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Linear stability theory and molecular
simulations of nanofilm dewetting with
disjoining pressure, strong liquid–solid slip
and thermal fluctuations

Yixin Zhang†

Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics and J. M. Burgers
Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

(Received 8 December 2023; revised 12 June 2024; accepted 30 June 2024)

The dewetting of thin nanofilms is significantly affected by thermal fluctuations,
liquid–solid slip and disjoining pressure, which can be described by lubrication equations
augmented by appropriately scaled noise terms, known as stochastic lubrication equations.
Here molecular dynamics simulations along with a newly proposed slip-generating method
are adopted to study the instability of nanofilms with arbitrary slip. These simulations
show that strong-slip dewetting is distinct from weak-slip dewetting by faster growth of
perturbations and fewer droplets after dewetting, which cannot be predicted by the existing
stochastic lubrication equation. A new stochastic lubrication equation considering the
strong-slip boundary condition is thus derived using a long-wave approximation to the
equations of fluctuating hydrodynamics. The linear stability analysis of this equation, i.e.
surface spectrum, agrees well with molecular simulations. Interestingly, strong slip can
break down the usual Stokes limits adopted in weak-slip dewetting and bring the inertia
into effect. The evolution of the standard deviation of the film height W2(t) = h2 − h̄2 at
the initial stage of the strong-slip dewetting is found to be W ∼ t1/4 in contrast to W ∼ t1/8
for the weak-slip dewetting.

Key words: thin films, microscale transport

1. Introduction

Nanometric thin liquid films deposited on substrates exist in a host of applications such as
in lubricants (Jhon et al. 1999), coatings (Weinstein & Ruschak 2004) and microfluidics
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(Stone, Stroock & Ajdari 2004). The reliability of those applications depends heavily on
our understanding of their stability mechanism, which is usually investigated in the context
of thin-film flows (Oron, Davis & Bankoff 1997; Craster & Matar 2009). Thin-film flows
are characterised by the disparity of length scale in different dimensions, i.e. the ratio of
film height h to characteristic film length λ is very small: χ = h/λ� 1. This allows the
adoption of a long-wave theory to derive lubrication equations from the full governing
equations and boundary conditions, reducing the dimensionality and complexity of the
problems (Oron et al. 1997; Craster & Matar 2009).

Polymeric or metallic films on substrates with thicknesses below 100 nm have been
observed to undergo spontaneous rupture and dewetting (Xie et al. 1998; Seemann,
Herminghaus & Jacobs 2001; Becker et al. 2003; González, Diez & Sellier 2016). The
dewetting mechanism in these films may be complicated due to the contamination of
defects in the liquid. However, the primary dewetting mechanism for homogeneous liquid
films is usually called spinodal dewetting. In this process, disjoining pressure, as a result of
intermolecular forces between liquid and solid, leads to the instability of films. Basically,
from the classical perspective, thermally excited capillary waves can be amplified by the
disjoining pressure, but in competition with the restoring force of surface tension, such
that disturbances above a critical wavelength can grow and lead to film rupture (Vrij &
Overbeek 1968).

For interfacial flows at the nanoscale, thermal fluctuations can play an important role in
the instability process (Moseler & Landman 2000; Grün, Mecke & Rauscher 2006; Zhang,
Sprittles & Lockerby 2019). Thermal fluctuations can spontaneously generate thermal
capillary waves (TCWs) and roughness on the free surface of a liquid film at rest. The
magnitude of thermal roughness is usually proportional to thermal length

√
kBT/γ (kB, T

and γ are the Boltzmann constant, temperature and surface tension, respectively) (Buff,
Lovett & Stillinger 1965; MacDowell 2017). Though the roughness is small and usually
on the scale of nanometres, it becomes comparable to the size of films when the film
thickness goes down to several nanometres. Note that micrometre roughness can also
be obtained and, thus, observed optically in real space using ultra-low surface tension
mixtures (γ ∼ 10−6 N m−1) (Aarts, Schmidt & Lekkerkerker 2004). In the equilibrium
state, the amplitude of TCWs, known as the static spectrum, can be described by the
renowned capillary wave theory (Buff et al. 1965; Höfling & Dietrich 2015; MacDowell
2017; Höfling & Dietrich 2024). Recently, an extension of the capillary wave theory
has been proposed utilising a Langevin equation to describe the transient dynamics of
non-equilibrium TCWs and their approach to thermal equilibrium (Zhang, Sprittles &
Lockerby 2021). This advancement has led to the identification of a universality class
governing the roughening behaviour of film surfaces (Zhang et al. 2021).

The increasing importance of thermal fluctuations as the film height decreases may
make the deterministic description of hydrodynamics at the nanoscale break down. For
example, the breakup of liquid nanojets in molecular dynamics (MD) simulations (Moseler
& Landman 2000; Zhao, Sprittles & Lockerby 2019) and experiments (Hennequin et al.
2006) shows a double-cone rupture profile, in contrast to the long-thread profile predicted
by the deterministic lubrication equation (Eggers & Dupont 1994). Moseler & Landman
(2000) pioneered in showing that the deficiency of this deterministic lubrication equation
for describing nanojet dynamics can be remedied by adding a noise term of appropriate
strength to the equation, which leads to a stochastic lubrication equation for nanojets.
Eggers (2002) later showed that the evolution of the minimum neck radius is accelerated
by thermal fluctuations, leading to hmin ∝ (t0 − t)0.418 (where t0 is the rupture time) in
contrast with hmin ∝ (t0 − t) for the deterministic pinching. This noise-dominated breakup
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for nanojets has been observed in experiments using ultra-low surface tension mixtures
(Hennequin et al. 2006).

For nanofilm rupture, Grün et al. (2006) and Davidovitch, Moro & Stone (2005)
independently derived the same stochastic lubrication equation for liquid films on no-slip
substrates. The numerical solution to this equation (Grün et al. 2006) can resolve the
discrepancy in dewetting time between experimental results (Becker et al. 2003) and the
solution to the deterministic counterpart. Subsequently, the rupture of thin films with
the effects of thermal fluctuations has been widely investigated by numerical solutions
to the stochastic film equation (Grün et al. 2006; Nesic et al. 2015; Diez, González
& Fernández 2016; Durán-Olivencia et al. 2019; Shah et al. 2019; Zitz, Scagliarini &
Harting 2021). These studies have consistently demonstrated that thermal fluctuations
indeed accelerate the rupture process. The application of this stochastic film equation is not
restricted to nanofilm dewetting. It has been extended to study, for example, nanodroplet
spreading under an elastic sheet (Carlson 2018), curvature-induced film drainage (Shah
et al. 2019) and mediated diffusion of particles confined in channels with a fluctuating
wall (Marbach, Dean & Bocquet 2018).

In addition to numerical solutions, linear stability analyses of the stochastic film
equation have also been studied a lot, which allows us to obtain the evolution of the
capillary spectra of surface waves (Mecke & Rauscher 2005; Fetzer et al. 2007; Zhang
et al. 2019; Zhao et al. 2019). The analytical spectra show thermal fluctuations can
massively amplify the growth of waves, shift the critical wavenumber to a larger value and
cause the dominant wavelength to evolve in time (in contrast to a constant value predicted
by the deterministic lubrication equation). These interesting findings have been validated
both in MD simulations (Zhang et al. 2019) and experiments (Fetzer et al. 2007).

The original stochastic film equation mentioned previously adopts the classical no-slip
boundary condition. As the flow scale reaches nanometres, surface effects such as
liquid–solid slip can have significant effects on flow behaviours (see the reviews by Lauga,
Brenner & Stone 2007; Bocquet & Charlaix 2010). Obviously, nanofilm flows can be
significantly affected by slip as well, since the ratio of slip length b to the film thickness
h can get close to unity or even much larger than unity (Bäumchen & Jacobs 2009). In
fact, in the deterministic setting, the introduction of slip to the deterministic film equation
has been studied extensively for various phenomena, such as in coating a plate (Liao,
Li & Wei 2013), droplet spreading (Savva, Kalliadasis & Pavliotis 2010), film rupture
(Martínez-Calvo, Moreno-Boza & Sevilla 2020) and falling films down a slippery plate
(Ding & Wong 2015). However, only recently has the no-slip stochastic film equation
been generalised to consider slip (Zhang, Sprittles & Lockerby 2020), which is non-trivial
and requires the usage of the Green–Kubo-type expression (Bocquet & Barrat 1994) that
relates slip length to the random stress tensor at the wall. The derived slip equation is
validated by the well-controlled molecular simulations (Zhang et al. 2020).

