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This paper extends the work of Tamano & Morinishi (J. Fluid Mech., vol. 548, 2006,
pp. 361–373) by simulating supersonic turbulent channel flow with asymmetric thermal
walls using a larger computational domain and a finer mesh. Direct numerical simulation
is carried out for four cases with different thermal wall boundaries at the top wall at fixed
Ma = 1.5, Re = 6000 and Pr = 0.72, while the bottom wall is maintained at a constant
temperature of TL equal to the reference temperature. These cases are referred to as the
adiabatic case TAd, where the top wall is adiabatic; the pseudo-adiabatic case T32, where
the top wall is isothermal with temperature Tw,t = TA; the sub-adiabatic case T25, with
Tw,t = 0.77TA; and the super-adiabatic case T40, with Tw,t = 1.24TA. Here, TA = 3.234 is
the mean temperature at the adiabatic wall in the TAd case. The objective of this study is to
compare and contrast the TAd case with its corresponding T32 case, and to investigate the
effect of the wall temperature difference between the two isothermal walls. Comparisons
of the basic turbulent statistics, the heat transfer between the Favre-averaged mean-flow
kinetic energy, the Favre-averaged turbulent kinetic energy and the Favre-averaged mean
internal energy, as well as the wall heat transfer properties, indicate that the TAd case and
its corresponding T32 case are generally equivalent. The only discernible difference is in
the region very close to the top wall for the temperature-fluctuation-related quantities. The
analysis reveals that the asymmetry of the thermal walls causes asymmetry in the flow and
thermal fields. In addition, the transfer of the heat generated by the pressure dilatation and
the viscous stress is facilitated by the turbulent heat flux term and the mean molecular heat
flux term.
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1. Introduction

The investigation of compressible wall-bounded turbulence has always been an important
topic and is widely relevant in the aerospace industry. The majority of the early
experimental studies have been reviewed by Spina, Smits & Robinson (1994), Bradshaw
(1977) and Gatski & Bonnet (2013). Compared with incompressible wall-bounded
turbulence, the compressibility effect has become one of the critical issues, and different
Mach numbers and thermal wall boundaries will affect the compressibility of the flow.
Morkovin (1962) first hypothesized that if density fluctuations are small relative to the
mean density, their effect on turbulence is small and can be ignored. This hypothesis is
known as Morkovin’s hypothesis, and it has led to several compressibility transformations
for velocity and Reynolds stresses that aim to map the compressible turbulent statistics
onto the ‘equivalent’ incompressible ones using the mean profiles of density and viscosity
(Van Driest 1951; Huang, Coleman & Bradshaw 1995; Trettel & Larsson 2016; Volpiani
et al. 2020; Griffin, Fu & Moin 2021; Hasan et al. 2023).

As one of the canonical flow problems in compressible wall-bounded turbulence,
compressible turbulent channel flows with symmetric isothermal walls have been much
studied in past decades since the pioneering work by Coleman, Kim & Moser (1995), who
performed direct numerical simulations (DNS) of supersonic turbulent channel flows at
Mach number (Ma) 1.5 and 3.0. Here, Ma is based on the bulk velocity and sound speed
at the wall. They reported that isothermal boundary conditions led to flow that is strongly
influenced by wall-normal gradients of mean density and temperature, and these gradients
enhanced the streamwise coherence of the near-wall streaks, while almost supporting
Morkovin’s hypothesis. That is, the turbulent statistics at both Mach numbers agreed
well with the corresponding incompressible cases when they were properly scaled. Huang
et al. (1995) further analysed the above DNS data, and confirmed that the compressibility
effects due to the turbulent density and pressure fluctuations were insignificant. They
also found that the strong Reynolds analogy was invalid according to the DNS data, and
proposed a more general representation of the analogy. Compressible turbulent channel
flows with symmetric isothermal walls were also studied by Foysi, Sarkar & Friedrich
(2004), Wei & Pollard (2011), Modesti & Pirozzoli (2016), Gerolymos & Vallet (2023),
Yu, Xu & Pirozzoli (2019), Tang et al. (2020), Zhang & Xia (2020), Baranwal, Donzis
& Bowersox (2022), Cheng, Shyy & Fu (2023) and Cheng & Fu (2023). Recently,
Yao & Hussain (2020) carried out a series of DNS of this problem, where Ma = 0.8
and 1.5, and the bulk Reynolds number Re was in the range of 3000–34 000. They
confirmed that the mean velocity profiles, as well as the Reynolds stress profiles, perfectly
collapsed to their corresponding incompressible profiles after the Trettel and Larsson
(TL) transformation (Trettel & Larsson 2016). Furthermore, their results revealed that the
typical eddy size did not vary with Ma when scaled using the local friction velocity and
thermodynamic properties, and that the compressibility contribution to the skin friction
continuously decreases with Re, suggesting that compressible and incompressible flows
differ little when Re is high enough. Song et al. (2022) proposed a semi-empirical scaling
for the central mean temperature based on the generalized Reynolds analogy (Zhang
et al. 2014) and available DNS data. Using this empirical scaling, Song, Zhang & Xia
(2023) proposed a robust iterative method to obtain the mean profiles at given Ma and
Re in compressible turbulent channel flows without performing DNS. More recently,
Gerolymos & Vallet (2024) performed DNS of compressible turbulent channel flows with
symmetric isothermal cold walls across a range of centreline Mach numbers and Reynolds
numbers. That study focused on the statistics of the total and static temperature (and
enthalpy). The results indicated that the streamwise velocity fluctuations correlate strongly
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DNS of compressible turbulent channel flows

with the total enthalpy fluctuations, while they are not well correlated with the static
enthalpy.

