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1. Introduction. The series J^=o a* is said to be summable (L) to 5 if 
the sequence {sn}, where sn = a0 + a,\ + . . . + an, is L-convergent to s, i.e., if 

- 1 V> x ^ 

^ l - l o g C l - X) feo v + 1 

If the sequence {sn} is /-convergent to s, i.e., if the sequence {tn}, where 

1 n s n 1 
(1) tn = — £ ~~T7 » «» = S "~T~T ~ l oS w» 

converges to s, we say that X!?=o Q>v is summable (/) to s. I t follows from 
Theorem 57 of (3) that summability (/) implies summability (L). Summability 
(L) has been discussed by Ishiguro (5), Borwein (2), and myself (6). Mohanty 
and Nanda (see 7; 8) and Hsiang (4) have used the (L) method to sum 
Fourier series. We shall write 

( 0 in = 0), 
Vn = Oin(sn — tn) = \ » 

! 2 ^ CLyOLv-x (n ^ 1 ) . 

The following theorems are results of further investigation. 

THEOREM 1. Let {an} be a sequence such that 

(2) lim sup \ann log n\ = H < œ 

and let 
_1 » x"+1 

/ ( x ) = - ( l o g ( l - %)) 22 ^-—7-7 » 

w/zere sv = a0 + ai + . . . + av. Then 

(3) lim sup \sn(x) — f(x)\ ^ H, 
X-+1-

where n(x) is an integer-valued function satisfying 

(4) p > «(*)(1 - x) > q > 0 (0 < x < 1) 

and 

(5) lim sup \sn — f(xn) | ^ iJ, 
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where {xn} is any sequence satisfying 

(6) p > n{\ - xn) > a > 0. 

Moreover, there is a real sequence {an} satisfying (2) such that the equalities in (3) 
and (5) hold. 

THEOREM 2. Let ^7=o av be summable (L) to s. Then a necessary and 
sufficient condition that the series should converge to s is that 

<rn = o(logn), 
i.e. j 

(7) sn - tn = o(l). 

THEOREM 3. Suppose that J^7=o av is summable (L) to s. Then a necessary 
and sufficient condition that the series should be summable (I) to s is that 

<jn = o(logn) (/), 
i.e., 

n 

(8) vn = X - X T = °(W»)-

THEOREM 4. If X^=o av is summable (L), and 

(9) s0 + s1 + . . . + sn = 0(w), 

/feen /fee senes is summable (/) /0 /fee same swra. 

Since Abel summability implies summability (L), we have the following 
corollary. 

COROLLARY. If X^=o civ is summable (A) and bounded (C, 1), then the 
series is summable (I) to the same sum. 

THEOREM 5. If J^7=o av is summable (L) to s and 

(10) <rn = 0L(logn), 

then the series is summable (I) to s. 

For the definition of 0L see (3, p. 149). 

THEOREM 6. If J^7=o av is summable (L) and liminf(/w — tm) ^ 0 
when n > m —> °°, log n/log m —» 1, /feew /fee smes is summable (I) to the same 
sum. 

2. Lemmas. We require the following lemmas, of which the first is 
Theorem 2 of (5). 

LEMMA 1. If X^=o av is summable (L) to s and sn = 0L(1), then the 
series is summable (/) to s. 
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LEMMA 2. If 5Z?°=o dv is summable (L) to s and lim inf (sn — sm) ^ 0 when 
n > m —» oo, log n/log m —•» 1, ^en //ze series converges to s. 

The proof of this lemma is given in (6). 

LEMMA 3. Let X^=o av be summable (L) to s, then the sequence {tn} of (I) means 
is L-convergent to s. 

Proof. Write 

(ii) « ( « ) = £ - x - T «'• 

Thus summability (L) to 5 is the same as 

(12) g(u)~slog(l -u)~l ( K - » 1 - ) . 

Write also 

(13) 4>(x) = S - T T ^ . 