However, the derived slip equation (Zhang et al. 2020) is limited to the case of weak slip
b/h ≈ 1. In many cases, the slip length can be as large as micrometres so that b/h � 1,
such as flow over graphene sheets (Falk et al. 2010), flow over engineered hydrophobic
materials (Rothstein 2010) and flow over substrates in presence of gas cavities and surface
nanobubbles (Lohse & Zhang 2015). For polymer liquids, increasing molecular weights
can also increase the slip length up to micrometres (Bäumchen, Fetzer & Jacobs 2009). In
fact, the dewetting of polymeric films on dodecyltrichlorosilane substrate (DTS), where
slip length can be up to 1 μm, has been examined extensively in the deterministic
framework (Kargupta, Sharma & Khanna 2004; Fetzer et al. 2005; Münch, Wagner &
Witelski 2005; Bäumchen et al. 2014). Notably, different levels of slip give rise to different
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deterministic lubrication models (Münch et al. 2005). However, as we mentioned earlier,
the effects of thermal fluctuations on nanofilms are significant, so a generalisation of our
current understanding of the instability of strong-slip films to consider thermal fluctuations
is essential.

So far, experimental studies on the effects of thermal fluctuations on thin-film flows are
limited due to the technical difficulties associated with the spatiotemporal scale. Though
the experiments of the dewetting of polymer nanofilms on no-slip SiO2-coated silicon
wafers have demonstrated the great effects of thermal fluctuations (Fetzer et al. 2007)
on the growth of surface perturbations, dewetting of polymer films with strong slip and
thermal fluctuations have not been considered in experiments. As such, MD simulations
are a natural and convenient tool to investigate the thin-film problem at the nanoscale as
thermal fluctuations are inherent in MD simulations.

In this work, MD simulations are employed to simulate the rupture of nanofilms
on substrates with a strong slip, in comparison with the small-slip rupture. A new
simulation strategy is proposed to generate strong slip in molecular simulations since
the classic molecular simulations are limited to weak slip. We obtain the evolution
of film surface spectra, rupture time and number of droplets after film rupture from
molecular simulations. A new stochastic lubrication equation considering the strong slip is
derived from fluctuating hydrodynamics (FH). A linear stability analysis of this stochastic
lubrication equation leads to the analytical spectra which are validated against the MD
results to establish the applicability of the new theory to predict future experiments.

This paper is organised as follows. In § 2, the stochastic lubrication equation for
the strong-slip dewetting is derived from the equations of FH using a long-wave
approximation. In § 3, a linear stability analysis of the newly derived stochastic equation
is performed to obtain the surface spectrum. In § 4, molecular simulations of the rupture
of nanofilms with the method to generate strong slip are presented. Section 5 compares
the new model with molecular simulation results, and discusses new findings. In § 6, we
summarise the main contributions of this work and outline future directions of research.

2. Stochastic lubrication equation for films with strong slip

2.1. Governing equations and boundary conditions
As shown in figure 1, a molecularly thin liquid film is deposited on a solid surface
and destabilised by both disjoining pressure φ and thermal fluctuations ψ . The film is
quasi-two-dimensional (quasi-2-D) confined by its size (Lx, Ly, h) where Lx � Ly and
Lx � h. Without slip, the stochastic thin film equation is derived in detail by Grün et al.
(2006) using a long-wave approximation (χ = h0/λ� 1) to FH (Landau & Lifshitz 1959).
The no-slip stochastic equation has been extended to consider weak slip b ∼ O(h) (Zhang
et al. 2020). Here we present the derivation of a new equation considering b � h.

The governing equations for this problem are given by equations of FH, where thermal
fluctuations are modelled by an additional random stress tensor. The (incompressible)
continuum equation and momentum equations are

∂xu + ∂zw = 0, (2.1)

ρ (∂tu + u∂xu + w∂zu) = −∂xp + μ (∂xxu + ∂zzu)+ ∂xψxx + ∂zψzx, (2.2)

ρ (∂tw + u∂xw + w∂zw) = −∂zp + μ (∂xxw + ∂zzw)+ ∂xψxz + ∂zψzz. (2.3)
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z

y x

u Solid

Liquid

b

φ(h)

λ

ψ

h

Figure 1. Sketch of a (quasi-two-dimensional) molecularly thin liquid film on a slippery substrate. Here h(x, t)
is the film thickness, λ is the characteristic length, u is the horizontal velocity, φ is the thermal fluctuations,
ψ is the disjoining pressure and b is the slip length. The film has a small depth Ly into the page.

Here u and w are the x and z components of velocity, and ψ is a 2-D random stress tensor
with zero mean and covariance given by

〈
ψij(x, t)ψlm(x′, t′)

〉 = 2μkBθ

Ly

(
δilδjm + δimδjl

)
δ(x − x′)δ(z − z′)δ(t − t′). (2.4)

Here θ is the temperature. The factor 1/Ly appears because the films are quasi-2-D (Ly �
Lx), allowing all variables of interest to be averaged over the y direction (Zhang et al.
2020).

For boundary conditions, at z = h, we have the dynamic condition and kinematic
condition:

(σ + ψ) · n = −[γ∇ · n + φ(h)]n, ∂th + u∂xh = w, at z = h. (2.5a,b)

Here σ = −pδij + μ(∂xjui + ∂xiuj) is the hydrodynamic stress tensor (here i = (x, z) and
j = (x, z)), γ is the surface tension, φ(h) is the disjoining pressure and n is the outer
normal vector at the surface n = (−∂xh, 1)/

√
1 + (∂xh)2.

At z = 0, the impermeable condition and Navier’s slip boundary condition are
separately given by

w = 0, u = b
∂u
∂z
, at z = 0, (2.6a,b)

where b is the slip length. The covariance of the random shear stress at the wall is given
by (Bocquet & Barrat 1994; Zhang et al. 2020):

〈
ψzx|z=0(x, t)ψ ′

zx|z=0(x′, t′)
〉 = 2μkBθ

bLy
δ(x − x′)δ(t − t′). (2.7)

Navier’s slip condition is chosen because it has been validated extensively by both
experiments and MD simulations (see the reviews by Lauga et al. 2007; Bocquet &
Charlaix 2010). However, there are many other forms of slip boundary conditions, as
discussed by Sibley et al. (2015).
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2.2. A long-wave approximation
To derive a lubrication equation, (2.1)–(2.6a,b) have to be scaled based on the dominant
mechanism of momentum balance, which varies with the level of slip length (Münch et al.
2005). Classically, for the weak-slip case, the momentum balance happens in the horizontal
direction ∂xp ∼ μ∂zzu, which means ph0/(μu0) ∼ 1/χ , where u0 is the characteristic
velocity. At the free surface, surface tension has to be balanced with pressure p = −γ ∂xxh,
which means γ /(μu0) ∼ 1/χ3. At the solid surface, the order of slip length is b ∼ h0.
Therefore, the pressure term, surface tension term, and slip length will be scaled to
P = χph0/(μu0), Γ = χ3γ /(μu0), and B = b/h0.

