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Introduction

We will present the outlook and some of the main contents of the book.
Let P be a Markov kernel and ν a probability measure on a measurable

space (S,S), with S countably generated. Our basic framework will be the
canonical Markov chain with transition kernel P and initial distribution ν, given
by (Ω = SN0 ,SN0 ,Pν, {Xj} j≥0), where N0 is the set of nonnegative integers,
{Xj} j≥0 are the coordinate functions on SN0 , and Pν is the unique probability
measure on (SN0 ,SN0 ) such that {Xj} j≥0 is a Markov chain with transition kernel
P and initial distribution ν.

Most of this introduction will be devoted to the empirical measure case. Let
P(S) be the space of probability measures on (S,S), and let B(S) be the space
of real-valued bounded S-measurable functions on S. For a set F ⊂ B(S), the
σ(P(S),F ) topology on P(S), or simply the F topology, is the topology in-
duced on P(S) by F, that is, by the action μ �→ ∫

g dμ, g ∈ F : a net {μα} ⊂ P(S)
converges in this topology to μ ∈ P(S) if and only if for all f ∈ F,

lim
α

∫
f dμα =

∫
f dμ.

Let Ln : Ω→ P(S), n ≥ 1, be the nth empirical measure associated with {Xj}:

Ln = n−1
n−1∑

j=0

δXj ,

where for x ∈ S, δx is point mass at x.

Proposition 1.1 Assume that P is positive Harris recurrent (Section B.3) and
let π be its unique invariant probability measure.

1. Assume that F ⊂ B(S) is separable for the uniform norm on B(S). Then for
any ν ∈ P(S), {Ln} converges σ(P(S),F ) to π,Pν-a.s..
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2 Introduction

2. Let (S,S) be a separable metric space with its Borel σ-algebra, and let
Cb(S) be the space of real-valued bounded continuous functions on S. Then
for any ν ∈ P(S), {Ln} converges σ(P(S),Cb(S)) to π, Pν-a.s..

This result is proved in Appendix A.
One of the main objectives of the present work is to study the large devi-

ations associated with this result; in particular, to determine when the proba-
bilities {Pν[Ln � B]} decay exponentially and at what rate, where B ⊂ P(S)
is measurable in a suitable sense and π is an interior point of B in a suitable
topology.

We will state now the definition of the large deviation principle in the present
context. Let V be a vector space ⊂ B(S). For a set B ⊂ P(S), its V-closure is
denoted clV (B) and its V-interior intV (B). The σ-algebra B(P(S), B(S)) is the
smallest σ-algebra on P(S) for which each map μ �→ ∫

g dμ, g ∈ B(S), is
measurable. In the rest of this text, B ⊂ P(S) being measurable will mean
B ∈ B(P(S), B(S)). Note that the map Ln : Ω→ P(S) is measurable.

Definition 1.2 For ν ∈ P(S), {Pν[Ln ∈ ·]} satisfies the large deviation princi-
ple in the V topology with rate function J if

1. J : P(S) → R+ is V-lower semicontinuous.
2. For every measurable set B ⊂ P(S),

lim
n

n−1 logPν[Ln ∈ B] ≤ − inf {J(μ) : μ ∈ clV (B)}, (1.1)

lim
n

n−1 logPν[Ln ∈ B] ≥ − inf {J(μ) : μ ∈ intV (B)}. (1.2)

Inequality (1.1) (and, respectively, (1.2)) will be referred to as the upper
(respectively, lower) bound.

We will say that J is V-tight if for each a ≥ 0,

La
Δ
= {μ ∈ P(S) : J(μ) ≤ a}

is V-compact (we have adopted here the terminology of Rassoul-Agha and
Seppäläinen, 2015).

