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We develop a Thom–Mather theory of frontals analogous to Ishikawa’s theory of
deformations of Legendrian singularities but at the frontal level, avoiding the use of
the contact setting. In particular, we define concepts like frontal stability, versality of
frontal unfoldings or frontal codimension. We prove several characterizations of
stability, including a frontal Mather–Gaffney criterion, and of versality. We then
define the method of reduction with which we show how to construct frontal versal
unfoldings of plane curves and show how to construct stable unfoldings of corank 1
frontals with isolated instability which are not necessarily versal. We prove a frontal
version of Mond’s conjecture in dimension 1. Finally, we classify stable frontal
multigerms and give a complete classification of corank 1 stable frontals from
C3 to C4.
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1. Introduction

The study of frontal mappings has flourished rapidly in the last decade. Roughly
speaking, a frontal is a mapping f : N → Z where N and Z are n and (n+ 1)-
dimensional manifolds such that the image of N has a well-defined tangent
hyperplane at each point. More precisely, f is a frontal if it admits a Legendrian
lift f̃ : N → PT ∗Z such that f = π ◦ f̃ , where π is the canonical fibration. When
the Legendrian lift is an immersion, we say that f is a wave front. The concept
of frontals was first introduced by Fujimori et al. in [7] (see also [29]) and since

© The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society
of Edinburgh. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
re-use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1204https://doi.org/10.1017/prm.2023.55 Published online by Cambridge University Press

mailto:Christian.Munoz@uv.es
https://orcid.org/0000-0001-6725-541X
mailto:Juan.Nuno@uv.es
https://orcid.org/0000-0002-5652-7982
mailto:Raul.Oset@uv.es
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/prm.2023.55&domain=pdf
https://doi.org/10.1017/prm.2023.55


Deformations of corank 1 frontals 1205

then it has been of great interest to differential geometers, singularists and con-
tact topologists. The fact of having a well-defined normal at each point allows one
to study differential geometric properties and invariants in singular spaces [4, 16,
21, 24, 25], on the other hand, when studying contact and symplectic topology
front singularities are unavoidable [3] and understanding the generic (or stable)
situations is crucial.

In [14], Ishikawa developed the analogue of the Thom–Mather theory for corank
1 Legendrian singularities and he stated the main notions like infinitesimal defor-
mations, stability, versality, etc. Our purpose in this paper is to construct a
Thom–Mather theory of singularities of frontals, but downstairs, at the level
of frontals, and thus, avoiding the use of the contact setting. In particular, we
consider deformations that come from unfoldings F of the frontal f . We show
that such unfoldings F come from a deformation of its Legendrian lift f̃ if and
only if F is frontal as a mapping. Taking local charts of N and Z, we study
map germs f : (Kn, S) → (Kn+1, 0) under A -equivalence, i.e. smooth changes of
coordinates in source and target. Here, smooth means C∞ when K = R or holo-
morphic when K = C. The case of frontal surfaces (n = 2) was studied in a previous
paper [22] where analytic/toplogical invariants were defined and characterista-
tions of finite frontal codimension were given, amongst other interesting results
on surfaces, using some of the definitions and results that will be given in this
paper.

In § 3, we define the concept of frontal stability and versality. We define a frontal
codimension and prove that a frontal is stable if and only if it has frontal codimen-
sion 0. We also give a characterization of versality analogous to Mather’s versality
theorem. Section 4 gives a geometric criterion for stability, a frontal Mather–Gaffney
criterion which states that a frontal is stable if and only if it has isolated instability.
Sections 5 and 6 are devoted to show how to construct stable frontals as frontal
versal unfoldings of plane curves or as a well-defined sum of frontal unfoldings. We
define the frontal reduction of an Ae-versal unfolding of a plane curve and prove
that it is, in fact, a versal frontal unfolding. As a by-product, we relate the frontal
codimension of a plane curve with its Ae-codimension and prove the frontal Mond
conjecture (stated in [22]) in dimension 1, which says that the frontal codimen-
sion is less than or equal to the frontal Milnor number (the number of spheres
in a stable deformation) with equality if the germ is quasi-homogeneous. We also
give a method to construct stable unfoldings which are not necessarily versal. We
then turn our attention to characterizing stability of frontal multigerms defining a
frontal Kodaira–Spencer map which also yields a tangent space to the iso-singular
locus (the manifold along which the frontal is trivial). Finally, we use our methods
to obtain a complete list of stable 3-dimensional frontals in C4. Note that generic
wave fronts were classified by Arnol’d in [1] and, on the other hand, Ishikawa clas-
sified stable Legendrian maps (which may have different projected frontals), but,
until now, a complete classification of stable frontals was only known for n = 1 [1]
and n = 2 [23].

For technical reasons in order to use Ishikawa’s results, we restrict ourselves to
the case of frontals whose Legendrian lift has corank 1.
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2. Frontal map germs

Let W be a smooth manifold of dimension 2n+ 1. A field of hyperplanes Δ over W
is a contact structure for W if, for all w ∈W , there exist an open neighbourhood
U ⊆W of w and a σ ∈ Ω1(U) such that

(1) rkσw = 1;

(2) the fibre Δw of Δ at w is kerσw;

(3) (σ ∧ dσ∧ (n). . . ∧dσ)w �= 0.

We call σ the local contact form of W , and define a contact manifold as a pair
(W,Δ), where Δ is a contact structure on W . Given a smooth manifold Z of
dimension n+ 1, a locally trivial fibration π : W → Z is a Legendrian fibration
for (W,Δ) if, for all w ∈W ,

(dπw)−1(Tπ(w)Z) ⊆ kerσw.

Example 2.1. Let W = PT ∗Z be the projectivized cotangent bundle of a smooth
manifold Z, and (z, [ω]) ∈W . We set for i = 1, . . . , n+ 1 the open subset Ui =
{(z, [ω] ∈ PT ∗Z : ωi �= 0)}, and define over Ui the differential 1-form

α =
ω1

ωi
dz1 + · · · + dzi + · · · + ωn+1

ωi
dzn+1.

The field of hyperplanes Δ given by Δw = kerαw defines a contact structure over
W , under which the canonical projection W → Z is a Legendrian fibration.

Definition 2.2. Let π : W → Z, π′ : W ′ → Z ′ be Legendrian fibrations. A diffeo-
morphism Ψ: W →W ′ between contact manifolds is

(1) a contactomorphism, if Δ′ = dΨ(Δ);

(2) a Legendrian diffeomorphism if it is a contactomorphism and there exists
a diffeomorphism ψ : Z → Z ′ such that ψ ◦ π = π′ ◦ Ψ.

We say W is contactomorphic to W ′ if there is a contactomorphism Ψ: W →W ′.

A well-known result by Darboux states that any two contact manifolds W,W ′

of the same dimension admit a local diffeomorphism Ψ: W →W ′ such that
Δ′ = dΨ(Δ) (see e.g. [27], § 20.1). In particular, if dimW = 2n+ 1, W is locally
contactomorphic to the contact manifold described in example 2.1; therefore, we
can restrict ourselves to the setting given in example 2.1.

Let N ⊆ Kn+1 be an open subset. A mapping F : N → PT ∗Kn+1 is integral if,
for all x ∈ N , dFx(TxN) ⊆ ΔF (x).

Definition 2.3. A smooth mapping f : Nn → Zn+1 is frontal if there exist an
integral mapping F : N → PT ∗Z and a Legendrian fibration π : PT ∗Z → Z such
that f = π ◦ F . If F is an immersion, we say f is a wave front. Similarly, the
image X = f(N) of a frontal mapping f : N → Z (resp. a wave front) is also called
a frontal (resp. wave front) in Z.

https://doi.org/10.1017/prm.2023.55 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.55


Deformations of corank 1 frontals 1207

Definition 2.4. Let S ⊂ N be a finite set. A smooth multigerm f : (N,S) → (Z, 0)
is frontal (resp. wave front) if it has a frontal (resp. wave front) representative
f : N → Z. Similarly, a set germ (X, 0) with X ⊂ Z is frontal (resp. wave front)
if it has a frontal (resp. wave front) representative.

Let F : N → PT ∗Kn+1 be an integral map and f = π ◦ F : there exist
ν1, . . . , νn+1 ∈ On such that

0 = F ∗α =
n+1∑
i=1

ν1 d(Zi ◦ f) =
n+1∑
i=1

n∑
j=1

νi
∂fi
∂xj

dxj , (2.1)

where Z1, . . . , Zn+1 are coordinates for Kn+1. Setting ν = ν1 dZ1 + · · · +
νn+1 dZn+1, this is equivalent to ν(df ◦ ξ) = 0 for all ξ ∈ θn. Since PT ∗Kn+1 is
a locally trivial fibration, we can find for each pair (z, [ω]) ∈ PT ∗Kn+1 an open
neighbourhood Z ⊂ Kn+1 of z and an open U ⊆ KPn+1 such that π−1(Z) ∼= Z × U .
Therefore, F is contact equivalent to the mapping f̃(x) = (f(x), [νx]), known as the
Nash lift of f .

If we assume that Σ(f) is nowhere dense in N , the differential form ν is uniquely
determined by f , giving us a one-to-one correspondence between f and f̃ . Such a
frontal map is known as a proper frontal map (according to Ishikawa [15]). We
also define the integral corank of a proper frontal as the corank of its Nash lift.

For the rest of this article, we shall assume all frontal map germs are proper. Note
that the notion of topological properness (i.e. the preimage of a compact subset is
compact) is not used throughout this article.

Example 2.5. Let f : (Kn, 0) → (Kn+1, 0) be the smooth map germ given by

f(x1, . . . , xn) = (x2
1, . . . , x

2
n, 2x

p1
1 + · · · + 2xpn

n ); p1, . . . , pn > 1

It is easy to see that f has corank n and the singular set Σ(f) is nowhere dense
in Kn. Furthermore, the assumption that p1, . . . , pn > 1 implies that the Jacobian
ideal of f is generated by x1x2 . . . xn, and thus it is a proper frontal map germ by
proposition 2.6 below. In particular, the differential 1-form

ν(x1,...,xn) = p1x
p1−2
1 dX1 + · · · + pnx

pn−2
n dXn − dXn+1,

verifies that ν(df ◦ ξ) = 0 for all ξ ∈ θn, and has corank equal to the number of
pi that are greater than 3. Therefore, the integral corank of f is also equal to the
number of pi greater than 3. In particular, f is a wave front when all pi are equal
to 3.

