimize losses at both ends rather than learn an accurate and unique 

mapping function, which means that the learning problem is not a strict one-to-one mapping 
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indeed, so the learning process is not very well. Therefore, the output of the network is designed 

to consist of both the sine and cosine of phase φ. It should be noted that the sine and cosine 

values may not strictly satisfy the equation of sin2φ + cos2φ = 1, as they are predicted 

independently by the neural network. Letting C and S represent the predicted cosine of phase 

(cosφ) and predicated sine of phase (sinφ), although C and S probably correspond to different 

predicated phases, a more accurate phase prediction φ can be calculated using both C and S by 

Eq. (2). By doing so, the prediction discontinuity can be solved, as the real part and imaginary 

part are both continuously varied, and phases of -π and π are positioned in the same line of the 

complex plane. 

  angle C iS    (2) 

The other barrier in the application of deep learning phase control is the non-unique phase 

intensity mapping, which represents that different phase relationships may result in the same 

intensity distribution of the far field. Many solutions have been developed to solve the non-

unique mapping problem, and one of the simplest, diffractive pattern at a slightly defocused 

plane, is adopted here. In the simulation, all beams are assumed to be Gaussian fundamental 

mode and linearly polarized at the same direction. The intensity of the combined beam at the 

defocus far-field can be expressed as 
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where A, φ, w, ρ0, and λ are the amplitude, phase, waist width, central position, and wavelength 

of laser, respectively, and ρ and r are the position vectors at the emission plane and observation 
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plane while ρ and r of normal forms represent corresponding scalar distances from the origin. 

FT{∙} refers to Fourier transform, and L and f represent the propagation length and the focus 

length (in our study, L ≠ f). It should be pointed out that the strategy of defocus pattern is not 

contributed in this work, but it is important not only for solving the non-unique mapping problem 

but also for clarifying the optical model of dataset preparing. Therefore, the advantages of the 

strategies discussed in the following section correspond to the strategies of sin-cos loss and two-

layer output, rather than the defocus pattern since the training dataset is kept the same with or 

without strategies. 

C. Neural Network Construction 

VGG model, which is a powerful and prevalent tool in computer vision, is modified and 

employed as our neural network to achieve CBC phase control [44]. It is a classical convolution 

neural network, which consists of a serial of convolution layers, max-pooling layers, and fully 

connected (FC) layers as shown in Fig. 2. For simplicity, the network is divided into 5 blocks, 

and each block is made up of 1 or more convolution layers followed by a max-pooling layer. 

Based on the number of convolutional layers, VGG can be named as VGG-11, VGG-13, and so 

on, and the one used in our study is VGG-16, including 13 convolution layers and 3 FC layers. 

The kernel size of all convolution layers is 3×3 and the padding size is 1, so the image height and 

width do not change after convolution, but the channel number might be different depending on 

the number of convolution filters. The kernel size of max-pooling layers is 2×2, so the image 

height and width will be reduced to the half after pooling. It should be noted that a ReLU 

function is followed with each convolution layer and FC layer, which are not shown in the 

figure. A dropout layer with a possibility of 0.5 is added in both FC1 and FC2 to reduce the 
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possibility of overfitting, and the activation function of FC3 is changed from Softmax to Sigmoid 

as phase prediction is a regression problem rather than a classification problem. 

 

Figure 2. Structure chart of the VGG network. 

The built VGG network can extract features of the input intensity profile by convolution 

operations layer by layer, and it can leave out redundant features by max-pooling layers to 

prevent overfit. Additionally, the ReLU activation layers are beneficial to enhance the nonlinear 

expression ability of the network. After a series of convolution and max-pooling layers, the 

image features are efficiently extracted and condensed, and are flattened and reorganized by the 

FC layers. Finally, the output layer is formatted in size of 2 × (N - 1) while it is 1 × (N - 1) for 

traditional network, so it maps these extracted features into the real and imaginary parts of a 

complex phase vector and makes phase prediction consequently. To accommodate the phase 

control tasks, the input image size of VGG-11 model is changed to 64×64×1, and the intensity 

value is normalized with the maximal value being 1. 

