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Abstract
In this paper, to address the cooperative localisation of a heterogeneous UAV swarm in the GNSS-denied environ-
ment, an adaptive simulated annealing-particle swarm optimisation (SA-PSO) cooperative localisation algorithm
is proposed. Firstly, the forming principle of the communication and measurement framework is investigated in
light of a heterogeneous UAV swarm composition. Secondly, a reasonably cooperative localisation function is
established based on the proposed forming principle, which can minimise the relative localisation error with lim-
ited available information. Then, an adaptive weight principle is incorporated into the particle swarm optimisation
(PSO) for better performance. Furthermore, in order to overcome the drawbacks of PSO algorithm easily falling
into the local extreme point, an adaptive SA-PSO algorithm is improved to promote the convergence speed of
cooperative localisation. Finally, comparative simulations are performed among the adaptive SA-PSO, adaptive
PSO, and PSO algorithms to demonstrate the feasibility and superiority of the proposed adaptive SA-PSO algo-
rithm. Simulation results show that the proposed algorithm has better performance in convergence speed, and the
cooperative localisation precision can be guaranteed.

Nomenclature

N the number of UAVs in the swarm
nA the number of well-equipped UAVs
nB the number of minimum required poorly equipped UAVs
nC the number of additional poorly equipped UAVs
vk the k-th node, each UAV in the swarm is regarded as a node in the digraph
Li the i-th well-equipped UAV, which can be also expressed as vi

Mj the j-th poorly equipped UAV, which can be also expressed as vnA+j

G graph of network
V the set of UAV
E the set of edges
G the weighted adjacency matrix
GM the adjacency matrix of ranging principle
GMb the adjacency matrix of basic-structure-based ranging principle
GMa the adjacency matrix of additional-structure-based ranging principle
nb the number of UAVs containing in the basic structure
akh the adjacency weight, akh = ahk(k �= h)
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Rkh the mutual ranging between vk and vh, Rkh = Rhk(k �= h)
xk, yk, zk three dimensional coordinate position of the k-th UAV
er the upper bound of IMU drift error
x̂k, ŷk, ẑk inaccurate three dimensional coordinate position measured by IMU of the k-th UAV

1.0 Introduction
Recently, the localisation of UAV swarms in the civil and military domains has become an important
area of research [1, 2, 3, 4, 5]. Generally, depending on the combination of information from the inertial
measurement unit (IMU) and global navigation satellite system (GNSS), each UAV can offer position
information for tracking or guidance [6, 7, 8]. In a UAV swarm, each individual UAV can be regarded
as an intermediary node of communication transmission, which can process information and achieve
cooperation by a communication network. [9] Moreover, based on the UAV swarm communication
interaction, cooperative localisation realizes positioning by comprehensively using the measurement
information of each UAV, resulting in a high-precision improvement in the absence of reliable infor-
mation [10, 11, 12]. As a result, cooperative localisation, which makes full use of relative information
within a swarm, has been attracting rising interest.

Indeed, influenced by the actual battlefield or city environment, it is difficult to ensure information
acquisition and communication in a GNSS-denied environment. Usually, the information obtained by
the UAV swarm will be obscured or jammed due to electromagnetic shielding, spoofing attacks, signal
jamming, or other catastrophic GNSS failure events, resulting in divergence, collision or even failure of
cooperation. In order to achieve effective work in a GNSS-denied environment, it would be of special
interest to investigate how to ensure UAV position acquisition [13, 14, 15], and cooperative localisation
shows its potential in the GNSS-denied environment.

Nowadays, UAV networks are implemented as flying wireless sensor networks (WSNs) in most
studies. Cooperative localisation algorithms based on WSNs implementation generally formulate the
location problem as an optimisation problem. In the past several decades, tradition algorithms such
as Levenberg-Marquardt (LM) and quasi-Newton algorithm [16, 17] has been applied to solve the
WSNs cooperative localisation problem. Unfortunately, disappointing convergence speed or initial con-
ditions’ limitations prevent the applications of traditional algorithms. Therefore, various intelligent
algorithms have been widely utilised in solving optimisation problems to overcome the drawbacks of
the aforementioned traditional algorithms.

The particle swarm optimisation (PSO) algorithm is a well-known optimisation method, broadly
used over the past two decades, which is effective for the swarm cooperation [18, 19, 20, 21, 22]. The
PSO algorithm has been widely applied on WSNs to solve the cooperative localisation problem [23,
24, 25, 26, 27, 28]. Chuang et al. [23] carried out PSO-based localisation strategy based on the model
with a sufficient and insufficient number of neighbouring anchors, respectively. With the estimated posi-
tion of an unknown node and the anchors’ information, the solution of the normalised fitness function
was searched by the traditional PSO algorithm.The proposed PSO-based node localisation scheme can
reduce error accumulation and increase the success ratio in locating unknown nodes in WSNs. In order
to further improve the accuracy and efficiency of PSO algorithm, a distributed two-phase PSO algorithm
for solving the flip ambiguity problem was proposed by Li et al. [24]. The initial search space defined
by bounding box method helps to accelerate the convergence speed, and the improved PSO algorithm
can correct the error caused by the flip ambiguity problem, so as to localise more target nodes. Singh
et al. [25] incorporated hop-based evaluation into PSO algorithm to overcome the positioning errors.
Mizamir et al. [26] proposed a global best local neighbourhood PSO algorithm to improve the indoor
localisation scheme, which contains three anchors used for relative distance measurement for each node
to be localised.

