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We consider the two-dimensional Rayleigh–Bénard convection problem between
Navier-slip fixed-temperature boundary conditions, and present a new upper bound for the
Nusselt number (Nu). The result, based on a localization principle for the Nusselt number
and an interpolation bound, exploits the regularity of the flow. On one hand our method
yields a shorter proof of the celebrated result of Whitehead & Doering (Phys. Rev. Lett.,
vol. 106, 2011, 244501) in the case of free-slip boundary conditions. On the other hand, its
combination with a new, refined estimate for the pressure gives a substantial improvement
of the interpolation bounds in Drivas et al. (Phil. Trans. R. Soc. A, vol. 380, issue 2225,
2022, 20210025) for slippery boundaries. A rich description of the scaling behaviour arises
from our result: depending on the magnitude of the Prandtl number (Pr) and slip length,
our upper bounds indicate five possible scaling laws (where Ra is the Rayleigh number):
Nu ∼ (L−1

s Ra)1/3, Nu ∼ (L−2/5
s Ra)5/13, Nu ∼ Ra5/12, Nu ∼ Pr−1/6(L−4/3

s Ra)1/2 and
Nu ∼ Pr−1/6(L−1/3

s Ra)1/2.

Key words: Navier–Stokes equations, turbulent convection

1. Introduction

In this paper, we consider a layer of fluid trapped between two parallel horizontal plates
held at different temperatures. The dimensionless equations of motions for the Boussinesq
approximation are

1
Pr
(∂tu + u · ∇u)−�u + ∇p = Ra T e2, (1.1)

∇ · u = 0, (1.2)
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∂tT + u · ∇T −�T = 0, (1.3)

where the Rayleigh number Ra is defined as

Ra = gα δT h3

κν
, (1.4)

and the Prandtl number Pr is

Pr = ν

κ
. (1.5)

In these definitions, g is the gravitational constant, α is the thermal expansion coefficient,
ν is the kinematic viscosity, κ is the thermal diffusivity, h is the distance between the
plates, and δT = Tbottom − Ttop is the temperature gap.

Lengths are measured in units of h, time in units of h2/κ , and temperature in units of δT .
In the rectangular domain Ω = [0, Γ ] × [0, 1] the velocity u = u1(x, t) e1 + u2(x, t) e2
and temperature T = T(x, t) are initialized at t = 0, where

u(x, 0) = u0(x), (1.6)

T(x, 0) = T0(x). (1.7)

The boundary conditions for the temperature are

T = 0 at x2 = 1, (1.8a)

T = 1 at x2 = 0, (1.8b)

while we assume Navier-slip boundary conditions for the velocity field, i.e.

u2 = 0, ∂2u1 = − 1
Ls

u1 at x2 = 1, (1.9a)

u2 = 0, ∂2u1 = 1
Ls

u1 at x2 = 0, (1.9b)

where Ls is the constant slip length. Here, x2 = x · e2. In the horizontal variable
x1 = x · e1, all variables, including the pressure p = p(x, t), are periodic.

We are interested in quantifying the heat transport in the upward direction as measured
by the non-dimensional Nusselt number

Nu =
〈∫ 1

0
(u2T − ∂2T) dx2

〉
, (1.10)

where

〈·〉 = lim sup
t→∞

1
t

∫ t

0

1
Γ

∫ Γ

0
(·) dx1 ds. (1.11)

This number, of utmost relevance in geophysics and industrial applications (Plumley &
Julien 2019), is predicted to obey a power-law scaling of the type

Nu ∼ Raα Prβ. (1.12)

Although physical arguments suggest certain scaling exponents α and β (Malkus 1954;
Kraichnan 1962; Spiegel 1971; Siggia 1994), where transitions between scalings could
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Scaling laws for Rayleigh–Bénard convection

occur (Ahlers, Grossmann & Lohse 2009), these theories need to be validated. While
experiments are expensive and difficult (Ahlers 2006), numerical studies are limited by
the lack of computational power in reaching high-Rayleigh-number regimes (Plumley &
Julien 2019). Even in two spatial dimensions, there have been recent debates about the
presence/absence of evidence of the ‘ultimate scaling’ (scaling that holds in the regime
of very large Rayleigh numbers) for the Nusselt number (Zhu et al. 2018, 2019; Doering,
Toppaladoddi & Wettlaufer 2019; Doering 2020). We use mathematical analysis in order to
derive universal upper bounds for the Nusselt number, which serve as a rigorous indication
for the scaling exponents holding in the turbulent regime Ra → ∞. The properties of
boundary layers and their thicknesses play a central role in the scaling laws for the
Nusselt number in Rayleigh–Bénard convection (see Nobili (2023) and references therein).
For this reason, it is interesting to study how heat transport properties change when
varying the boundary conditions. In particular, we ask the following question: are there
boundary conditions inhibiting or enhancing heat transport compared to the classical
no-slip boundary conditions? While many theoretical studies focus on no-slip boundary
conditions (Doering & Constantin 1996, 2001; Doering, Otto & Reznikoff 2006; Otto
& Seis 2011; Goluskin & Doering 2016; Tobasco & Doering 2017), other reasonable
boundary conditions have been far less explored. In the early 2000s, Ierley, Kerswell &
Plasting (2006) considered the Rayleigh–Bénard convection problem at infinite Prandtl
number and free-slip boundary conditions; their computational result Nu � Ra5/12 is
obtained by combining the Busse asymptotic expansion in multiple boundary layer
solutions (multi-α solutions) and the Constantin and Doering background field method
approach (Doering & Constantin 1994, 1996). Inspired by this result and a numerical study
in the thesis of Otero (2002), Doering and Whitehead rigorously proved

Nu � Ra5/12 (1.13)

for the two-dimensional finite Prandtl model (Whitehead & Doering 2011) and for the
three-dimensional infinite Prandtl number model (Whitehead & Doering 2012) using an
elaborate application of the background field method. By a perturbation argument around
Stokes equations, Wang & Whitehead (2013) proved

Nu � Ra5/12 + Gr2 Ra1/4 (1.14)

in three dimensions for small Grashof number (Gr = Ra/Pr).
In many physical situations, the Navier-slip boundary conditions are used to describe

the presence of slip at the solid–liquid interface (Neto et al. 2005; Uthe, Sader & Pelton
2022). We notice that for any finite Ls > 0, these conditions imply vorticity production
at the boundary. In the limit of infinite slip length, the Navier-slip boundary conditions
reduce to free-slip boundary conditions, while in the limit Ls → 0, they converge to the
no-slip boundary conditions.