However, for the strong-slip (including free slip) flow, the velocity profile essentially
becomes uniform (plug flow) instead of being parabolic so that the momentum balance
happens in the vertical direction ∂zp ∼ μ∂zzw (Münch et al. 2005), which leads to the
scaling ph0/(μu0) ∼ χ and γ /(μu0) ∼ 1/χ . These scalings need the slip length to be
strong and b ∼ h0χ

−2 (Münch et al. 2005).
As for the scaling of the random stress tensor, it may be scaled the same as the scale

of their deterministic counterparts (Grün et al. 2006). For example, ψxx ∼ μ∂xu ∼ μu0/λ
andψzz ∼ μ∂zw ∼ μu0/λ. Note that, in this way, two scaling exists forψzx:ψzx ∼ μ∂xw ∼
μχu0/λ and ψzx ∼ μ∂zu ∼ μu0/(χλ). The former is used to keep ψzx at a lower order. In
summary, the following scalings are used:

X = x
λ
, Z = z

h0
,H = h

h0
,B = b

h0χ−2 ,U = u
u0
,W = w

χu0
, T = u0t

λ
, Γ = χγ

μu0
,

(P, Φ) = h0

χu0μ
( p, φ) , (Ψxx, Ψzz) = λ

u0μ
(ψxx, ψzz) , (Ψxz, Ψzx) = λ

χu0μ
(ψxz, ψzx) .

⎫⎪⎪⎬
⎪⎪⎭

(2.8)

Adopting these scalings (2.8), the rescaled and dimensionless continuum and
momentum equations are

∂XU + ∂ZW = 0, (2.9)

χRe (∂TU + U∂XU + W∂ZU) = −χ2∂XP + χ2∂XXU + ∂ZZU + χ2∂XΨxx + χ2∂ZΨzx,
(2.10)

χRe (∂TW + U∂XW + W∂ZW) = −∂ZP + χ2∂XXW + ∂ZZW + χ2∂XΨxz + ∂ZΨzz.
(2.11)

Here the Reynolds number is Re = ρu0h0/μ. As the characteristic velocity is u0 ∼ χγ/μ,
Re can be also written as Re = χργ h0/μ

2 = χLa, where La = ργ h0/μ
2 is the Laplace

number. The La is assumed to be of order one.
In terms of the rescaled boundary conditions,

−P + 1

1 +χ2(∂XH)2

{
2
[
1 −χ2(∂XH)2

]
∂ZW − 2∂XH

(
∂ZU + χ2∂XW

)
+χ2(∂XH)2Ψxx

− χ2∂XH (Ψxz + Ψzx)+ Ψzz

}
= Γ

∂XXH[
1 + χ2(∂XH)2

]3/2 +Φ, at z = H, (2.12a)
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2χ2∂XH
[
(∂ZW − ∂XU)+ 1

2
(Ψzz − Ψxx)

]

+
[
1 − χ2(∂XH)2

] (
∂ZU + χ2∂XW + χ2Ψzx

)
= 0 at z = H, (2.12b)

∂TH + U∂XH = W, at z = H, (2.12c)

W = 0, at z = 0, (2.12d)

U = B
χ−2 ∂ZU, at z = 0. (2.12e)

The rescaled equations can be approximately solved by the perturbation expansion of
U,W,P, Ψ,H:

(U,W,P, Ψ,H) = (U0,W0,P0, Ψ0,H0)+ χ2 (U1,W1,P1, Ψ1,H1)+ · · · . (2.13)

Then, at leading orders of governing equations, one can get

∂ZZU0 = 0, (2.14)

∂ZZW0 − ∂ZP0 + ∂ZΨzz0 = 0, (2.15)

∂XU0 + ∂ZW0 = 0. (2.16)

For boundary conditions, their leading-order forms are

−P0 + 2 (∂ZW0 − ∂XH0∂ZU0)+ Ψzz0 = Γ ∂XXH0 +Φ, at z = H, (2.17a)

∂ZU0 = 0, at z = H, (2.17b)

W0 = ∂TH0 + U0∂XH0, at z = H, (2.17c)

W0 = 0, at z = 0, (2.17d)

∂ZU0 = 0, at z = 0. (2.17e)

Using leading-order equations, we find

U0 ≡ U0(X, T), (2.18)

W0 = −∂XU0Z, (2.19)

P0 = −2∂XU0 − Γ ∂XXH0 −Φ + Ψzz0, (2.20)

which leads to the first equation of the desired stochastic lubrication equation:

∂TH0 + ∂X (H0U0) = 0. (2.21)

In the next order, the governing equation that will be used is,

La (∂TU0 + U0∂XU0) = ∂XXU0 − ∂XP0 + ∂ZZU1 + ∂XΨxx0 + ∂ZΨzx0 (2.22)

and the boundary condition that will be needed is

−4∂XH0∂XU0 + ∂XH0 (Ψzz0 − Ψxx0)+ ∂ZU1 − H0∂XXU0 + Ψzx0 = 0, at z = H,
(2.23)

U0 = B∂ZU1, at z = 0. (2.24)
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Integrating (2.22) from 0 to H0 and using boundary conditions (2.23) and (2.24) leads
to

H0 [La (∂TU0 + U0∂XU0)] = H0 [3∂XXU0 + ∂X (Γ ∂XXH0 +Φ)]

+ (∂ZU1 + Ψzx0) |Z=H0 − (∂ZU1 + Ψzx0) |Z=0 +
∫ H0

0
∂X (Ψxx0 − Ψzz0) dZ

= H0∂X (Γ ∂XXH0 +Φ)+ 4∂X (H0∂XU0)

− U0

B
+ ∂X

∫ H0

0
(Ψxx0 − Ψzz0) dZ − Ψzx0|Z=0. (2.25)

The Leibniz integral rule is used here. The covariance of Ψzx0|Z=0 is given
by the Green–Kubo expression for slip length 〈Ψzx|Z=0(X, T)Ψ ′

zx|Z=0(X′, T ′)〉 =
(2kBθ/χ

2μu0bLy)δ(X − X′)δ(T − T ′) (Zhang et al. 2020). In terms of the integral of the
white noise in (2.25), as Ψxx0 is uncorrelated with Ψzz0, they can be combined as

√
2Ψxx0.

Now using the theorem provided in the appendix of Zhang et al. (2020), the integral of the
white noise is

∂X

∫ H0

0
(Ψxx0 − Ψzz0) dz =

√
2∂X

∫ H0

0
Ψxx0 dz

=
√

2∂X

(√
H0Re

)
, (2.26)

where 〈Re(X, T)Re(X′, T ′)′〉 = (4kBθ/μu0h0Ly)δ(X − X′)δ(T − T ′).
Putting (2.21) and (2.25) together and returning to their dimensional forms, we arrive

at the stochastic lubrication equation for films with strong slip (referred to as S-S model
hereafter)

∂th + ∂x (hu) = 0, (2.27a)

ρ (∂tu + u∂xu) = ∂x (−γ ∂xxh + φ)+ 4μ
h
∂x (h∂xu)− μ

h
u
b

+ 1
h

[
2∂x

(√
hξ1

)
−

√
b

b
ξ2,

]

(2.27b)

where the covariance of the noise term is 〈ξi(x, t)ξj(x′, t′)〉 = (2μkBθ/Ly)δijδ(x − x′)δ
(t − t′).