A set M ⊂ P(S) is a uniformity set for the upper (lower) bound in the V
topology with rate function J if for every measurable set B ⊂ P(S),

lim
n

n−1 log sup
ν∈M
Pν[Ln ∈ B] ≤ − inf {J(μ) : μ ∈ clV (B)} (1.3)

and, respectively,

lim
n

n−1 log inf
ν∈M
Pν[Ln ∈ B] ≥ − inf {J(μ) : μ ∈ intV (B)}. (1.4)
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In the literature on large deviations for empirical measures of Markov chains,
the cases of (S,S) and the vector space V ⊂ B(S) defining the topology on P(S)
that have been considered are:

I. S is a Polish space (it is understood that S is its Borel σ-algebra) and V =
Cb(S). In this case, the Cb(S) topology on P(S) is usually called the weak
topology.

II. (S,S) is a measurable space (with S countably generated) and V = B(S). In
this case, the B(S) topology on P(S) is usually called the τ topology. This
includes in particular the case when S is a countable set, S is its power set,
and V = B(S) is the set of all real-valued bounded functions on S.

In order to avoid repetitions and to capture the common features of cases
I and II above that are relevant to the study of large deviations for empirical
measures of Markov chains, we will introduce in Chapters 3 and 4 certain
conditions on V which cover both cases.

We turn now to the statement of some of the main results. Throughout the
book, it will be understood that (S,S), P, ν, Pν are as in the basic framework
and P(S) is endowed with the V topology, where V is a vector subspace of
B(S); further assumptions on V will be stated as needed. The assumption that
S is Polish will be specified in some results.

For simplicity, in this introduction we will limit ourselves to the statement
of large deviations results in case II above, omitting results on uniformity sets.
But we must first introduce several functions from P(S) to R+ which will play
the role of rate functions in suitable contexts.

For g ∈ B(S), we define

φ(g) = lim
n

n−1 log sup
x∈S
Ex

(
exp Sn(g)

)
,

where Sn(g) =
∑n−1

j=0 g(Xj). It will sometimes be convenient to consider Tn(g) =∑n
j=1 g(Xj). Since

Ex
(
exp Sn(g)

)
= eg(x)

Ex
(
exp Tn−1(g)

)
,

we have

φ(g) = lim
n

n−1 log sup
x∈S
Ex

(
exp Tn(g)

)
.

The transform kernel associated with the Markov kernel P and g ∈ B(S) is
defined to be

Kg(x, A) =
∫

A
eg(y)P(x, dy), x ∈ S, A ∈ S.
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Since for all x ∈ S, Ex(exp Tn(g)) = Kn
g1(x), we have

φ(g) = lim
n

n−1 log sup
x∈S

Kn
g1(x),

and if Kg is regarded as a bounded linear operator on the space B(S) with the
supremum norm, then

φ(g) = log r(Kg),

where r(Kg) is the spectral radius of Kg. For, by the spectral radius formula,

log r(Kg) = lim
n

n−1 log ‖Kn
g‖

= lim
n

n−1 log ‖Kn
g1‖ = φ(g).

For μ ∈ P(S), we define

φ∗(μ) = sup

{∫
g dμ − φ(g) : g ∈ B(S)

}
.

Since φ(0) = 0, we have φ∗(μ) ≥ 0. For ν ∈ P(S), g ∈ B(S), we define

φν(g) = lim
n

n−1 logEν
(
exp Sn(g)

)
;

it is easily shown that

φν(g) = lim
n

n−1 log νKn
g1.

If x ∈ S and ν = δx, we write

φx(g) = lim
n

n−1 logEx
(
exp Sn(g)

)

= lim
n

n−1 log Kn
g1(x).

For μ ∈ P(S), we define

φ∗ν(μ) = sup

{∫
g dμ − φν(g) : g ∈ B(S)

}
.

Since φν(0) = 0, we have φ∗ν(μ) ≥ 0.
The function I : P(S) → R+ is defined as follows:

I(μ) = sup

{∫
log

(
eg

Peg

)
dμ : g ∈ B(S)

}
, μ ∈ P(S).