Although sufficient research has been carried out on PSO-based cooperative localisation of WSNs,
some of the assumptions make the existing schemes unsuitable for a direct migration to the UAV
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swarms’ applications in the GNSS-denied environment. Therefore, a few scholars have promoted PSO-
based research on UAV localisation. Balaji et al. [29] presented a range-based localisation scheme for
multi-rotor systems in the GNSS-denied environment. the PSO algorithm was used for tuning the noise
of measurements, which were obtained by arranging the Ultra-Wideband sensors at the corners of a rect-
angle. Liu et al. [30] put forward an adaptive discrete PSO algorithm to find the global optimal solution
of the proposed scheme, which was established on the software-defined radio platform with four anchor
nodes and a server node. Compared with the traditional PSO algorithm, the improvement can ensure that
the execution time is satisfied in real-time. Based on the fast anchor UAV searching technique, Arafat
et al. [31] proposed an energy-efficient swarm-intelligence-based clustering algorithm based on the PSO
algorithm, in which the particle fitness function was exploited for inter-cluster distance, intra-cluster
distance, residual energy, and geographic location.

In the aforementioned anchor-based schemes, the demand for anchors is not conducive to applications
in the GNSS-denied environment. Especially for the confrontation mission involving the long-distance
flight and unfavourable geographical environment, it is difficult to set the fixed anchors. Even if the
anchors can work, they are easily to be broken or even denied like GNSS, not to mention the potential
cost burden. Compared with a homogeneous UAV swarm, in view of the cost demands on the military or
civilian domain, there is a growing interest in research on the cooperative localisation problem of hetero-
geneous WSNs considering the characteristics of UAVs. Usually, only a small number of well-equipped
UAVs can realize the self-positioning in the GNSS-denied environment. Most low-cost UAVs in a het-
erogeneous swarm have limited GNSS availability, and the information quality is degraded. Hence, how
to combine the limited information, swarm composition and communication network to maximise the
performance of each UAV to achieve the heterogeneous UAV swarm positioning is the key issue to be
considered in this paper. Moreover, the PSO algorithm for clustering in UAV networks has not yet been
extensively studied. Regarding the aformentioned analysis, there exist the following tor disadvantages
based on the existing research. (1) The research on the UAV swarm forming principle is insufficient. In
some engagements, UAV swarms working in the GNSS-denied environments cannot be simplified to
WSNs due to the comprehensive influence of the communication networks, swarm compositions and
flight missions. (2) The effectiveness of the PSO algorithm needs to be further improved. When solv-
ing a high-dimensional optimisation problem, the PSO algorithm easily falls into a local extreme point.
Complex calculation makes the convergence speed limited insufficient and some physical indicators
cannot be satisfied.

Therefore, based on the issue of cooperative localisation in the GNSS-denied environment, this paper
proposes an adaptive simulated annealing-particle swarm optimisation (SA-PSO) algorithm to find the
optimal position of shielded UAVs in the heterogeneous swarm by limited measurements. The main
contributions are listed as follows: (1) A two-layer forming principle for cooperative localisation is
proposed, in which the performance of each heterogeneous UAV can be brought into full play. (2) The
well-determined cooperative localisation function is established based on the forming principle. As a
result, it is reasonable to provide the basis for solving the cooperative localisation problem. (3) An
adaptive SA-PSO cooperative location algorithm for a UAV swarm is proposed, which can effectively
overcome the disadvantages of the PSO algorithm easily falling into the local extreme points, and greatly
improve the convergence speed.

The remainder of this paper is organized as follows: Section 2 establishes the two-layer forming
principle and the corresponding cooperative localisation functions. Section 3 introduces an adaptive SA-
PSO algorithm-based cooperative localisation scheme. Numerical simulations are outlined in Section 4
and conclusions are summarised in section 5.

2.0 Problem formulation
Considering a heterogeneous UAV swarm, which consists of UAVs with different performance levels,
serves the mission requirements in the GNSS-denied environment. For modelling, some assumptions
are made as follows:
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Communication Layer

Figure 1. The schematic diagram of cooperative localisation.

Assumption 1. The UAVs are treated as ideal mass points. UAVs use sensor devices, installed on their
fuselage to perform ranging, positioning calculations and data transmission.

Assumption 2. A heterogeneous swarm performs cooperative localisation in GNSS-denied environ-
ment. The well-equipped UAVs with sufficient computing capability can achieve self-positioning. Without
information from satellites, the cooperative localisation system of poorly equipped UAVs are mainly
composed of low-precision inertial measurement unit (IMU) and low-cost mutual ranging equipment,
such as inter-flight data links or onboard strap-down finders.

Assumption 3. Inter-flight mutual ranging and communication are ideal. Measurements and locali-
sation can be completed and transferred by the network in real-time, ignoring external disturbances
and transmission time. Simultaneously, the relative distance between any two UAVs cannot exceed
the coverage of the communication and measurement capabilities. Besides, the same mutual ranging
measurements do not exist in this localisation engagement.