Inspired by the seminal paper of Whitehead & Doering (2011), Drivas, Nguyen and the
second author of this paper considered the two-dimensional Rayleigh–Bénard convection
model with Navier-slip boundary conditions, and rigorously proved the upper bound

Nu � Ra5/12 + L−2
s Ra1/2 (1.15)

when Pr ≥ Ra3/4 L−1
s and Ls � 1 (Drivas, Nguyen & Nobili 2022). The authors refer

to (1.15) as an interpolation bound: assuming Ls ∼ Raα with α ≥ 0 (the justification of
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this choice can be found in the appendix of Bleitner & Nobili 2024), it can be deduced
easily that

Nu �
{

Ra5/12, if α ≥ 1
24 ,

Ra1/2−2α, if 0 ≤ α ≤ 1
24 .

(1.16)

In Bleitner & Nobili (2024), the authors generalized the result in Drivas et al. (2022) to
the case of rough walls and Navier-slip boundary conditions, proving interpolation bounds
exhibiting explicit dependency on the spatially varying friction coefficient and curvature.

Given the model (1.1), (1.2), (1.3) with (1.8) and (1.9), the objective of this paper is
twofold: on one hand we want to apply the so-called direct method (as outlined in Otto &
Seis 2011) to derive upper bounds on the Nusselt number exhibiting a transparent relation
with the thermal boundary layer’s thickness. For discussions about different approaches
to derive bounds on the Nusselt number, we refer the reader to Chernyshenko (2022) and
references therein. On the other hand, we aim to improve the bound in Drivas et al. (2022)
by refining the estimates on the pressure. Our new result is stated in the following theorem.

THEOREM 1.1. Suppose u0 ∈ W1,4 and 0 ≤ T0 ≤ 1.
If Ls = ∞ (i.e. u satisfies free-slip boundary conditions), then

Nu � Ra5/12. (1.17)

If 1 ≤ Ls < ∞, then

Nu � Ra5/12 + L−1/6
s Pr−1/6 Ra1/2. (1.18)

If 0 < Ls < 1, then

Nu � L−1/3
s Ra1/3 + L−2/3

s Pr−1/6 Ra1/2 + L−2/13
s Ra5/13 + Ra5/12. (1.19)

We reserve the discussion on physical implications of this result for the conclusions, in
§ 4. We first remark that for Ls ≥ 1, this result improves the upper bound in (1.15): in fact,
if Ls ∼ Raα , with α ≥ 0, then our new result yields

Nu �
{

Ra5/12, if Pr ≥ Ra1/2−α,
Pr−1/6 Ra1/2−α/6, if Pr ≤ Ra1/2−α.

(1.20)

In particular, when α = 0, we notice a crossover at Pr ∼ Ra1/2 between the Ra1/2 and
Pr−1/6 Ra1/2 scaling regimes. This is reminiscent of the upper bound in Choffrut, Nobili
& Otto (2016) for no-slip boundary conditions. Our result also covers the case 0 < Ls < 1,
and in this region, we can detect four scaling regimes depending on the magnitude of the
Prandtl number and Ls < 1. The dominating terms in (1.18) and (1.19) are summarized in
table 1. Observe that for Pr → ∞, the term L−1/3

s Ra1/3 is dominating in the region 0 <
Ls < Ra−2/7. On one hand, when Pr → ∞, this seems to indicate the (expected) transition
from Navier-slip to no-slip boundary conditions in the bounds. In order to contextualize
this remark, we recall that for no-slip boundary conditions (Ls = 0), the upper bound Nu �
Ra1/3 was proven when Pr = ∞ (Otto & Seis 2011) and when Pr � Ra1/3 (Choffrut et al.
2016). On the other hand, we stress that our bounding method breaks down in the limit
Ls → 0, and consequently all but the last scaling prefactors in (1.19) blow up.

Differently from the result in Whitehead & Doering (2011), the proof of our theorem
does not rely on the background field method but rather exploits the regularity properties
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Scaling laws for Rayleigh–Bénard convection

Assumptions Bound

Ra11/7 ≤ Pr

Ra−5/24 ≤ Ls Nu � Ra5/12

Ra−2/7 ≤ Ls ≤ Ra−5/24 Nu � L−2/13
s Ra5/13

Pr−1/2 Ra1/2 ≤ Ls ≤ Ra−2/7 Nu � L−1/3
s Ra1/3

Ls ≤ Pr−1/2 Ra1/2 Nu � L−2/3
s Pr−1/6 Ra1/2

Ra4/3 ≤ Pr ≤ Ra11/7
Ra−5/24 ≤ Ls Nu � Ra5/12

Pr−13/40 Ra9/40 ≤ Ls ≤ Ra−5/24 Nu � L−2/13
s Ra5/13

Ls ≤ Pr−13/40 Ra9/40 Nu � L−2/3
s Pr−1/6 Ra1/2

Ra1/2 ≤ Pr ≤ Ra4/3 Pr−1/4Ra1/8 ≤ Ls Nu � Ra5/12

Ls ≤ Pr−1/4 Ra1/8 Nu � L−2/3
s Pr−1/6 Ra1/2

Pr ≤ Ra1/2
Pr−1 Ra1/2 ≤ Ls Nu � Ra5/12

1 ≤ Ls ≤ Pr−1 Ra1/2 Nu � L−1/6
s Pr−1/6 Ra1/2

Ls ≤ 1 Nu � L−2/3
s Pr−1/6 Ra1/2

Table 1. Overview of the results in Theorem 1.1. The colouring corresponds to the cases Ls ≤ 1 and 1 ≤ Ls.
In all the other (uncoloured) cases, Ls may be smaller or larger than 1.

of the flow through a localization principle. In fact, the Nusselt number can be localized
in the vertical variable:

Nu = 1
δ

〈∫ δ

0
(u2T − ∂2T) dx2

〉
≤ 1
δ

〈∫ δ

0
u2T dx2

〉
+ 1
δ
. (1.21)

Here, we used the boundary conditions for the temperature and the maximum principle
supx |T(x, t)| ≤ 1 for all t. Notice that this localization principle comes from the fact that
the (long-time and horizontal average of the) heat flux is the same for each x2 ∈ (0, 1),
and this can be deduced by merely using the non-penetration boundary conditions u2 = 0
at x2 = 0, x2 = 1 (see the proof of Lemma 2.1 below).

The second crucial point in our proof is the interpolation inequality

1
δ

〈∫ δ

0
u2T dx2

〉
≤ 1

2

〈∫ 1

0
|∂2T|2 dx2

〉
+ Cδ3

〈∫ 1

0
|ω|2 dx2

〉1/2 〈∫ 1

0
|∂1ω|2 dx2

〉1/2

,

(1.22)

where C is some positive constant, which was first derived (in a slightly different form) in
Drivas et al. (2022); it is proved in Lemma 3.1 below. We again observe that this bound
holds only relying on the assumption u2 = 0 at the boundaries x2 = 0, x2 = 1.