The above-derived stochastic lubrication equation validates for the strong slip length
on the order of b ∼ h0χ

−2. In terms of the weak slip b ∼ h0, a similar long-wave
approximation to FH equations (see Zhang et al. (2020) for details) can result in the
weak-slip stochastic lubrication equation (referred to as W-S model hereafter)

∂th = 1
μ
∂x

[(
1
3

h3 + bh2
)
∂x (−γ ∂xxh + φ)+

√
1
3

h3 + bh2ξ3

]
, (2.28)

where the noise ξ3 has zero mean and covariance 〈ξ3(x, t)ξ3(x′, t′)〉 = (2μkBθ/Ly)δ
(x − x′)δ(t − t′). As the W-S model works for the no-slip case (b = 0), the S-S model
validates for the free-slip case (b = ∞) where the terms containing b in (2.27) vanish.
Interestingly, this free-slip model can be applied to study free films such as foam films
(Erneux & Davis 1993; Vaynblat, Lister & Witelski 2001). Note that the free-slip model
has not been reported previously.
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Nanofilm dewetting with strong slip

3. Surface spectrum for films with strong slip

With the newly developed S-S model (2.27), the spectrum of surface waves in linear stages
is derived here. We first rewrite the noise ξ in terms of the white noise N with unit variance
〈NiNj

′〉 = δijδ(x − x′)δ(t − t′), and linearise (2.27) with h = h0 + h̃, u = 0 + ũ and N =
0 + Ñ:

∂2h̃
∂t2

= μ

ρ

∂

∂t

[
4
∂2h̃
∂x2 − h̃

h0b

]
− h0

ρ

[
∂φ

∂h
∂2h̃
∂x2 + γ

∂4h̃
∂x4

]
− f1

∂2Ñ1

∂x2 + f2
∂Ñ2

∂x
, (3.1)

where the factors f1 = √8μkBθh0Ly/(ρLy) and f2 = √2μkBθbLy/(ρbLy). Note that the
second derivative of h̃ with respect to t comes from putting the linearised (2.27a) into
the linearised (2.27b) to eliminate the variable ũ. Then a Fourier transform of (3.1) is
performed using ĥ(q, t) = ∫∞

−∞ h̃(x, t)e−iqx dx and N̂(q, t) = ∫∞
−∞ Ñ(x, t)e−iqx dx to get

∂2ĥ
∂t2

= −C
∂ ĥ
∂t

− Dĥ + f1q2N̂1 + f2qiN̂2. (3.2)

Here

C = μ

ρ

(
4q2 + 1

h0b

)
, D = h0

ρ

[
∂φ

∂h
q2 + γ q4

]
. (3.3a,b)

The solution of (3.2) can be represented as the linear superposition of two contributions
(Zhang et al. 2019; Zhao et al. 2019)

ĥ = ĥdet + ĥsto, (3.4)

where ĥdet is the solution to the deterministic part of (3.2) and ĥsto is the contribution
purely caused by thermal fluctuations. To find ĥdet, the deterministic equation

∂2ĥ
∂t2

+ C
∂ ĥ
∂t

+ Dĥ = 0, (3.5)

is solved by Laplace transform. Using g(q, s) = ∫∞
0 ĥ(q, t)e−its dt and assuming

∂ ĥ/∂t|t=0, one can get

g = s + C
s2 + Cs + D

ĥ(q, 0), (3.6)

whose inverse Laplace transform is

ĥdet(q, t) = ĥ(q, 0)
[

eω1t + eω2t

2
+ C

2
√

C2 − 4D

(
eω1t − eω2t)] . (3.7)

Here ωi=1,2 = (−C ± √
C2 − 4D)/2 is the solution to s2 + Cs + D = 0. Notably, ω1 is

the dispersion relation (growth rate) of the deterministic lubrication equation, namely,
(2.27) without the noise terms.

To obtain ĥsto, one has to determine the impulse response of the linear system. Using
the Laplace transform of ∂2ĥ/∂t2 + C(∂ ĥ/∂t)+ Dĥ = δ, and assuming ĥ(q, 0) = 0, it is
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found

g = 1
s2 + Cs + D

. (3.8)

The impulse response is, thus, the inverse Laplace transform of (3.8)

F(q, t) = ĥ = eω1t − eω2t
√

C2 − 4D
. (3.9)

Now with thermal fluctuations f1q2N̂1 and f2qiN̂2 as input, we find

ĥsto = f1q2
∫ t

0
N̂1 (q, t − τ)F(q, τ ) dτ + f2qi

∫ t

0
N̂2 (q, t − τ)F(q, τ ) dτ . (3.10)

As ĥ is both a random and complex variable, the root mean square (r.m.s.) of its norm is
sought, namely, surface spectrum,

∣∣∣ĥ(q, t)
∣∣∣
rms

=
√∣∣∣ĥdet + ĥsto

∣∣∣2 =
√∣∣∣ĥdet

∣∣∣2 +
∣∣∣ĥsto

∣∣∣2, (3.11)

where from (3.7)

∣∣∣ĥdet

∣∣∣2 =
∣∣∣ĥ(q, 0)

∣∣∣2[eω1t + eω2t

2
+ C

2
√

C2 − 4D

(
eω1t − eω2t)]2

, (3.12)

and from (3.10)

∣∣∣ĥsto

∣∣∣2 =
∣∣∣∣ f1q2

∫ t

0
N̂1 (q, t − τ)F(q, τ ) dτ

∣∣∣∣
2

+
∣∣∣∣ f2qi

∫ t

0
N̂1 (q, t − τ)F(q, τ ) dτ

∣∣∣∣
2

=
∣∣∣ f1q2

∣∣∣2 ∫ t

0

∣∣∣N̂1 (q, t − τ)

∣∣∣2F(q, τ )2 dτ + | f2qi|2
∫ t

0

∣∣∣N̂1 (q, t − τ)

∣∣∣2F(q, τ )2 dτ

=
(∣∣∣ f1q2

∣∣∣2 + ∣∣ fqqi
∣∣2) Lx

∫ t

0
F(q, τ )2 dτ

= 2μkBTLxq2

ρ2Ly
(
C2 − 4D

) (4h0q2 + 1
b

)[
e2ω1t − 1

2ω1
+ e2ω2t − 1

2ω2
+ 2

(
e−Ct − 1

)
C

]
.

(3.13)

Here we have used |N̂(q, t)|2 = Lx, due to the finite length of the discrete Fourier transform
used in MD simulations. Thus, we derive the spectrum of surface waves of a bounded film
with strong slip as

S (q, t) =
{∣∣∣ĥ(q, 0)

∣∣∣2[eω1t + eω2t

2
+ C

2
√

C2 − 4D

(
eω1t − eω2t)]2

+ 2μkBTLxq2

ρ2Ly
(
C2 − 4D

) (4h0q2 + 1
b

)[
e2ω1t − 1

2ω1
+ e2ω2t − 1

2ω2
+ 2

(
e−Ct − 1

)
C

]}1/2

.

(3.14)
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Nanofilm dewetting with strong slip

h0

Lx

x
z(a)

(b)

(c)

y

Figure 2. Rupture of thin liquid films with strong slip in molecular simulations. (a) Initial setting of a liquid
film with a flat free surface. The film has a small depth Ly into the page. (b) Growth of perturbations and
film rupture. (c) Droplet formation after the film ruptures. Note that the wall coloured in blue only denotes the
position of the solid boundary as the method of a virtual wall is used in simulations.

Equations (3.14) and (2.27) are the main contributions of this work. For the W-S model,
the analytical spectrum is (Zhang et al. 2020)

S (q, t) =
√∣∣∣ĥ(q, 0)

∣∣∣2e2ω3(q)t + Lx

Ly

kBT
γ q2 + (dφ/dh) |h0

[
1 − e2ω3(q)t

]
, (3.15)

where the dispersion relation is

ω3 = −h3
0 + bh2

0
3μ

(
γ q4 + dφ

dh
|h0q2

)
. (3.16)

4. MD simulations and a new slip-generating method

MD simulations are performed to simulate the instability of nanofilms on the strong-slip
solid and the weak-slip solid. The open-source MD code LAMMPS (Plimpton 1995) is
adopted. As shown in figure 2(a), the liquid film is composed of liquid argon (represented
in orange) and it is simulated with the standard Lennard-Jones (LJ) 12-6 potential:

U(rij) =

⎧⎪⎨
⎪⎩

4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, if rij ≤ rc,

0, if rij > rc.

(4.1)

Here rij is the distance between two atoms and ij represent pairwise particles. The energy
parameter ε is 1.67 × 10−21 J and the length parameter σ is 0.34 nm. We use rc = 5.5σ
as the cutoff distance, beyond which the interaction vanishes.

The temperature of this system is kept at T = 85 K using the Nosé–Hoover thermostat.
At this temperature, the mass density is ρ = 1.4 × 103 kg m−3 and the number density
is n = 0.83/σ 3. The density of the vapour phase is about (1/400)ρ so that the effects of
vapour on the film are neglected. The surface tension of liquid is γ = 1.52 × 10−2 N m−1

and the dynamic viscosity is μ = 2.87 × 10−4 kg (ms)−1 (Zhang et al. 2020). The time
step for all simulations is 0.004

√
ε/(mσ 2) where m is the atomic mass of argon.