In addition to the symmetric isothermal cases, the two walls in compressible turbulent
channel flows can also be thermodynamically asymmetric, and understanding the effects
of this asymmetry is important to complement the former studies. In general, there
are two possible scenarios. One is the case of a temperature difference between two
isothermal walls, and the other is the case of an isothermal wall and an adiabatic
wall, or the case of isothermal–adiabatic (I–A) walls. The first case has been studied
by several groups using DNS or large-eddy simulations, and most of them have
focused on the nearly incompressible situations (Wang & Pletcher 1996; Lessani &
Papalexandris 2008; Nagata & Nagaoka 2017; Ma, Yang & Ihme 2018; Avellaneda
et al. 2021), which are believed to be closely related to the flow characteristics in
solar receivers (Serra et al. 2012; Avellaneda, Bataille & Toutant 2019; Toki, Teramoto
& Okamoto 2020). For the fully compressible situations with Ma > 0.3, studies are
rather scarce, and they were carried out mainly to serve as a comparison object
for the latter I–A cases (Tamano & Morinishi 2006; Baranwal, Donzis & Bowersox
2023).

In fact, compressible I–A channel flows were first used as a validation case for the
B-spline collocation method by Morinishi, Tamano & Nakabayashi (2003). Later on,
Morinishi, Tamano & Nakabayashi (2004) carried out a thorough investigation of the
effects of adiabatic and isothermal conditions on the turbulent statistics in a compressible
I–A channel at Ma = 1.5. They reported that Morkovin’s hypothesis was not applicable
to the near-wall asymptotic behaviour of the wall-normal turbulence intensity, even when
the variable property effect was considered. Furthermore, they identified the difference
between the energy transfer near isothermal and adiabatic walls by comparing the internal
energy and the mean and turbulent kinetic energies.

Tamano & Morinishi (2006) extended the work of Morinishi et al. (2004), aiming
to clarify the effect of thermal wall boundary conditions on turbulence statistics and
structures in compressible turbulent channel flows, and to address whether the variations
of turbulence statistics are attributable to the effect of the increase in wall temperature
caused by the adiabatic wall boundary condition. They simulated a ‘corresponding’
isothermal–pseudo-adiabatic (I–PA) case, where the wall temperature of the upper wall
was set to the mean wall temperature of the adiabatic wall, keeping all the other flow
parameters the same as those in the I–A case. They reported that the thermal statistics
in the I–A case were quite different from those in the corresponding I–PA case. More
specifically, they reported that the profiles of mean temperature and root-mean-square
(r.m.s.) temperature fluctuations between the I–PA and I–A cases were obviously different,
with near-wall maximums appearing near the high-temperature wall for the two profiles
in the I–PA case, and that the direction of energy transfer due to pressure work near
the adiabatic wall being opposite to that near the isothermal wall is attributable to the
effect of the high-temperature wall, not to the effect of the adiabatic wall. However, a
subsequent study by Shadloo, Hadjadj & Hussain (2015) demonstrated that the basic
turbulent statistics in supersonic boundary layers remain unaffected by the thermal
boundary conditions between a real adiabatic wall and the corresponding pseudo-adiabatic
wall. Zhang et al. (2022) demonstrated that the deviations caused by the three ‘equivalent’
canonical thermal boundary conditions in compressible turbulent channel flows – namely
the first boundary condition with fixed wall temperature, the second boundary condition
with fixed wall heat flux and the third mixed boundary condition – are limited to the
near-wall region. The statistical differences between the I–A case and its corresponding
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I–PA case from Tamano & Morinishi (2006) contradict the conclusions drawn by Shadloo
et al. (2015) and Zhang et al. (2022), which suggested that the cases were nearly equivalent.
Therefore, it is necessary to conduct a thorough investigation of the similarities and
differences between the two cases.

It is noteworthy that the compressible I–A channel has recently attracted attention.
Lusher & Coleman (2022a,b) conducted DNS of turbulent I–A channels at various Mach
and Reynolds numbers to investigate the effect of thermal wall conditions on the turbulent
Prandtl number (Prt) in the low-supersonic regime. They believed that the adiabatic
condition was a new feature of particular interest. It was found that Prt approaches
0.85 away from both the isothermal and the adiabatic walls. The near-wall variations
of Prt collapse as a function of the semi-local wall scaling proposed by Huang et al.
(1995), showing only a weak dependence on the wall-friction Reynolds number. Huang
et al. (2023) further investigated the velocity and temperature scaling near isothermal
and adiabatic walls using the data from Lusher & Coleman (2022a). Baranwal et al.
(2023) performed a series of DNS to study the near-wall asymptotic behaviour for the
compressible I–A and I–PA cases. That study complemented their earlier research on
symmetric isothermal channels (Baranwal et al. 2022). The researchers believed that
adiabatic walls could isolate the effects of Mach number from wall cooling, providing
a more direct way to assess the effects of Mach number and the validity of Morkovin’s
hypothesis on the asymptotic scaling of turbulent statistics.