In Lemma 2.5, we prove the new pressure estimate

‖p‖H1 ≤ C
(

1
Ls

‖∂2u‖L2 + 1
Pr

‖ω‖L2 ‖ω‖Lr + Ra ‖T‖L2

)
, (1.23)

where L2 is the space of square integrable functions, while H1 is the space of functions in
L2 with square integrable gradients. The space Lr instead consists of functions whose rth
power is integrable. See definitions in (1.25). Notice that the improvement (compared to
the pressure estimate in Proposition 2.7 in Drivas et al. 2022) lies in the first term on the
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right-hand side, stemming from the new trace-type estimate∣∣∣∣
∫ Γ

0
( p ∂1u1|x2=1 + p ∂1u1|x2=0) dx1

∣∣∣∣ ≤ 3 ‖p‖H1 ‖∂2u‖L2, (1.24)

used to control the boundary terms in the H1 pressure identity (2.49). We observe that the
new pressure estimate enables us to treat the case of small slip length, i.e. 0 < Ls ≤ 1.
This small slip length regime was not treatable in Drivas et al. (2022); see Remark 2.6.

1.1. Organization and notations
The paper is divided in two sections: in § 2, we prove all the a priori estimates that we will
need in order to prove the main theorem in § 3. The crucial localization and interpolation
lemmas are proven in Lemmas 2.1 and 3.1, respectively. The improvement of the upper
bounds on the Nusselt number stems from the new pressure estimates in Lemma 2.5. In
§ 4, we contextualize our result and give a physical interpretation of our bounds.

Throughout the paper, we will use the following Lebesgue and Sobolev norms:

‖ f ‖p
Lp =

∫
Ω

| f |p dx, ‖ f ‖p
W1,p =

∫
Ω

| f |p dx +
∫
Ω

|∇f |p dx, ‖ f ‖H1 = ‖ f ‖W1,2,

(1.25)
for any 1 ≤ p < ∞.

2. Identities and a priori bounds

In this section, we derive a priori bounds for the Rayleigh–Bénard convection problem
with Navier-slip boundary conditions. These will be used in the proof of Theorem 1.1 in
§ 3.

Recall that the temperature equation enjoys a maximum principle: if 0 ≤ T0(x) ≤ 1,
then

0 ≤ T(x, t) ≤ 1, for all x, t. (2.1)

The following lemma will allow us to localize the Nusselt number in a strip of height δ >
0, indicating the thermal boundary layer. This is the key ingredient of the direct method,
and will be used later to bound the heat transfer.

LEMMA 2.1 (Localization of the Nusselt number). The Nusselt number Nu defined in
(1.10) is independent of x2, i.e.

Nu = 〈u2T − ∂2T〉, for all x2 ∈ [0, 1]. (2.2)

In particular, for any δ ∈ (0, 1), we have

Nu = 1
δ

〈∫ δ

0
(u2T − ∂2T) dx2

〉
. (2.3)

Proof . Taking the long-time and horizontal average of the equation for T , we have

0 = 〈∂tT〉 + 〈∇ · (uT − ∇T)〉 = ∂2〈u2T − ∂2T〉. (2.4)

Hence 〈u2T − ∂2T〉 is constant in x2, proving (2.2). The identity (2.3) is a direct
consequence of (2.2).
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Scaling laws for Rayleigh–Bénard convection

Notice that from the boundary condition for T at x2 = 0, i.e. (1.8b), and the maximum
principle (2.1), it follows that

−
∫ δ

0
∂2T dx2 = −T(x1, δ)+ 1 ≤ 1. (2.5)

As a consequence, we obtain

Nu ≤ 1
δ

〈∫ δ

0
u2T dx2

〉
+ 1
δ
. (2.6)

Thanks to (2.2), we can now derive another useful identity relating temperature
gradients (naturally emerging in (2.46) and (3.1)) to the Nusselt number.

LEMMA 2.2 (Representation of the Nusselt number). The Nusselt number, defined in
(1.10), has the following alternative representation:

Nu =
〈∫ 1

0
|∇T|2 dx2

〉
. (2.7)

Proof . Testing (1.3), the temperature equation with T , and integrating by parts, we obtain

1
2

d
dt

‖T‖2
L2 = −‖∇T‖2

L2 −
∫ Γ

0
∂2T|x2=0 dx1, (2.8)

where we used the incompressibility condition (1.2), the non-penetration condition
u · e2 = u2 = 0 at x2 = {0, 1}, and the boundary conditions (1.8) for T . The statement
follows from taking the long-time averages, observing that lim supt→∞

∫ t
0(d/ds)(1/Γ )∫ Γ

0

∫ 1
0 |T|2 dx2 dx1 ds = 0 thanks to the maximum principle for T (2.1), and using Nu =

〈u2T − ∂2T〉|x2=0 by (2.2).

The subsequent Lemma 2.3 provides a bound on the long-time (and spatial) average
of the velocity gradient, naturally arising from the interpolation estimate in Lemma 3.1.
Moreover this bound will be used to control the vorticity gradient in Lemma 2.4.

LEMMA 2.3 (Energy). Let 0 < Ls < ∞, and suppose that u0 ∈ L2. Then there exists a
constant C = C(Γ ) > 0 such that

‖u(t)‖L2 ≤ ‖u0‖L2 + C max{1, Ls} Ra (2.9)

for all times t ∈ [0,∞), and 〈∫ 1

0
|∇u|2 dx2

〉
≤ Nu Ra. (2.10)

If Ls = ∞, then the bound (2.9) simplifies to

‖u(t)‖L2 ≤ ‖u0‖L2 + C Ra, (2.11)

and (2.10) remains valid.
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Proof . At first, we assume 0 < Ls < ∞ and test the velocity equation (1.1) with u,
integrate by parts, and use the boundary conditions (1.9) for u and the incompressibility
condition (1.2) to find

1
2 Pr

d
dt

∫
Ω

|u|2 dx +
∫
Ω

|∇u|2 dx + 1
Ls

∫ Γ

0
(u2

1|x2=0 + u2
1|x2=1) dx1 = Ra

∫
Ω

Tu2 dx.