The initial dimensions of the liquid film (see figure 2a) are chosen as Lx = 313.90 nm,
Ly = 3.14 nm. The height of the film varies for three different cases (h0 = 1.2 nm, 1.6 nm
and 3.14 nm). Therefore, the film is thin (Lx � h0), and the film is quasi-2-D (Lx � Ly) to
save computational costs. To prepare the initial configuration of the liquid film, the liquid
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film slab with the desired size is cut from a periodic box of liquid atoms, which makes the
film surface flat initially.

Conventionally, the solid wall, serving as the boundary condition for the film, is
simulated using real solid atoms (real wall) (Willis & Freund 2009; Zhang et al.
2019, 2020, 2021). In our previous work (Zhang et al. 2019, 2020, 2021), for a real
wall, the solid is platinum with its isotropic 〈100〉 surface in contact with the liquid. The
liquid–solid interactions are modelled by the same 12-6 LJ potential with σls = 0.8σ for
the length parameter and εls = kε. Conventionally, one may vary the energy parameter
εls to obtain different levels of slip length. For example, b = 0.68 nm using k = 0.65
whereas b = 8.8 nm using k = 0.2 (Zhang et al. 2021). The disjoining pressure and contact
angles of liquid argon on the solid are also changed in this way. However, the slip length
obtained using the real solid is usually in the range of a few tens of nanometres (Bocquet
& Charlaix 2010) in MD simulations, which cannot match the micrometre slip length
present in experiments. The origin of strong slip in experiments, as discussed earlier
in the introduction, is usually complicated and cannot be straightforwardly simulated
in previous MD simulations using LJ potentials. The use of a real solid wall with
cutoff-distance-limited intermolecular interactions between liquid and solid also means
that the disjoining pressure due to the solid vanishes when the film height is larger than
the cutoff distance (Willis & Freund 2009; Zhang & Ding 2023), which is undesired.

Here we propose a new approach to allow us to generate any values of slip length
simply in MD simulations and allow disjoining pressure to be effective at infinite distances
physically. Instead of simulating a real wall, we apply a force to fluid atoms to mimic the
fluid–substrate interactions and the force acts as the virtual wall, based on the work of
(Steele 1973; Barrat & Bocquet 1999; Hadjiconstantinou 2021). The (total) force f for a
fluid atom interacting with a face-centred-cubic solid substrate by the LJ potential has been
calculated analytically by Steele (1973) and it is adopted here with some modifications (see
Appendix A for detailed discussions):

f = fxex + fzez, with

fx = (2π)2ε

100�3
s

[
σ 12

30

(
π

�sz

)5

K5

(
2π

�s
z
)

− 2σ 6
(

π

�sz

)2

K2

(
2π

�s
z
)]

sin
(

2π

�s
x
)
,

fz = −dU0 (z)
dz

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.2)

Here ex and ez are unit vectors in the x and z direction, �s is the lattice spacing and K5
and K2 are the modified Bessel functions of the second kind. The applied force in the x
direction fx decays rapidly with z: fx is closely related to slip length and its sinusoidal-form
force represents the energy corrugation of the solid surface. A smaller lattice spacing �s
results in a smooth surface energy distribution and then a larger slip length (Thompson &
Robbins 1990; Barrat & Bocquet 1999; Hadjiconstantinou 2021). In our MD simulations,
the functions K5 and K2 are approximated by ((π/2x)1/2)e−x for simplicity. Here U0(z) is
the total interaction energy exerted on a liquid molecule by the (continuous) substrate. As
shown in Appendix A, U0(z) is related to the function of disjoining pressure as U0(z) =
−φ(z)/n. Note that disjoining pressure is a function of film height h. One has to replace h
with z while the form of the function itself is the same.

Here φ takes the usual form (Israelachvili 2011):

φ(h) = A
6πh3 − M

h9 , (4.3)
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Nanofilm dewetting with strong slip

0.10

0.08

0.06

u
m

/ε

x/σ

g = 5 × 10–3 ε/σ

g = 2 × 10–5 ε/σ

0.04

0.02

0
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MD, ls = 0.37 nm

MD, ls = 0.10 nm

Theory with b = 400 nm

Theory with b = 0.2 nm

Figure 3. Slip length measured using pressure-driven flows past the substrate in molecular simulations. MD
results of velocity (symbols) are fitted with analytical solutions (solid lines) to obtain slip length.

where typical values A = 1.7 × 10−20 J and M = 0.018εσ 6 are used. This form of
disjoining pressure h−3 − h−9 is obtained by integrating the 12-6 LJ potential over the
entire substrate assuming the substrate is continuous, as shown in Appendix A and
(Dietrich 1988; Schick 1990; Carey & Wemhoff 2005; Israelachvili 2011; MacDowell et al.
2014). There are many other forms of disjoining potential resulting from different liquid
and solid properties (Becker et al. 2003).

We vary the lattice spacing �s and see what the slip length is from independent
simulations where a pressure-driven flow goes past a substrate as shown by the MD
snapshot in figure 3. The pressure gradient is created by applying a body force g to
the fluid. For �s = 0.37 nm, one can see that the velocity profile in MD (blue squares
in figure 3) is parabolic. However, for �s = 0.10 nm, the velocity profile in MD (black
triangles in figure 3) is nearly constant (plug flow).

The generated velocity distribution is

u(z) = ρg
2μ

[(z − z1)(2z2 − z1 − z)+ 2b (z2 − z1)] . (4.4)

Here z1 = 0 and z2 = 9.2σ are the positions of the wall and the free surface, respectively.
This prediction (solid lines in figure 3) is used to fit the MD results (symbols in figure 3) to
obtain the slip length. For �s = 0.37 nm, a nearly no-slip surface b = 0.2 nm is achieved.
For �s = 0.10 nm, a strong slip length of b = 400 nm is obtained. Note that the choice
of thermostats may have a slight influence on the slip length. For example, for water
flows inside carbon nanotubes, the Berendsen and Nosé–Hoover thermostats result in
very similar slip length, while a smaller slip length is found under the influence of the
Langevin thermostat (Sam et al. 2017). Thus, the same thermostats should be chosen when
measuring the slip length from pressure-driven flows and simulating nanofilm dewetting.

To mimic experimental conditions of polymer films on octadecyltrichlorosilane (OTS)
and DTS substrates (Lessel et al. 2017), where contact angles (disjoining pressure) are
about the same for both cases but slip length is very different (no slip on OTS in contrast
to 500 nm slip length on DTS), we thus keep the disjoining pressure (4.3) the same for the
simulations of weak-slip nanofilm dewetting and strong-slip nanofilm dewetting. In our
simulations, the contact angles of drops after film dewetting for both cases are measured
to be about 40◦. This can also facilitate the comparison between weak-slip dewetting and
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Figure 4. Evolution of the capillary spectra for the film with the thickness h = 1.2 nm at three different
times. (a) The film has a strong slip length b = 400 nm. Solid lines represent the prediction of the full S-S
model whereas dashed lines are the S-S model without the inertial terms. (b) The film has a weak slip length
b = 0.2 nm.

strong-slip dewetting in simulations as the slip length is the only variable. Classically,
disjoining pressure decreases with increasing slip length and contact angles. This is,
however, far from being universal, as discussed previously for the case of polymer films
on OTS and DTS substrates. Liquids on hydrophilic substrates with small contact angles
can also have large slip length (Rothstein 2010; Ho et al. 2011). As shown in Appendix A,
the proposed simulation technique is general and it can include the classic results where
slip length and disjoining pressure are coupled and disjoining pressure decreases with
increasing slip length and contact angles. As the virtual force is obtained by integrating
the LJ potential (especially for fx), this simulation technique is limited for the system where
liquid and solid interact with LJ potential.