This paper studies supersonic turbulent channel flows with asymmetric thermal walls.
The study includes one I–A case and its corresponding I–PA case, as well as two cases
with asymmetric isothermal walls of different wall temperature differences. The aim
of this study is to clarify the similarities and differences between the I–A case and
its corresponding I–PA case, using reliable DNS data to carefully address the conflicts
mentioned above. Additionally, we investigate the effect of wall temperature differences
between two isothermal walls, especially on the heat transfer behaviour of the channel
system with asymmetric wall conditions. The paper is organized as follows. The physical
model and numerical set-up are described in § 2. Some basic turbulence statistics are
given in § 3. The energy exchange and heat transfer properties are studied in §§ 4 and
5, respectively. Finally, some conclusions are drawn in § 6.

2. Problem description and numerical set-up

In this paper, our main concern is compressible turbulent channel flows between two
walls, as depicted in figure 1. The bottom wall is isothermal with fixed wall temperature
TL, whereas the top wall is either adiabatic or isothermal with fixed wall temperature
Tw,t. The flow is driven by a uniform force in the streamwise direction. Here, x, y and z
denote the streamwise, wall-normal and spanwise directions, respectively; x1, x2 and x3
are used interchangeably with x, y and z. The governing equations are the compressible
Navier–Stokes equations, which can be rewritten as follows:

∂ρ

∂t
+ ∂ρuj

∂xj
= 0, (2.1)

∂ρui

∂t
+ ∂ρuiuj

∂xj
= − ∂p

∂xi
+ ∂τij

∂xj
+ fiδi1, (2.2)

∂E
∂t

+ ∂[ui(E + p)]
∂xi

= −∂qj

∂xj
+ ∂uiτij

∂xj
+ f1u1. (2.3)
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DNS of compressible turbulent channel flows

Lx

TL

Tu

y

x
z

Ly

Lz
T = Tw,t or ∂T/∂y = 0

Figure 1. Sketch of compressible turbulent channel flows. The bottom wall is isothermal with Tw = TL,
whereas the top wall is either adiabatic (∂T/∂y = 0) or isothermal with wall temperature Tw,t.

Here, the Einstein summation convention and notation are used; δij is the Kronecker tensor,
ρ the fluid density, ui the ith component of the velocity, p the pressure, fi the driving
volume force and E = ρ(e + u2

i /2) the total energy. In the present study, the fluid is
assumed to be a perfect gas, and the equation of state p = ρRT is used, where R and
T are the gas constant and temperature, respectively. Here, e = CvT is the internal energy,
with Cv = R/(γ − 1) being the specific heat at constant volume, and γ = Cp/Cv is the
specific heat ratio, with Cp being the specific heat at constant pressure. The viscous stress
τij and heat flux qj are given as

τij = μ

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
, qj = −λ ∂T

∂xj
, (2.4a,b)

where μ, the molecular viscosity, obeys the Sutherland formula and λ, the thermal
conductivity, is related to μ through the Prandtl number Pr = Cpμ/λ = 0.72. In what
follows, all quantities are non-dimensionalized by the reference temperature Tref =
288.15 K, the channel half-width h, the bulk density ρm = ∫ h

−h ρ̄ dy/(2h) and the bulk

velocity um = ∫ h
−h ρu dy/(2hρm) (where ( · ) denotes the Reynolds-averaging operation in

the homogeneous directions and time) unless stated otherwise. Besides Pr, the other two
controlling (input) parameters, i.e. the Reynolds number and Mach number,

Re = ρmumh
μref

= 6000, Ma = um√
γ RTref

= 1.5, (2.5a,b)

are also fixed unless otherwise stated. Here, μref is the viscosity at the reference
temperature Tref .

In the present study, the simulations are carried out by using the OPENCFD-SC code
on a computational box of size Lx × Ly × Lz = 6π × 2 × 4π/3. In the OPENCFD-SC
code, the inviscid and viscous terms are discretized using a seventh-order upwind scheme
and an eighth-order central scheme, respectively, and time is advanced using an explicit
third-order Runge–Kutta scheme. The OPENCFD-SC code has been widely employed and
validated for compressible turbulent boundary layers (Zhang et al. 2014; Liang & Li 2015;
Li et al. 2019b; Xu et al. 2021) and plane channel flows (Chen & Fei 2018; Yu et al. 2019;
Zhang & Xia 2020). The flow is assumed to be periodic in the streamwise and spanwise
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Case Thermal condition (top) TL/Tref Nx × Ny × Nz Tw,t/TL Nt Line style

TAd ∂T/∂y = 0 1.0 864 × 240 × 320 3.234 387 ——
T32 Tw,t/Tref = 3.234 1.0 864 × 240 × 320 3.234 355 + + +
T25 Tw,t/Tref = 2.5 1.0 864 × 240 × 320 2.5 378 − − −
T40 Tw,t/Tref = 4.0 1.0 864 × 240 × 320 4.0 393 − · −·

Table 1. Control parameters and numerical set-up. In all cases, Ma = 1.5, Re = 6000, Pr = 0.72 and γ =
1.4. The computational domain is Lx × Ly × Lz = 6π × 2 × 4π/3. The temperatures Tref , TL and Tw,t are
the reference temperature, the wall temperature at the bottom wall and the mean temperature at the top wall,
respectively. The parameter Nt is the number of samples used in the statistics with time interval �t = 0.8h/um.
The line styles for the four cases are used unless otherwise stated.