(2.12)

The fundamental theorem of calculus implies

u1(x) = u1(x1, 0)+
∫ x2

0
∂2u1(x1, z) dz, (2.13)

and using Young’s and Hölder’s inequality gives

u2
1(x) = u2

1(x1, 0)+ 2u1(x1, 0)
∫ x2

0
∂2u1(x1, z) dz +

(∫ x2

0
∂2u1(x1, z) dz

)2

(2.14)

≤ 2u2
1(x1, 0)+ 2

(∫ x2

0
|∂2u1(x1, z)| dz

)2

(2.15)

≤ 2u2
1(x1, 0)+ 2

∫ x2

0
|∂2u1(x1, z)|2 dz, (2.16)

which after integration implies

‖u1‖2
L2 ≤ 2

∫ Γ

0
u2

1|x2=0 dx1 + 2‖∂2u1‖2
L2 . (2.17)

By (1.9), one has u2 = 0 on the boundaries, therefore the analogous estimate shows that

‖u2‖2
L2 ≤ ‖∂2u2‖2

L2 . (2.18)

The full vector norm of the velocity can now be split into the norms of its components,
and by (2.17) and (2.18), we have

‖u‖2
L2 = ‖u1‖2

L2 + ‖u2‖2
L2 (2.19)

≤ 2
(

‖∂2u1‖2
L2 +

∫ Γ

0
(u2

1|x2=0 + u2
1|x2=1) dx1 + ‖∂2u2‖2

L2

)
(2.20)

≤ 2
(

‖∇u‖2
L2 +

∫ Γ

0
(u2

1|x2=0 + u2
1|x2=1) dx1

)
, (2.21)

which applied to (2.12) yields

1
2 Pr

d
dt

∫
Ω

|u|2 dx + 1
C

min{1, L−1
s } ‖u‖2

L2

≤ Ra
∫
Ω

Tu2 dx ≤ Ra ‖T‖L2 ‖u2‖L2

≤ 1
4ε

‖T‖2
L2 Ra2 + ε ‖u2‖2

L2 ≤ 1
4ε
Γ Ra2 + ε ‖u2‖2

L2, (2.22)
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Scaling laws for Rayleigh–Bénard convection

for some constant C > 0, where we used Hölder’s inequality, Young’s inequality and
‖T‖L∞ ≤ 1 because of the maximum principle (2.1). Setting ε = (1/2C)min{1, L−1

s }
implies

1
Pr

d
dt

‖u‖2
L2 + 1

C
min{1, L−1

s } ‖u‖2
L2 ≤ C max{1, Ls}Γ Ra2, (2.23)

and Grönwall’s inequality now yields (2.9). Taking the long-time average of (2.12), using
(2.9), one has〈∫ 1

0
|∇u|2 dx2

〉
+ 1

Ls

〈
(u2

1|x2=0 + u2
1|x2=1)

〉
= Ra

〈∫ 1

0
Tu2 dx2

〉
. (2.24)

The claim follows by observing that, due to the boundary conditions for T , we have

Nu =
〈∫ 1

0
Tu2 dx2

〉
+ 1. (2.25)

If Ls = ∞, then integrating the first component of (1.1) in space yields

1
Pr

d
dt

∫
Ω

u1 dx = − 1
Pr

∫
Ω

u · ∇u1 dx +
∫
Ω

�u1 dx −
∫
Ω

∂1p. (2.26)

The first term on the right-hand side of (2.26) vanishes after integration by parts due
to the incompressibility condition (1.2) and the boundary conditions (1.9). Similarly, the
second and third terms on the right-hand side vanish due to Stokes’ theorem, (1.9) and the
periodicity in the horizontal direction, showing that the spatial average of u1 is conserved.
Therefore, due to the Galilean symmetry of the system, we can assume u1 to be average
free. Consequently, the Poincaré inequality (Evans 1998, § 5.8.1) implies that there exists
a constant C = C(Γ ) > 0 such that

‖u1‖L2 ≤ C ‖∇u1‖L2, (2.27)

and combined with (2.18), we find

‖u‖L2 ≤ C ‖∇u‖L2, (2.28)

the analogue of (2.21). Using (2.28) instead of (2.21), the arguments corresponding to
(2.22)–(2.25) yield the bounds for Ls = ∞.

In order to bound the second derivatives of u, we will exploit the equation for the
vorticity ω = ∂1u2 − ∂2u1:

Pr−1 (∂tω + u · ∇ω)−�ω = Ra ∂1T in Ω, (2.29)

ω = 1
Ls

u1 at x2 = 1, (2.30)

ω = − 1
Ls

u1 at x2 = 0. (2.31)

Note that in the two-dimensional setting, the vorticity is a scalar function, and for any
0 < Ls ≤ ∞, we have

‖∇u‖L2 = ‖ω‖L2, ‖∇u‖Lp ≤ C ‖ω‖Lp . (2.32)
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F. Bleitner and C. Nobili

While the identity in L2 follows from a direct computation, the inequality in Lp

follows by elliptic regularity; in fact, let ψ be the the stream function for u,
i.e. u = ∇⊥ψ = (−∂2ψ, ∂1ψ). Since ∂1ψ = u2 = 0 at x2 = 1 and x2 = 0, and ψ is
defined only up to a constant, we can choose it such that ψ = 0 on x2 = 0. Therefore,
using the fundamental theorem of calculus,

ψ(x1, 1) = ψ(x1, 0)+
∫ 1

0
∂2ψ(x1, z) dz = −

∫ 1

0
u1(x1, z) dz, (2.33)

and since ψ is constant at x2 = 1, averaging (2.33) in x1 yields ψ(x1, 1) =
−(1/Γ ) ∫

Ω
u1 dx. Combining these observations with the direct computation �ψ =

∇⊥ · ∇⊥ψ = ∇⊥ · u = ω shows that ψ is a solution of

�ψ = ω in Ω, (2.34)

ψ = − 1
Γ

∫
Ω

u1 dx at x2 = 1, (2.35)

ψ = 0 at x2 = 0, (2.36)

and ψ̃ = ψ + x2
∫
Ω

u1 dx solves

�ψ̃ = ω in Ω, (2.37)

ψ = 0 at x2 ∈ {0, 1}. (2.38)

One has

‖∇u‖p
Lp = ‖∇u1‖p

Lp + ‖∇u2‖p
Lp = ‖ − ∇∂2ψ‖p

Lp + ‖∇∂1ψ‖p
Lp (2.39)

≤ ‖∇2ψ‖p
Lp + ‖∇2ψ‖p

Lp = ‖∇2ψ̃‖p
Lp + ‖∇2ψ̃‖p

Lp ≤ C‖ω‖p
Lp, (2.40)

where we used the Calderon–Zygmund estimate (Gilbarg & Trudinger 1977, § 9.4) in the
last inequality.

The following lemma provides a higher-order version of Lemma 2.3. The uniform in
time bound will later be used to control the pressure terms arising due to the vorticity
production on the boundary, while the long-time average estimate will be used in the proof
of the main theorem to estimate the thickness of the thermal boundary layer.