2.1 Forming principle
Considering a GNSS-denied scenario, with the inter-flight mutual ranging, poorly equipped UAVs can
also realize localisation by cooperation. To address this challenge, a two-layer scheme is investigated
based on the composition of the heterogeneous swarm. According to their capabilities, UAVs in the
swarm are divided into two types: A-UAV can still realise the localisation in GNSS-denied environ-
ment; B-UAV, which can only utilise low-precision IMU for localisation. Correspondingly, the scheme
consists of measurement and communication layers. The two-layer schematic diagram for cooperative
localisation is shown in Fig. 1.

The set of UAV swarm in the whole network is defined asN = {1, 2, . . . , N}, where N = nA + nB + nc,
k ∈N , i ∈ 1, 2, . . . , nA and j ∈ nA + 1, . . . , N. For explanation the forming principle, some prelimi-
naries about graph theory are given. Let G = (V , E , G) be a weighted graph of order P, with V =
{v1, v2, . . . , vN}, E ⊆ V × V and G = (Gpq)P×P. A directed edge Eij in network G is denoted by the ordered
pair of nodes (vp, vq), where node vp can receive information from vq, but not another way around.

Definition 1 [32]. A network is called undirected if there is a connection between two nodes vp and vq in
G and Gpq = Gqp > 0, otherwise, Gpq = Gqp = 0(p �= q, p, q = 1, 2, . . . , N). A network is called directed
if there is a connection from vp and vq in G and Gqp > 0,otherwise, Gqp = 0(p �= q, p, q = 1, 2, . . . , N).

https://doi.org/10.1017/aer.2022.54 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.54


The Aeronautical Journal 61

(a) (b)

Figure 2. Ranging principle incorporated with composition. (a) ranging principle of structure 1 and
(b) ranging principle based on structure 2.

Definition 2 [32]. An undirected network G is complete connected if it has a connection between each
pair of distinct nodes vp and vq in G.

Definition 3 [32]. An undirected network G is strongly connected if there exists an undirected path
between any pair of distinct nodes vp and vq in G.

According to Assumption 3, following three basic forming structures are discussed

• Structure 1: nA = 1 and nB = 5.
• Structure 2: nA = 2 and nB = 3.
• Structure 3: nA ≥ 3 and nB = 1.

According to the composition of a heterogeneous swarm, the forming principle is divided into rang-
ing principle and communication networks. For each proposed composition, the ranging principle is
outlined as the principles for the basic structure and its additional structure. The diagrammatic ranging
principles for basic structures are shown in Fig. 2. Based on the measurements, the corresponding net-
work is essential to data transmission. A network supporting communication between heterogeneous
and homogeneous UAVs is given.

1. Structure 1 : 1 A-UAV and 5 minimum required B-UAVs.
Basic composition with one A-UAV L1 and the minimum required 5 B-UAVs satisfies the
following principle:
• Ranging principle of measurement layer:

The ranging principle of basic structure 1 is similar to the complete graph, as shown in
Fig. 2(a). Measure the mutual ranging between the A-UAV and each B-UAV. Besides, the
mutual ranging between any two B-UAVs needs to be measured.
The ranging principle of the additional structure requires each additional B-UAV to hold three
new ranging links. Simultaneously, the additional structure at least contains a ranging link
connected with the UAV in the basic structure.

• Cooperative network of the communication layer:
Taking the only A-UAV as the computing centre, the communication network of the L1-based
swarm is undirected and strongly connected.

2. Structure 2 : 2 A-UAVs and 3 minimum required B-UAVs.
Basic composition with two A-UAVs L1, L2 and the minimum required 3 B-UAVs satisfies the
following principle:
• Ranging principle of measurement layer:

As shown in Fig. 2(b), the mutual ranging relationships of L1 and L2 with the other three
B-UAVs satisfy undirected and complete connections, respectively.
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The ranging principle of additional structure requires each additional B-UAV to hold three
ranging links, at least one of which should be kept with the UAV in the basic structure.

• Cooperative network of communication layer:
Choose one of A-UAVs as the computing centre. At the very least, the communication
network containing the selected A-UAV and all the B-UAV should be strongly connected.
Simultaneously, there exists a directed connection from the other A-UAV to the computing
centre.

3. Structure 3 : more than three A-UAVs and 1 B-UAV.
Basic composition with A-UAVs more than three and 1 B- UAV satisfies the following principle:
• Ranging principle of measurement layer:

For any B-UAV in the heterogeneous swarm, its localisation problem can be solved if there
exist three ranging links connected to different A-UAVs in the basic structure 3.
The ranging principle of additional structure first requires that three new ranging links are
added correspondingly for each additional B-UAV. For the first additional B-UAV MnB+1, there
exist at least two ranging links connected with different A-UAVs. For the second additional
B-UAV MnB+2, at least one ranging link connected to any A-UAV is needed. When nC ≥ 3,
Mj(j = 3, . . . , nB + nC) only needs to ensure three-ranging-link principle.

• Cooperative Network of Communication layer:
Choosing one of A-UAVs as the computing centre, at the very least, the communication
network containing the selected A-UAV and all the B-UAVs should be strongly connected.
Simultaneously, there exist directed connections from the other A-UAVs to the computing
centre, which means that the computing A-UAV can obtain the complete information through
transmission.

Remark 1. In the proposed scheme, the cooperative network serves for the data transmission and cal-
culation. In the communication layer, take the selected UAV as centre node, the cooperative network
can be simplified as follows:

• There always exists a directed path from any UAV to the centre A-UAV.
• There always exists a directed path from the centre A-UAV to any B-UAV.

Hence, centre A-UAV can receive the data of swarm and send the computed localisation results to the
corresponding B-UAV after computing.