Case Reτ Re∗
τ �x+ �y+

min �y+
max �z+ Reτ Re∗

τ �x+ �y+
min �y+

max �z+

TAd 585 205 12.76 0.73 10.15 7.65 135 192 2.94 0.17 2.34 1.76
T32 584 205 12.74 0.73 10.13 7.65 135 192 2.94 0.17 2.34 1.76
T25 537 219 11.71 0.67 9.32 7.02 169 211 3.68 0.21 2.93 2.21
T40 631 192 13.76 0.79 10.95 8.25 115 179 2.51 0.14 2.00 1.50

Table 2. Grid resolutions. Here Reτ = ρwuτ h/μw is the friction Reynolds numbers defined using the
quantities at the nearest wall, while Re∗

τ = ρ̄c(τw/ρ̄c)
1/2h/μ̄c is the friction Reynolds number based on the

centreline density and viscosity and the friction at the wall; �x and �z are the grid spaces in the streamwise
and spanwise directions; �ymin and �ymax denote the wall-normal grid spaces near the wall and at the channel
centre. Columns 2–7 display the results normalized by the quantities at the bottom wall (y = −1), and columns
8–13 show the results at the top wall (y = 1).

directions. The boundary conditions for the velocity at both walls are no-slip, whereas the
thermal boundaries are different, as mentioned above. The specific control parameters
are shown in table 1. The grid is uniform in the streamwise and spanwise directions,
and it is clustered in the near-wall region in the wall-normal direction. The detailed grid
resolutions are shown in table 2, where the superscript ‘+’ denotes normalization by using
the viscous scale δv at the nearest wall (also referred to as the wall coordinate). Here,
δv = μw/(ρwuτ ) and uτ = (|τw|/ρw)1/2 with μw, ρw and τw being the viscosity, density
and wall shear stress at the nearest wall, respectively. It is found that the current resolutions
are comparable to those used by Yao & Hussain (2020), Lusher & Coleman (2022a) and
Gerolymos & Vallet (2023). Figure 2 displays the ratio between the local wall-normal
resolution �y and the local Kolmogorov scale ηk in the wall-normal direction for the
cases TAd, T25 and T40, demonstrating the sufficiency of the present grid resolutions.
Here, ηk = (ρ̄ν3/εk)

1/4, with ν = μ̄/ρ̄ being the mean local kinematic viscosity and
εk the dissipation rate of turbulent kinetic energy (see (4.3) later). It is evident from
figure 2(a) that �y/ηk is less than 1.15 across the channel for the three cases TAd, T25
and T40, indicating that the present mesh resolutions meet the requirement stated by Moin
& Mahesh (1998) that the smallest resolved length scale should be O(ηk). Near the bottom
isothermal wall, �z+ ≈ 7–8, which may be considered slightly coarse for the current
simulations. However, as shown in figure 2(b), �z/δ∗

v (see the definition of δ∗
v later) decays

rapidly near the bottom wall and remains below 4 for most of the channel (y > −0.9). We
have also refined the grid resolution in the wall-normal and spanwise directions, as well
as in the streamwise direction for the TAd case. The results, presented in the Appendix,
further confirm the adequacy of the current grid resolutions.
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Figure 2. (a) The ratio between the local wall-normal resolution �y and the local Kolmogorov scale ηk and
(b) the ratio between the spanwise resolution �z and the semi-local viscous length scale δ∗

ν in the wall-normal
direction for TAd, T25 and T40. The line styles of the cases are as presented in table 1.

The initial velocity fields in the present cases are the laminar parabolic one
superimposed with random disturbances, while the density and temperature are uniform.
The simulations were initially run on a very coarse mesh and then interpolated to the target
fine mesh. Each case was executed using 480 CPU processes for over 400h/um until the
flows reached a stationary state. At this point, the turbulent statistics, such as the friction
Reynolds numbers at the bottom and top walls, oscillated within a certain range. Then Nt
samples of the flow fields were stored with a time interval of �t = 0.8h/um for statistical
analysis. In the Appendix, a convergence study was conducted, and it was found that most
results converged with 100 samples.

In the following, Reynolds decomposition (φ = φ̄ + φ′ with φ̄ = 〈φ〉) and density-
weighted Favre decomposition (φ = φ̃ + φ′′ with φ̃ = ρφ/ρ̄ and φ̃ = {φ}) are used,
where 〈φ〉 = φ̄ denotes the averaging operator in the homogeneous spatial directions
(x and z) and the temporal direction (t) by using the Nt samples of the flow fields.
Correspondingly, the r.m.s. value can be defined as φrms = (φ′2)1/2. Furthermore, besides
the global coordinate, where y is normalized by h, and the wall coordinate, the semi-local
coordinate is also used, where y is normalized by the semi-local viscous length scale
δ∗
v = μ̄( y)/(ρ̄( y)u∗

τ ) with u∗
τ = (|τw|/ρ̄( y))1/2 being the semi-local friction velocity. It

is obvious that variations of mean density and mean viscosity in the wall-normal direction
affect the semi-local coordinate, and its effectiveness has been well documented by
many authors (Huang et al. 1995; Morinishi et al. 2004; Modesti & Pirozzoli 2016).
Similarly, the friction temperature and the semi-local friction temperature can be defined
as Tτ = qw/(Cpρwuτ ) and T∗

τ = qw/(Cpρ̄( y)u∗
τ ), respectively. It is important to note that

qw = 0 and qw ≈ 0 for the adiabatic and pseudo-adiabatic walls, respectively. Therefore,
Tτ and T∗

τ are not applicable.