LEMMA 2.4 (Enstrophy). Suppose u0 ∈ W1,4 and 0 < Ls ≤ ∞. Then there exists a
constant C = C(Γ ) > 0 such that for all t > 0,

‖ω(t)‖L4 ≤ C max
{

1, L−3
s

}
(‖u0‖W1,4 + Ra) (2.41)

and 〈∫ 1

0
|∇ω|2 dx2

〉
≤ 1

Ls

∣∣〈p ∂1u1|x2=1
〉 + 〈

p ∂1u1|x2=0
〉∣∣ + Nu Ra3/2. (2.42)
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Scaling laws for Rayleigh–Bénard convection

Proof . For the proof of (2.41), we refer the reader to Drivas et al. (2022, Lemma 2.11),
where the case Ls ≥ 1 is covered. The same argument also yields the bound in the case
Ls < 1. Testing the equation with ω and integrating by parts, we obtain

1
2 Pr

d
dt

(
‖ω‖2

L2 + 1
Ls

‖u1‖2
L2(x2=0) + 1

Ls
‖u1‖2

L2(x2=1)

)
+ ‖∇ω‖2

L2 dx

+ 1
Ls

[∫ Γ

0
∂1u1p|x2=0 dx1 +

∫ �

0
∂1u1p|x2=1dx1

]
= Ra

∫
Ω

ω ∂1T dx, (2.43)

where we used −∂2ω = �u1 = (1/Pr)(∂tu1 + (u · ∇)u1)− ∂1p and the fact that
ω(u · ∇)u1 = ±(1/Ls)u2

1 ∂1u1 at x2 = {0, 1} vanishes after integration (in x1) due to
periodicity. We integrate (2.43) in time, and notice that thanks to (2.32) and the trace
estimate (Evans 1998, § 5.5), the first bracket on the left-hand side is bounded by the
H1-norm of u:

‖ω‖2
L2 + 1

Ls
‖u1‖2

L2(x2=0) + 1
Ls

‖u1‖2
L2(x2=1) ≤ C(Ls) ‖u‖2

H1 . (2.44)

Note also that due to Hölder’s inequality, (2.41) additionally yields

‖ω(t)‖L2 ≤ C max
{

1, L−3
s

}
(‖u0‖W1,4 + Ra), (2.45)

which, combined with (2.9) and (2.32), implies that ‖u(t)‖H1 is universally bounded in
time. Therefore, claim (2.42) follows from taking the space and long-time average of
(2.43), using the fact that the long-time average of the first term in (2.43) vanishes due
to the argument above, and observing〈∫

Ω

ω∂1T dx2

〉
≤

〈∫
Ω

|ω|2 dx2

〉1/2 〈∫
Ω

|∇T|2 dx2

〉1/2

≤ (Nu Ra)1/2 Nu1/2, (2.46)

where we used (2.32), (2.10) and (2.7).

Notice that the pressure term appears at the boundary in (2.42), and for this reason, we
need to control its H1-norm. The next lemma will provide control for this term. Taking the
divergence of (1.1), it is easy to see that the pressure p satisfies

�p = − 1
Pr

∇uT : ∇u + Ra ∂2T in Ω, (2.47a)

∂2p = 1
Ls
∂1u1 at x2 = 1, (2.47b)

−∂2p = 1
Ls
∂1u1 − Ra at x2 = 0, (2.47c)

where the boundary conditions are derived by tracing the second component of (1.1) on
the boundary.

LEMMA 2.5 (Pressure bound). Let r > 2. Then there exists a constant C = C(r, Γ ) > 0
such that

‖p‖H1 ≤ C
(

1
Ls

‖∂2u‖L2 + 1
Pr

‖ω‖L2 ‖ω‖Lr + Ra ‖T‖L2

)
. (2.48)
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F. Bleitner and C. Nobili

Proof . The proof is a consequence of the following two claims:

‖∇p‖2
L2 = 1

Ls

∫ Γ

0
( p ∂1u1|x2=1 + p ∂1u1|x2=0) dx1 + 1

Pr

∫
Ω

p ∇uT : ∇u dx

+ Ra
∫
Ω

∂2pT dx, (2.49)

∣∣∣∣
∫ Γ

0
( p ∂1u1|x2=1 + p ∂1u1|x2=0) dx1

∣∣∣∣ ≤ 3 ‖p‖H1 ‖∂2u‖L2 . (2.50)

In fact, applying the Poincaré inequality ( p can be assumed to have zero mean, since
p − 〈p〉 satisfies (2.47)) and combining (2.49) and (2.50), we obtain

‖p‖2
H1 � 1

Ls

∫ Γ

0
( p ∂1u1|x2=1 + p ∂1u1|x2=0) dx1 + 1

Pr

∫
Ω

p ∇uT : ∇u dx

+ Ra
∫
Ω

∂2pT dx (2.51)

� L−1
s ‖p‖H1 ‖∂2u‖L2 + Pr−1 ‖p‖Lq ‖∇u‖L2 ‖∇u‖Lr + Ra ‖p‖H1 ‖T‖L2 (2.52)

� L−1
s ‖p‖H1 ‖∂2u‖L2 + Pr−1 ‖p‖H1 ‖∇u‖L2 ‖∇u‖Lr + Ra ‖p‖H1 ‖T‖L2, (2.53)

where f � g indicates that there exists C > 0 such that f ≤ Cg, and q and r are related
by 1/p + 1/r = 1/2. In (2.52) we used the trace estimate, and in (2.53) the fact that
‖p‖Lq ≤ C ‖p‖H1 for any q ∈ (2,∞) by Sobolev embedding in bounded domains. It is
left to prove the claims.

Argument for (2.49). Integrating by parts and using (2.47a) gives

‖∇p‖2
L2 =

∫ Γ

0
p ∂2p|x2=1 dx1 −

∫ Γ

0
p ∂2p|x2=0 dx1 −

∫
Ω

p�p dx (2.54)

= 1
Ls

∫ Γ

0
p(∂1u1|x2=1 + ∂1u1|x2=0) dx1 − Ra

∫ Γ

0
p|x2=0 dx1

+ 1
Pr

∫
Ω

p ∇uT : ∇u dx − Ra
∫
Ω

∂2Tp dx (2.55)

= 1
Ls

∫ Γ

0
p(∂1u1|x2=1 + ∂1u1|x2=0) dx1

+ 1
Pr

∫
Ω

p ∇uT : ∇u dx + Ra
∫
Ω

T ∂2p dx, (2.56)

where in the last identity we used −Ra
∫
Ω
∂2Tp − Ra

∫ Γ
0 p|x2=0 dx1 = Ra

∫
Ω

T ∂2p dx
thanks to the boundary conditions for T .