III. RESULTS 

A. Phase prediction with improved accuracy 

The modified VGG-16 network for 9-channel CBC is built up and trained with 18,000 labeled 

data pairs. The batch size is 250 and the epoch is 90, and stochastic gradient descent with 

momentum term is selected as the optimization algorithm, with a learning rate of 0.05 and 

momentum factor of 0.9. It costs less than 20 minutes for a personal computer to finish the 
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training process. The calculated MSE loss of 1,000 testing samples at every epoch is plotted in 

Fig. 3. The MSE loss drops from 1.0 at the start to 0.015 at the end, and it can be seen that the 

loss decreases very fast at the first 5 epochs and gradually keeps stable in the later epochs, 

illustrating that the network is convergent and the mapping from pattern to phase is constructed. 

 

Figure 3. Testing loss with respect to the training epoch. 

Then the trained network is validated on 1,000 datasets that are not included in the training 

and testing process, and the phase predictions are compared with the true labels. Firstly, the root 

mean square (RMS) residual phase is introduced for quantitative analysis, which is calculated by 

  
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The RMS residual phase describes how well laser phases are synchronized, and a large value 

stands for poor synchronization. The initial states of laser phases are quite different, and the 

network predictions on samples of different initial states are shown in Fig. 4, where true phase 

and predicted phase of each beam are compared one by one (only 8 beams are shown because 1 

beam is used as phase baseline). The initial RMS residual phases are 0.7, 1.2, 1.8, and 2.4 rad, 

respectively, and the neural network makes precise predictions on these samples despite the 

initial conditions, and no selectivity on beam position is observed as well. If predicted phases are 
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used to compensate initial phases, phase-locking will be achieved in a single step, leading to 

RMS residual phases of λ/88, λ/83, λ/67, and λ/95 for the 4 samples, respectively.  

 

Figure 4. Predicted phase versus true phase for samples of different initial RMS residual 

phases. (a) 0.7 rad, (b) 1.2 rad, (c) 1.8 rad, and (d) 2.4 rad. 

Moreover, the phase prediction of each validation sample is calculated, and compensated 

phase equals to initial phase minus predicted phase. The compensated phases of the 1,000 

validate samples with corresponding initial phases on each beam are plotted in Fig. 5(a), and the 

dash lines in the middle equal to ± π/20, which is helpful to directly evaluate the prediction 

accuracy. The phase points in Fig. 5(a) are gathered to a horizontal line with several slight ups 

and downs, and there are no isolated points far from the dashed area, indicating the network is 

capable of excellent phase prediction over the full phase range, thus one-step phase control can 

be implemented no matter what initial phases are. The RMS residual phase after one-step 

compensation averaged on the sample number is λ/95, which shows high prediction accuracy of 

our network. In addition, the same network is trained with the same dataset and same epochs 

using traditional MSE loss, and the phase compensation performance is shown in Fig. 5 (b). It is 

obviously that the accuracy is much worse, especially when initial phases are close to ±π, and the 
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average residual phase after one-step control is only λ/12, showing great advantages of the 

proposed training strategies.  

 

Figure 5. Prediction error as a function of true phase. (a) Cos-sin loss and two-layer output. 

(b) Traditional MSE loss and one-layer output. 

B. Single-step phase control in filled aperture system 

Based on the trained neural network, single-step phase control is implemented in filled-aperture 

CBC system with the assist of delay control. The control procedure is described before in Table 

1 in detail, and the active control simulations are carried out in the whole phase and delay 

feedback loop. The parameters of SPGD algorithm for delay control are optimized as γ = 0.6 and 

σ = 0.05, and the execution speed of deep learning phase control is set to be 10 times as the delay 

loop, so the phases are locked when the delay controller acts and loop crosstalk will be avoided. 

The power in bucket (PIB) of the far-field pattern at the focus plane is calculated at each step to 

monitor the state of the sampled beam, and the PD signal represents the combining efficiency of 

the whole system. PIB and PD signal intensity during the process of phase-delay are shown in 

Fig. 6, where the x-label represents the delay control step. The drop-off lines in Fig. 6(a) 

correspond to the voltage perturbations and updates of LCs, and combining efficiencies of both 

filled and tiled aperture beams are maximized after around 35 steps. This result demonstrates that 

delay control is effective and single-step phase control for filled-aperture CBC is feasible.  
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Figure 6. System state variation during delay control process. (a) PIB of the tiled-aperture 

combined beam. (b) Normalized intensity of filled-aperture combined beam. 