3. Basic turbulence statistics

In compressible turbulence, the velocity and temperature fields are coupled. In turbulent
channel flows, it is intuitively expected that the asymmetry of the thermal boundary
condition at the two walls will change the symmetry properties of the mean temperature,
mean density and mean streamwise velocity. Figure 3 shows profiles of the mean
streamwise velocity (normalized by um), mean temperature (normalized by Tref ), mean
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Figure 3. Profiles of (a) the mean streamwise velocity (normalized by um), (b) the mean temperature
(normalized by Tref ), (c) the mean density (normalized by ρm) and (d) the local mean Mach number
〈M〉 = 〈u〉( y)/〈a〉( y) from TAd, T25, T32 and T40 in global coordinates, where 〈a〉( y) = √

γ R〈T〉( y) is the
local sound speed. The inset in (c) shows a zoomed-in view of the behaviour near the bottom wall.

density (normalized by ρm) and local mean Mach number 〈M〉 = 〈u〉( y)/〈a〉( y) from TAd,
T25, T32 and T40 in global coordinates. It is seen that all the profiles from the four cases
are asymmetric about the central plane, i.e. y = 0. Since the thermal boundary conditions
at the walls are exerted at the temperature field, the mean temperature profiles from the
four cases are clearly asymmetric. The mean temperature first increases rapidly near the
bottom wall, and then it increases approximately linearly with y in the core region. Near the
top wall, the behaviours of the mean temperature are different, depending on the thermal
boundary condition there (Tw,t/TL).

The mean density in figure 3(c) behaves in a manner inverse to that of the mean
temperature. That is, it decreases rapidly near the bottom wall and then decreases
slowly further away from the bottom wall. Compared with the mean temperature and
density profiles, the mean streamwise velocity profiles, as well as 〈M〉, are only slightly
asymmetric. When the mean streamwise velocities are normalized by um, the mean profiles
are very close to each other in the core region at the fixed Re and Ma, whereas the wall
frictions at the two walls show some difference, which can be inferred from the Reτ values
listed in table 2. When the wall friction differences are considered, i.e. the mean velocity
is rescaled by using uτ , differences can be observed among TAd (or T32), T25 and T40 in
the ‘log-law’ region near both walls, as depicted in figure 4(a,d). It is also seen from these
two plots that u+ values from the four cases deviate from the incompressible profile near
the bottom wall, whereas they are very close to the incompressible one near the top wall.
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Figure 4. Mean velocity profiles from the four cases for (a–c) the bottom half and (d– f ) the top half: (a,d) u+
versus y+; (b,e) uVD versus y+; (c, f ) U+ versus Y+. The incompressible DNS results at Reτ = 180 (triangles)
and 395 (thick grey lines in (a–c)) from Moser, Kim & Mansour (1999) are shown as reference.

In compressible wall-bounded flows, various transformations have been introduced to
account for the mean property variations, such as the ‘Van Driest (VD) transformation’
(Van Driest 1951), where the transformed velocity is

uVD =
∫ u+

0

(
ρ̄

ρw

)1/2

du+, (3.1)
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and the TL transformation proposed by Trettel & Larsson (2016), where

Y+ = y
δ∗
v

, (3.2)

U+ =
∫ u+

0

(
ρ̄

ρw

)1/2 [
1 + 1

2
1
ρ̄

dρ̄

dy
y − 1

μ̄

dμ̄

dy
y
]

du+. (3.3)

Trettel & Larsson (2016) summarized the status of the VD transformation and reported
that it works very well for adiabatic walls up to Ma = 20, while its accuracy deteriorates
for increasingly non-adiabatic walls. On the other hand, the TL transformation can
produce an excellent collapse of the mean velocity profile at different Re, Ma and wall
heat transfer rates. Figure 4(b,c) show the VD-transformed velocity uVD versus y+ and
the TL-transformed velocity U+ versus Y+, respectively, near the bottom wall. The
corresponding transformed profiles near the top wall are shown in figure 4(e, f ). The
incompressible mean velocity profiles in turbulent channel flow at Reτ = 180 and 395
(Moser et al. 1999) are also shown for reference. As expected, clear deviations between
uVD and u+ (the incompressible DNS data) can be observed at the non-adiabatic bottom
wall side. These deviations include a thickened buffer layer and an upward shift of the
log-law intercept (Trettel & Larsson 2016). The TL-transformed velocities U+ from the
four cases collapse excellently and match very well with the incompressible DNS data at
Reτ = 395 in the range Y+ ≤ 220. The top wall is either adiabatic or weakly non-adiabatic
in all four cases. As a result, the collapse of uVD and U+ is successful. These transformed
mean velocity behaviours are consistent with the recent findings of Huang et al. (2023).