Taking g = 0 in this expression, we have I(μ) ≥ 0. We also define for λ ∈ P(S),
μ ∈ P(S),

Iλ(μ) =

⎧⎪⎪⎨
⎪⎪⎩

I(μ) if μ � λ,

∞ otherwise.
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Then Iλ = I if and only if dom I ⊂ P(S, λ), where P(S, λ) = {μ ∈ P(S) : μ � λ}
and for a function J : P(S) → R+,

dom J = {μ ∈ P(S) : J(μ) < ∞}.
In the next paragraph we will introduce certain functions that involve the

irreducibility of P, a condition that will play an essential role in this work
(see Appendix B). As will be seen in Chapter 5, irreducibility is necessary
for a central formulation of the large deviation principle to hold. The most
important case of Iλ is the case when P is irreducible and λ = ψ, a P-maximal
irreducibility probability measure (Appendix B). The symbol ψ will have this
meaning throughout the text (except for a slight departure from this convention
in Appendices B and C).

If P is irreducible, then so is Kg and its convergence parameter R(Kg) exists
(Appendix C). We define for g ∈ B(S)

Λ(g) = − log R(Kg).

If (s, ν) is a small pair (Appendix B) then by (C.1),

Λ(g) = lim
n

n−1 log νKn
g s;

one can show that

Λ(g) = lim
n

n−1 logEν
[(

exp Sn(g)
)

s(Xn−1)
]

= lim
n

n−1 logEν
[(

exp Tn−1(g)
)

s(Xn−1)
]
.

If μ ∈ P(S), we define

Λ∗(μ) = sup

{∫
g dμ − Λ(g) : g ∈ B(S)

}
.

Since Λ(0) ≤ 0, we have Λ∗(μ) ≥ 0.
All functions defined above are convex.
As we will see in Chapter 3, φ∗ν is a rate function for the upper bound for

{Pν[Ln ∈ ·]} in the τ topology: under suitable conditions, (1.1) holds with
V = B(S) and J = φ∗ν. The rate function φ∗ν is a convex-analytic construct which
emerges as a result of an argument involving compactness and an exponential
Markov inequality.

In Chapter 2 it is proved that if P is irreducible, then Λ∗ is a rate function for
the lower bound for {Pν[Ln ∈ ·]} in the τ topology: (1.2) holds with V = B(S)
and J = Λ∗. The rate function Λ∗ is a convex-analytic construct the emergence
of which is more subtle and requires an argument based on the fundamental
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minorization property of irreducible kernels, as well as subadditivity and iden-
tification arguments.

For P irreducible, it is always the case that φ∗ν ≤ Λ∗. Moreover, as will be
seen in Chapter 5, if {Pν[Ln ∈ ·]} satisfies the large deviation principle in the
τ topology with rate function J, then φ∗ν ≤ J ≤ Λ∗. A central issue will be to
establish conditions ensuring the equality φ∗ν = Λ∗.

It is very important to relate these rate functions to the functions I and Iψ,
which are of primary significance and analytically more tractable. In this di-
rection, we have

Proposition 1.3 (part of Theorems 4.1 and 4.2)

1. φ∗ = I and for all ν ∈ P(S), φ∗ν ≥ I.

2. Let P be irreducible. Then Λ∗ = Iψ and for all ν ∈ P(S), φ∗ν ≤ Iψ.

We will now state some of the large deviation results. Under the sole as-
sumption of irreducibility, for any ν ∈ P(S) the lower bound for {Pν[Ln ∈ ·]} in
the τ topology with rate function Λ∗ = Iψ always holds:

Proposition 1.4 (part of Theorem 2.10) Let P be irreducible and ν ∈ P(S).
Then for any measurable set B ⊂ P(S),

lim
n

n−1 logPν[Ln ∈ B] ≥ − inf {Λ∗(μ) : μ ∈ intτ(B)}

= − inf
{
Iψ(μ) : μ ∈ intτ(B)

}
.

The following result gives a necessary and sufficient analytic condition for
the upper bound for {Pν[Ln ∈ ·]} in the τ topology with τ-tight rate function φ∗ν.

Proposition 1.5 (part of Theorem 3.2) Let ν ∈ P(S).