Proposition 2.6 [15], lemma 2.3. Let f : (Kn, S) → (Kn+1, 0) be a map germ. If f
is frontal, then the Jacobian ideal Jf of f is principal (i.e. it is generated by a single
element). Conversely, if Jf is principal and Σ(f) is nowhere dense in (Kn, S), then
f is a proper frontal map germ.
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If f has corank 1, we may choose local coordinates in the source and target such
that

f(x, y) = (x, p(x, y), q(x, y)); x ∈ Kn−1, y ∈ K (2.2)

in which case Jf is the ideal generated by py and qy, and we recover the following
criterion by Nuño-Ballesteros [23]:

Corollary 2.7. Let f : (Kn, S) → (Kn+1, 0) be a frontal map germ of corank 1,
and choose coordinates in the source and target such that f is given as in equation
(2.2). Then f is a frontal map germ if and only if either py|qy or qy|py.

We shall say that f is in prenormal form if it is given as in equation (2.2) with
qy = μpy for some μ ∈ On, in which case the Nash lift becomes

f̃ =
(
f,

∂q

∂x1
− μ

∂p

∂x1
, . . . ,

∂q

∂xn−1
− μ

∂p

∂xn−1
, μ

)
(2.3)

In particular, note that if ordy(q) = ordy(p) + 1, then ordy(μ) = 1, and f is a wave
front.

3. Lowering Legendrian equivalence

The first strides in the classification of frontal mappings were done by Arnol’d
and his colleagues in a series of articles published in the 1970s and 1980s. In his
work, he established a notion of equivalence native to Legendrian maps (known as
Legendrian equivalence) and developed a classification of all simple, stable wave
fronts (see [27], chapter 21).

Ishikawa extended Arnol’d’s theory of Legendrian equivalence to the broader class
of integral mappings in [14], defining a notion of infinitesimal stability and showing
that an integral map of corank at most 1 is Legendrian stable if and only if it is
infinitesimally stable. He also showed that all Legendrian stable integral mappings
of corank at most 1 belong to a special family called open Whitney umbrellas,
giving a characterization of stable umbrellas in terms of a certain K-algebra Q.

The goal of this section is to formulate a notion of frontal stability and versality
that does not require the use of contact geometry.

Remark 3.1. Let f : N ⊆ Kn → Kn+1 be a proper frontal map with Nash lift
f̃ = f × [ν], where [ν] : N → P (Kn+1∗) maps points in N to projective differential
1-forms [νx]. There exists a 1 � i � n+ 1 such that νi is non-vanishing, so we can
rewrite equation (2.1) as

d(Zi ◦ f) = −ν1
νi
d(Z1 ◦ f) − · · · − ̂d(Zi ◦ f) − · · · − νn+1

νi
d(Zn+1 ◦ f), (3.1)

where the hat symbol denotes an ommited summand. We then define local
coordinates X,Y, P on PT ∗Kn+1 such that fi = Y ◦ f and

fj = Xj ◦ f, Pj =
νj
νi

(j = 1, . . . , i− 1);

fj+1 = Xj ◦ f, Pj =
νj+1

νi
(j = i, . . . , n+ 1).
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These are known as the Darboux coordinates of PT ∗Kn+1. In particular,
equation (3.1) implies that the mapping X ◦ f = (X1 ◦ f, . . . ,Xn ◦ f) shares the
same singular set with f . Therefore, X ◦ f : N → Kn is immersive outside of a
nowhere dense subset K of U .

Definition 3.2. Let S, S′ ⊂ Kn be finite sets. Two integral map germs

F : (Kn, S) → (PT ∗Kn+1, w), F ′ : (Kn, S′) → (PT ∗Kn+1, w′)

are Legendre equivalent if there exists a diffeomorphism φ : (Kn, S) → (Kn, S′)
and a Legendrian diffeomorphism Ψ: (PT ∗Kn+1, w) → (PT ∗Kn+1, w′) such that
F ′ = Ψ ◦ F ◦ φ−1.

Arnol’d showed in [27], § 20.4 that a Legendrian diffeomorphism Ψ: W →W ′ is
locally determined by a choice of Legendrian fibrations in the source and target,
and a diffeomorphism ψ between the base spaces. Nonetheless, his proof was based
on the fact that a Legendrian diffeomorphism preserves the fibres, and no explicit
expression is given for Ψ.

Theorem 3.3. Given a diffeomorphism ψ : Z → Z ′, the mapping

induces a Legendrian diffeomorphism Ψ: (PT ∗Z,Δ) → (PT ∗Z ′,Δ′).

Proof. Let (z, ω) ∈ T ∗Z: since ψ is a diffeomorphism, ω ◦ dψ−1
ψ(z) �= 0 and Ψ is a

well-defined diffeomorphism. Furthermore, it is clear that

π′ ◦ Ψ = ψ ◦ π (3.2)

by construction. Therefore, we only need to show that dΨq(Δq) = Δ′
Ψ(q).

Let q = (z, [ω]) and v ∈ Δq. Since π is a submersion, (ω ◦ dπq)(v) = 0, and it
follows from (3.2) that

(ω ◦ dψ−1
ψ(z) ◦ dπ′

Ψ(q))[dΨq(v)] = 0 =⇒ dΨq(v) ∈ Δ′
Ψ(q)

Conversely, let w ∈ Δ′
Ψ(q). Since Ψ is a diffeomorphism, there exists a unique v ∈

TqPT
∗Z such that w = dΨq(v). By definition of Δ′, we have

(ω ◦ dψ−1
ψ(z) ◦ dπ′

Ψ(q))(w) = 0

By (3.2), this implies that (ω ◦ dπq)(v) = 0, from which follows that w ∈ dΨq(Δq).
�

Remark 3.4. Let ψt : (Kn+1, 0) → (Kn+1, 0) be a smooth 1-parameter family of dif-
feomorphisms. Given t in an open neighbourhood U ⊆ K of 0, we know by theorem
3.3 that we can lift ψt onto a Legendrian diffeomorphism Ψt : (PT ∗Kn+1, w) →
(PT ∗Kn+1, 0). Since π : PT ∗Kn+1 → Kn+1 is a fibre bundle and Kn+1 is a para-
compact Hausdorff space, π is a fibration (see [26], corollary 2.7.14), so it verifies
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the homotopy lifting property. Therefore, the 1-parameter family Ψt defined in this
way is, indeed, a lift of the family ψt.

Corollary 3.5. Let f, g : (Kn, S) → (Kn+1, 0):

(1) if f is A -equivalent to g and f is frontal, g is frontal;

(2) if f and g are frontal, f̃ is Legendrian equivalent to g̃ if and only if f is
A -equivalent to g.

Proof. Assume that f is frontal: there exists an integral map germ F : (Kn, S) →
PT ∗Kn+1 such that f = π ◦ F , where π is the canonical bundle projection. Now
let φ : (Kn, S) → (Kn, S), ψ : (Kn+1, 0) → (Kn+1, 0) be diffeomorphisms such that
g = ψ ◦ f ◦ φ−1: by theorem 3.3, we can lift ψ onto a Legendrian diffeomorphism
Ψ: PT ∗Kn+1 → PT ∗Kn+1. Therefore, the map G = Ψ ◦ F ◦ φ−1 is an integral map
such that π ◦G = g, and g is frontal. This proves the first item.

For the second item, the ‘only if’ is proved in a similar fashion. For the ‘if’, let
φ : (Kn, S) → (Kn, S) and Ψ: (PT ∗Kn+1, w) → (PT ∗Kn+1, w) be diffeomorphisms
such that g̃ = Ψ ◦ f̃ ◦ φ−1, with Ψ Legendrian. By definition of Legendrian dif-
feomorphism, there exists a diffeomorphism ψ : (Kn+1, 0) → (Kn+1, 0) such that
π ◦ Ψ = ψ ◦ π, from which follows that

g = π ◦ g̃ = π ◦ Ψ ◦ f̃ ◦ φ−1 = ψ ◦ π ◦ f̃ ◦ φ−1 = ψ ◦ f ◦ φ−1,

proving the second item. �

3.1. Unfolding frontal map germs

The theory of Legendrian equivalence describes homotopic deformations of a
pair (π, F ) via integral deformations, deformations (Fu) of F which are themselves
integral for any fixed u. Nonetheless, frontal deformations often fail to preserve the
frontal nature across the parameter space, as showcased in example 3.6 below.

Example 3.6. Let γ : (K, 0) → (K2, 0) be the plane curve t �→ (t3, t4). The
1-parameter deformation γs(t) = (t3 + st, t4) verifies that γs is frontal for all s ∈ K.
If ω is a 1-form such that ω(dγs ◦ ∂t) = 0 for all (t, s) in an open neighbourhood
U ⊂ K2 of (0, 0), a simple computation shows that ω must be given in the form

ω(s,t) = α(t, s)(4t3 dX − (3t2 + s) dY )

for some α ∈ O2. Therefore, γ̃s does not yield an integral deformation of γ̃ at s = 0.

Definition 3.7. Let f : (Kn, S) → (Kn+1, 0) be a frontal germ. An unfolding
F : (Kn × Kd, S × {0}) → (Kn+1 × Kd, 0) of f is frontal if it is frontal as a map
germ.

Theorem 3.8. Let f : (Kn, S) → (Kn+1, 0) be a proper frontal map germ.
A d-parameter unfolding F = (fλ, λ) of f is frontal if and only if f̃λ is an integral
deformation of f̃ .
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Proof. Let F be a frontal d-parameter unfolding for f : there is a ν ∈ Ω1(F ) such
that ν(dF ◦ η) = 0 for all η ∈ θn+d. If we set ν0 = ν|λ=0, we can write

ν(x,y,λ) = (ν0)(x,y) +
d∑
j=1

λj(νj)(x,y,λ)

for some ν1, . . . , νj ∈ (Kn, S) → T ∗Kn+1. Therefore, ν may be regarded as a
d-parameter deformation of ν0 and the Nash lift of fλ,

(x, y, λ) �→ (fλ(x, y), [ν(x,y,λ)]) (3.3)

is an integral d-parameter deformation of f × [ν0]. Since f × [ν0] is an integral map,
ν0(df ◦ ξ) = 0 for all ξ ∈ θn. Properness of f then implies that f × [ν0] = f̃ , and
thus the map germ (3.3) is an integral deformation of f̃ .