With the wall modelled by the virtual force, the simulations of nanofilm dewetting
are run for 2 ns for the case of h0 = 1.2 nm, 10 ns for h0 = 1.6 nm and 100 ns for
h0 = 3.14 nm.

5. Results and discussion

5.1. Evolving spectra of an unstable film with strong slip
As shown in figure 2, a flat film deposited on the substrate experiences the spontaneous
growth of perturbations on its surface, leading to film rupture (see figure 2b) and droplet
formation (see figure 2c). To reveal the instability mechanism in the case of the strong-slip
dewetting, the evolution of its surface spectra is obtained from MD simulations.

The instantaneous liquid–vapour interface h(x, t), defined by the usual equimolar
surface, is extracted from MD simulations (see (Zhang et al. 2019) for methods).
A discrete Fourier transform of h(x, t) is performed to obtain the amplitude of surface
modes ĥ(q, t). The surface spectra are thus calculated from the average (r.m.s.) of 40
independent simulations.

The symbols in figure 4(a) represent the MD spectra for the film with thickness h =
1.2 nm and slip length b = 400 nm at three different times. Compared with the weak-slip
case (b = 0.2 nm) presented in figure 4(b), one can see that the transient characteristics
of the spectra are strongly influenced by the slip length. The spectra for the strong-slip
case grow faster than the spectra for the weak-slip case by comparing the blue triangles
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Figure 5. Evolution of the capillary spectra for the film with the thickness h = 1.6 nm at three different
times. (a) The film has a strong slip length b = 400 nm. (b) The film has a weak slip length b = 0.2 nm.

in figure 4(a) with the wine triangles in figure 4(b). The dominant wavenumber qd (the
one with the maximum amplitude) at different times in the strong-slip dewetting are
smaller than those in the weak-slip dewetting (e.g. at t = 0.43 ns, qd ≈ 0.25 nm−1 for
the strong-slip case in figure 4(a) in contrast to qd ≈ 0.50 nm−1 for the weak-slip case in
figure 4b).

The proposed stochastic models (S-S model and W-S model) and their analytical spectra
are used to predict the MD spectra. In our MD simulations, the initial setting of the
film surface is flat |ĥ(q, 0)| ≈ 0, so that the deterministic contribution to the surface
spectra is |ĥdet| ≈ 0. As elaborately investigated in our previous work (Zhang et al.
2019, 2020, 2021), the capillary spectra for weak-slip film can be predicted well by the W-S
model, see e.g. the solid lines in figure 4(b). However, the W-S model does not apply to
the case where the slip is strong, since the W-S model with b = 400 nm leads to enormous
overpredictions compared with MD results (not shown). This is because the derivation of
the W-S model requires the slip length on the order of the film thickness. To predict the
spectra of the unstable film with strong slip b = 400 nm, the analytical spectra (3.14) of
the newly derived S-S model is adopted and it agrees excellently with MD results (see the
solid lines in figure 4a). The symbols in figure 5(a) show the MD spectra for the film with
a larger thickness h = 1.6 nm. Again, our analytical spectra can predict the MD results
very well. Note that for large wavenumbers, the spectra at different times simply collapse

into the static spectrum Ss =
√

LxkBT/(Lyγ q2).
Another interesting finding is that the assumption of Stokes flow, i.e. negligible inertia,

breaks down when the value of slip length is increased from a weak slip to a strong slip.
Ignoring the inertial terms in the derived S-S model (the left-hand-side terms of (2.27)),
the surface spectra are simply

S (q, t) =
√

Lx

Ly

kBT
γ q2 + dφ/dh

[
1 − e−2Dt/C

]
, (5.1)

which however overpredicts the MD results (see the dashed line in figures 4a and 5a). Note
that the W-S model where inertia is also absent works well for predicting the MD results
of weak-slip dewetting. Therefore, it is the strong slip that brings the inertia into effect.

996 A19-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

70
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.701


Y. Zhang

Weak slip

Strong slip

Weak slip

Strong slip

(b)

(a)

(c)

(d )

Figure 6. Droplets form after the rupture of the film: (a) for the film with h = 1.2 nm and b = 0.2 nm; (b) for
the film with h = 1.2 nm and b = 400 nm; (c) for the film with h = 1.6 nm and b = 0.2 nm; (d) for the film
with h = 1.6 nm and b = 400 nm.

In the weak-slip regime, the Reynolds number is

ReW−S = ρu0h0

μ
= χ3ργ h0

μ2 = χ3La. (5.2)

Here we have used the momentum balance in the horizontal direction to estimate the
characteristic velocity u0 ∼ χ3γ /μ as discussed previously. However, in the strong-slip
regime, the ReS-S is

ReS-S = ρu0h0

μ
= χ

ργ h0

μ2 = χLa, (5.3)

based on the momentum balance in the vertical direction. Therefore, ReS-S of the
strong-slip case is 1/χ2 larger than the weak-slip case. On the other hand, the Laplace
number La in our simulations is calculated to be 0.3 which is consistent with the
assumption of deriving the strong-slip model where the La ∼ 1. Both conditions (strong
slip and La = 0.3) make inertia non-negligible in our simulations.

5.2. Number of droplets
As shown in figure 6, one distinct feature of the strong-slip dewetting (see figure 6b,d) is
having fewer droplets after the film ruptures compared with the weak-slip dewetting (see
figure 6a,c). For each case with a specific film thickness and slip length (for example, in
figure 6(a), h = 1.2 nm and b = 0.2 nm), about 40 independent simulations have been run
and the probability distribution of the number of formed droplets is calculated and shown
in figure 7(a) for h = 1.2 nm and figure 7(b) for h = 1.6 nm.

In terms of the thinner film h = 1.2 nm, the average number of droplets for weak-slip
dewetting is Na = 14 (see the blue bars in figure 7(a) and a typical MD snapshot in
figure 6a), whereas the number is Nb = 6.5 for the strong-slip dewetting (see the red
bars in figure 7(a) and a typical MD snapshot in figure 6b). For the thicker film with
h = 1.6 nm, the mean number of droplets for weak-slip dewetting is Nc = 7 (see the blue
bars in figure 7(b) and the MD snapshot in figure 6c) whereas the number is Nd = 3 for
strong-slip dewetting (see the red bars in figure 7(b) and the MD snapshot in figure 6d).

The number of droplets is connected with the dominant wavenumber qd (or the dominant
wavelength λd = 2π/qd). In the deterministic situation, the dominant wavenumber is
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Figure 7. (a) Distribution of the number of droplets for the film with h = 1.2 nm. (b) Distribution of the
number of droplets for the film with h = 1.6 nm. (c) The decrease of the dominant wavenumber with time
predicted by (3.14) (solid lines) to its asymptotic value by the deterministic lubrication equation (dashed lines
in the inset). The squares represent the dominant wavenumber at the time of film rupture.

constant over time. For the deterministic W-S equation, it is qd = √−(dφ/dh)/(2γ ) ≈√
A/(4πγ h4

0), while for the deterministic S-S equation, it is the solution when
dω1(q)/dt = 0.

However, as found from MD simulations shown in figures 4 and 5, the dominant
wavenumber decreases with time, which is surely beyond the prediction from the
deterministic lubrication equation. Based on the analytical spectra of the W-S model (3.15)
and S-S model (3.14), figure 7(c) shows the theoretical prediction of the evolving dominant
wavenumber. One can find that thermal fluctuations induce a dominant wavenumber (see
the solid lines) much higher than its corresponding deterministic prediction (see the dashed
lines in the inset) and it only gradually decreases to the deterministic predictions over time.
In our simulations, the film can rupture far before the dominant wavenumber reaches its
asymptotic value.