Argument for (2.50). Since u is divergence-free, we have

0 =
∫
Ω

p(−1 + 2x2) ∂2(∇ · u) dx =
∫
Ω

p(−1 + 2x2)∇ · (∂2u) dx, (2.57)
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Scaling laws for Rayleigh–Bénard convection

and integration by parts yields∫
Ω

p(−1 + 2x2)∇ · (∂2u) dx = −
∫
Ω

∇p · (−1 + 2x2) ∂2u dx − 2
∫
Ω

p ∂2u2 dx

−
(∫ Γ

0
p ∂1u1|x2=1 + p ∂1u1|x2=0

)
dx1, (2.58)

where we used ∂1u1 = −∂2u2 by incompressibility. Combining the two identities, we
obtain∣∣∣∣

∫ Γ

0
( p ∂1u1|x2=1 + p ∂1u1|x2=0) dx1

∣∣∣∣ ≤ 2 ‖p‖L2 ‖∂2u2‖L2 + ‖∂2u‖L2 ‖∇p‖L2 (2.59)

≤ 3 ‖p‖H1 ‖∂2u‖L2 . (2.60)

REMARK 2.6. The pressure bound in Proposition 2.7 of Drivas et al. (2022) is given by

‖p‖H1 ≤ C
(

1
Ls

‖∂1ω‖L2 + 1
Pr

‖ω‖L2 ‖ω‖Lr + Ra ‖T‖L2

)
. (2.61)

In the subsequent analysis, the authors bound the term (1/Ls) ‖∂1ω‖L2 from above with
‖∇ω‖L2 , imposing the condition that Ls ≥ 1. In contrast, using the refined estimate (2.48),
we are able to treat any slip length Ls > 0, improving the scaling of Nu with respect to Ra.

We conclude this section with bounds on second derivatives of the velocity field. First,
we relate the L2-norm of ∇2u to the L2-norm of ∇ω.

LEMMA 2.7.
‖∇2u‖L2 ≤ ‖∇ω‖L2 . (2.62)

Proof . First, we show that ‖∇2u‖L2 ≤ ‖�u‖L2 : integrating by parts twice yields

‖∇2u‖2
L2(Ω)

=
∫
Ω

∂i∂juk ∂i∂juk dx (2.63)

=
∫
Ω

∂2
i uk ∂

2
j uk dx −

∫
∂Ω

∂2
i uk ∂juknj dS +

∫
∂Ω

∂i∂juk ∂jukni dS (2.64)

= ‖�u‖2
L2(Ω)

−
∫ Γ

0
∂2

1 uk ∂2ukn2 dx1 +
∫ Γ

0
∂2∂1uk ∂1ukn2 dx1, (2.65)

where we used periodicity in the horizontal direction and the fact that the terms with i = j
cancel. Note that due to (1.9), the boundary terms have a sign:

−
∫ Γ

0
∂2

1 uk ∂2ukn2 dx1 +
∫ Γ

0
∂2∂1uk ∂1ukn2 dx1

= −
∫ Γ

0
∂2

1 u1 ∂2u1n2 dx1 +
∫ Γ

0
∂2∂1u1 ∂1u1n2 dx1 (2.66)

= 1
Ls

∫ Γ

0
∂2

1 u1u1 dx1 −
∫ Γ

0
(∂1u1)

2 dx1 = − 2
Ls

∫ Γ

0
(∂1u1)

2 dx1 ≤ 0, (2.67)

where in the last identity we used the periodicity in the horizontal direction. This proves
the first claim.
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Now, a direct computation yields �u = ∇⊥ω, and from this follows ‖�u‖L2(Ω) =
‖∇ω‖L2(Ω). We conclude that

‖∇2u‖L2(Ω) ≤ ‖�u‖L2(Ω) = ‖∇ω‖L2(Ω), (2.68)
yielding (2.62).

Next, we relate ‖∇2u‖L2 to Nu,Ra and Ls, via an upper bound for ‖∇ω‖L2 . This is done
by combining (2.42), the pressure bound (2.48) and the boundary integral estimate (2.50).
The resulting bound on the long-time average of the velocity Hessian together with the
corresponding bound on the velocity gradient of Lemma 2.10 are key ingredients in order
to estimate the boundary layer thickness in the proof of the main theorem.

LEMMA 2.8 (Hessian bound). Let Ls > 0 and u0 ∈ W1,4. Then there exists a constant
C = C(Γ ) > 0 such that〈

‖∇2u‖2
L2

〉
≤ C

(
L−2

s + max{1, L−3
s } (‖u0‖W1,4 + Ra)

Pr Ls

+ L−1
s Nu−1/2 Ra1/2 + Ra1/2

)
Nu Ra. (2.69)

Proof . From (2.62) and (2.42), we have〈∫ 1

0
|∇2u|2 dx

〉
≤ L−1

s
(〈

p ∂1u1|x2=1
〉 + 〈

p ∂1u1|x2=0
〉) + Nu Ra3/2. (2.70)

Using (2.50) and (2.48), we obtain〈∫ 1

0
|∇2u|2 dx

〉
≤ L−1

s 〈‖p‖H1‖∂2u‖L2〉 + Nu Ra3/2 (2.71)

≤ L−2
s 〈‖∂2u‖2

L2〉 + L−1
s Pr−1〈‖ω‖L2 ‖ω‖L4 ‖∂2u‖L2〉

+ L−1
s Ra 〈‖T‖L2 ‖∂2u‖L2〉 + Nu Ra3/2. (2.72)

For the L4-norm of the vorticity, the pointwise (in time) bound (2.41) states

‖ω(t)‖L4 ≤ C max
{

1, L−3
s

}
(‖u0‖W1,4 + Ra), (2.73)

for some constant C > 0 depending only on Γ . Therefore, additionally using the identity
(2.32), (2.72) can be estimated as follows:〈∫ 1

0
|∇2u|2 dx2

〉
≤ L−2

s 〈‖∂2u‖2
L2〉 + C max{1, L−3

s }
Pr Ls

〈‖∇u‖L2(‖u0‖W1,4 + Ra) ‖∂2u‖L2〉

+ L−1
s Ra 〈‖T‖L2 ‖∂2u‖L2〉 + Nu Ra3/2. (2.74)

Finally, using 〈‖∂2u‖2
L2〉 ≤ 〈‖∇u‖2

L2〉, the upper bound in (2.10) and the maximum
principle for the temperature (2.1), we deduce〈∫ 1

0
|∇2u|2 dx2

〉
≤ L−2

s Nu Ra + C max{1, L−3
s }

Pr Ls
(‖u0‖W1,4 + Ra)Nu Ra

+ L−1
s Γ 1/2 Nu1/2 Ra3/2 + Nu Ra3/2. (2.75)
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Scaling laws for Rayleigh–Bénard convection

3. Proof of Theorem 1.1

A crucial ingredient of the proof of Theorem 1.1 is the following interpolation bound,
relating the integral of the product u2T with ‖∇T‖L2 , ‖∇u‖L2 and ‖∇2u‖L2 . Notice that,
in turn, these quantities are estimated in terms of Nusselt, Rayleigh and Prandtl numbers
in (2.7), (2.10) and (2.69).

LEMMA 3.1. The interpolation bound

1
δ

〈∫ δ

0
u2T dx2

〉
≤ 1

2

〈∫ 1

0
|∂2T|2 dx2

〉
+ Cδ3

〈∫ 1

0
|∇u|2 dx2

〉1/2 〈∫ 1

0
|∇2u|2 dx2

〉1/2

(3.1)
holds for some constant C > 0.