Conversely, let f̃λ be an integral deformation of f̃ . Taking coordinates (u, λ)
in the source and Darboux coordinates in the target, the integrability condition
becomes

∂

∂uj
(Y ◦ fλ) = (P1 ◦ f̃λ)

∂

∂uj
(X1 ◦ fλ) + · · · + (Pn ◦ f̃λ)

∂

∂uj
(Xn ◦ fλ)

for j = 1, . . . , n. Consider the differential form ν ∈ Ω1(F ) given by

n∑
j=1

(Pj ◦ f̃λ)
(

dXj −
d∑
k=1

∂

∂λk
(Xj ◦ fλ) dλk

)
− dY +

d∑
k=1

∂

∂λk
(Y ◦ fλ) dλk

Using the integrability condition above, we have

ν

(
dF ◦ ∂

∂ui

)
=

n∑
j=1

(Pj ◦ f̃λ)
∂(Xj ◦ fλ)

∂ui
− ∂(Y ◦ fλ)

∂ui
= 0;

ν

(
dF ◦ ∂

∂λi

)
=

n∑
j=1

(Pj ◦ f̃λ)
(
∂(Xj ◦ f̃λ)

∂λi
− ∂(Xj ◦ f̃λ)

∂λi

)

− ∂(Y ◦ fλ)
∂λi

+
(Y ◦ fλ)
∂λi

= 0.

Therefore, ν(dF ◦ ξ) = 0 for all ξ ∈ θn+d and F is frontal. �

Remark 3.9. Properness of f is required for the ‘if’ direction, since f̃u is not
guaranteed to be a deformation of f̃ , even if it is integral. Nonetheless, the ‘only if’
direction does not require properness.

The space of infinitesimal integral deformations of an integral f̃ , defined by
Ishikawa in [14], is given by

θI(f̃) = {v0(f̃t) : f̃t integral , f̃0 = f̃}; v0(f̃t) =
df̃t
dt

∣∣∣∣∣
t=0

.

This space is linear when f̃ has corank at most 1 [14], but it is known to have a
conical structure in higher coranks. Counterexamples can be constructed using a
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similar procedure as in [11]. We also set TLef̃ as the space of ξ ∈ θI(f̃) given by ξ =
v0(Ψt ◦ f̃ ◦ φ−1

t ) for some 1-parameter families of diffeomorphisms φ : (Kn, S) →
(Kn, S) and Ψt : (PT ∗Kn+1, w0) → (PT ∗Kn+1, w0), Ψt Legendrian.

Definition 3.10. Let f : (Kn, S) → (Kn+1, 0) be a frontal map germ of integral
corank at most 1. We define the space of infinitesimal frontal deformations of
f as

F (f) = {v0(ft) : (t, ft) frontal, f0 = f}.

As shown in theorem 3.12 below, F (f) is the linear projection of θI(f̃). Therefore,
if the integral corank of f is at most 1, F (f) is K-linear; for this reason, any results
involving F (f) will implicitly assume that f has integral corank at most 1. An
alternative, direct proof is also given for corank 1 frontal map germs in remark 5.15
below.

Lemma 3.11. Given a frontal map germ f : (Kn, S) → (Kn+1, 0), TAef ⊆ F (f).

Proof. Let φt : (Kn, S) → (Kn, S), ψt : (Kn+1, 0) → (Kn+1, 0) be two smooth 1-
parameter families of diffeomorphisms and ft = ψt ◦ f ◦ φ−1

t . It is clear by con-
struction that the vector field germ given by ft is in TAef . By theorem 3.3, we
can lift ψt onto a smooth 1-parameter family Ψt of Legendrian diffeomorphisms,
in which case we can lift ft onto an integral deformation f̃t = Ψt ◦ f̃ ◦ φ−1

t . Using
theorem 3.8, we then see that the unfolding F = (ft, t) is frontal. Therefore, the
vector field germ given by ft is in F (f), and thus TAef ⊆ F (f). �

Theorem 3.12. Let f : (Kn, 0) → (Kn+1, 0) be a proper frontal map germ and
π : PT ∗Kn+1 → Kn+1 be the canonical bundle projection. The mapping tπ : θI(f̃) →
F (f) given by tπ(ξ) = dπ ◦ ξ is a K-linear isomorphism and induces an isomor-
phism

Π:
F (f)
TAef

−→ θI(f̃)
TLef̃

. (3.4)

Proof. Let ξ ∈ θI(f̃) and f̃t be an integral 1-parameter deformation of f̃ and
ξ = v0(f̃t): by theorem 3.8, F (t, x) = (t, (π ◦ f̃t)(x)) is a frontal 1-parameter unfold-
ing of f . Furthermore, using the chain rule, we see that v0(π ◦ f̃t) = tπ[v0(f̃t)], so
tπ[θI(f̃)] ⊆ F (f) and tπ : θI(f̃) → F (f) is well defined. Conversely, let ξ ∈ F (f)
and (t, ft) be a frontal 1-parameter deformation of f with ξ = v0(ft): by theorem
3.8, we can lift ft onto an integral 1-parameter deformation f̃t of f̃ . Using the chain
rule, it then follows that ξ ∈ tπ[θI(f̃)], so tπ[θI(f̃)] = F (f).

We move onto injectivity of tπ. Let f̃t(x) = f̃(x) + th̃(x, t) be an integral
1-parameter deformation of f̃ with (π ◦ f̃t)(x) = f(x) + th(x, t). If we assume that
ξ = v0(f̃t) ∈ ker tπ, then

0 =
dft
dt

∣∣∣∣
t=0

= [h(x, t) + tht(x, t)]t=0 = h(x, 0) =⇒ h(x, t) = tg(x, t).

Our goal is to show that we can write h̃(x, t) = tg̃(x, t) for some g̃, so that v0(f̃t) = 0
and thus ker tπ = {0}.
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Since f̃t is an integral deformation of f̃ , it verifies the identity

d(Y ◦ ft) =
n∑
j=1

(Pj ◦ f̃t) d(Xj ◦ ft).

Taking the coefficient of dxk on both sides of the equation and simplifying yields

t
∂(Y ◦ g)
∂xk

=
n∑
j=1

[
(Pj ◦ h̃)

∂(Xj ◦ ft)
∂xk

+ t(Pj ◦ f̃)
∂(Xj ◦ g)
∂xk

]
.

Taking t = 0 gives us the homogeneous system of equations

0 =
n∑
j=1

∂(Xi ◦ f)
∂xk

(x)(Pj ◦ h̃)(x, 0)

for k = 1, . . . , n. Using the observation from remark 3.1 and the continuity of P1 ◦
h̃, . . . , Pn ◦ h̃, we conclude that (P1 ◦ h̃)(x, 0) = · · · = (Pn ◦ h̃)(x, 0) = 0 and thus
h̃(x, t) = tg̃(x, t).

It only remains to show that tπ(TLef̃) = TAef . Let ξ ∈ TLef̃ : there exist
1-parameter families φt : (Kn, S) → (Kn, S), Ψt : (PT ∗Kn+1, w) → (PT ∗Kn+1, w)
of diffeomorphisms such that ξ = v0(Ψt ◦ f̃ ◦ φ−1

t ), with Ψt Legendrian. Since Ψt

is Legendrian for all t in a neighbourhood U ⊆ K of 0, there exists a 1-parameter
family ψt : (Kn+1, 0) → (Kn+1, 0) of diffeomorphisms such that π ◦ Ψt = ψt ◦ π for
all t ∈ U . We then have that v0(ψt ◦ f ◦ φ−1

t ) = tπ[v0(Ψt ◦ f̃ ◦ φ−1
t )] = tπ(ξ), hence

tπ(ξ) ∈ TAef .
Conversely, if ξ ∈ TAef , there exist 1-parameter families φt : (Kn, S) → (Kn, S),

ψt : (Kn+1, 0) → (Kn+1, 0) of diffeomorphisms such that ξ = v0(ψt ◦ f ◦ φ−1
t ). Using

theorem 3.3, there exists a 1-parameter family of Legendrian diffeomorphisms
Ψt : (PT ∗Kn+1, w) → (PT ∗Kn+1, w) such that π ◦ Ψt = ψt ◦ π, and thus we can
lift ξ onto v0(Ψt ◦ f̃ ◦ φ−1

t ) ∈ TLef̃ , whose image via tπ is ξ. �

Remark 3.13. Let f : (Kn, 0) → (Kn+1, 0) be a frontal map germ: theorem 3.12
states that F (f) = tπ[θI(f̃)]. Since f̃ has corank 1, a resut by Ishikawa [14] states
that

θI(f̃) = {ξ ∈ θ(f̃) : ξ∗α̃ = 0},
wherein α̃ denotes the natural lifting of the contact form in PT ∗Kn+1. Taking
Darboux coordinates in PT ∗Kn+1,

ξ ∈ F (f) ⇐⇒ dξn+1 −
n∑
i=1

(Pi ◦ f̃) dξi ∈ On d(f∗On) (3.5)

In particular, if f has corank 1 and it is given in prenormal form, equation (3.5) is
equivalent to

∂ξn+1

∂y
−
n−1∑
j=1

Pj
∂ξj
∂y

+ μ
∂ξn
∂y

∈ On{py},

where P1, . . . , Pn−1 are given as in equation (2.3).
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Definition 3.14. The frontal codimension of f is defined as the dimension of
T 1

Fe
f = F (f)/TAef . We say f is F -finite or has finite frontal codimension

if dimT 1
Fe
f <∞.

3.2. Frontal versality and stability

In the previous subsection, we formulated the notions of integral deformation and
Legendrian codimension purely in terms of frontal unfoldings. We now show that
Ishikawa’s results concerning the Legendrian stability and versality of pairs from
[14] have a direct parallel in our theory of frontal deformations.

Definition 3.15. A frontal map germ f : (Kn, S) → (Kn+1, 0) is stable as a
frontal or F -stable if every frontal unfolding of f is A -trivial.

Corollary 3.16. A frontal map germ f : (Kn, S) → (Kn+1, 0) is stable as a frontal
if and only if f̃ is Legendrian stable.

Proof. Assume f is stable as a frontal and let f̃u be an integral deformation of f̃ :
by theorem 3.8, f̃u defines a frontal unfolding F = (fu, u) of f . Stability of f then
implies that fu is A -equivalent to f . By corollary 3.5, this then implies that f̃u is
Legendrian equivalent to f̃ . Since the choice of f̃u was arbitrary, we conclude f̃ is
Legendrian stable. The opposite direction is shown similarly. �

Corollary 3.17. A frontal map germ f : (Kn, S) → (Kn+1, 0) is F -stable if and
only if its Fe-codimension is 0.

Proof. Corollary 3.16 states that f is F -stable if and only if its Nash lift f̃ is
Legendrian stable. Since f has corank at most 1, so does f̃ , and a result by Ishikawa
[14] states that f̃ is Legendrian stable for the bundle projection π if and only if
θI(f̃) = TLef̃ . However, it follows from theorem 3.12 that this is equivalent to
F (f) = TAef . �

Example 3.18. The following frontal hypersurfaces are stable as frontals:

(1) Cusp: X2 − Y 3 = 0

(2) Folded Whitney umbrella: Z2 −X2Y 3 = 0, with Y � 0 in the real case.