2.2 Cooperative localisation functions
Based on the above compositions of the heterogeneous swarm, the forming principle are given for ensur-
ing the data transmission and adequate information for localisation. Accordingly, the cooperative relative
localisation functions are established and the fitness function is selected.

To describe the ranging principle as undirected graph GM, the basic structure based ranging principle
is given as follows

GMb = [ahk]nb×nb =
[

0nA×nA 1nA×nB

1nB×nA 1nB×nB − InB×nB

]
(1)

and the additional structure based ranging principle of vk is given as follows

GMa(1:(k − 1), k) = [ahk](k−1)×1 , (k > nb, k > h, h = 1, 2, . . . , k − 1) (2)

where nb = nA + nB, and if the mutual ranging between vk and vj needs to be measured, then the adjacency
weight ahk = akh = 1(k �= h), otherwise, ahk = akh = 0. Hence, GM is expressed as
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GMb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0nA×nA 1nA×nB GMa (1 : nA, nb + 1) . . . GMa (1 : nA, N)

1nB×nA 1nB×nB − InB×nB GMa [(nA + 1) : (nb) , nb + 1] . . . GMa [(nA + 1) : (nb) , N]

GT
Ma (1 : nA, nb + 1) GT

Ma [(nA + 1) : (nb) , nb + 1] 0 . . . anb+1,k

...
...

...
. . .

...

GT
Ma (1 : nA, N) GT

Ma [(nA + 1) : (nb) , N] ak,nb+1 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Thus, let X = [x(nA+1), y(nA+1), z(nA+1), . . . , xk, yk, zk, . . . , xN , yN , zN]T ∈ N3(nB+nC ),the cooperative locali-
sation function is described as follows

F(X) = [fhk]3(nB+nC )×1 = 0, k = nA + 1, . . . , N where k > h and ahk = 1 (4)

with

fhk =
√

(xk − xh)
2 + (yk − yh)

2 + (zk − zh)
2 − Rhk (5)

Remark 2. Based on Assumption 3, ranging principle of the measurement layer is established, where
the number of localisation functions is equal to the number of position coordinates to be solved. When the
number of well-equipped A-UAVs is given, the basic structure can ensure that the number of functions
is the same as the number of state variables. Furthermore, as the basically additional ranging principle
requires, the additional structure with each UAV holding three new ranging links means that the number
of swarm localisation functions satisfies the following equation:

nA × nB +
nB−1∑
p=1

p + 3 × nC = 3 × (nB + nC) (6)

Sufficient and non-repetitive measurements can avoid the existence problem of the overdetermined or
underdetermined equations. Therefore, the equation set constructed by the localisation functions is well-
determined and has a solution.

In the cooperative localisation engagement, with known upper bound of IMU drift error er, the
measurements transmitted to the centre A-UAV are divided into three types:

• position coordinates of A-UAVs: [xk, yk, zk], k = 1, 2, . . . , nA;
• mutual ranging based on the ranging principle: Rhk, k = nA + 1, . . . , N, k > h;
• inaccurate position coordinates measured by IMU [x̂k, ŷk, ẑk], k = nA + 1, . . . , N.

Therefore, the localisation problem can be transformed into how to find a solution to minimize the
error effectively. we define the fitness function as follows

Fmax = max (|fhk|), k = nA + 1, . . . , N where k > h and ahk = 1 (7)

Remark 3. Generally, it is difficult to search for the exact solutions in practical engineering. Hence, the
cooperative localisation problem is usually solved within the allowable accuracy range Pe. For relatively
accurate integrated navigation relying on the GNSS, the localisation error is usually on the order of
ten metres. In order to improve the accuracy of localisation, setting a smaller Pe will be beneficial.
Nevertheless, to meet the navigation update requirements, comprehensively considering the balance
between localisation accuracy and computing time is needed.

3.0 Cooperative localisation scheme
In this section, subject to the localisation functions and the fitness function, an improved PSO-based
swarm intelligence algorithm is proposed to minimise the ranging error. As a preliminary, the PSO
algorithm is briefly introduced. Then, an adaptive improvement is made to speed up the PSO algorithm.
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Figure 3. Particle motion diagram of the PSO algorithm.

Furthermore, in order to overcome the drawbacks of falling into local extreme point easily in tradi-
tional PSO algorithm, as well as improve the search accuracy and convergence speed, an adaptive
SA-PSO algorithm is proposed based on a combination of SA and adaptive PSO algorithms. Finally,
the cooperative localisation method based on the proposed SA-PSO algorithm is presented.

3.1 PSO algorithm
Practical swarm optimisation (PSO) algorithm is one of swarm intelligence algorithms. Inspired by the
social behaviour of birds, the PSO algorithm was first proposed by James Kennedy and Russell Eherhart
[18, 19]. Each single particle represents a bird and the birds flocked around a ‘roost’. Similar to birds
looking for attractive food, the particle searches for the global optimal space. To implement the concept,
the position of each particle is updated based on the social behaviour of a population of individuals
that adapts to its environment by returning to previously discovered promising regions. The process is
stochastic in nature and makes use of the memory of each particle, as well as the knowledge gained by the
swarm as a whole. Firstly, initialise a set of particles randomly distributed throughout the design space,
in which the position of each particle is a feasible solution. Then, the fitness value of the k-th particle
can be recorded in the process of iterating, and the optimal fitness value of previous iterations will be
memorised, which is called the individual extreme value(pbest). Simultaneously, other particles exchange
information with each other to find the global extreme value (gbest), which represents an optimal value
among all particles in the current iteration process. Finally, influenced by the memory of two extreme
values, the dynamical update is made for the speed of the next iteration, which drives the particles to
move closer to the best point.