Proof . First, notice that due to incompressibility ∂2u2 = −∂1u1 and horizontal
periodicity,

∂2
1
Γ

∫ Γ

0
u2(x1, x2) dx1 = − 1

Γ

∫ Γ

0
∂1u1(x1, x2) dx1 = 0, (3.2)

implying

1
Γ

∫ Γ

0
u2(x1, x2) dx1 = 0 (3.3)

thanks to the boundary conditions u2 = 0 at x2 = {0, 1}. Let θ(x1, x2) := T(x1, x2)− 1;
then θ(x1, x2) = 0 at x2 = 0, and by (3.3),

1
δ

〈∫ δ

0
u2T dx2

〉
= 1
δ

〈∫ δ

0
u2θ dx2

〉
. (3.4)

By the fundamental theorem of calculus and the homogeneous Dirichlet boundary
conditions for θ and u2, we have

|θ(x1, x2)| ≤ x1/2
2 ‖∂2θ‖L2(0,1), (3.5)

|u2(x1, x2)| ≤ x2 ‖∂2u2‖L∞(0,1). (3.6)

Furthermore, since
∫ 1

0 ∂2u2(x1, x2) dx2 = 0, there exists ξ = ξ(x1) ∈ (0, 1) such that
∂2u2(x1, ξ) = 0. Then

|∂2u2(x1, x2)|2 =
∣∣∣∣
∫ x2

ξ

∂2(∂2u2(x1, z))2 dz
∣∣∣∣ =

∣∣∣∣2
∫ x2

ξ

∂2u2 ∂
2
2 u2 dz

∣∣∣∣ , (3.7)

which implies

|u2(x1, x2)| ≤ x2 ‖∂2u2(x1, ·)‖1/2
L2(0,1) ‖∂2

2 u2(x1, ·)‖1/2
L2(0,1). (3.8)
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Combining these estimates, we obtain

1
δ

〈∫ δ

0
u2θ dx2

〉

≤ 1
δ

〈∫ δ

0
x3/2

2 ‖∂2u2(x1, ·)‖L2(0,1) ‖∂2
2 u2(x1, ·)‖L2(0,1) ‖∂2θ(x1, ·)‖2

L2(0,1) dx2

〉
(3.9)

≤ δ3/2
〈
‖∂2u2(x1, ·)‖L2(0,1) ‖∂2

2 u2(x1, ·)‖L2(0,1)

〉1/2 〈
‖∂2θ(x1, ·)‖2

L2(0,1)

〉1/2
(3.10)

≤ Cδ3
〈
‖∂2u2(x1, ·)‖2

L2(0,1)

〉1/2 〈
‖∂2

2 u2(x1, ·)‖2
L2(0,1)

〉1/2+ 1
2

〈
‖∂2θ(x1, ·)‖2

L2(0,1)

〉
.

(3.11)

3.1. Case Ls = ∞
In this subsection, we prove the upper bound (1.17) when Ls = ∞ in (1.9), re-deriving
the seminal result of Whitehead & Doering (2011) with a different technique. While the
proof in Whitehead & Doering (2011) is a sophisticated application of the background
field method, our new proof for the Ra5/12 scaling is a pure partial differential equation
argument based on the combination of the localization principle together with the
interpolation bound (1.22).

We first notice that setting Ls = ∞ in (2.10), (2.32) and (2.42), we obtain

〈∫ 1

0
|ω|2 dx2

〉
=

〈∫ 1

0
|∇u|2 dx2

〉
≤ Nu Ra, (3.12)

〈∫ 1

0
|∂1ω|2 dx2

〉
≤

〈∫ 1

0
|∇ω|2 dx2

〉
≤ Nu Ra3/2. (3.13)

Combining these upper bounds and the identity (2.7) in the localization estimate (1.21),
we find

Nu ≤ 1
2

Nu + Cδ3(Nu Ra)1/2(Ra3/2 Nu)1/2 + 1
δ
, (3.14)

which yields

1
2

Nu ≤ Cδ3 Nu Ra5/4 + 1
δ
. (3.15)

Optimizing in δ,

δ ∼ 1
Ra5/16 Nu1/4 , (3.16)

we deduce

Nu � Ra5/12. (3.17)
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Scaling laws for Rayleigh–Bénard convection

3.2. Case 0 < Ls < ∞
Using the localization of the Nusselt number (2.6) and (3.1), we have

Nu ≤ 1
δ

〈∫ δ

0
u2T dx2

〉
+ 1
δ

(3.18)

≤ 1
2

〈∫ 1

0
|∇T|2 dx2

〉
+ Cδ3

〈∫ 1

0
|∇u|2 dx2

〉1/2 〈∫ 1

0
|∇2u|2 dx2

〉1/2

+ 1
δ
, (3.19)

yielding

1
2

Nu ≤ Cδ3
〈∫ δ

0
|∇u|2 dx2

〉1/2 〈∫ 1

0
|∇2u|2 dx2

〉1/2

+ 1
δ
, (3.20)

where we used (2.7). Finally, we insert the bounds (2.10) and (2.69) in the last inequality,
and if Ra is large enough such that ‖u0‖W1,4 � Ra, then up to redefining constants, we find

Nu ≤ Cδ3
(

L−1
s Nu Ra + max{1, L−3/2

s } L−1/2
s Pr−1/2 Nu Ra3/2

+ L−1/2
s Nu3/4 Ra5/4 + Nu Ra5/4

)
+ 2
δ
. (3.21)

We first cover the case Ls ≥ 1. Then, as Ls,Nu ≥ 1, the first and third terms on the
right-hand side of (3.21) are dominated by Nu Ra5/4, hence

Nu ≤ Cδ3 Nu
(

L−1/2
s Pr−1/2 Ra3/2 + Ra5/4

)
+ 2δ−1, (3.22)

and optimizing by setting δ = Nu−1/4(L−1/2
s Pr−1/2 Ra3/2 + Ra5/4)−1/4 implies

Nu � L−1/6
s Pr−1/6 Ra1/2 + Ra5/12. (3.23)

If instead Ls < 1, then (3.21) is given by

Nu ≤ Cδ3
(

L−1
s Nu Ra + L−2

s Pr−1/2 Nu Ra3/2 + L−1/2
s Nu3/4 Ra5/4 + Nu Ra5/4

)
+ 2δ−1.