It is easily verified that the sequence {l/(v + l)av\ is totally monotone. 
Hence (see 3, Theorem 207), there is a function xM, bounded and non-
decreasing in [0, 1] such that 

f t'dx(t) =-f—rrr-. 
«/o (y + l)av 

By an obvious change of variable we have, for x > 0, 

I *'rfx(«) (v + l ) a . 
Hence, for 0 < x < 1, 

= Y rund (-) 

= E 
w=? (w + l)an ' 

Now assume that (11) converges for \u\ < 1. Then it converges absolutely for 
\u\ < 1. Thus for any fixed x with 0 < x < 1 we have, the inversions being 
justified by absolute convergence, that 

^ _ji_ Cx u" , M = y _Ji_ "f *" = 
ht v + 1 Jo 1 - M X \ x / t"o v + 1 e t (» +" l)a„ ~ 

co n n co n 
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Now assume further t h a t (12) holds. T h e result will follow if we show t h a t 

<j)(x) ^ s log( l — x ) " 1 . 

By the analogue from Stieltjes integrals of Theorem 6 of (3) (applied to (14), 
regarded as a transformation from g ( ^ ) / l o g ( l — u)~l to cf>(x)/log(l — x ) _ 1 ) , 
the result will follow if we show tha t , as x —> 1 —, 

(i) 

(ii) 

(iii) f 

J**log(l — u) x (u\ , , ,_i 

f : | l 5 K O ^ | dJA = o(log(l - x)-1), 
J o L — u \x/ 

log( l - M) 
1 — w ^x1 o(log(l - x) l) 

for any fixed v with 0 < v < 1. 

Now consider the case in which sn = 1 (all n ) . Then g(u) = log( l — w ) - 1 . 
Also, by (1), /„ = 1 (all n) so t h a t <j>(x) = log( l - x)~\ Applying (13) to this 
part icular case, we therefore have t h a t 

which gives (i). Fur ther , since % is non-decreasing, we may omit the modulus 
signs in (ii) and (iii) so t h a t (ii) is a trivial consequence of (i). Also, for fixed v, 
the expression on the left of (iii) is bounded for v < x < 1 (even though the 
bound will, of course, depend on v). I t is thus a fortiori 0(log(l — x ) - 1 ) , and 
the proof is completed. 

L E M M A 4. If 2Z^=o civ is summable (L) to s, then any sequence of regular 
Hausdorff means of {sn} is ^-convergent to s. 

This is Theorem 5 of (2). 

L E M M A 5. Suppose that {sn} is any bounded (real or complex) sequence. Let 
{cn(x)\ be a sequence of functions defined for 0 < x < 1 and satisfying 

(15) lim cn(pc) = 0 for n = 0, 1, . . . , 
S - » l -

(16) lim sup X^ \cv(x) | = M < +oo. 

Then we have that 

(17) lim sup 
GO 

/ J Cv\X)Sn 

p=0 
^ M lim sup \sn\. 

n->co 
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Moreover, M is the best constant in the following sense: there exists a bounded 
sequence {sn}, 0 < limw^œ sup \sn\ < + 0 0 , such that the members of inequality 
(17) are equal. 

This lemma is due to R. P. Agnew (1). 

3 . Proof of T h e o r e m 1. We first prove (3). We have t ha t 

where 

Let 

.+i 
£(x) = /3o(x) = - l o g ( l - x ) . 

cQ(x) = 0, 

C\{x) = 1 
0(*) ' 

C„(#) = < ^ log v \ P(x) / 

l pAg) 
{ v log *> /3(x) 

(v > ?z(x)) . 

Since 

lim cv(x) = 0 

for every fixed v, condition (15) is satisfied. 
Now consider the sum 

oo -, ( n(x) 1 / ' 2 A) 

E \c,(.x)\ = - r ~ \x+ E - é - l * + V + - - - + - ) f 

+ 
1 g tel 

P(X) v=n(x) + l v\0g V 
— An(X) + Bn(X), 

where 

Bn(x) = i g MI = 0 ( i g 
£ ( * ) ,=*(*) + ! P log V \ ( 1 ~ X)/3(X) , = ^ ) + l P 2 

0 

log J'. 
oo 

2: 
i ?z(x) 

log n(x) ,=^)+ i ^ log v. = o ( l ) . 