1. For every measurable set B ⊂ P(S) with compact τ-closure,

lim
n

n−1 logPν[Ln ∈ B] ≤ − inf
{
φ∗ν(μ) : μ ∈ clτ(B)

}
. (1.5)

2. The following conditions are equivalent:

(i) If 0 ≤ gk ∈ B(S) and gk ↓ 0 pointwise, then φν(gk) → 0.

(ii) For every measurable set B ⊂ P(S), (1.5) holds and φ∗ν is τ-tight.

In Chapter 6 we will present several analytic conditions equivalent to 2(i)
and in Chapter 7 sufficient conditions for 2(i), hence for 2(ii). We state one
such sufficient condition. A set C ∈ S is (P−τ)-tight if there exists m ∈ N such
that {Pm(x, ·) : x ∈ C} is τ-relatively compact. Let τC = inf{n ≥ 1: Xn ∈ C}.
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Proposition 1.6 (part of Theorem 7.8) Let ν ∈ P(S). Assume that for every
b > 0, there exists a (P − τ)-tight set C such that

sup
x∈C
Exebτ < ∞, where τ = τC ,

Eνe
bτ < ∞.

Then 2(i), hence also 2(ii), of Proposition 1.5 holds.

In order to obtain a large deviation principle for {Pν[Ln ∈ ·]} from Propo-
sitions 1.4 and 1.5, we must reconcile the lower bound rate function Iψ and
the upper bound rate function φ∗ν. Under the assumption that P is irreducible,
Proposition 1.7 provides necessary and sufficient conditions for the large de-
viation principle for {Pν[Ln ∈ ·]} in the τ topology with τ-tight rate function
φ∗ν = Iψ. In particular, it states that this large deviation principle is equivalent
to the assertion: {Pν[Ln ∈ ·]} satisfies the upper bound in the τ topology with a
τ-tight rate function J such that dom J ⊂ P(S, ψ).

Proposition 1.7 (part of Theorem 8.1) Let P be irreducible and ν ∈ P(S).

1. The conditions (1.6)–(1.9) are equivalent:

If 0 ≤ gk ∈ B(S) and gk ↓ 0 pointwise, then φν(gk) → 0. (1.6a)

If 0 ≤ g ∈ B(S) and
∫

g dψ = 0, then φν(g) = 0. (1.6b)

φν = Λ. (1.7a)

Iψ is τ-tight. (1.7b)

{Pν[Ln ∈ ·]} satisfies the large deviation principle in the τ topology

with τ-tight rate function φ∗ν = Iψ. (1.8)

{Pν[Ln ∈ ·]} satisfies the upper bound in the τ topology with

a τ-tight rate function J such that dom J ⊂ P(S, ψ). (1.9)

2. If any, hence all, of conditions (1.6)–(1.9) is satisfied, then P has a unique
invariant probability measure π, π ≡ ψ, and therefore Iψ = Iπ.

In the context of Proposition 1.7, suppose that B ⊂ P(S) is measurable and
π ∈ intτ(B). Since Iψ(μ) = 0 implies that μ = π (to be shown in Lemma 5.5)
and Iψ is τ-tight, we have

a = inf
{
Iψ(μ) : μ ∈ clτ(B

c)
}
> 0.

Therefore the probabilities {Pν[Ln � B]} indeed decay exponentially at a spec-
ified rate:

lim
n

n−1 log Pν[Ln � B] ≤ −a.
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This form of convergence of {Ln} to π is sometimes called exponential
convergence.

We turn now to the situation when S is countable and P is matrix irreducible:
for all x, y ∈ S,

∑∞
n=1 Pn(x, y) > 0. Equivalently, P is irreducible and counting

measure is a P-maximal irreducibility measure. In this situation, a significant
simplification occurs: Iψ = I and, by Proposition 1.3, for all ν ∈ P(S), φ∗ν = I.

Proposition 1.8 (part of Theorem 9.3 and Remark 9.4) Let S be countable
and assume that P is matrix irreducible.