Therefore, we measure the average time of rupture tr from MD simulations (shown by
the symbols in figure 7c) and use the analytical theory to predict the dominant wavenumber
at the time of rupture. For h = 1.2 nm and b = 0.2 nm, the rupture time is about tr = 2 ns
and the dominant wavenumber at this time is qd = 0.35 nm−1. The dominant wavenumber
corresponds to qdLx/(2π) ≈ 17 droplets, in agreement with the 14 measured directly
from MD simulations. For h = 1.2 nm and b = 400 nm, the rupture is much faster tr =
0.75 ns and the dominant wavenumber at this time is qd = 0.156 nm−1. This dominant
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wavenumber translates into 7.8 droplets, in agreement with the 6.5 measured directly from
MD simulations. Therefore increasing slip length from weak slip to strong slip can indeed
reduce the number of droplets by decreasing the dominant wavenumber.

Since the strong-slip dewetting and the weak-slip dewetting starts with the same surface
condition (flat surface), the deviations for both cases in the dominant wavenumber begin
at a very early time (see figure 7c). The smaller dominant wavenumber in the strong-slip
dewetting, compared with the weak-slip dewetting, becomes the obvious feature of the
strong-slip spectra shown in figure 4(a).

By increasing the film thickness from h = 1.2 nm to h = 1.6 nm, the number of droplets
is also decreased. For example, for the strong-slip dewetting, the average number of
droplets changes from 6.5 to 3 by with increased film thickness as shown in figure 7(b).
This can be also predicted by the dominant wavenumbers shown in figure 7(c) where the
dominant wavenumber is smaller for a larger film thickness.

5.3. Surface roughening with strong slip
The growth of spectra is equivalent to the surface roughening of the free surface based on
Parseval’s theorem:

W(t) =
√

1
Lx

〈∫ Lx

0
(δh)2 dx

〉
=
√

1
2πLx

∫ 2πK/Lx

2π/Lx

S2 dq, (5.4)

where W(t) =
√

h2 − h̄2 is the r.m.s. roughness of the free surface. Here K is the number
of bins used to extract the surface profile from MD simulations, which provides an upper
bound on the wavenumbers that can be extracted (Zhang et al. 2021).

In our study, the roughening of a flat liquid surface is due to thermal fluctuations (and
also disjoining pressure). Surface roughening or growth resulting from other forms of
randomness is a common occurrence in nature. Examples include the propagation of
wetting fronts in porous media, the growth of bacterial colonies, and the atomic deposition
process in the manufacture of computer chips (Barabási & Stanley 1995). These evolutions
of the profile of a growing interface can be described by stochastic partial differential
equations (SPDE). One of the most famous examples is the Kardar–Parisi–Zhang (KPZ)
equation (Kardar, Parisi & Zhang 1986). Scaling relations for surface roughening are then
used to analyse the SPDE, which can be summarised as (Barabási & Stanley 1995)

W (t) ∼ Lαf (t/Lm), (5.5)

where L is the system size, f (v) = vκ for v � 1 (during roughness growth), and f (v) = 1
for v � 1 (at roughness saturation). The time to transition, between roughness growth and
saturation, scales with ts ∼ Lm. The three exponents (α, m and κ) define a universality
class, and are here related by κ = α/m. For example, for the one-dimensional KPZ
equation, (α = 1/2,m = 1/3, κ = 3/2). Basically, the roughness will grow as a power law
of time W ∼ tκ before getting saturated, which is a result of the balance of the deterministic
forces (such as surface tension in our study) and stochastic forces (such as thermal motions
of molecules in our study).

In our previous work (Zhang et al. 2021), we have shown that for a weak-slip film
roughened by thermal fluctuations (with negligible effects of disjoining pressure), a
universality class (α = 1/2,m = 4, κ = 1/8) exists and W ∼ t1/8 before the roughness
saturation. It is interesting to see how strong slip changes the scaling of surface roughening.
We note that the existence of the disjoining pressure breaks the potential balance of
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Figure 8. The growth of roughness on films with weak slip and strong slip.

surface tension and thermal fluctuations, resulting in the unbounded growth of the surface
roughness. However, the initial growth of surface roughness, when the disjoining pressure
is weak, may still be described by scaling laws.

As shown in figure 8, we calculate the surface roughening of a film with the thickness
h = 3.14 nm for different levels of slip length. In terms of the weak-slip film b = 0.2 nm
and without disjoining pressure, the roughness grows with W ∼ t1/8 and then becomes
saturated eventually (see the blue dash line in figure 8). When disjoining pressure is
considered, the growth of the roughness becomes unbounded (see the red solid line).
However, the initial stage of the growth of roughness (t < 100 ns) is unaffected by
disjoining pressure so that the W ∼ t1/8 is still valid.

For the strong-slip film b = 400 nm and without disjoining pressure, we find W ∼ t1/4
as shown by the blue dashed line in figure 8, which can be derived as follows. Here α can
be obtained by considering the surface at saturation, i.e. from the static spectrum given by

Ss =
√

LxkBT/(Lyγ q2). Substituting the static spectrum into (5.4) leads to

Ws =
√

1
2πLy

kBT
γ

(
Lx

2π
− Lx

2πK

)
. (5.6)

For large K, which is the case in our MD simulations, Ws becomes independent of K and

one can find that Ws =
√
(Lx/4π2Ly)(kBT/γ ) ∼ Lx

1/2.
An upper estimate on the transition time ts ∼ Lm, between growth and saturation, can be

estimated from the inverse of the dispersion relation at the largest permissible wavelength
(q = 2π/Lx). Examining the dispersion relation indicates that there are three time scales
for the spectra to reach thermal equilibrium (without disjoining pressure) whose maximum
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is the right time scale, namely,

ts = 1
min (|2ω1 (q = 2π/Lx) |, |2ω2 (q = 2π/Lx) |,C (q = 2π/Lx))

= 1
|2ω1 (q = 2π/Lx) |

∼ L2
x, (5.7)

where we have used the condition C = (μ/ρ)(4q2 + 1/h0b) ≈ 4q2μ/ρ due to the fact that
4q2h0b = 4/χ � 1 (using the long-wave condition qh0 ∼ χ and the strong-slip condition
bh0 ∼ χ−2).

Therefore, we find the power m = 2 and κ = α/m = 1/4 for the strong-slip case.
In summary, the universality class (α = 1/2,m = 2, κ = 1/4) is found for the surface
growth of a thin film with strong slip and negligible disjoining pressure. When disjoining
pressure is considered, the initial growth of the surface may still be described by W ∼ t1/4
(as shown by the blue solid line in figure 8), which is much faster than the W ∼ t1/8 of
the weak-slip case. These scalings are confirmed in MD simulations (see the symbols in
figure 8).

6. Conclusions

In this work, the instability of molecularly thin liquid films on substrates with strong
slip has been investigated using both MD simulations and a newly developed stochastic
lubrication equation. A new method has been proposed to generate strong slip length
in molecular simulations. Our simulations reveal that the strong-slip dewetting is much
faster than the weak-slip dewetting and has fewer droplets formed compared with the
weak-slip dewetting. Using a long-wave approximation to the equations of FH, a new
stochastic lubrication equation considering strong slip and inertia effects has been derived.
By the linear stability analysis, the analytical surface spectrum has been obtained and can
explain the differences between strong-slip dewetting and weak-slip dewetting observed
in simulations. We have further found that inertial effects, which are usually ignored
in weak-slip dewetting, come into play in the strong-slip dewetting due to the enhanced
velocity by the strong slip.

When the effect of disjoining pressure is negligible, the derived strong-slip stochastic
lubrication equation possesses a universality class (1/2, 2, 1/4) in contrast to the
(1/2, 4, 1/8) of the weak-slip stochastic lubrication equation. In our simulations, the
effect of disjoining pressure is important. However, the surface roughening of strong-slip
dewetting at the initial stage may be still described by W ∼ t1/4 in contrast to the W ∼ t1/8
for weak-slip dewetting.