Therefore, the phase relationships between tiled and filled aperture beams are synchronized 

after delay control, and phase control can be implemented directly in the fill-aperture CBC with 

delay value fixed. The delay residual after control of Fig. 6 is λ/101 (converted to phase 

residual), which is small enough and is expected to have no significant impact on the control 

performance as the achieved combining efficiency is very close to 100% in Fig. 6(b). This delay 

residual is considered in the simulation while the real-time delay control is turned off, and the 

results of 20 random initial states are shown in Fig. 7. One can clearly see that the system 

reaches the maximal intensity in a single step from any initial states. The combining efficiency is 

98.7% and the residual phase is λ/70, which is limited by the delay control residual. Moreover, 

filled-aperture CBC is implemented by the traditional network as well, the combining efficiency 

over 20 random cases is 79.2% on average, showing great improvement brought by the training 

strategies. 

 

Figure 7. Single-step phase control of filled-aperture CBC 
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As mentioned in section 2.A, phase control performance is critical for delay control, which 

will determine the feasibility of filled-aperture CBC by deep learning. Therefore, the requirement 

on phase prediction accuracy with application to filled-aperture CBC is investigated. Neural 

network with different prediction accuracy is obtained by varying training epochs, and the results 

are shown in Fig. 8. It is apparent that one-step phase residual decreases rapidly as training 

epochs increase, and the filled-aperture combining efficiency by using the neural network in 

cooperation with delay controller becomes higher at the same time. For a typical efficiency of 

95%, one-step residual phase of the neural network should be better than λ/50. 

 

Figure 8. Single-step residual phase for filled-aperture CBC and combining efficiency for 

tilled-aperture CBC with respect to training epochs 

Another important issue is the dynamic phase perturbations that are commonly encountered 

in a real laser system. Bandwidth-limited white noise is introduced in the simulation model [22], 

where the noise cut-off frequency is set to be 100 Hz and RMS amplitude is λ/30. The time 

domain phase drift of one of the lasers is exemplified in Fig. 9(a), and each laser experiences 

independent phase perturbations with the same cut-off frequency and RMS amplitude. The 

execution rate of deep learning algorithm is set as 1 kHz (single-step time of 1 ms), and filled-

aperture combining efficiency from open and closed loop is illustrated in Fig. 9(b). With the 

control loop on, combining efficiency rises immediately from less than 10% in open loop to 

96.7% in closed loop. More specifically, the transition process at the moment of control turning 
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on is shown in Fig. 9(c), and it manifests that phase-locking is achieved in a single-step (1 ms) 

even with dynamic phase noise. Therefore, the dynamic phase noise does not affect the time 

convergence, but leads to a reduced efficiency loss (from 98.7% to 96.7%) and an increased 

residual phase (from λ/70 to λ/36). As the control loop takes actions at a step of 1 ms, the 

combining efficiency is slowly drift within the relaxation time before next phase action is 

implemented. Power spectral density of phase noise of one laser is plotted in Fig. 9(d), indicating 

that phase noise below 1 kHz is suppressed, and the control bandwidth of 1 kHz is achieved in a 

1 kHz control loop thanks to the single-step advantage. It is prospected that the control 

bandwidth will be further improved using a faster control loop. 

(a) (b)

(c) (d)

 

Figure 9. Filled-aperture CBC with dynamic phase noise. (a) Time-dependent phase noise. (b) 

Combining efficiency in open and closed loop. (b) Time convergence detail from open to 

closed loop. (d) Phase noise spectrums in open and closed loop. 

 

IV. Discussion 

One of the most attractive advantages of deep learning phase control lines in that phase-locking 

can be achieved in a single step in spite of increasing channels. Indeed, phase control 
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performance highly depends on the residual phase or prediction error of the neural network, and 

previous studies manifested decreasing accuracy with increasing channel number [37], so it is 

important to find out whether channel number affects the residual phase in our models.  