Let f : (Kn, S) → (Kn+1, 0) be a frontal map germ with d-parameter unfolding
F = (fu, u), not necessarily frontal. Recall that the pullback of F by h : (Kl, 0) →
(Kd, 0) is defined as the l-paramter unfolding

(h∗F )(x, v) = (fh(v)(x), v).

Definition 3.19. Let f : (Kn, S) → (Kn+1, 0) be a frontal map germ. A frontal
d-parameter unfolding F of f is F -versal or versal as a frontal if, given
any other frontal d-parameter unfolding G of f , there exists a diffeomorphism
h : (Kd, 0) → (Kd, 0) such that G is equivalent to h∗F as unfoldings.
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Lemma 3.20. Given a frontal map germ f : (Kn, S) → (Kn+1, 0), a frontal unfolding
F = (fu, u) is F -versal if and only if f̃u is a Legendre versal deformation of f̃ .

Proof. Assume F is a versal frontal unfolding of f and let (g̃u) be an s-parameter
integral deformation of f̃ . Theorem 3.8 implies that the s-parameter unfolding
G = (u, gu) is frontal. By versality of F , there exist unfoldings T : (Kn+1 × Kd, 0) →
(Kn+1 × Kd, 0), S : (Kn × Kd, S × {0}) → (Kn × Kd, S × {0}) of the identity map
germ and a smooth map germ h : (Ks, 0) → (Kd, 0) such that G = T ◦ h∗F ◦ S−1.

Let f : N → Z be a representative of f which is a proper frontal map, and
F : N → Z be a representative of F such that N ⊆ N × Kd. A simple compu-
tation shows that Σ(F ) = Σ(f) × {0}; therefore, since Σ(f) is nowhere dense in
N , Σ(F ) is nowhere dense in N and F is a proper frontal map. Theorem 3.8
then states that fu lifts into integral deformation of f̃ . Now consider represen-
tatives h∗F = (u, fh(u)) : N1 → Z1, S = (u, σu) : N1 → N2, T = (u, τu) : Z1 → Z2

and G : N2 → Z2 such that G = T ◦ h∗F ◦ S−1 as mappings. Since (τu) is a smooth
d-parameter family of diffeomorphisms, we can lift it onto a d-parameter family of
smooth Legendrian diffeomorphisms Tu : PT ∗Z1 → PT ∗Z2. Therefore,

g̃u = Tu ◦ f̃h(u) ◦ σ−1
u

and f̃u is a versal Legendrian deformation of f̃ .
Conversely, let f̃u be a versal integral deformation of f̃ and G = (gu, u) be a

frontal s-parameter unfolding of f . Theorem 3.8 implies that the s-parameter
deformation g̃u is integral. By versality of f̃u, there exist smooth families of dif-
feomorphisms Tu : (PT ∗Kn+1, w) → (Kn+1, w) and σu : (Kn, S) → (Kn, S) and a
smooth map germ h : (Ks, 0) → (Kd, 0) verifying the following:

(1) Tu is a Legendrian diffeomorphism for all u;

(2) T0 and σ0 are the identity map germs;

(3) g̃u = Tu ◦ f̃h(u) ◦ σu.

By item 1, we can find a smooth family of diffeomorphisms τu : (Kn+1, 0) →
(Kn+1, 0) such that π ◦ Tu = τu ◦ π and τ0 is the identity map germ. It follows
that

g̃u = Tu ◦ f̃h(u) ◦ σu ⇐⇒ gu = τu ◦ fh(u) ◦ σu.
If we now consider the unfoldings T = (τu, u) and S = (σu, u), we have G = T ◦
h∗F ◦ S. We conclude that F is versal as a frontal. �

Theorem 3.21 Frontal versality theorem. Given a frontal map germ f : (Kn, S) →
(Kn+1, 0),

(1) f admits a frontal versal unfolding if and only if it is F -finite;

(2) a frontal unfolding F (u, x) = (u, fu(x)) of f is versal as a frontal if and only if

F (f) = TAef + SpK{Ḟ1, . . . , Ḟd}, Ḟj =
∂fu
∂uj

∣∣∣∣
u=0

.
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To show theorem 3.21, we shall make use of

Theorem 3.22 Ishikawa’s Legendre versality theorem [14]. Given an integral
f̃ : (Kn, S) → (PT ∗Kn+1, w) of corank at most 1,

(1) f̃ admits a versal Legendrian unfolding if and only if its Legendrian codimen-
sion is finite;

(2) a Legendrian unfolding f̃u of f̃ is versal if and only if

θI(f̃) = TLef̃ + SpK

{
∂f̃u
∂u1

∣∣∣∣∣
u=0

, . . . ,
∂f̃u
∂ud

∣∣∣∣∣
u=0

}
. (3.6)

Proof of theorem 3.21. By lemma 3.20, a frontal unfolding F = (fu, u) of f is versal
as a frontal if and only if the smooth family f̃u is a versal Legendre deformation
of f̃ . In particular, it follows from theorem 3.8 that f̃ admits a versal Legendrian
deformation if and only if f admits a versal frontal unfolding. This fact shall be
used to prove both items.

By theorem 3.22, f admits a F -versal unfolding if and only if f̃ has finite Leg-
endre codimension. However, it was proved in theorem 3.12 that this is equivalent
to f being F -finite. This shows the first item.

We move onto the second item. If F is F -versal, f̃u is a Legendre versal unfolding
of f̃ by lemma 3.20 and equation (3.6) holds. Computing the image via tπ on both
sides of equation (3.6) and using theorem 3.12, we get

F (f) = TAef̃ + tπ

[
SpK

{
∂f̃u
∂u1

∣∣∣∣∣
u=0

, . . . ,
∂f̃u
∂ud

∣∣∣∣∣
u=0

}]
= TAef + SpK{Ḟ1, . . . , Ḟd}. (3.7)

Conversely, let us assume that (3.7) holds: using theorem 3.12, we see that (3.6)
holds as well. Therefore, F is versal as a frontal. This shows the second item. �

4. A geometric criterion for F -finiteness

The Mather–Gaffney criterion states that a smooth f : (Cn, S) → (Cn+1, 0) is
A -finite if and only if there is a finite representative f : N → Z with isolated insta-
bility. For example, the generic singularities for n = 2 are transversal double points,
with Whitney umbrellas and triple points in the accumulation (see e.g. [20], § 4.7).
This implies that generic frontal singularities such as the folded Whitney umbrella
(see example 3.18) are not A -finite, since it contains cuspidal edges near the ori-
gin. Nonetheless, cuspidal edges are generic within the subspace of frontal map
germs (C2, S) → (C3, 0) [1], which suggests the existence of a Mather–Gaffney-type
criterion for frontal hypersurfaces.

Proposition 4.1. A germ of analytic plane curve γ : (C, S) → (C2, 0) is F -finite
(see definition 3.14 above) if and only if it is A -finite.
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Proof. If γ is A -finite, it is clear that it is also F -finite, since

F (γ) ⊆ θ(γ) =⇒ dim
F (γ)
TAeγ

� dim
θ(γ)
TAeγ

<∞

Assume γ is F -finite, and let γ : N → Z be a representative of γ. By the curve
selection lemma [2], Σ(γ) is an isolated subset in N , so we can assume (by shrinking
N if necessary) that γ(N\S) is a smooth submanifold of Z and γ−1({0}) = S. By
the Mather–Gaffney criterion, it then follows that γ is A -finite, as stated. �

Given a frontal map f : N → Z and z ∈ Z, let fz : (N, f−1(z)) → (Z, z). We
define F (f) as the sheaf of OZ-modules given by the stalk F (f)z = F (fz). We
also set θN (resp. θZ) as the sheaf of vector fields on N (resp. Z) and the quotient
sheaves

T 1
Re
f =

F (f)
tf(θN )

; T 1
Fe
f =

f∗
(
T 1

Re
f
)

ωf(θZ)
;

Remark 4.2. If f is finite, we can take coordinates in N and W such that f̃(x, y) =
(x, fn(x, y), . . . , f2n+1(x, y)). By [13], we have the identity

Rf̃ :=
{
λ ∈ ON : dλ ∈ ON d

(
f̃∗OW

)}
=

(
∂

∂y

)−1

ON

{
∂f̃n
∂y

, . . . ,
∂f̃2n+1

∂y

}

which is a ON -finite algebra by [12]. Since f is finite, Rf̃ is OZ-finite.

Proposition 4.3 [14]. Let f : (Cn, S) → (Cn+1, 0) be a frontal map germ. If f̃ is
A -equivalent to an analytic g : (Cn, S) → (C2n+1, 0) (not necessarily integral) such
that codimC Σ(g) > 1,

θI(f̃)
TLef̃

∼=OZ

Rf̃
OZ{1, p̃1, . . . , p̃n}

where p̃1, . . . , p̃n are the coordinates of f̃ in the fibres of π.

Remark 4.4. Let f and f̃ be given as in the statement above. If we assume that
f has corank 1 and is given as in equation (2.2), Σ(f̃) = V (py, μy).

Corollary 4.5. Let f : (Cn, S) → (Cn+1, 0) be a frontal map germ. If f is finite
and codimV (py, λy) > 1, there is a representative f : N → Z of f such that T 1

Fe
f

is a coherent sheaf.

Proof. Using proposition 4.3, we have

Rf̃w

OZ{1, p̃1, . . . , p̃n}
∼=OZ

θI(f̃w)
TLef̃w

= (T 1
Fe
f)π(w).

Since f is finite, Rf̃w
is OZ,π(w)-finite, as shown in remark 4.2. Therefore, the stalk

of T 1
Fe
f at π(w) is finitely generated and T 1

Fe
f is of finite type.
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Let V ⊂ Z be an open set and β : Oq
Z�V → (T 1

Fe
f)�V an epimorphism of OZ-

modules. Since OZ is a Noetherian ring, every submodule of Oq
Z�V is finitely

generated. In particular, kerβ is finitely generated. We then conclude that T 1
Fe
f is

a coherent sheaf. �

Theorem 4.6 Mather–Gaffney criterion for frontal maps. Let f : (Cn, S) →
(Cn+1, 0) be a frontal map germ. If f is finite and codimC Σ(f̃) > 1, f is F -finite
if and only if there exists a representative f : N ′ → Z ′ of f such that the restriction
f : N ′\S → Z ′\{0} is locally F -stable.