1. The following conditions are equivalent:

For all b > 0, there exists F finite, F ⊂ S, such that

for all y ∈ F, Eyebτ < ∞, where τ = τF. (1.10)

If 0 ≤ gk ∈ B(S) and gk ↓ 0 pointwise, then

for all x ∈ S, φx(gk) → 0. (1.11)

For all x ∈ S, {Px[Ln ∈ ·]} satisfies the large deviation principle

in the τ topology with τ-tight rate function I. (1.12)

2. If any, hence all, of conditions (1.10)–(1.12) is satisfied, then P has unique
invariant probability measure π and π(x) > 0 for x ∈ S.

Finally, we turn to the case of large deviations for vector-valued additive
functionals. Let E be a separable Banach space, f : S → E a measurable
function, Sn( f ) =

∑n−1
j=0 f (Xj). Parallel to Proposition 1.1, we have:

Proposition 1.9 Assume that P and π are as in Proposition 1.1 and that∫ ‖ f ‖ dπ < ∞. Then if π( f ) =
∫

f dπ, for any ν ∈ P(S),

lim
n

n−1Sn( f ) = π( f ), Pν-a.s..

Proposition 1.9 is proved in Appendix A.
The objective of Chapter 11 is to study the large deviations associated with

this result; in particular, to determine when the probabilities {Pν[n−1Sn( f ) �G]}
decay exponentially and at what rate, where G ⊂ E is open and π( f ) ∈ G.

To describe the results on vector-valued functionals, we start with the lower
bound. Let F(S) be the space of measurable functions g : S → R and, as in the
case g ∈ B(S), for g ∈ F(S) let

Kg(x, A) =
∫

A
eg(y)P(x, dy), x ∈ S, A ∈ S.

If P is irreducible, so is Kg; we denote its convergence parameter by R(Kg)
(Appendix C).
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If f : S → E is a measurable function and ξ ∈ E∗, the dual space of E, we
write

Kf ,ξ(x, A) = K〈 f ,ξ〉(x, A) =
∫

A
e〈 f (y),ξ〉P(x, dy)

and define

Λ f (ξ) = − log R(Kf ,ξ),

Λ∗
f (u) = sup

{〈u, ξ〉 − Λ f (ξ) : ξ ∈ E∗}, u ∈ E.

Since Λ f (0) ≤ 0, we have Λ∗
f (u) ≥ 0.

Under the sole assumption of irreducibility, we have:

Proposition 1.10 (part of Theorem 11.1) Let P be irreducible and let
f : S → E be measurable. Then for every μ ∈ P(S) and every open set G ⊂ E,

lim
n

n−1 logPμ
[
n−1Sn( f ) ∈ G

]
≥ −inf

u∈G
Λ∗

f (u).

In Theorem 11.13 the rate function Λ∗
f will be identified in terms of Iψ.

To state the upper bound result, as in the case g ∈ B(S) we define for g ∈
F(S), μ ∈ P(S),

φμ(g) = lim
n

n−1 logEμ
(
exp Sn(g)

)
,

and for f : S → E measurable, ξ ∈ E∗,

φ f ,μ(ξ) = φμ (〈 f , ξ〉)
= lim

n
n−1 logEμ

(
exp 〈Sn( f ), ξ〉)

and

φ∗f ,μ(u) = sup
{〈u, ξ〉 − φ f ,μ(ξ) : ξ ∈ E∗}, u ∈ E.

Since φ f ,μ(0) = 0, we have φ∗f ,μ(u) ≥ 0.

Proposition 1.11 (part of Theorem 11.16) Let f : S → E be measurable, and
let μ ∈ P(S). Then:

1. For every σ(E, E∗)-compact set F ⊂ E,

lim
n

n−1 logPμ
[
n−1Sn( f ) ∈ F

]
≤ − inf

u∈F
φ∗f ,μ(u). (1.13)

2. Assume:

(i) For some m ∈ N, {Pm(x, ·) ◦ f −1 : x ∈ S} is tight.
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(ii) For all r > 0,
∫

exp (r‖ f (y)‖) μ(dy) < ∞, (1.14a)

sup
x∈S

∫
exp (r‖ f (y)‖) P(x, dy) < ∞. (1.14b)

Then (a) (1.13) holds for every closed set F ⊂ E and (b) φ∗f ,μ is tight.