Neural networks for 9, 16, 25, and 36 beams are constructed and trained using the same 

strategies aforementioned, with dataset size of 2,000 times of beam number and training epoch 

10 times of beam number, as explicated in Table 2. The network structure is VGG-16 as 

described before, but the output number is varied with beam number. The average residual 

phases after one-step correction in filled-aperture systems with different channels are listed in 

Table 2. It is indicated that the residual phase increases as channel scales, but the accuracy for a 

36-channel CBC system is λ/21 and the combining efficiency is higher than 90%, which is 

acceptable for typical applications. On the contrary, for traditional network without using the 

proposed strategies, the one-step residual phase is about λ/4 for 16 or more channels, and the 

combining efficiencies are less than 5% for these cases. In the presence of dynamic perturbations 

(noise properties the same as the 9-channel), filled-aperture CBC of 36 channels controlled by 

deep learning is simulated as well, and the results are shown in Fig. 10. It is indicated that 

convergence speed is not affected by the dynamic noise, but the combining efficiency gets worse 

in closed loop, which is about 81%. On the contrary, neural network without training strategies is 

simulated as well, resulting in a combining efficiency of only 2%, showing no improvement by 

phase control. The other issue to be concerned is that the dataset size and training time rise 

rapidly with channel number, as shown in Table2, which is due to that the phase relationships 

and diffraction patterns become far more complicated. In specific, if laser phase is divided into p 

discrete pieces, such as p values equally spacing in the range of [-π, π], the permutation and 

combination of N lasers will be pN, which means the problem dimension increases exponentially 
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with channel number N. To acquire a higher accuracy, the number of phase pieces p should be 

larger, which will lead to a much larger dimension expansion rate. Therefore, the linearly 

increasing dataset size cannot catch up with the problem complexity, thus the residual phase for a 

larger array becomes worse to some extent. In addition, the one-step time of network prediction 

is given in Table 2 as well, showing that control speed is not affected by channel numbers, and 

the one-step time is close to 1 ms. 

Table 2. Residual phase after one-step phase control for different channel numbers. 

N 9 16 25 36 

dataset size 18,000 32,000 50,000 72,000 

train epochs 90 160 250 360 

train time / h 0.60 1.86 4.52 9.37 

one-step time / ms 1.1 1.1 1.0 1.0 

φres of this network λ/70 λ/43 λ/27 λ/21 

φres of traditional network λ/12 λ/4 λ/4 λ/4 

(a) (b)

 

Figure 10. Filled-aperture CBC of 36 channels with dynamic phase noise. Phase control by 

deep learning (a) with and (b) without strategies. 

In our simulation, the network is not optimized for different system scales, it can be 

speculated that a smaller residual phase is possible at the price of a deeper and larger network 

and more efforts on training. For instance, if the dataset size of 36-channel CBC is supplemented 

be the twice (144,000), the residual phase of filled-aperture control after one step will be 

improved to be λ/29. Although more time and efforts are spent in the network training for a 
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larger array, the accuracy is still worse than the 9-channel case. Therefore, to apply the method 

on a large-scale system, other phase-intensity mapping schemes, such as sparsely sampled 

speckle pattern after a diffuser [35], diffraction pattern of a two-dimensional diffractive optical 

element [34], and other innovative setups, are desirable to simplify the learning task so that a 

smaller network can be employed and the training process will be less intractable [30, 45]. In 

addition, the design and optimization of the dataset will probably make a difference since the 

randomly generated samples of limited size are impossible to cover the problem space, and most 

samples will be far from the phase-locking state according to the statistical theorem. Therefore, 

the channel scalability of our method is related to the design of optical mapping and network 

structure. 

V. CONCLUSION 

Deep learning algorithm for phase control of filled-aperture CBC is proposed and verified in a 9-

channel system. By accommodating the mapping problem of pattern to phases, the modified 

neural network employing strategies of sin-cos loss and complex output yields single-step phase 

compensation with residual phase error as low as λ/95. The modified deep learning algorithm is 

then applied to the filled-aperture phase control assisted by delay control, and phase-locking can 

be achieved in a single step, resulting in a residual phase of λ/70. Furthermore, the scalability and 

performance under dynamic phase perturbations of deep learning phase control are discussed, 

and the results can offer a promising solution to bandwidth improvement for filled-aperture 

CBC. 
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