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ON THE DERIVED CUBOID 

BY 

W. G. SPOHN 

We showed in [1] that the Eulerian family of cuboids with integral edges and 
face diagonals did not have integral inner diagonals. We now show that the derived 
family does not have integral inner diagonals except possibly when the generators 
are divisible by 705180. In this case there appears to be no inherent reason why the 
diagonals cannot be integral. 

We seek solutions in nonzero integers to the following four equations in seven 
unknowns : 

(1) x2+y2 = t\ x2+z2 = u\ y2+z2 = v\ 

(2) x2+y2+z2 = w2. 

Lai and Blundon [2] gave 130 solutions of (1) none of which satisfied (2). Kraitchik 
[3] gave 241 solutions of (1) as well as formulae for a number of families of solu­
tions. The simplest family is the Eulerian one given by 

(3) x = a(4b2-c2), y = b(4a2-c2), z = 4abc 

where a9 b, c form a primitive Pythagorean triple, that is, 

(4) a = ra2—n2, b = 2mn, c = m2+n2 

(5) m > n > 0, (m, w) = 1, 2 | mn 

(6) a2+fe2 = c2, (a, b) = (a, c) = (b, c) = 1, 4 | b, l\ac 

One readily sees that (3) is a primitive family, that is, (x, y, z ) = l . 
If x, y, z satisfy (1), then xy, xz, yz also satisfy (1). This triple when reduced is 

called the derived cuboid. When (3) is used and reduced by ab one gets 

x = (4b2-c2)(4a2-c2), y = 4ac(4fc2-c2), 

z = 4bc{4a2-c2). 

We show (x,y, z) = l. Since x is odd we need only consider an odd prime/? such 
that p | z. Ifp | b, p \y. Ifp \ c, p J( x. If/? | 4a2—c2, then /? \y since 4a2—c2+ 
4b2-c2=2c2. 

The simplest member of the derived cuboid family is given by m=2, / i = l , 
a=3, b=4, c=5, x=429, j=2340, z = 880. The expression for the inner diagonal 
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squared is 

(8) x2+y2+z2 = FXF2F3F, 

where 

F± = (c-b+a)2+(b-a)2 

F2 = (c+b-a)2+(b-a)2 

F3 = (c-b-a)2+(b+a)2 

F4 = (c+b+a)2-r(b+af 

This general four factor structure contrasts with the unbalanced three factor 
structure for the Eulerian family given in [1]. 

If the F{ were pairwise relatively prime, then (2) could only be satisfied if all F{ 

were squares, which is not possible. Unfortunately, there is a subtle case which 
spoils the argument. 

Since the F{ are odd, we need only consider an odd prime/?. If/? \ Ft and/? | F29 

then/? j F1+F2 and/? | F1—F29 where 

Fx+F2 = 2[c2+2(b-a)% Fx-F2 = - 4 c ( 6 - a ) . 

This implies/? | c and/? \b—a9 which is impossible in view of (6) since c2— (b~a)2= 
lab. Thus (Fl9 F2)=l. Similarly (F29 FA)=l. 

For the case of F1 and FZ9 

Fx+F3 = 2c(3c-2b)9 Fx-Fz = 4a(c-2b) 

The only case not immediately disposed of is p | 3c—26 and p\ a. If /? | a, then 
/? | m—n or/? | m+«. If/? | m—n and/? | 3(m—n)2+2mn then/? | m and/? | n which 
is impossible. If/? | m + « and/? | 3(m+n)2—10ra«, then/?=5 and 5 | m+n. One 
way to see that 5 is actually a common factor of Fx and Fz when 5 | m+n is from the 
identities 

Fx{m9 ri) = \F2(m+n9 m-ri), F3(m9 n) = iF3(m+tf, m— n). 

Notice that 25 cannot be a common factor. Thus (Fl9 F3)=l unless 5 | m+n in 
which case (Fl9 F3)=5. In like manner we get (F2, F 4 )= l unless 5 | m—n9 when 
(F2, i?

4)=5. Similar arguments give (i^, J F 3 ) = 1 unless 5 | m, when (F29 F3)=5 
and (Fl9 F±)=l unless 5 | n9 when (Fl9 F±) = 5. 

IfSjf mn(m2—n2) then the Ft are pairwise relatively prime and must all be squares 
to satisfy (2). But Fx and F2 cannot be squares simultaneously, because one is 
congruent to 1 and the other to 5 modulo 8 and 5 is not a quadratic residue, so 
that (2) is impossible. If 5 | m+n and (2) is satisfied, then 5Fl9 F29 5F39 and F± 
are all squares. But F2 and F± cannot both be squares by the above modulo 8 
argument. Similarly if 5 \ m—n9 Fx and Fs cannot be squares simultaneously. How­
ever this argument breaks down when 5 | mn. 

= 5m4—12m3n+6mV+4mn3+n4 

= m4—4mzn+6m2n2-rl2mnz+5n i 

= m 4 +4m 3 n+6mV-12mn 3 +5n 4 

= 5m 4 +12m 3 n+6mV-4mn 3 +n 4 

https://doi.org/10.4153/CMB-1974-102-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1974-102-6


1974] DERIVED CUBOID 577 

When 5 [ m, we need Fl9 5F2, 5F3, and F± all to be squares for the same m and 
n. That they can be squares individually is shown by m=100, «=31 for Fx and 
m=80, «=29 for 5F2. The four quantitites were examined by congruence considera­
tions to see if they could be squares simultaneously. Ifp is an odd prime modulus, 
and m = 0 (modulo p), then these are congruent to «4, 25/z4, 25«4, and «4, respec­
tively, so that all could be squares in this case. For m= 1,...,/?—1 and n=0, . . . , 
p—l they were examined on a computer to see if all could be squares for any 
pair of values, being congruent to 0 or a quadratic residue. There were no per­
missible pairs for p=3, 7, 23, and 73. All primes under 1000 were examined. 
Thus m must be divisible by these numbers in addition to 5. We show further that 
4 | m. It can be seen that 

(9) Fx = (2xy)2+(-2x2+4xy-y2)2 

for x=m, y=m—n. Furthermore, (2xy, — 2x2+4xy— y2)=l in view of (5). 
Then if F1 is a square, (9) represents a primitive Pythagorean triangle and we can 
set 

xy = st, — 2x2+4xy—y2 = s2—t2 

where (s, t)=l and 2 | st. But y is odd, whence x is even. Then modulo 8, — 2x2+ 
4xy— j 2 = — 1 and 4 | s which implies 4 | m. Thus 705180 | m. Similarly when 
5 | n, 5Fl9 F2, F3 and 5JF4 must be squares and 705180 | n. 

Solutions for which the quartics are squares are very sparse (Mordell [4]). For 
example the values of m and n for which F± is a square and 2 | mn begin 4, 1 ; 
100, 31; 600, 14239; -338136, 8698591; 19799271700, 3629305951, none of which 
satisfy the divisibility requirements. 
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