The r.m.s. profiles of the three velocity components can also be studied. If they were
normalized by um and shown in the global coordinate, only small deviations between
cases T25, T32 (or TAd) and T40 can be observed, mostly near the top wall (not shown
for brevity). In compressible turbulent channel flows with symmetric isothermal walls,
Coleman et al. (1995) reported that the difference of the r.m.s. velocity fluctuations
between the non-zero-Mach-number case and incompressible cases increased with Mach
number when normalized by conventional wall variables, whereas the collapse was much
better when the semi-local scaling, suggested by Huang et al. (1995), was adopted.
Following the studies in Coleman et al. (1995), the r.m.s. profiles of three velocity
components in the inner coordinate, normalized by uτ at the nearest wall, as well as in
the semi-local coordinate, normalized by u∗

τ from the nearest wall, from the two halves
of the channel are shown in figure 5. In the inner coordinate, as shown in figure 5(a,b),
the profiles from the four cases are quite close to each other in the near-wall region with
y+ < 10, and are the same for both halves of the channel. For y+ > 10 in the bottom half,
the r.m.s. values of the three velocity components are larger for the case with higher Tw,t.
The trend is opposite for y+ > 10 in the top half, where the r.m.s. values of the three
velocity components are smaller for the case with higher Tw,t. Nevertheless, no obvious
difference can be observed for the r.m.s. profiles of the three velocity components between
T32 and TAd in both halves, which again shows that the substitution of the adiabatic
condition by the pseudo-adiabatic condition will not change the velocity statistics. In
the semi-local coordinate, as shown in figure 5(c,d), the deviations between the cases
with different Tw,t become negligible in both halves, illustrating the superiority of the
semi-local scaling over the classical wall units in the present problems. It should be noted
that the collapsed profiles still deviate from the incompressible ones at Reτ = 180 in the
bottom half, which is similar to observations in compressible turbulent channels with
symmetric isothermal walls (Coleman et al. 1995; Modesti & Pirozzoli 2016).
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Figure 5. Rescaled r.m.s. values of velocity components from the four cases in (a,b) the classical inner
coordinate y+ (normalized by uτ at the nearest wall) and (c,d) the semi-local coordinate Y+ (normalized by u∗

τ )
from (a,c) the bottom wall side and (b,d) the top wall side. The incompressible DNS data at Reτ = 180 from
Moser et al. (1999) (triangles) are shown for comparison.

The superiority of the semi-local scaling over the classical wall units is also valid for the
rescaled Reynolds shear stress and streamwise turbulent heat flux, as shown in figure 6,
where the Reynolds shear stress near both walls is normalized by τw at the nearest wall, and
in figure 7, where the streamwise turbulent heat flux in the bottom wall side is normalized
by ρwuτ Tτ = ρ̄u∗

τ T∗
τ = qw/Cp at the bottom wall. Since qw = 0 (qw ≈ 0) at the adiabatic

(quasi-adiabatic) wall, the inner/semi-local rescaled streamwise turbulent heat flux in the
top half is not shown. From the figures, it is evident that with the semi-local scaling, the
collapse behaviours of the Reynolds shear stress and the streamwise turbulent heat flux
are much better. For the streamwise turbulent heat flux, although the rescaled ones do not
collapse onto each other, their peak locations are almost the same at Y+ ≈ 15.

Now, we turn to the mean temperature profiles again. Following the strategy proposed by
Tamano & Morinishi (2006), the mean temperature T̄ − TL is rescaled by the temperature
difference between the two walls, �T = Tw,t − TL, and the results from our four cases
are shown in figure 8(a). The results of the I–PA case at Ma = 1.5, Re = 3000 and
Tw,t/TL ≈ 2.4 from Tamano & Morinishi (2006) and the I–A case at Ma = 1.56 and
Re = 6545 from Lusher & Coleman (2022a) are also shown for comparison. It is
evident that the rescaled mean temperature profiles of the present I–A case and the
corresponding I–PA case match well with each other, and they also collapse onto the
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Figure 6. Reynolds shear stress rescaled by τw from the four cases in (a,b) the classical inner coordinate
y+ and (c,d) the semi-local coordinate Y+ from (a,c) the bottom wall side and (b,d) the top wall side. The
incompressible DNS data at Reτ = 180 from Moser et al. (1999) (triangles) are shown for comparison.
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Figure 7. Streamwise turbulent heat flux near the bottom wall side rescaled by qw/Cp = ρwuτ Tτ = ρ̄u∗
τ T∗

τ at
the bottom wall from the four cases in (a) the classical inner coordinate y+ and (b) the semi-local coordinate
Y+.
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Figure 8. (a) Mean temperature profiles rescaled by �T = Tw,t − TL from the present four cases. The results
of the I–PA case at Ma = 1.5, Re = 3000 and Tw,t/TL ≈ 2.4 (circles) from Tamano & Morinishi (2006) as
well as the I–A case at Ma = 1.56 and Re = 6545 (triangles) from Lusher & Coleman (2022a) are also shown.
The inset shows a zoomed-in plot near the top wall, and the two dashed vertical lines show the locations of the
two local peaks. (b) The r.m.s. profiles of temperature fluctuations from the present four cases (normalized by
Tref ). The inset shows a zoomed-in plot near the top wall.

I–A case from Lusher & Coleman (2022a) at similar Re and Ma, demonstrating that
the present simulations are reliable, and that the mean temperature differences between
the I–A case and the corresponding I–PA case are negligible. The results presented here
differ significantly from those reported in Tamano & Morinishi (2006), where the rescaled
mean temperature profiles of their I–A case and the corresponding I–PA case showed a
noticeable difference. It is believed that Tw,t/TL was underdetermined in the I–A case in
Tamano & Morinishi (2006) due to the simulation not reaching a stationary state, which
was understandable given the computational limitations at the time. Lusher & Coleman
(2022a) found a significant energy imbalance in Tamano & Morinishi (2006). Figure 8(a)
shows that the rescaled mean temperature profiles from the different cases follow a similar
trend in the central bulk region, i.e.