The schematic diagram of particle motion is shown in Fig. 3.
The attributes of each particle include position, speed and fitness function. Suppose a group P

composed of P particles in the D-dimensional search space, where the position of q-th particle is
pq = (pq1, pq2, . . . , pqd, . . . , pqD)T , the speed is expressed as Sq = (sq1, sq2, . . . , sqd, . . . , sqD)T , the fitness
function is defined as fpq and the number of iterations is iter ∈ [1, 2, . . . , I]. In the iterative process of
the PSO algorithm, the calculation formulas of the velocity and position are described as follows,{

sqd(iter + 1) = wsqd(iter) + c1r1

(
pbest,d − pqd(iter)

) + c2r2

(
gbest,d − pqd(iter)

)
pqd(iter + 1) = pqd(iter) + sqd(iter)

(8)

where w represents the weight of inertia, c1 and c2 are non-negative constants, r1 and r2 are random
numbers and obey the uniform distribution on [0,1]. Denote smax as the bounds of particle search range
and the speed sqd ∈ [−smax, smax].

The weight of inertia w in the PSO algorithm adjusts with the number of iteration as follows

w(iter) = wmax − iter

I (wmax − wmin) (9)

where wmax and wmin are upper and lower bounds of the weight on [0,1].
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Figure 4. Diagram of the PSO algorithm.

The outline of a basic PSO algorithm is given in the Fig. 4.

3.2 Adaptive weight for the PSO algorithm
In view of the weak convergence speed of the PSO algorithm, an adaptive weight is introduced as a
further improvement. An adjustable parameter β is added into it to adjust the inertia weight factor w and
the acceleration factors c1 and c2 in real-time. The adaptive principle is described as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(iter) =
∑P

q=1

√∑D
d=1

[
pqd(iter) − gbest,d(iter)

]2

N

β(iter) = α(iter)

max (α)
w(iter) = β(iter)

c1(iter) = 2 × β(iter)

c2(iter) = 2 − c1(iter)

(10)

Remark 4. Based onthe adaptive principle, the w, c1 and c2 are simultaneously controlled by β. The
adaptive improvement can promote the convergence speed. At the beginning, c1 is bigger than c2, which
means that the errors with individual optimum play a more important role. With iter increasing and w
and β decreasing, c1 decreases and c2 increases, correspondingly.

3.3 Adaptive SA-PSO algorithm-based cooperative localisation
In order to further improve the performance of the adaptive PSO algorithm, a simulated annealing(SA)
is introduced to it.

Although the convergence speed is improved by the adaptive-improved PSO algorithm, limited by
the inner characteristic of the PSO algorithm, falling into a local extreme point is an inevitable problem
in the calculation process. Particles may converge to the minimum value prematurely during the search
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Figure 5. The diagram of cooperative localisation based on adaptive SA-PSO algorithm.

process, and falling into the local extreme point easily will lead to an obvious reduction of global search
ability.

The SA algorithm faces the drawbacks of relying too much on the process of cooling. On the other
hand, if global convergence is achieved, harsher temperature-limiting conditions are required, which
leads to a reduction of optimisation efficiency.

On the other hand, the SA algorithm is a heuristic algorithm that allows a solution worse than the
current one in a certain probable situation. Thus, it is possible for the SA algorithm to break away from
the local optimal solution to obtain the global optimal solution, which can effectively overcome the
aforementioned disadvantage of the PSO algorithm.

Therefore, combined with the adaptive weight, the SA and the PSO, the proposed algorithm will
not only improve the local optimisation of the cooperative localisation problem but also realize the
requirement for high efficiency. The diagram of cooperative localisation based on adaptive SA-PSO
algorithm is given in Fig. 5.

The adaptive SA-PSO algorithm for cooperative localisation is proposed as follows:

1. Data collection. Transmit the necessary data to the centre A-UAV by forming principle organ-
ised in Section 2.1. The data includes the positions of A-UAVs, the mutual ranging, inaccurate
positions of B-UAVs measured by IMU and the upper bound of IMU drift error.

2. Parameter initialisation. Initialise the following parameters: population size P, maximum number
of iterations I, speed limitation smax, initial weight w and initial acceleration factors c1 and c2.

3. Population initialisation. Initialise the states on the basis of inaccurate localisation measurements
[x̂, ŷ, ẑ] and the upper bound of IMU drift error er.

4. Fitness calculation. Evaluate the fitness values of each particle and swarm. The current particle’s
position and fitness value are stored in γq. Store the individual optimum pbest and global optimum
gbest.

5. Temperature initialisation. Initialise the annealing temperature t(0) as

t(0) = Fmax(pbest)

ln5
(11)

6. Temperature calculation.

tF

(
γq

) = e−(Fmax(γq)−Fmax(pbest))/t(iter−1)∑P
q=1 e−(Fmax(γq)−Fmax(pbest))/t(iter−1)

(12)
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7. Cumulative probability calculation. Calculate the cumulative probability of each individual

TF(q) =
q∑

l=1

tF (γl) (13)

8. Roulette judgement. Apply the roulette rule to determine the global optimal, substitute value p∗
best

from all the pbest. Generate a random number ε ∈ [0, 1], if ε < TF(1), the first particle is chosen;
else if TF(q − 1) < r < TF(q), the q-th particle is chosen.