Proof. The case for n = 1 follows easily from the Mather–Gaffney criterion for
A -equivalence and proposition 4.1. Therefore, we assume n > 1.

Suppose first that f has finite F -codimension: by corollary 4.5, T 1
Fe
f is a

coherent sheaf. In addition,

dimC(T 1
Fe
f)0 = dimC T

1
Fe
f = codimFe

f <∞.

By Rückert’s Nullstellensatz, there exists an open neighbourhood Z ′ of 0 in Z
such that suppT 1

Fe
f ∩ Z ⊆ {0}. Therefore, every other stalk of T 1

Fe
f is 0, and the

restriction of f to N ′\{0} is F -stable, where N ′ = f−1(Z ′).
Conversely, suppose that there exists a representative f : N ′ → Z ′ such that the

restriction f : N ′\{0} → Z ′\{0} is locally F -stable. Given z ∈ Z\{0}, (T 1
Fe
f)z = 0,

so there exists an open neighbourhood U of 0 in Z such that suppT 1
Fe
f ∩ U ⊆ {0}.

By Rückert’s Nullstellensatz, it follows that the dimension of the stalk of T 1
Fe
f at

0 is finite, but that dimension is equal to codimFe
f . We conclude that the germ of

f at 0 is F -finite. �

5. Frontal reduction of a corank 1 map germ

In [22], we presented the notion of frontalization for a fold surface f : (C2, S) →
(C3, 0), and proved that the frontalization process preserves some of the topological
invariants of f . We also defined frontal versions of Mond’s Sk, Bk, Ck and F4

singularities (see [18]), observing that none of them are wave fronts. We now seek
to describe a more general procedure to generate frontals using arbitrary corank 1
map germs.

Example 5.1. Let γ : (K, 0) → (K2, 0) be the parametrized curve γ(t) = (t3, t4):
the unfolding Γ: (K3 × K, 0) → (K3 × K2, 0) given by

Γ(u, t) = (u, t3 + u1t, t
4 + u2t+ u3t

2) = (u, p(u, t), q(u, t))

is an A -miniversal deformation for γ. By proposition 2.7 and since degt pt < degt qt,
Γ is frontal if and only if pt|qt. If μ ∈ O1 is such that qt = μpt, a simple computation
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then shows that the identity

4t3 + u2 + 2u3t = (3t2 + u1)(μ1t+ μ0)

holds if and only if u2 = μ0 = 0, μ1 = 4/3 and 2u3 = 3u1. Setting h(v) = (3v, 0, 2v),
we obtain the unfolding

h∗Γ(t, v) = (v, t3 + 3vt, t4 + 2vt2)

which is a swallowtail singularity.

In this section, we show that the frontal reduction of the versal unfolding of
a plane curve is a F -versal unfolding. The proof of this result gives a procedure
to compute the frontal reduction of a given unfolding (versal or otherwise) via a
system of polynomial equations, which may be solved using a computer algebra
system such as Oscar or Singular.

Remark 5.2 Piuseux parametrization. Let γ : (C, 0) → (C2, 0) be an analytic plane
curve with isolated singularities. There exists a f ∈ C{x, y} such that f ◦ γ = 0. By
Piuseux’s theorem (see e.g. [28], theorem 2.2.6, or [5], theorem 5.1.1), if α = ord f ,
f(tα, tα+1h(t)) = 0 for some h ∈ C{t}. Therefore, γ is A -equivalent to the plane
curve

t �→ (tα, tα+1g(t)).

In particular, γ is A -finite (and thus finitely determined) by the Mather–Gaffney
criterion, so we can further assume that g ∈ C[t].

If K = R, it suffices to replace γ with its complexification γC in the argument
above, as γ is analytic. Therefore, such a parametrization also exists in the real
case.

Lemma 5.3. Let γ : (K, 0) → (K2, 0) be the plane curve from remark 5.2. There
exists a smooth d-parameter deformation (gw) of g such that

Γ(u, v, w, t) =

⎛⎝u, v, w, tα +
α−2∑
j=1

ujt
j ,

α−1∑
j=1

vjt
j + tα+1gw(t)

⎞⎠
is a miniversal unfolding of γ.

Proof. Let G = {g1, . . . , gd} ⊂ K[t] be a K-basis for T 1
Ae
γ: by Martinet’s theorem

(see [20], theorem 7.2), a miniversal unfolding for γ is given by the expression

Γ(x, t) = (x, γ(t) + x1g1(t) + · · · + xn−1gn−1(t)). (5.1)

A simple computation shows that

TAeγ ⊆ O1

{(
αtα−1

(α+ 1)tαq0(t) + tα+1q′0(t)

)}
+ mα

1 O2
1 . (5.2)

Using equation (5.2), we may assume that gj(t) = (tj , 0) and gj+α−2(t) = (0, tj) for
1 � j � α− 2. Setting gw(t) = g(t) + w1g2α−1(t) + · · · + wd−2α+1gd(t), equation
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(5.1) becomes

Γ(u, v, w, t) =

⎛⎝u, v, w, tα +
α−2∑
j=1

ujt
j , tα+1gw(t) +

α−1∑
j=1

vjt
j

⎞⎠ ,

as claimed. �

Remark 5.4. Let h : (Kr, 0) → (Kd, 0) be a smooth map germ and Γ be the
unfolding from lemma 5.3. The pullback h∗Γ is given by

(h∗Γ)(x, t) =

⎛⎝x, tα +
α−2∑
j=1

uj(x)tj ,
α−1∑
j=1

vj(x)tj + tα+1gw(x)(t)

⎞⎠ ,

where uj(x) ≡ (uj ◦ h)(x), vj(x) ≡ (vj ◦ h)(x) and w(x) ≡ (w ◦ h)(x). As we saw in
the proof of lemma 5.3,

gw(t) = g(t) + w1g2α−1(t) + · · · + wd−2α+1gd(t),

where g can be assumed to be a polynomial function (due to remark 5.2). Therefore,
the component functions of h∗Γ are elements of Or[t], the algebra of polynomials
on t with coefficients in Or.

Theorem 5.5. If γ has a miniversal d-parameter unfolding Γ, there is a unique
immersion h : (Kl, 0) → (Kd, 0) with the following properties:

(1) h∗Γ is a frontal unfolding of γ;

(2) if (h′)∗Γ is frontal for any other h′ : (Kl′ , 0) → (Kd, 0), (h′)∗Γ is equivalent
as an unfolding to a pullback of h∗Γ.

Therefore, h∗Γ is a frontal miniversal unfolding.

We shall denote h∗Γ as ΓF and call it a frontal reduction of Γ.

Proof. Let Γ be the unfolding from lemma 5.3 and d = codimAe
γ. We first want

to show that there is an immersion h : (K�, 0) → (Kd, 0) making h∗Γ a frontal map
germ; to do so, we shall derive a system of equations that determines whether a
given pullback yields a frontal unfolding.

Let (h∗Γ)(x, t) = (x, P (x, t), Q(x, t)). By remark 5.4, Q ∈ Or[t], so we can write
Q(x, t) = q1(x)t+ · · · + qβ(x)tβ . Since h∗Γ is a corank 1 map germ, corollary 2.7
states that it is frontal if and only if either Pt|Qt or Qt|Pt; in particular, we can
assume that degt Pt � degtQt, allowing us to impose the condition Pt|Qt to h∗Γ.

https://doi.org/10.1017/prm.2023.55 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.55


Deformations of corank 1 frontals 1221

If Qt = μPt for some μ ∈ Or+1, there will exist μ0, . . . , μβ−α such that μ(x, t) =
μ0(x) + · · · + μβ−α(x)tβ−α. Therefore, the identity Qt = μPt is equivalent to

kqk(x) =
∑
i+j=k

iui(x)μj(x) (5.3)

for k = 1, 2 . . . , β. For k � α, we may solve for μk−α to get the expression

μk−α(x) =
k

α
qk(x) −

1
α

∑
i+j=k

iui(x)μj(x); uα(x) ≡ 1.

The remaining terms define an immersion germ h : (Kd−α+1, 0) → (Kd, 0) given
by h(u,w) = (u, v(u,w), w), which is the unique solution to equation (5.3) by
construction. This proves item 1.

Let Λ be a frontal unfolding of γ: versality of Γ implies that Λ is equivalent to
(h′)∗Γ for some h′ : (Kr, 0) → (Kd, 0). Let h : V → U be a one-to-one representative
of h, π : U → V be the projection

π(x1, . . . , xd) = (x1, . . . , xα−2, x2α−2, . . . , xd)

and h′ : V ′ → U ′ be a representative of h′. Since (h′)∗Γ is frontal, h′ verifies equation
(5.3) and thus h′(V ′) ⊆ h(V ) by construction. Given v′ ∈ V ′, there exists a unique
v ∈ V such that

h′(v′) = h(v) =⇒ (π ◦ h′)(v′) = v =⇒ (h ◦ π ◦ h′)(v′) = h(v) = h′(v′),

and thus (h′)∗Γ = (h ◦ π ◦ h′)∗Γ = (π ◦ h′)∗(h∗Γ). �

Example 5.6. Consider Arnol’d’s E8 singularity, γ(t) = (t3, t5). A versal unfolding
of this curve is given by

(u, v, w, t3 + ut, t5 + wt4 + v2t
2 + v1t) = (u, v, w, p(u, t), q(v, w, t)).

The frontal reduction of this unfolding may now be computed using equation (5.3),
which can be written in matrix form as⎛⎜⎜⎜⎜⎝

5
4w
0

2v2
v1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
3 0 0
0 3 0
u 0 3
0 u 0
0 0 u

⎞⎟⎟⎟⎟⎠
⎛⎝μ2

μ1

μ0

⎞⎠ =⇒

⎛⎝μ2

μ1

μ0

⎞⎠ =
1
9

⎛⎝ 15
12w
−5u

⎞⎠ .

Since this system has five equations and only three unknowns, we can now solve
for v, yielding v1 = −5/9u2 and v2 = 2/3w.

Remark 5.7. Let Γ be a miniversal unfolding of γ, and ΓF be its frontal reduc-
tion. As shown in theorem 5.5, ΓF is a miniversal frontal unfolding of γ. Setting
ΓF (x, u) = (γu(x), u), we can now consider the integral deformation γ̃u of γ̃. By
theorem 3.20, miniversality of ΓF implies that γ̃u is a Legendre miniversal deforma-
tion of γ̃. Therefore, the method of frontal reductions can also be used to generate
miniversal Legendre deformations of corank 1 integral curves f : (K, 0) → PT ∗K2.
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Note that the proof of theorem 5.5 above employs a specific choice of coordinates
for γ, as well as a specific miniversal unfolding. We now show that the method of
frontal reductions does not depend on the choice of coordinates in the source and
target for γ, or the choice of miniversal unfolding Γ.