Wlien 0 < x < 1 and x —> 1 —, 

r< \ l i JL V ! fi . 1 . . *M log^(x) , 
p(xj l ,= 2 M o g ^ Y 2 *//J /5(x) 
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by (4), and 

1 ^ 1 / 1 - r 2 1 - rv\ 

0 < G(x) - An(x) = - / - £ - r — V1 ~ x + ^ 7 + • • • + — - ) ^ 0(*) 
1_-I_̂  Y J L < (1 ~ x)n(x) _^ 

Hence, -4n(*) ~~> 1 and (16) is satisfied. 
(5) can be proved in much the same way. 

4. Proof of T h e o r e m 2. Suppose tha t the series ]C?=o av is convergent. 
Then , since (/) summabil i ty is regular, it is summable (/) to s. Hence (7) is 
necessary. 

Suppose now tha t (7) holds and t h a t sn —» s (L) . We have t ha t 

, V-^ <Tp — (Tv-1 i V ^ | 1 1 I i °» 
n = dO + 2-s = ^0 + 2-a (Tv\ " J + . 

„=i av-i v=\ \ a„ - i OLvf an-\ 

uv = a A ) (v ^ 1), 
\av-i av/ 

rn = Uo + Ui + . . . + ttn, 
and 

- 1 ^ xv+1 

Let 

^ 0 = CLO, 

A ( X ) = --------- X r* log(l — x) 7=0 ' v + 1 ' 

Then , by (7), sn — rn_\ —» 0 as w —> oo. Since 

( 1 Ï 
^ n = 0\ — , / , 

\n log n/ it follows from the second par t of Theorem 1, with xn — 1 — 1/n, t ha t 
rn-i — h(xn) —-> 0 and hence sn — f(xn) —> 0. T h u s , sre —> 5 as n —» °° . (7) is 
therefore sufficient. 

5. Proof of T h e o r e m 3. We first prove t ha t the condition is necessary. 
Suppose t ha t the series is summable (/) to s. Then, by the regularity of 
summabil i ty (/), the sequence {/,/}, where tn' is the nt\\ (/) mean of the 
sequence {/„}, tends to s. Hence 

, / _£_ v~"* Sv tp (18) tn ~ tn' = ~ 2 , - ~ f = 0(1), 
an „=i ^ + 1 

i.e., 
n , 

——— = o(\ogn). 

Now 
7) n— 1 

.- Vu = X) ~ " r r (5" — O = X) ^ ( a* - «I'+O + wnon = o(iogV). 
Hence (8) is necessary. 
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We shall now prove that the condition is sufficient. Suppose that (8) holds 
and that X^=o an is summable (L) to s. Then, from (18), 

(19) 
OLn v=i \y + 1)OLV an v=i \av av+i/ an 

By Lemma 3, tn —» 5 (L), Hence, by Theorem 2 and (19), tn —> 5. Thus, (8) is 
sufficient. 

6. Proof of Theorem 4. Let 

so + Si + . . . + sn 
Cn 

n + 1 
Then, since ^27= o av is summable (L) to s, the sequence {cn}, by Lemma 4, 
is summable (L) to the same sum. It follows from (9) that cn = 0(1), and 
hence {cn} is, by Lemma 1, summable (/) to s, that is, 

tends to 5 as n —> oo. Write 

Then, since cv is bounded, 

rp 1_ ^ CV 

an ,=0 v + 1 

i n ^ 

T > = JL y -£-"_ 
1 n JL-J i o * 

an v=o v + 2 

Tn - TV = - Z " T i r f T ^ X ^ = °(") = ^ 1 ) ' aw p=0 (v + 1)(*> + 2) V*n/ 

Thus, 7Y —» .9 as « —> oo . Now 

7- ' = JL V 5o + 5l + • • • + ^ = _ (n + l)g* iw i t * 0>+!)(» + 2 ) '» (n + 2K B 

Hence, tn —> 5 as n —» oo. This proves Theorem 4. 

7. Proof of Theorems 5 and 6. We first prove Theorem 5. From Lemma 
3, the sequence {sn — tn} is L-convergent to 0. Also, from (10), sn — tn = 0L(l). 
Therefore the sequence {sn — tn} is summable (/) to 0 by Lemma 1, that is, 

tn ~ -~ E " X T = 0(1). 

By lemma 3 and Theorem 2, with sn replaced by tn, tn —» 5 as n —» oo. This 
proves Theorem 5. Theorem 6 follows from Lemmas 2 and 3. 
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