9. States updating. Update the states of each particle according to Equations (8) and (10).
10. Temperature reduction. Apply the attenuation coefficient method to realise the temperature-

reducing process as

t(iter + 1) = 0.4t(iter) (14)

11. Judgement. Stop the optimisation process and output the localisation results when the ter-
mination conditions are satisfied; otherwise, return to Step 6 and continue the optimisation
search.

4.0 Simulation
In this section, the effectiveness of the proposed adaptive SA-PSO cooperative relative localisation
algorithm was demonstrated. Subject to various engagements, two aspects of the proposed cooperative
localisation algorithm are verified: the expandability of the forming principle and the superiority of the
adaptive SA-PSO algorithm. For simplification, the expressions of three PSO algorithms are abbreviated
in the legend as ‘PSO’, ‘APSO’ and ‘SAPSO’, respectively.

4.1 Simulation of basic forming structure
In the case of solving the localisation problem by forming principle of three basic structures, comparative
experiments were conducted with the PSO algorithm to verify the feasibility and superiority of the
proposed adaptive SA-PSO cooperative relative localisation algorithm.

4.1.1 Simulation of basic forming structure 1
In this GNSS-degraded engagement, 5 poorly equipped UAVs’ integrated navigation lost the GNSS
information for a period of time. According to the performance of the equipped IMU, the upper bound
of the drift errors in this interrupted time period is er = 60m.

Generate randomly the IMU measurements within a reasonable range, the initial conditions are listed
in Table 1.

Hence, according to Equation (1) the symmetric matrix of mutual ranging can be measured as follows,

Rideal =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 6, 473.634 8, 594.780 6, 547.223 9, 045.309 9, 646.087

. . . 0 5, 081.110 5, 624.563 9, 178.430 7, 455.768

. . . 0 2, 891.439 6, 338.085 4, 816.879

. . . 0 4, 646.996 4, 689.856

. . . 0 3, 407.461

. . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

Choose the common parameters as P = 120, I = 800, Vmax = 60 and Pe = 1m. Since all randomly
generated particles are located in a spherical space, so we took IMU measurements [x̂, ŷ, ẑ] as centre
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Table 1. Initial conditions of Case 4.1.1

UAV L1 M2 M3

Location Real IMU Real IMU Real IMU
x (m) 10,000 10,000 5,210 5,220.376 1,610 1,604.161
y (m) 4,000 4,000 600 619.332 2,200 2,206.999
z (m) 3,500 3,500 6,221 6,222.141 3,012 3,035.729
IMU error (m) 0 21.9698 25.4195
UAV M4 M5 M6

Location Real IMU Real IMU Real IMU
x (m) 3,600 3,599.323 2,200 2,194.916 810 803.392
y (m) 4,100 4,073.017 8,500 8,459.953 6,500 6,522.442
z (m) 2,123 2,134.194 2,647 2,669.544 5,030 5,042.630
IMU error (m) 29.2205 46.2366 26.586

(a) (b)

Figure 6. Optimisation results of basic structure 1. (a) Fitness value, and (b) adaptive acceleration
factors.

and er as radius. The initial pbest started from the IMU measurements. The constant parameters of PSO
algorithm were designed as wmax = 0.8, wmin = 0.6 and c1 = c2 = 1.49445.

The simulation results are shown in Fig. 6.
The cooperative localisation results of basic structure 1 are shown in Table 2.

4.1.2 Simulation of basic forming structure 2
Similar to the Section 4.1.1, when er = 80m, A-UAVs L1 and L2 locate in (3,000m, 6,000m, 3,500m)
and (4,000m, 4,500m, 3,000m), the initial conditions of B-UAVs were listed in Table 3.

According to Equation (1), the symmetric matrix of the measured mutual ranging was given as
follows,

Rideal =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 2, 348.583 5, 025.350 3, 790.795

0 0 2, 989.455 3, 586.941 3, 239.310

. . . 0 4, 391.319 2, 146.067

. . . 0 2, 755.054

. . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(16)
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Table 2. Localisation results of Case 4.1.1

Algorithm M2 M3 M4 M5 M6
PSO x (m) 5, 212.860 1, 609.267 3, 597.887 2, 198.806 811.834

y (m) 600.174 2, 196.405 4, 095.156 8, 496.434 6, 500.033
z (m) 6, 227.762 3, 022.218 2, 128.055 2, 647.306 5, 034.912
Error (m) 7.344 10.857 7.313 3.773 5.243
Iteration 299
Time (s) 0.76629

APSO x (m) 5, 212.604 1, 609.636 3, 598.806 2, 200.515 813.405
y (m) 599.732 2, 202.801 4, 101.712 8, 502.529 6, 502.698
z (m) 6, 225.001 3, 020.753 2, 130.758 2, 656.416 5, 039.931
Error (m) 4.781 9.198 8.034 9.764 10.839
Iteration 44
Time (s) 0.15269

SAPSO x (m) 5, 214.286 1, 610.438 3, 599.893 2, 196.632 810.651
y (m) 596.505 2, 195.221 4, 095.774 8, 494.455 6, 495.512
z (m) 6, 223.485 3, 017.291 2, 125.410 2, 649.827 5, 034.952
Error (m) 6.063 7.143 4.867 7.077 6.715
Iteration 29
Time (s) 0.077968

Table 3. Initial conditions of Case 4.1.2

B-UAV M3 M4 M5

Location Real IMU Real IMU Real IMU
x (m) 1,200 1,182.605 3,000 3,000.633 1,600 1,544.047
y (m) 5,200 5,181.980 1,200 1,230.547 3,400 3,379.706
z (m) 2,221 2,222.788 2,012 2,014.430 1,123 1,127.309
IMU error (m) 25.1096 30.6504 59.6754

Some parameters were selected as P = 100 and I = 500. The simulation results are shown in the
Fig. 7 and Table 4.