Corollary 5.8. Given two miniversal d-parameter unfoldings F , G of γ, GF is
A -equivalent to FF .

Proof. Since F is a miniversal unfolding, there exists a diffeomorphism
m : (Kd, 0) → (Kd, 0) such that G is equivalent to m∗F as unfoldings of γ. If
h′ : (Kl, 0) → (Kd, 0) is the immersion such that GF = (h′)∗G, then GF is equiv-
alent to (h′)∗m∗F . In particular, (h′)∗m∗F is a frontal unfolding, so there exists
a p : (Kl, 0) → (Kl, 0) such that (h′)∗m∗F is equivalent to p∗FF . Let h : (Kl, 0) →
(Kd, 0) be the immersion such that FF = h∗F : if we now swap F and G in the
argument above, we see that there exist a diffeomorphism m′ : (Kd, 0) → (Kd, 0)
and a smooth p′ : (Kl, 0) → (Kl, 0) such that

FF ∼ h∗(m′)∗G ∼ (p′)∗GF ,

where ∼ denotes equivalence of unfoldings.
Since GF is equivalent to (h′)∗m∗F , we have the chain of equivalences

FF ∼ (p′)∗GF ∼ (p′)∗(h′)∗m∗F ∼ (p′)∗p∗FF = (p ◦ p′)∗FF .

We wish to show that p′ is a diffeomorphism, so that GF is A -equivalent to
(p′)∗GF (hence to FF ). Using the chain rule, we have

˙[(p ◦ p′)∗FF ]j =
l∑

k=1

˙(FF )k
∂(p ◦ p′)k
∂uj

(0).

By theorem 3.21, the classes of { ˙(FF )1, . . . , ˙(FF )l} and { ˙[(p ◦ p′)∗FF ]1, . . . ,
˙[(p ◦ p′)∗FF ]l} form bases for the quotient vector space F (γ)/TAeγ, hence the

matrix (
∂(p ◦ p′)k
∂uj

(0)
)

=
(
∂pk
∂uj

(0)
)(

∂p′k
∂uj

(0)
)

is invertible, and so are its factors. It follows that p′ is a diffeomorphism, as desired.
�

Corollary 5.9. Let γ′ : (K, 0) → (K2, 0) be a plane curve A -equivalent to γ. If Γ
and Γ′ are the miniversal unfoldings of γ and γ′, Γ′

F is A -equivalent to ΓF .

Proof. Let φ : (K, 0) → (K, 0) and ψ : (K2, 0) → (K2, 0) be diffeomorphisms such
that γ′ = ψ ◦ γ ◦ φ−1. We consider the unfolding Γ of γ′ given by

(ψ × id) ◦ Γ ◦ (φ−1 × id).

If h : (Kl, 0) → (Kd, 0) is the immersion such that ΓF = h∗Γ, then h∗Γ is A -
equivalent to ΓF . In particular, h∗Γ is a frontal unfolding of γ′, so h∗Γ is
A -equivalent to Γ′

F since Γ′
F is a stable unfolding of γ′. �
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Remark 5.10. While the method of frontal reductions successfully turns A -versal
unfoldings into F -versal unfoldings, the same does not hold for stable unfoldings.
For example, given the plane curve γ(t) = (t2, t2k+1), k > 1, a stable unfolding of γ
is given by f(u, t) = (u, t2, t2k+1 + ut). However, the only pullback that can turn f
into a frontal map germ is u(s) = 0, giving us γ, which is not stable by hypothesis.

A more general method to compute stable unfoldings will be given in § 6.

Corollary 5.11. Given γ : (K, 0) → (K2, 0),

codimFe
γ = codimAe

γ − mult(γ) + 1

Consequently, if γ(K, 0) is the zero locus of some analytic g ∈ O2,

codimFe
γ = τ(g) − ord(g) − 1

2
μ(g) + 1.

Proof. In the proof of theorem 5.5, we see that l = d− α+ 1, where d = codimAe
γ

and α = mult(γ). Since h∗Γ is a miniversal l-parameter unfolding, codimFe
γ = l,

giving the first identity.
Now assume K = C: Milnor’s formula [17] states that the delta invariant δ(g)

and the Milnor number μ(g) of g are related via the identity 2δ(g) = μ(g), since γ
is a mono-germ. On the other hand, a result in [8] states that codimAe

γ = τ(g) −
δ(g) = τ(g) − 1/2μ(g), τ being the Tjurina number, hence yielding the expression

codimFe
γ = τ(g) − 1

2
μ(g) − mult(γ) + 1.

In particular, the order of g is equal to mult(γ) (see [5], corollary 5.1.6). For K = R,
simply note that μ(g) = μ(gC), ord(g) = ord(gC) and τ(g) = τ(gC), where gC is the
complexification of g. �

Example 5.12. Let γ : (C, 0) → (C2, 0) be the A2k singularity, with normalization
γ(t) = (t2, t2k+1). Direct computations show that

θ(γ)
TAeγ

∼= Sp{(0, t2�+1) : 0 � � < k}; F (γ)
TAeγ

∼= Sp{(0, t2�+1) : 1 � � < k},

from which follows that its Ae-codimension is k and its Fe-codimension is k − 1.
Therefore, we have codimFe

γ = k − 1 = k − 2 + 1 = codimAe
γ − mult(γ) + 1, as

expected.
The image of γ is given as the zero locus of the function g(x, y) = y2 − x2k+1.

Using the second expression for the frontal codimension, we have

τ(g) − 1
2
μ(g) = codimFe

γ + ord(g) − 1 = k − 1 + 2 − 1 = k

as expected, since both the Tjurina and Milnor numbers of g are 2k.

In [22], § 5, we introduced the notion of frontal Milnor number μF for a frontal
multi-germ f : (Cn, S) → (Cn+1, 0). This analytic invariant was defined in a similar
fashion to Mond’s image Milnor number [19], only changing smooth stabilizations
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for frontal ones. We then conjectured that μF verified an adapted version of Mond’s
conjecture, which we called Mond’s frontal conjecture.

Applying [22], proposition 5.10 to corollary 5.11, we can now prove Mond’s frontal
conjecture in dimension 1.

Corollary 5.13. Given a plane curve γ : (C, S) → (C2, 0), μF (γ) � codimF (γ),
with equality if γ is quasi-homogeneous.

Proof. Let γ be a non-constant analytic plane curve. By the curve selection lemma
[2], γ has an isolated singularity at the origin, so it is A -finite and

μI(γ) � codimAe
(γ),

with equality if γ is quasi-homogeneous (see [19]). By corollary 5.11, γ is
F -finite and codimAe

(γ) = codimFe
(γ) + mult(γ) − 1. Using [22], proposition 5.10

and conservation of multiplicity (see e.g. [20], corollary E.4), μF (γ) = μI(γ) −
mult(γ) + 1, as stated above. Therefore,

μF (γ) + mult(γ) − 1 = μI(γ) � codimA (γ) = codimF (γ) + mult(γ) − 1,

with equality if γ is quasi-homogeneous. �

Now let f : (Kn, S) → (Kn+1, 0) be a corank 1 frontal map germ with isolated
frontal instability. We can choose coordinates in the source and target such that

f(x, y) = (x, p(x, y), q(x, y)); qy = μpy; (x, y) ∈ Kn−1 × K,

for some p, q, μ ∈ On. We then set S′ as the projection on the y coordinate of S and
consider the generic slice γ : (K, S′) → (K2, 0) of f , given by γ(t) = (p(0, t), q(0, t)).
Since f has isolated frontal instabilities, γ is A -finite (see proposition 4.1 above)
and we may consider a versal unfolding Γ of γ with frontal reduction

ΓF : (Kd × K, S′ × {0}) → (Kd × K2, 0).

It is not true in general that the sum of two frontal mappings is frontal (e.g.
(x, y) �→ (x, y3, y4) and (x, y) �→ (x, xy, 0)), but we can still construct a frontal sum
operator that yields a frontal mapping given two frontal mappings with corank at
most 1. Let p′, q′, μ′ ∈ Od+1 such that

ΓF (u, y) = (u, p′(u, y), q′(u, y)); q′y = μp′y :

we define the frontal sum F : (Kd × Kn, {0} × S) → (Kd × Kn+1, 0) of f and ΓF as
F (u, x, y) = (u, x, P (u, x, y), Q(u, x, y)), where

P (u, x, y) = p(x, y) + p′(u, y) − p(0, y);

Q(u, x, y) =
∫ y

0

(μ(x, s) + μ′(u, s) − μ(0, s))Ps(u, x, s) ds.
(5.4)

This map germ constitutes an unfolding of both f and ΓF by construction. Stability
of ΓF then implies that F is stable. Therefore, frontal sums allow us to construct
stable frontal unfoldings that are not necessarily versal.
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Example 5.14 Frontalized fold surfaces. Let f : (K2, 0) → (K3, 0) be a frontal fold
surface given in the form

f(x, y) = (x, y2, a1(x)y3 + a2(x)y5 + · · · + an(x)y2n+1 + y2n+3);

wherein we assume a0, . . . , an ∈ K[x]. The function t �→ f(0, t) has order 2n+ 3, so
f can be seen as a smooth 1-parameter unfolding of the curve

γ(t) = (t2, t2n+3 + an(0)t2n+1 + · · · + a1(0)t3).

A frontal miniversal unfolding for γ is given by

Γ(u, t) = (u, t2, t2n+3 + unt
2n+1 + · · · + u1t

3),

and we can recover f by setting uj(x) = aj(x). Taking (u, x) �→ (0, u1 +
a1(x), . . . , un + an(x)) gives the stable unfolding

F (u, x, t) = (u, t2, t2n+3 + [un + an(x)]t2n+1 + · · · + [u1 + a1(x)]t3).

Remark 5.15. The frontal sum defined in (5.4) can be used to show that F (f)
is linear when f has corank at most 1: first, since f is a corank 1 frontal, we take
coordinates in the source and target such that

f(x, y) = (x, p(x, y), q(x, y)); qy = μpy,

and consider the generic slice γ(t) = (p(0, t), q(0, t)).
Let ξ, η ∈ F (f) with respective integral F -curves F = (fu, u), G = (gu, u). Since

F and G are unfoldings of f , they may also be regarded as unfoldings of γ. We
then consider the frontal sum H = (u, v, h(u,v)) of F and G, and set Ĥ = (w, ĥw) =
(w, h(w,w)). Note that the image of Ĥ is simply the intersection of the image of H
with the hypersurface of equation u = v, so Ĥ is frontal. Using the chain rule and
Leibniz’s integral rule, we see that

Pw = Pu + Pv
Qw = Qu +Qv

}
=⇒ ∂ĥw

∂w

∣∣∣∣∣
w=0

= ξ + η

and thus ξ + η ∈ F (f).