The assumptions can be weakened if E is finite dimensional; see Remark
11.18.

We state now a necessary and sufficient condition for the large deviation
principle for {Pμ[n−1Sn( f ) ∈ ·]} (for the definition of the large deviation princi-
ple relevant here, see, e.g., Rassoul-Agha and Seppäläinen 2015, p. 21).

Proposition 1.12 (part of Theorem 11.21) Let μ ∈ P(S). Assume:

1. P is irreducible.

2. P, f , and μ satisfy the assumptions of Proposition 1.11.

Then the following conditions are equivalent:

φ f ,μ = Λ f .

{Pμ[n−1Sn( f ) ∈ ·]} satisfies the large deviation principle

with tight rate function Λ∗
f .

In the context of Proposition 1.12, and under certain conditions given in
Theorem 11.22 which imply that Λ∗

f (u) = 0 if and only if u = π( f ), if G ⊂ E
is open and π( f ) ∈ G, then

b = inf
{
Λ∗

f (u) : u ∈ Gc
}
> 0.

Therefore the probabilities {Pμ[n−1Sn( f ) � G]} do decay exponentially at a
specified rate:

lim
n

n−1 logPμ
[
n−1Sn( f ) � G

]
≤ −b.

In Theorem 11.27 we give a sufficient condition for the large deviation prin-
ciple for {Pν[n−1Sn( f ) ∈ ·]}: under a certain assumption on P, and if P and f
satisfy 2(i) and (1.14b) of Proposition 1.11, the large deviation principle holds
for all petite ν (Appendix B) and all ν = δx, where x belongs to a set in S of
full ψ measure.

In Theorem 11.29 we discuss the relationship between the large deviations
for empirical measures and the large deviations for additive functionals.
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1.1 Outline of the Book

We will now give an outline of some of the main contents of each chapter.

Chapter 2 We prove a lower bound for {Pν[n−1Sn( f ) ∈ ·]}, where f : S → E
is a bounded measurable function and E is a separable Banach space, and use
it to obtain the lower bound for {Pν[Ln ∈ ·]} in the V topology with rate func-
tion (Λ | V)∗, hence with rate function Λ∗ = Iψ. We also present a class of
uniformity sets M ⊂ P(S) for the lower bound; the class includes all petite sets
(Appendix B). We prove that the function Λ : B(S) → R is σ(B(S),P(S, ψ))-
lower semicontinuous. This result will play a significant role in Chapters 8
and 11.

Chapter 3 We introduce the assumptions V.1–V.3 for a vector space V ⊂ B(S)
and obtain upper bounds for random probability measures. We give a necessary
and sufficient analytic condition for the upper bound for {Pν[Ln ∈ ·]} in the V
topology with rate function (φν | V)∗. We discuss the connection between the
analytic condition and exponential tightness.

Chapter 4 We introduce the assumptions V.1′–V.4 for a vector space V ⊂ B(S)
and prove that (φ | V)∗ = I and Λ∗ = Iψ. We establish conditions under which
(φν | V)∗ = Iψ and I = Iψ. We also study the relationship between (Λ | V)∗ and
Λ∗ and conditions for the equality φ∗M = Iλ in certain cases in which P may not
be irreducible.

Chapter 5 We assume that {Pν[Ln ∈ ·]} satisfies the large deviation principle
in the V topology with a rate function J which is not known a priori and derive
several consequences, including bounds on J. The existence and uniqueness
of invariant measures is discussed. It is proved that if {Px[Ln ∈ ·]} satisfies the
large deviation principle in the τ topology for every x ∈ S with a common a
priori unknown τ-tight rate function J, then P must be irreducible and J = I.

Chapter 6 We study in a more abstract setting the analytic condition intro-
duced in Chapter 3 and refine the results found there. We obtain necessary con-
ditions for the uniformity of a set of initial distributions for the upper bound.