4.1.3 Simulation of basic forming structure 3
In this case, the only B-UAV M4 is located at (1,200m, 1,200m, 2,221m). The known IMU drift error er

is less than 70m and the measured location is (1,203.759m, 1,262.639m, 2,226.235m). The A-UAVs L1,
L2 and L3 are located at (2,000m, 4,000m, 3,500m), (3,000m, 4,500m, 3,000m) and (4,000m, 3,400m,
4,000m), respectively. The number of particles and iterations were set as 30 and 100. Pe was chosen as
0.001m.

According to Equation (1), the symmetric matrix of the measured mutual ranging was given as
follows,

Rideal =

⎡
⎢⎢⎢⎢⎣

0 0 0 3, 180.541

0 0 0 3, 838.859

0 0 0 3, 980.558

3, 180.541 3, 838.859 3, 980.558 0

⎤
⎥⎥⎥⎥⎦ (17)
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Table 4. Localisation results of Case 4.1.2

Algorithm M3 M4 M5
PSO x (m) 1, 196.470 3, 005.076 1, 596.427

y (m) 5, 194.429 1, 198.509 3, 395.160
z (m) 2, 227.945 2, 014.443 1, 129.261
Error (m) 9.577 5.827 8.683
Iteration 97
Time (s) 0.1947

APSO x (m) 1, 200.458 3, 004.752 1, 599.229
y (m) 5, 197.453 1, 198.411 3, 394.613
z (m) 2, 220.388 2, 014.477 1, 127.813
Error (m) 2.659 5.589 7.265
Iteration 17
Time (s) 0.031921

SAPSO x (m) 1, 199.551 3, 002.661 1, 599.228
y (m) 5, 199.599 1, 200.629 3, 399.752
z (m) 2, 221.722 2, 007.403 1, 123.288
Error (m) 0.940 5.349 0.860
Iteration 10
Time (s) 0.020603

(a) (b)

Figure 7. Optimisation results of basic structure 2. (a) Fitness value, and (b) adaptive acceleration
factors.

The simulation results are shown in the Fig. 8. The calculation time of three algorithms are 0.0476,
0.0174 and 0.0096s, respectively.

4.1.4 Simulation analysis of basic forming principle
Based on the above simulations, the effectiveness of the proposed cooperative relative localisation
scheme for basic structure is demonstrated. In the GNSS-degraded environment, the heterogeneous UAV
swarm can realise cooperative localisation with the forming principle established on the composition.
With the ranging principle and communication network, the cooperative localisation problem can be
solved through limited information. Obviously, when termination condition Fmax < Pe is satisfied, the
maximum localisation error is less than 11m which satisfies the individual accuracy within 15m.

The SA-PSO cooperative localisation algorithm shows a performance advantage in terms of comput-
ing speed. The computing speed of the proposed adaptive SA-PSO algorithm increases significantly. In
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(a) (b)

Figure 8. Optimisation results of basic structure 3. (a) Fitness value, and (b) adaptive acceleration
factors.

the first and second case, the convergence speed of the proposed adaptive SA-PSO algorithm increases
by over 10-fold compared with traditional PSO algorithm and over 1.5-fold compared with APSO algo-
rithm. For the reduction of variables to be solved, the acceleration of computing speed is significant. In
the third case, with a higher termination condition, SA-PSO algorithm realises the convergence within
10ms. The convergence speed of SA-PSO algorithm is more than 1.5 times higher than that of APSO
algorithm and nearly 3.5 times higher than that of the PSO algorithm.

4.2 Simulation of additional forming structure
Based on the simulation of basic structure, the expandability of proposed ranging principle for additional
structure is demonstrated in this section.

4.2.1 Simulation of the general additional ranging principle
For the additional ranging principle, the general basic condition requires three unrepeated ranging links.

Take Structure 2 for example, the applicability of additional principle is verified in this simulation.
The common parameters were given as P = 100, I = 800 and Vmax = 60.
The real position conditions of basic structure are same as that in Section 4.1.2. One addi-

tional B-UAV located in (2,000m, 2,500m, 4,828m) was added. The additional-structure-based rang-
ing connection is GMa = [0;0;1;1;1;0].With er = 70m, generate randomly the IMU measurements at
(2,017.054m, 2,474.198m, 4,851.443m) and the corresponding mutual ranging matrix is measured as
follows,

Rideal =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 2, 348.583 5, 025.350 3, 790.795 0

0 0 2, 989.455 3, 586.941 3, 239.310 0

. . . 0 4, 391.319 2, 146.067 3, 837.506

. . . 0 2, 755.054 3, 258.812

. . . 0 3, 833.670

. . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

The simulation results are shown in the Fig. 9 and Table 5.
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Table 5. Localisation results of Case 4.2.1

B-UAV IMU error (m) PSO (m) APSO (m) SAPSO (m)
M3 68.880 3.382 6.572 2.701
M4 25.182 8.571 5.379 6.573
M5 29.107 7.269 6.378 5.069
M6 43.954 7.589 8.570 3.706
Convergence speed Iteration 175 21 15

Computing time (s) 0.45763 0.057287 0.042553

(a) (b)

Figure 9. Optimisation results of additional structure based on structure 2. (a) Fitness value, and (b)
adaptive acceleration factors.