6. Stability of frontal map germs

In § 5, we described a method to generate F -versal unfoldings of analytic plane
curves using pullbacks. Nonetheless, as pointed out in remark 5.10, the pullback of
a stable unfolding is generally not stable as a frontal.

In this section, we describe a technique to generate stable frontal unfoldings, not
too dissimilar to the method Mather used to generate all stable map germs. We
also give a classification of all F -stable proper frontal map germs (C3, S) → (C4, 0)
of corank 1 in § 6.2, aided by Hefez and Hernandes’ normal form theorem for plane
curves [9, 10].
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Let f : (Cn, S) → (Cn+1, 0) be a frontal map germ and ξ ∈ F (f). By definition
of F (f), ξ is given by a frontal 1-parameter unfolding F = (ft, t) of f ; this is, F
verifies that

d(Y ◦ ft) =
n∑
i=1

pi d(Xi ◦ ft) + p0 dt

for some p0, . . . , pn ∈ On+1. If we now consider the vector field germ λξ with λ ∈ On,
λξ is given by the 1-parameter unfolding (λft, t). This unfolding is frontal if and
only if

d(Y ◦ λft) =
n∑
i=1

qi d(Xi ◦ λft) + q0 dt (6.1)

for some q0, . . . , qn ∈ On+1. Expanding on both sides of the equality and rearrang-
ing, we see that equation (6.1) is equivalent to

λ

n∑
i=1

(qi − pi) d(Xi ◦ ft) + (q0 − λp0) dt = [(Y ◦ ft) −
n∑
i=1

qi(Xi ◦ ft)] dλ.

Therefore, the ring Rf = {λ ∈ On : dλ ∈ On d(f∗On+1)} acts on F (f) via the usual
action. In particular, f∗On+1 ⊆ Rf , so F (f) is an On+1-module via the action
hξ = (h ◦ f)ξ.

If we assume that f has integral corank 1 (so that F (f) is a K-vector space), we
can define the K-vector spaces

TKFef = tf(θn) + mn+1F (f); T 1
KFe

f =
F (f)
TKFef

.

We also define the frontal Ke-codimension codimKFe
f of f as the dimension of

T 1
KFe

f in K, and will say that f is KFe-finite if codimKFe
f <∞.

Remark 6.1. The space F (f) is not generally a On-module via the usual action:
consider the plane curve γ : (K, 0) → (K2, 0) given by γ(t) = (t2, t3). Using remark
3.13, we see that (0, 1) ∈ F (γ), but (0, t) = t(0, 1) �∈ F (γ).

Recall that the Kodaira–Spencer map is defined as the mapping ωf : T0Kn+1 →
T 1

Ke
f sending v ∈ T0Kn+1 onto ωf(η), where η ∈ θn+1 is such that η0 = v. Since f

is frontal, the image of ωf is contained within F (f), and the target space becomes
T 1

KFe
f . Similarly, the kernel of this ωf becomes

τ(f) := (ωf)−1[TKFef ]|0,

since no element in TKef\F (f) has a preimage.

Lemma 6.2. The map germ f is F -stable if and only if ωf is surjective.

Proof. Assume f is F -stable and let ζ ∈ F (f): there exist ξ ∈ θn and η ∈ θn+1 such
that ζ = tf(ξ) + ωf(η). Setting v = η0, it follows that ωf(v) ≡ ζ mod TKFef ,
and surjectivity of ωf follows.
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Conversely, assume ωf is surjective: we have the identity

TAef + mn+1F (f) = F (f). (6.2)

Set V ′ = F (f)/tf(θn,S) and denote by p : F (f) → V ′ the quotient projection. We
may then write equation (6.2) as

(π ◦ ωf)(θn+1) + mn+1V
′ = V ′ =⇒ V ′

mn+1V ′ � (π ◦ ωf)(θn+1).

Since (p ◦ ωf)(θn+1) is finitely generated over On+1, so is V ′/mn+1V
′. This implies

that V ′/mn+1V
′ is finitely generated over K, so V ′ is finitely generated over On+1

by Weierstrass’ preparation theorem. Since On+1 is a local ring, Nakayama’s lemma
implies that V ′ = (π ◦ ωf)(θn+1), which is equivalent to F (f) = TAef , and frontal
stability follows. �

Theorem 6.3. A frontal f : (Kn, S) → (Kn+1, 0) with branches f1, . . . , fr is
F -stable if and only if f1, . . . , fr are F -stable and the vector subspaces
τ(f1), . . . , τ(fr) ⊆ T0Kn+1 meet in general position.

Proof. Let g be either f or one of its branches. By lemma 6.2, g is F -stable if and
only if ωg is surjective; this is,

F (g)
TKFe

g
∼= T0Kn+1

kerωg
=
T0Kn+1

τ(g)
(6.3)

Let S = {s1, . . . , sr}, the ring isomorphism On,S → On,s1 ⊕ · · · ⊕ On,sr
induces

a module isomorphism F (f) → F (f1) ⊕ . . .F (fr), which in turn induces an
isomorphism

(6.4)

On the other hand, the spaces τ(fi) meet in general position if and only if the
canonical map

(6.5)

is surjective. The statement then follows from (6.3)–(6.5). �

We now use Ephraim’s theorem to give a geometric interpretation to τ(fi), i =
1, . . . , r. Recall that the isosingular locus Iso(D,x0) of a complex space D ⊆W
at x0 is defined as the germ at x0 of the set of points x ∈ D such that (D,x) is
diffeomorphic to (D,x0). Ephraim [6] showed that Iso(D,x0) is a germ of smooth
submanifold of (W,x0) and its tangent space at x0 is given by the evaluation at x0

of the elements in the space

Der(− log(D,x0)) = {ξ ∈ θW : ξ(I) ⊆ I}

where I ⊂ OW is the ideal of map germs vanishing on (D,x0). We shall now use
this result to give a geometric interpretation to the space τ(f).
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Proposition 6.4. Let f : (Cn, S) → (Cn+1, 0) be a finite, frontal map germ with
integral corank 1. If f is F -stable and codim Σ(f̃) > 1, τ(f) is the tangent space
at 0 of Iso(f(Cn, S)).

To prove this result, we shall make use of the following

Lemma 6.5 cf. [20]. Let f : (Cn, S) → (Cn+1, 0) be a finite, frontal map germ with
integral corank 1 and ξ ∈ θn+1. If f is F -finite and codimV (py, μy) > 1,

Der(− log f) = Lift(f) := {η ∈ θn+1 : ωf(η) = tf(ξ) for some ξ ∈ θn}.

Proof of proposition 6.4. By Ephraim’s theorem [6], the tangent space to
Iso(f(Cn, S)) at 0 is given by the evaluation at 0 of the elements in Der(− log f).
Using lemma 6.5, Der(− log f) is the space of elements in θn+1 that are liftable via
f . Therefore, we only need to show that the evaluation of 0 of this space coincides
with τ(f).

Let η ∈ Lift(f): there exists a ξ ∈ θn such that ωf(η) = tf(ξ) ∈ TKFe
f , so η|0 ∈

τ(f). Conversely, if η ∈ θn+1 verifies that η|0 ∈ τ(f), there exist ξ ∈ θn, ζ ∈ F (f)
such that

ωf(η) = tf(ξ) + (f∗β)ζ

for some β ∈ mn+1. Since f is F -stable, F (f) = TAef , which implies that

(f∗mn+1)F (f) = (f∗mn+1)[tf(θn) + ωf(θn+1)] ⊆ tf(mnθn) + ωf(mn+1θn+1)

Therefore, there exist ξ′ ∈ mnθn and η′ ∈ mn+1θn+1 such that

(f∗β)ζ = tf(ξ′) + ωf(η′) =⇒ ωf(η − η′) = tf(ξ + ξ′)

and η − η′ ∈ Lift(f). In particular, if s ∈ S, (η − η′)|0 = ωf(η − η′)|s = v − 0 = v,
thus finishing the proof. �

6.1. Generating stable frontal unfoldings

The generation of stable unfoldings in Thom–Mather’s theory of smooth defor-
mations is done by computing the Ke-tangent space of a smooth map germ
f : (Kn, 0) → (Kp, 0) of rank 0. If mnθ(f)/TKef is generated over K by the classes
of g1, . . . , gs ∈ On, Martinet’s theorem ([20], theorem 7.2) states that the map germ

F (u, x) = (u, f(x) + u1g1(x) + · · · + usgs(x))

is a stable unfolding of f . While such a result fails to yield frontal unfoldings of
frontal map germs, if f has corank 1, we can still make use of the frontal sum
operation defined in § 5 to formulate a frontal version of Martinet’s theorem.

Lemma 6.6. Let f : (Kn, 0) → (Kn+1, 0) be a frontal map germ of integral corank 1
with frontal unfolding F = (u, fu), and (u, y) be local coordinates on (Kd × Kn+1, 0).
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There is an On+d+1-linear isomorphism

β :
F (F )
TKFeF

−→ F (f)
TKFef

induced by the On+d-linear epimorphism β0 : θ(F ) → θ(f) sending ∂yi onto ∂yi for
i = 1, . . . , n+ 1 and ∂uj onto −Ḟj for j = 1, . . . , d.

Proof. In [20], lemma 5.5, it is shown that β0 induces a On+d-linear isomorphism
β1 : T 1

Ke
F → T 1

Ke
f . In particular, we can consider β0 as a On+d+1-epimorphism via

F ∗. Note that TKFeg = TKeg ∩ F (g) for any frontal map germ g with integral
corank 1, so it suffices to show that β0 sends F (F ) onto F (f).

Let ξ ∈ θ(F ) with integral F -curve Ft: the integral F -curve for β0(ξ) is given
by

ft = i∗(π ◦ Ft); π(t, u, y) = (t, y); i(x) = (0, x).

In particular, if (t, Ft) is a frontal, (t, ft) is also frontal, since the image of (t, ft) is
embedded within the image of (t, Ft). Conversely, given a frontal unfolding (t, ft)
of f , the map (t, u, ft) is a frontal unfolding of F with ft = i∗(π ◦ Ft), hence
β0(F (F )) = F (f). �

As a consequence of lemma 6.6, if f : (Kn, 0) → (Kn+1, 0) is a stable frontal map
germ, it is either the versal unfolding of some frontal map germ of rank 0 or a prism
(i.e. a trivial unfolding) thereof.