〈T〉 − TL

�T
= Ky + CT . (3.4)

Here, K ≈ 0.25 is the slope of the rescaled mean temperature profile and CT is the
intercept of the linear temperature profile, which depends on Ma and Re as well as �T
(or Tw,t). If we denote by TA and CT,A the mean temperature at the adiabatic wall in the
I–A case and the corresponding intercept, respectively, then CT > CT,A when Tw,t < TA,
and vice versa. Near the top wall, the behaviours of the different cases show diverse
trends. For the adiabatic and quasi-adiabatic cases, the mean temperature gradient at
the top wall is nearly zero. For the cases with Tw,t/TL < 3.234, i.e. T25 and the case
at Ma = 1.5, Re = 3000 and Tw,t/TL ≈ 2.4 from Tamano & Morinishi (2006), the mean
temperature gradient at the top wall is negative, that is, the heat will be transferred out
from the wall. A local peak of the mean temperature exists near the top wall for these two
cases, as was reported in Tamano & Morinishi (2006), and the peak location is closer to
the top wall if Tw,t is closer to TA. For the case with Tw,t/TL > 3.234, i.e. T40, the mean
temperature gradient at the top wall is positive, and the heat will be transferred into the
fluid through the wall.

We show in figure 8(b) the r.m.s. profiles of temperature fluctuations from the present
four cases. The figure shows clear differences between the three cases, i.e. T25, T32 and
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T40, and the higher the Tw,t, the larger the Trms in the bulk region, whereas the deviations
between T32 and TAd are negligible except near the top wall, as shown in the inset in
figure 8(b), where it allows fluctuation of temperature at the top wall for TAd but does
not for T32. In Tamano & Morinishi (2006), they reported an additional maximum in the
region close to the top high-temperature wall, and it was believed to be produced by the
maximum of the mean temperature near the high-temperature wall. Nevertheless, there is
no extra maximum near the top wall in our results.

Previous studies have shown that in traditional compressible channel flows with
symmetric isothermal walls, the mean temperature–velocity relation proposed by Zhang
et al. (2014) is effective when the edge location is chosen as the channel centre (Modesti &
Pirozzoli 2016; Yu et al. 2019; Yao & Hussain 2020). However, this temperature–velocity
relation is no longer valid in cases with asymmetric thermal walls, unless the edge location
is very close to the walls (not shown here). A direct challenge arises from the asymmetric
thermal walls.

4. Energy transfers

In this section, we investigate the energy transfer between the Favre-averaged mean-flow
kinetic energy {Km} = {ui}2/2, the Favre-averaged turbulent kinetic energy {k} =
{u′′

i u′′
i }/2 and the Favre-averaged mean internal energy {em} = Cv{T} in the four cases.

We revise the analyses of Morinishi et al. (2004) and Tamano & Morinishi (2006) by
using our new data to study the three budget equations of {Km}, {k} and {em}.

4.1. Budget equations of {k}, {Km} and {em}
The budget equation of turbulent kinetic energy {k} (Huang et al. 1995; Morinishi et al.
2004) is

Pk + Dk − εk + Ck1 + Ck2 + Ck3︸ ︷︷ ︸
Ck

= 0, (4.1)

where

Pk = −ρu′′v′′∂ ũ/∂y, (4.2)

εk = τ ′
ij∂u′

i/∂xj, (4.3)

Dk = ∂
(
τ ′

i2u′
i − p′v′ − 1

2ρu′′
i u′′

i v
′′
)

/∂y, (4.4)

Ck1 = −v′′∂ p̄/∂y, Ck2 = u′′
i ∂τi2/∂y, Ck3 = p′∂u′

j/∂xj. (4.5a–c)

Here, Pk is the turbulent production term, εk is the dissipation per unit volume, Dk is the
diffusion term and Ck is the compressibility term, which is the sum of three terms Ck1,
Ck2 and Ck3.

The budget equation of mean-flow kinetic energy {Km} (Huang et al. 1995; Morinishi
et al. 2004) is

DKm − Pk − εKm−Ck1 − Ck2 + PKm + fKm = 0, (4.6)
where

DKm = ∂(τ̄i2ūi − p̄v̄ − ρu′′
i v

′′ũi)/∂y, (4.7)

εKm = τi2∂ui/∂y, (4.8)

PKm = p̄∂v̄/∂y. (4.9)
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Figure 9. Turbulent kinetic energy budget terms (normalized by ρmu3
m/h) in the TAd case near (a) the bottom

half and (b) the top half. The corresponding terms from the T32 case are also shown with plus signs.

Here, DKm is the mean-flow diffusion term, εKm is the mean-flow dissipation per unit
volume, PKm is the mean-flow pressure work and fKm is the work of the external force.