Experiments of the rupture of polymer nanofilms on no-slip SiO2-coated silicon wafers
have demonstrated the great effects of thermal fluctuations (Fetzer et al. 2007). The
experimental surface spectra can be predicted with the no-slip film stochastic lubrication
equation (Grün et al. 2006; Fetzer et al. 2007). However, polymer films on DTS solid
can have slip length up to several micrometres (Bäumchen & Jacobs 2009). Therefore,
experiments on the rupture of polymer nanofilms on DTS solid can be used to validate the
newly developed theory here. However, care should be taken to make sure the dewetting
of polymer films is initiated by disjoining pressure since polymer films can be easily
contaminated (leading to nucleation dewetting) (Jacobs, Herminghaus & Mecke 1998).
As polymers have a very large viscosity ∼ 104 kg (ms)−1, the Laplace number is very

996 A19-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

70
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.701


Nanofilm dewetting with strong slip

small so that the effects of inertia can be safely neglected. For metallic films, however, its
viscosity is about ∼ 10−3 kg (ms)−1 so that inertial effects can be important (Diez et al.
2016; González et al. 2016).

In the limit of infinite slip, the derived strong-slip stochastic lubrication equation leads
to a new model for free films, which can be readily used to study, for example, the
symmetrical breakup of a foam film under the effects of thermal fluctuations (Erneux
& Davis 1993; Vaynblat et al. 2001). In this work, we focus on the linear stability
theory and molecular simulations of nanofilm dewetting, numerical solutions to these
stochastic lubrication equations remain to be investigated in the future (see, e.g. Grün
et al. 2006; Nesic et al. 2015; Diez et al. 2016; Durán-Olivencia et al. 2019; Shah et al.
2019; Zhao, Lockerby & Sprittles 2020). Future directions may also include the effects of
contamination (such as surfactants) (Zhang & Ding 2023) and evaporation (Oron et al.
1997; Craster & Matar 2009) on film stability which often occur at small scales.
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Appendix A

In this appendix, the process of obtaining fx and fz is explained based on previous work in
the literature, e.g. Steele (1973), Barrat & Bocquet (1999) and Hadjiconstantinou (2021).
First, the molecular mechanism of disjoining pressure is reviewed briefly. For the 12-6
LJ potential between fluid atoms and solid atoms as shown by (4.1), the total interaction
energy exerted on a liquid molecule by a semi-infinitely extended and continuous substrate
with density ns is (see p. 209 of Israelachvili 2011)

Utot(D) =
∫ z=∞

z=D

∫ x=∞

x=0

(
αu

r12 − βu

r6

)
2πxns dx dz

=
∫ z=∞

z=D
dz
∫ x=∞

x=0

[
αu(

z2 + x2
)6 − βu(

z2 + x2
)3
]

2πxns dx dz

= παuns

45D9 − πβuns

6D3 . (A1)

Here D is the distance of the fluid atom to the solid surface. We use αu and βu for a more
general case and one can have αu = 4εσ 12 and βu = 4εσ 6 as (4.1). One can see that the
gradient of this potential is a force that results in pressure variations inside the liquid such
that ∇p = −nl∇Utot (Carey & Wemhoff 2005). Therefore, the pressure inside the liquid
is

p (D) ≡ −nlUtot = πβunsnl

6D3 − παunsnl

45D9 . (A2)

The disjoining pressure φ(h) on the film surface is then p(D) evaluated at h:

φ (h) ≡ p(h) ≡ −nlUtot (h) = πβnsnl

6h3 − παnsnl

45h9 , (A3)

996 A19-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

70
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-4632-3780
https://orcid.org/0000-0003-4632-3780
https://doi.org/10.1017/jfm.2024.701


Y. Zhang

which is the h−3 − h−9 kind of disjoining pressure used in this work with different
perfectors there (see (4.3)) to account for contact angles close to the experimental values.
Though (A3) is widely used, especially in the field of fluid dynamics, one has to keep in
mind that it is an approximation (though being good) of the real disjoining pressure in
the liquid. This is because its derivations ignore the structures of liquid–vapour interfaces
or liquid–solid interfaces where the liquid density is not simply uniform (Schick 1990).
In fact, the liquid–vapour interface may contribute additional disjoining pressure in the
liquid, though it does not necessarily affect the film instability. We stress that there are two
findings here. First, the cutoff distance are often used in molecular simulations to reduce
computational costs. By doing this, the solid does not cause disjoining pressure at the
liquid–vapour interface when the film thickness is larger than the cutoff distance as there
are no interactions between the film surface and the solid substrate. Second, treating the
solid as a continuous material with density ns, which is the usual way to obtain disjoining
pressure from intermolecular potentials as shown previously, actually eliminates the drag
force from the wall to the liquid in the direction parallel to the substrate, leading to free
slip. Therefore, treating the solid as a discontinuous crystal to obtain the correct force,
especially in the x direction, is necessary. This was done by Steele (1973). The total
potential for a fluid particle (gas in Steele 1973) above a multilayer solid crystal is

Utot = 2πεgs

as

∑
α

⎧⎨
⎩q

(
2
5

σ 12
gs

z10
α

− σ 6
gs

z4
α

)
+ · · ·

+
∑
g /= 0

q∑
k=1

exp(ig · [mk + τ ])×
[
σ 12

gs

30

(
g

2zα

)5

K5 (gzα)− 2σ 6
gs

(
g

2zα

)2

K2 (gzα)

]⎫⎬
⎭ . (A4)

Here as = �2
s is the area of the unit lattice cell with a lattice spacing �s, α is the layer

number of crystal layers and zα is its location, τ is the 2-D translation vector, g is a multiple
of the reciprocal lattice vectors and m is a vector that gives the location of the kth atom in
the unit cell. Basically, Utot in (A4) can be split into two parts U0(z) and U1(xyz) (see also
Barrat & Bocquet 1999):

Utot (xyz) = U0(z)+ U1(xyz),

U0(z) = 2π

as

∑
α

{
q

(
2
5

σ 12
gs

z10
α

− σ 6
gs

z4
α

)}
,

U1(xyz) = 2πχgs

as

∑
g /= 0

q∑
k=1

exp(ig · [mk + τ ])

×
[
σ 12

gs

30

(
g

2zα

)5

K5 (gzα)− 2σ 6
gs

(
g

2zα

)2

K2 (gzα)

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A5)

In the limit of a continuous solid with number density ns, U0(z) is

U0 = 2πnsεgs

3

[
2
15

σ 12
gs

z9 − σ 6
gs

z3

]
, (A6)

which is the same as (A1). In terms of U1(xyz), considering that only the potential from
the first lattice layer and the shortest reciprocal lattice vectors is the most important (Barrat
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& Bocquet 1999; Hadjiconstantinou 2021), it can be simplified to

U1(xyz) = 2πεgs

as

[
σ 12

gs

30

(
π

�sz

)5

K5

(
2π

�s
z
)

− 2σ 6
gs

(
π

�sz

)2

K2

(
2π

�s
z
)]

×
[

cos
(

2π

�s
x
)

+ cos
(

2π

�s
y
)]
. (A7)

Finally, the potential exerted by the wall to each fluid atom that we used in the work is (the
y direction may be ignored if the simulation is (quasi-)2-D)

Utot (xz) = 2πεgs

3

[
2
15

σ 12
gs

z9 C1 − σ 6
gs

z3 C2

]
+ · · ·

+ C3
2πεgs

as

[
σ 12

gs

30

(
π

�sz

)5

K5

(
2π

�s
z
)

− 2σ 6
gs

(
π

�sz

)2

K2

(
2π

�s
z
)]

cos
(

2π

�s
x
)
,

(A8)

where we have added factors C1, C2 and C3 so that they can be tuned (C3 = 1/100 in
this work) for the slip length, disjoining pressure, and contact angles reported in literature.
More generally, we can use the function of disjoining pressure to replace the first term
in (A8), namely, the total potential U0 = −(φ(z)/nl). The force expressed in (4.2) is thus
fx = −dU1(xz)/dx (also see Barrat & Bocquet (1999) and fz = −dU0/dz . If one wants that
the slip length and disjoining pressure to be coupled, one can use (A8) with C1 = C2 =
C3 = 1 where slip length increases with contact angles but disjoining pressure decreases
with increasing slip length.
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