Chapter 7 We obtain different sufficient conditions for the upper bound for
{Pν[Ln ∈ ·]} in the V topology.
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Chapter 8 We present several formulations for the large deviation principle
in the V topology. These include the large deviation principle for {Pν[Ln ∈ ·]}
for an arbitrary ν ∈ P(S), conditions for a set M ⊂ P(S) to be a uniformity
set for both the upper and lower bounds, and the case when the large deviation
principle holds for {Px[Ln ∈ ·]} for all x ∈ S.

Chapter 9 We study the case when S is countable and P is matrix irreducible.

Chapter 10 We present several examples which show boundaries of the gen-
eral results obtained in the previous chapters. In particular, it is shown that even
under the assumption of irreducibility, it is possible for the large deviation prin-
ciple to hold for {Px[Ln ∈ ·]} for every x ∈ S with different rate functions for
each x.

Chapter 11 We study large deviations for {Pν[n−1Sn( f ) ∈ ·]}, where f is a
measurable function on S taking values in a separable Banach space. The iden-
tification of the rate function Λ∗

f is discussed, as well as its zero set. We study
the relationship between the large deviation principle for empirical measures
and the large deviation principle for additive functionals.

Appendix A–Appendix K The appendices have a two-fold purpose. We pre-
sent some well-known analytical or probabilistic results in a form suitable for
application in the main text; in certain cases, we discuss some useful conse-
quences or variants. In particular, Appendices B and C contain definitions and
results related to general Markov chains and irreducible kernels. We also prove
some auxiliary results for which we have no ready reference. Some of the re-
sults proved in the appendices may be new and possibly of independent interest
(e.g., Propositions C.3 and I.1).

1.2 Notes

Large deviations for empirical measures (occupation times) of Markov chains
were first studied by Donsker and Varadhan (1975) in the case where S is a
compact metric space under very strong conditions on P and later in greater
generality in Donsker and Varadhan (1976). The basic rate function I was in-
troduced in Donsker and Varadhan (1975). For an entropy representation of I
see, e.g., Rassoul-Agha and Seppäläinen (2015, Theorem 13.2). We will com-
ment on the relation of the results in the present book to Donsker and Varadhan
(1976) in later chapters; see the notes to Chapters 2 and 7.
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Closely related is Gärtner’s work, Gärtner (1977).
Other papers that studied large deviations for empirical measures of Markov

chains under very strong conditions are Bolthausen (1987), where the τ topol-
ogy was introduced in this setting, and Ellis (1988). Chapters on the subject
may be found in Stroock (1984), Deuschel and Stroock (1989), Dembo and
Zeitouni (1998) (largely along the lines of Deuschel and Stroock), Dupuis and
Ellis (1997), den Hollander (2000), Rassoul-Agha and Seppäläinen (2015), and
Feng and Kurtz (2006).

The present work has its origins in de Acosta (1985, 1988, 1990, 1994a,b)
and de Acosta and Ney (1998, 2014). The papers by Ney and Nummelin
(1987), Dinwoodie (1993), Dinwoodie and Ney (1995), and Nummelin’s book
Nummelin (1984) have been highly influential in the development of our out-
look. A previous paper related to Ney and Nummelin (1987) is Iscoe et al.
(1985). A feature of our approach which is significantly different from the
sources cited in the previous paragraphs is the derivation of the lower bound
on a general state space under the sole assumption of irreducibility, including
the construction of the rate function from the convergence parameters of the
irreducible transform kernels. We also focus on initial distributions and unifor-
mity sets and on the existence and uniqueness of invariant measures and their
relation to rate functions.

In several chapters we incorporate important contributions of Wu (2000a,b),
particularly in connection to upper bounds.

Our presentation of large deviations for vector-valued additive functionals of
a Markov chain is based on and extends de Acosta (1985, 1988) and de Acosta
and Ney (1998, 2014).

For some results when the assumption of irreducibility is relaxed, see Wu
(2000a,b) and Jiang and Wu (2005). For process-level large deviations, a topic
not covered here, see Donsker and Varadhan (1983), Deuschel and Stroock
(1989), and Wu (2000a,b).
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