4.2.2 Simulation of the additional ranging principle for Structure 3
According to the ranging principle of structure 3, the first two additional B-UAVs are required to satisfy
the corresponding ranging connection. With the conditions in Section 4.1.3, the cases were given as
follows,

• Case 1 : one additional UAV

Parameter selection: N = 100, I = 800, Vmax = 60, Pe = 0.5m, er = 70m.

M5 is located at (2,000m, 1,500m, 1,828m) and GT
Ma = [1 0 1 1 0].

• Case 2 : two additional UAVs

Parameter selection: N = 100, I = 800, Vmax = 60, Pe = 0.5m, er = 70m.

M6 is located at (1,700m, 1,600m, 1,320m) and GT
Ma =

[
1 0 1 1 0 0
0 1 0 1 1 0

]
.

• Case 3 : three additional UAVs

Parameter selection: N = 120, I = 800, Vmax = 80,, Pe = 1m, er = 60m.

M7 is located at (2,600m, 1,123m, 3,400m) and GT
Ma =

⎡
⎢⎣

0 1 1 1 0 0 0

0 1 0 1 1 0 0

0 0 0 1 1 1 0

⎤
⎥⎦.

The simulation results are shown in the Tables 6–8.
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Table 6. Localisation results of additional Case 1

B-UAV IMU error (m) PSO (m) APSO (m) SAPSO (m)
M4 40.318 3.778 4.171 2.449
M5 23.470 3.196 4.814 2.427
Convergence index Iteration 236 36 18

Computing time (s) 0.65157 0.078556 0.042314

Table 7. Localisation results of additional Case 2

B-UAV IMU error (m) PSO (m) APSO (m) SAPSO (m)
M4 23.454 4.146 1.136 1.433
M5 63.777 4.722 1.830 1.545
M6 22.966 4.571 1.440 3.813
Convergence index Iteration 493 25 18

Computing time (s) 1.9568 0.08204 0.061308

Table 8. Localisation results of additional Case 3

B-UAV IMU error (m) PSO (m) APSO (m) SAPSO (m)
M4 35.811 8.388 2.571 2.186
M5 49.587 7.772 1.936 1.988
M6 45.822 9.317 0.951 1.655
M7 32.009 4.837 8.039 1.991
Convergence index Iteration 383 26 20

Computing time (s) 2.1353 0.15237 0.14103

4.2.3 Simulation analysis of additional ranging principle
In these simulations, the additional ranging principle was verified. Theoretically, the well-determined
cooperative localisation function ensures the existence of the solution. Through simulation verification,
the expandability of the proposed cooperative relative localisation scheme is ensured by the addi-
tional ranging principle. Even though the scale of the heterogeneous swarm is enlarged, the localisation
problem can be solved with limited measurements.

The simulation results also show the superiority of adaptive SA-PSO cooperative localisation algo-
rithm. With the scale expansion, the complexity of the localisation problem grows rapidly, which
challenges the performance of the computer. As the case for the additional principle shown in this sec-
tion, the new additional UAV extends the calculation time of the PSO algorithm twice times than that
of basic structure. According to the three cases of expanded Structure 3, the calculation time of the
PSO algorithm exceeds the update capability of the UAV and more time is consumed with the quantity
of additional B-UAV increasing. The convergence speed of the proposed adaptive SA-PSO algorithm
is promoted over 10-fold compared with traditional PSO algorithm and over 1.3-fold compared with
APSO algorithm.

Hence, combined with the composition design of heterogeneous swarm, the cooperative localisation
problem can be solved with the proposed ranging principle. Simultaneously, the better convergence
capability of SA-PSO cooperative localisation algorithm benefits to the applications.

5.0 Conclusion
In this paper, we have first established a composition-based forming principle for the cooperative local-
isation problem. Then, according to the proposed forming principle, an adaptive SA-PSO algorithm has
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been proposed to improve the convergence speed of cooperative localisation. The main contributions
can be drawn as:

1. A two-layer forming principle is investigated. Comprehensively considering the communication
and measurement, the principle helps to make full use of the performance of a heterogeneous
UAV swarm.

2. Based on the proposed forming principle, the cooperative localisation problem is transformed
into an optimisation problem. The expandability of the proposed forming principle can be
guaranteed by the correspondingly well-determined equations.

3. The proposed adaptive SA-PSO algorithm can solve the cooperative localisation problem effec-
tively and quickly. Simulation results demonstrate that the localisation precision can be ensured
with a maximum single error less than 8m. Simultaneously, the convergence speed of the
proposed algorithm can be promoted more than 10 times compared with the PSO algorithm.

In the future, we will study the cooperative localisation problem with more practical factors, such as
the time-delay and disturbances on transmission, communication restrictions and UAV dynamics.
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