(3.24)
Optimizing by setting

δ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Nu−1/4 (
L−1

s Ra

+ L−2
s Pr−1/2 Ra3/2 + Ra5/4)−1/4

, if L−1/2
s Ra−1/4

+ L−3/2
s Pr−1/2 Ra1/4 + L1/2

s ≥ Nu−1/4,

L1/8
s Nu−3/16 Ra−5/16, if L−1/2

s Ra−1/4 + L−3/2
s Pr−1/2 Ra1/4

+ L1/2
s ≤ Nu−1/4,

(3.25)
yields

Nu � L−1/3
s Ra1/3 + L−2/3

s Pr−1/6 Ra1/2 + L−2/13
s Ra5/13 + Ra5/12. (3.26)
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4. Conclusion

Our work is motivated by recent investigations in Whitehead & Doering (2011) and
Drivas et al. (2022) indicating that variations in the boundary conditions for the velocity
affect heat transport properties in Rayleigh–Bénard convection. The Navier-slip boundary
conditions are prescribed in the situation in which some slip occurs on the surface, and
at the same time stress is exerted on the fluid. In particular, the use of these boundary
conditions is justified when the scale of interest goes down to microns or below, when the
no-slip boundary conditions cease to be valid (see Choi & Kim 2006). Mathematically,
these boundary conditions are referred to as ‘interpolation’ boundary conditions since
they represent a situation in between the physically relevant, but very difficult to treat,
no-slip boundary conditions and the easier, but unphysical, free-slip boundary conditions.
When free-slip boundary conditions are considered, the key tool in order to control the
growth of the vertical velocity u2 near the boundaries is the enstrophy balance (Whitehead
& Doering 2011, 2012; Wang & Whitehead 2013). When Navier-slip boundary conditions
are considered instead, the control of enstrophy production becomes difficult since the
pressure term and the vertical derivative of u2, ∂2u2 = −∂1u1, appear at the boundary;
see (2.42). This problem was already tackled in Drivas et al. (2022), and in this paper,
we improve this control by refining the trace estimates; see (2.50). In Bleitner & Nobili
(2024), the analysis in Drivas et al. (2022) was extended to rough boundary conditions,
capturing the dependency of the scaling from the spatially varying friction coefficient and
curvature. To our knowledge, no other rigorous results are available for the Nusselt number
in this set-up.

In the same setting as considered in the present paper, direct numerical simulations
(DNS) were performed in Huang & He (2022) to study the scaling of the Nusselt number
in the convective roll state and in the zonal flow (turbulent state). The authors found that,
when Ls/λ0 � 10 (here the slip length is normalized by λ0, the thermal boundary layer
thickness for the no-slip plates), Nu ∼ Ra0.31 in the convection roll state. In particular,
they observe that in the convection roll state, for a fixed Ra, the heat transfer Nu increases
with increasing Ls/λ0. On the other hand, they observe that in the zonal flow, the heat
transport Nu decreases with increasing Ls/λ0 at fixed Ra. They explain this phenomenon
as being due to the reduction of the vertical Reynolds number: as Ls/λ0 increases,
the zonal flow becomes stronger, and it suppresses the vertical velocity, leading to a
decrease in Nu. In this regime, their DNS indicate the scaling Nu ∼ Ra0.16. As can be
noticed in table 1, our rigorous upper bounds indicate a behaviour in agreement with the
results in Huang & He (2022): in the turbulent regime, as the slip length Ls increases,
the heat transport decreases. In fact, observe that in each Pr region, the heat transport
increases from Nu � Ra5/12 when Ls = ∞, to Nu � L−2/3

s Pr−1/6 Ra1/2 when Ls < 1 (see
table 1, where the upper bounds are ordered from the smallest to the largest in each
Pr region). Let us recall that for no-slip boundary conditions (Ls = 0) Otto, Choffrut
and the second author of this paper find Nu � (Ra ln(Ra))1/3 when Pr � (Ra ln(Ra))1/3

and Nu � Pr−1/2(Ra ln(Ra))1/2 when Pr � (Ra ln(Ra))1/3 (Choffrut et al. 2016), while
Doering & Constantin (1996) prove Nu � Ra1/2 uniformly in Pr. In the regime of small
Ls, our upper bound is Nu � L−2/3

s Pr−1/6 Ra1/2 for any Prandtl number. We cannot
directly compare the results in the present paper with the results available for no-slip
boundary conditions in Choffrut et al. (2016) and Doering & Constantin (1996) since
our analysis breaks down in the limit Ls → 0. With respect to the long-standing open
problem regarding the scaling laws for the Nusselt number in the ‘ultimate state’ (Zhu
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Figure 1. Thermal boundary layers arising at Pr = 1, Ls = 1 and Ra = 108. This snapshot is generated by a
simulation.

et al. 2018, 2019; Doering et al. 2019; Doering 2020), we can say the following. On the
one hand, the DNS in Huang & He (2022) and our analysis seem to suggest that, for any
Prandtl number region and any Ls /= 0, the Malkus scaling Nu ∼ Ra1/3 is not achievable
in the turbulent regime. This is quite evident when looking at the results in table 1,
since (as mentioned before) the upper bounds are ordered and increase from Ra5/12 as
Ls decreases. However, we warn that the reality of heat transport might be much more
complicated than this nice picture. With our arguments we are able to derive only upper
bounds, and cannot exclude the possibility of smaller scaling exponents. Indeed, one of the
biggest theoretical challenges for this problem is to find (non-trivial) lower bounds for the
Nusselt number. Even just exhibiting solutions that attain certain upper bounds in some
simplified situation (in the spirit of Souza & Doering 2015) would be a big step ahead in
the theory. Interesting ideas in this direction have been developed by Tobasco & Doering
(2017) and Tobasco (2022): inspired by problems arising in the study of energy-driven
pattern formation in materials science, the authors design a two-dimensional ‘branching’
flow that transports at rate Nu ∼ Pe2/3 (up to a logarithmic correction) for a passive tracer
that diffuses and is advected by a divergence-free velocity field with a fixed enstrophy
budget 〈‖∇u‖2

L2〉 ∼ Pe2. Here, Pe is the Péclet number. The remarkable lower bound that
they derive using ‘branching’ techniques is responsible for the logarithmic corrections.
Although their result in particular shows that the Ra1/2 ‘ultimate’ scaling is attained by
flows that do not solve (1.1)–(1.3), these arguments can be used to detect mechanisms that
make the scalings Ra1/2 and Ra1/3 realizable for buoyancy-driven solutions.

Finally, we want to conclude with a remark. Our upper bounds on the Nusselt number
quantify heat transport properties of the (thermal) boundary layer without characterizing
it. The only information that we can extrapolate from our analysis is about the (thermal)
boundary layer thickness (see figure 1). On the other hand, in the excellent work Gie
& Whitehead (2019), the authors are able to describe the flow in the boundary layer. In
a three-dimensional periodic channel, they study the Boussinesq system at very small
viscosities and with Navier-slip boundary conditions. Through the explicit construction
of a corrector, they show that the behaviour of the dynamics in the boundary layers is
governed by the Prandtl equations. In particular, these equations can be linearized for
Navier-slip boundary conditions, implying that in this specific case, the boundary layers
are non-turbulent. From this, the authors deduce that the ‘ultimate’ state, which is based on
the hypothesis of a turbulent boundary layer (Ahlers, Grossmann & Lohse 2009), cannot
exist in this particular set-up.
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