Theorem 6.7. Let γ : (K, 0) → (K2, 0) be the plane curve from remark 5.2, and

Tj(t) = (tj , Bj(t)), Bj(t) = j

∫ t

0

sj−1μ(s) ds.

If F0(γ) = F (γ) ∩ m1θ(γ), then

SpK{T1, . . . , Tα−2} ↪→
F0(γ)
TKFeγ

↪→ SpK{T1, . . . , Tα−2, (0, tα), . . . , (0, t2α−1)}.

Proof. Let ξ = (a, b) ∈ θ(γ): by remark 3.13, ξ ∈ F (γ) if and only if b′ − μa′ ∈
mα−1

1 , which in turn is equivalent to assuming that b′ − μa′ ≡ λ1T
′
1 + · · · +

λα−2T
′
α−2 mod mα−1

1 for some λ1, . . . , λα−2 ∈ K. Therefore,

F (γ) = K ⊕ SpK {T1, . . . , Tα−1} ⊕ mα
1 θ(γ). (6.6)

A simple computation shows that TKFeγ ⊆ mα−1
1 θ(γ), hence Tj �∈ TKFeγ for

j < α− 1. However, Tα−1 ∈ tγ(θ1), giving the first monomorphism. For the second
monomorphism, first note that γ is finitely determined, so there exists a k > 0 such
that mk+1

1 θ(γ) ⊆ TAeγ ⊆ TKFeγ. If j = α, . . . , k, there exist l > 0 and 0 � β < α
such that j = lα+ β. Using equation (6.6), we see that

(tj , 0) = (tα)l(tβ , 0) = (tα)lTβ(t) + (tα)l(0, Bβ(t)) ∈ m2F (γ) ⊆ TKFeγ.

Similarly, (0, tj) ∈ TKFeγ for all j � 2α. �
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If we now consider the 1-parameter unfolding Γj(u, t) = (u, γ(t) + uTj(t)),

∂

∂t
(tα+1h(t) + uBj(t)) = μ(t)

∂

∂t
(tα + jutj)

and Γj is frontal due to corollary 2.7. Similarly, if we set Γk(u, t) = (u, γ(t) +
utαk(t)) with k ∈ O2

1 ,

Qt(u, t) =
∂

∂t
(tα+1h(t) + utαk2(t)) = tα−1(αμ(t) + uk2(t) + utk′2(t));

Pt(u, t) =
∂

∂t
(tα + utαk1(t)) = tα−1(α+ αuk1(t) + tk′1(t)).

Since α+ αuk1(t) + tk′1(t) is a unit, Pt |Qt and Γk is also frontal.
If F0(γ) = TKFeγ + SpK{Tj1 , . . . , Tjd , k1, . . . , kb} for some k1, . . . , kb ∈ mα

1 O2
1 ,

we consider the (d+ b)-parameter frontal unfolding

F (u, t) = Γj1(u1, t)# . . .#Γjd(ud, t)#Γk1(ud+1, t)# . . .#Γkb
(ud+b, t), (6.7)

where # denotes the frontal sum operation defined in equation (5.4).

Example 6.8. Let f : (K, 0) → (K2, 0) be the plane curve f(t) = (t3, t5), which
verifies that F0(f) = TKFef ⊕ SpK{(9t, 5t3), (0, t4)}. We then consider the
1-parameter unfoldings

F1(t, v) = (v, t3, t5 + vt4); F2(t, u) = (u, t3 + 9ut, t5 + 5ut3),

whose frontal sum is

F (t, u, v) =
(
u, v, t3 + 9ut, t5 + 5ut3 +

1
3
vt4 + 6uvt2

)
.

This unfolding is A -equivalent to the A3,1 singularity from [14], example 4.2.

Theorem 6.9. The map germ F : (Kd × Kb × K, 0) → (Kd × Kb × K2, 0) defined in
equation (6.7) is stable as a frontal. Moreover, if the K-codimension of TKFe

f over
F0(f) is d+ b, every other stable frontal unfolding of f must have at least d+ b
parameters.

Proof. It is clear by definition of TKFeF that

F0(F ) ⊇ TKFeF ⊇ TAeF ∩ md+b+1θ(F ),

so F is F -stable if and only if F0(F ) = TKFeF . By lemma 6.6, this is equivalent
to

F0(f) = TKFef + SpK

{
−Ḟ1, . . . ,−Ḟd+b

}
.

It follows from the definition of frontal sum that

Ḟi(t) = (Pui
(0, t), Qui

(0, t)) =

{
Γ̇ji(t) if i � d;
Γ̇ki

(t) if i > d,

and thus F is stable. �
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6.2. Corank 1 stable frontal map germs in dimension 3

By theorem 6.3, a frontal multigerm f : (K3, S) → (K4, 0) is F -stable if and only
if its branches f1, . . . , fr are F -stable and τ(f1), . . . , τ(fr) meet in general position.
Therefore, we only need to classify the stable monogerms.

By lemma 6.6, every F -stable monogerm with corank 1 is a versal unfolding of
an irreducible analytic plane curve γ with Fe-codimension at most 2. In particular,
if γ(C, 0) is the zero locus of some analytic g ∈ O2, τ(g) − δ(g) � ord(g) + 1 due to
corollary 5.11. A consequence of theorem 6.7 is that codimKFe

γ � ord(g), meaning
that ord(g) must be at most 4.

If ord(g) = 2, it follows from a result by Zariski [30] that g(x, y) = x2 − y2n+1.
For n = 0, 1, this yields an F -stable plane curve; for n > 1, we can unfold γ(t) into

Γn(u, t) = (u, t2, t2n+1 + ut3),

which is stable.
The cases ord(g) = 3 and ord(g) = 4 will be examined using Hefez and Hernandes’

classification of analytic plane curves from [10]. Every analytic plane curve has an
associated invariant Σ = 〈v0, . . . , vg〉, known as the semigroup of values. If the
curve is irreducible, its delta invariant δ is equal to

1
2

[
1 − v0 −

g∑
i=1

vi

(
1 − GCD(v0, . . . , vi−1)

GCD(v0, . . . , vi)

)]
,

regardless of its analytic family. Therefore, the expression τ − δ only depends on τ .
For ord(g) = 3, Σ is given by 〈3, v1〉 with v1 > 3, so δ = v1 − 1. If τ = 2(v1 − 1),

τ − δ = v1 − 1 < 4, so g(x, y) is either x3 − y4 or x3 − y5. The case τ = 2v1 − j − 1
with j � 2 implies that τ < δ, which is impossible.

For ord(g) = 4, Σ can be either 〈4, v1〉 or 〈4, v1, v2〉. If Σ = 〈4, v1〉, v1 is coprime
with 4, so δ = 3/2(v1 − 1) and we have two possible values for τ :

(1) if τ = 3(v1 − 1), τ − δ = 3/2(v1 − 1) � 5, which implies that τ < δ;

(2) if τ = 3v1 − j − 2 with j > 1,

τ − δ =
1
2
(3v1 − 2j − 1) � 5 =⇒ j � 1

2
(3v1 − 11).

Since j � v1/2, it follows that v1 � 3v1 − 11, giving us γ(t) = (t4, t5 + t7).

If Σ = 〈4, v1, v2〉, GCD(4, v1) = 2 and GCD(4, v1, v2) = 1, which implies that v1 � 6
and v2 � 2v1. Using

δ =
1
2
(v2 + v1 − 3); τ = v2 +

1
2
v1 − 2,

it follows that τ − δ = (v2 − 1)/2 > 5. Since we are only interested in the case
τ − δ � 5, we can ignore this case.
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Table 1. Stable proper frontal map germs (C3, 0) → (C4, 0). The notation Ai,j is due to
Ishikawa [14].

Plane curve Versal frontal unfolding

(t2, t3) A2,0 (u, v, t2, t3)

(t2, t5) A2,1 (u, v, t2, t5 + ut3)

(t3, t4) A3,0 (u, v, t3 + 3ut, 3t4 + 2ut2)

(t3, t5) A3,1 (u, v, t3 + tu, t5 + vt4 + 2uvt2 − 5u2t)

(t4, t5 + t7) A4,0 (u, v, t4 + 8tu, t7 + t5 + t3v(5 − 14v) + t2u(5 − 42v) − 28tu2)

For the remaining cases, the possible values for τ − δ fall into one of the following
categories:

3(v1 − 1)
2

+ k −
[v1

4

]
;

3(v1 − 1)
2

− 2j + 1;
3(v1 − 1)

2
− 2j + 2,

for 2 � j � [v1/4] and 1 � k � [v1/4] − j. If τ − δ � 5, then v1 � 7, which is not
possible.

Theorem 6.10. Table 1 shows all stable proper frontal map germs (C3, 0) → (C4, 0)
of corank 1 together with the plane curves of which they are versal unfoldings.
All stable frontal multigerms are obtained by transverse self-intersections of these
mono-germs, as shown in theorem 6.3.

Proof. The discussion conducted throughout this subsection shows that the only
plane curves of frontal codimension less than or equal to 2 are (t2, t3), (t2, t5),
(t2, t7), (t3, t4), (t3, t5) and (t4, t5 + t7). The curve (t2, t3) is easily checked to be
stable as a frontal. The family of curves (t2, t2k+1) for k > 1 unfolds into (s, t) �→
(s, t2, t2k+1 + st3), which is A -equivalent to the folded Whitney umbrella (s, t) �→
(s, t2, st3), which is stable as a frontal [22, 23].

The curves (t3, t4) and (t4, t5 + t7) unfold into the swallowtail and butterfly sin-
gularities (A3,0 and A4,0 in Table 1), both of which are stable wave fronts ([27]).
The E8 singularity unfolds into Ishikawa’s A3,1 singularity [14]. �

Conjecture 6.11. Any stable proper frontal map germ f : (Cn, 0) → (Cn+1, 0) of
corank 1 corresponds to one of Ishikawa’s Ai,j singularities, where

i = dim
f̃∗O2n+1

f∗mn+1
∈ {2, . . . , n}; j + 1 = dim

On

f̃∗m2n+1

∈
{

1, . . . ,
[n
2

]
+ 1

}
and square brackets denote the floor function. All stable frontal multigerms are
obtained by transverse self-intersections of these mono-germs, as shown in theorem
6.3.

The algebra f̃∗O2n+1/f
∗mn+1 was introduced by Ishikawa in [14] in order to give

a characterization of Legendrian stability.
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