The budget equation of the mean internal energy {em} (Huang et al. 1995; Morinishi
et al. 2004) is

Dem + εKm + εk − PKm − Ck3 = 0, (4.10)

where
Dem = −∂(CvρT ′′v′′)/∂y − ∂q2/∂y (4.11)

is the total diffusion term, including the turbulent diffusion and molecular diffusion. It is
easily seen from (4.1), (4.6) and (4.10) that there are seven terms which are responsible for
the energy transfers among {k}, {Km} and {em}, and they are Pk, εk, Ck1, Ck2, Ck3, εKm and
PKm (Huang et al. 1995; Morinishi et al. 2004).

4.2. Energy transfer near both walls
We first study the turbulent kinetic energy budget for the TAd case in the bottom and top
halves, and the results are shown in figure 9(a,b), respectively, where the budget terms are
normalized by ρmu3

m/h. The balance, Pk − εk + Dk + Ck (triangles), is almost zero in the
whole channel, which confirms that our simulation has reached the fully developed state.
From figure 9, it is seen that the dominant terms for {k} in the near-wall region are Pk,
εk and Dk, while the compressibility term Ck is relatively small. The term Pk is positive,
εk is negative, whereas Dk is positive in the wall’s vicinity and then becomes negative as
the wall distance increases until it changes sign again further away from the wall. This
scenario is the same for both halves of the channel, although the magnitudes of the terms
near the top wall are around half of those near the bottom wall. These observations are
consistent with those reported in Morinishi et al. (2004). As a comparison, we also show
in figure 9 the corresponding budget terms from the T32 case, and it is evident that the four
terms (Pk, −εk, Dk, Ck) match very well with those from the TAd case, again illustrating
that the statistics of the turbulent flow field of an I–A case and its corresponding I–PA case
are also the same.

Morinishi et al. (2004) carefully studied the seven energy exchange/transfer terms
and pointed out that the compressibility terms Ck1 and Ck3 are negligible close to
both the isothermal and the adiabatic walls. In the present study, we have also studied
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Figure 10. Wall-normal distributions of (a,b) Pk and (c,d) −εk from the four cases. All terms are normalized
by ρmu3

m/h. (a,c) The bottom half; (b,d) the top half. The inset in (a) shows a zoomed-in plot.

the seven energy exchange/transfer terms in both halves of the channel from the four
cases. The wall-normal distributions of Pk and −εk, −εKm and PKm, and Ck2 are
shown in figures 10–12, respectively. The terms Ck1 and Ck3, which are at least two
orders of magnitude smaller than Ck2, are not shown. According to figures 10–12, it
is evident that Pk is positive while −εk and −εKm are negative in the whole channel
for all four cases, indicating that their effects on transferring energy are the same near
both the low-temperature and the high-temperature (as well as the adiabatic) walls. On
the other hand, PKm and Ck2 are obviously negative near the bottom low-temperature
wall, whereas they are positive near the top high-temperature wall, illustrating that they
behave differently near the low-temperature and high-temperature walls. Near the bottom
low-temperature wall, PKm transfers energy from {Km} to {em}, whereas Ck2 transfers
kinetic energy from {k} to {Km}. Near the top high-temperature wall, PKm transfers
energy from {em} to {Km}, whereas Ck2 transfers kinetic energy from {Km} to {k}. These
observations are the same as those for the I–A case reported in Morinishi et al. (2004). The
different values of Tw,t on the high-temperature wall not only induce obvious deviations (in
magnitude) near the high-temperature side, but also can result in some difference near the
bottom low-temperature side. Nevertheless, Tw,t (when it is high enough) will not change
the basic behaviour of the energy exchange/transfer among {Km}, {k} and {em}.

From the above analysis, an intuitive energy exchange/transfer diagram can be
constructed, and it is shown in figure 13, where figure 9(a,b) represent the bottom
low-temperature side and the top high-temperature side, respectively. The energy exchange
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Figure 11. Wall-normal distributions of (a,b) −εKm and (c,d) PKm from the four cases. All terms are
normalized by ρmu3

m/h. (a,c) The bottom half; (b,d) the top half. The insets in (a,b) show zoomed-in plots.
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Figure 12. Wall-normal distributions of Ck2 from the four cases. All terms are normalized by ρmu3
m/h.

(a) The bottom half; (b) the top half.

terms Ck1 and Ck3 are negligible in all four cases when they reach their statistically
stationary states. The unidirectional transfer terms Pk, εk and εKm are the same near both
walls, whereas the unidirectional transfer terms PKm and Ck2 have opposite transferring
directions near the bottom low-temperature side and the top high-temperature side.
Furthermore, the four cases have almost the same results, which indicates that the high

984 A37-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

22
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.226


P. Zhang, Y. Song and Z. Xia

(a) (b)

Pk

εk

εKm

PKm

Ck1

Ck3

Ck2

{Km}

{em}

{k}

Pk

εk

εKmPKm

Ck1

Ck3

Ck2
{Km}

{em}

{k}

Figure 13. Energy exchange/transfer among {k}, {Km} and {em} near (a) the bottom low-temperature side and
(b) the top high-temperature side. A term M with A ↔ B means that it mutually exchanges energy between
A and B. A term M with A → B means that it transfers energy from A to B, and the directions of the energy
transfer are the same near both sides. A term M with A ��� B means that it transfers energy from A to B and
the directions of the energy transfer are opposite near the two sides.

Tw,t at the upper wall, whether it is set by the input or induced by the adiabatic wall
boundary, is the crucial reason for the changes in the energy transfer direction of PKm and
Ck2.

5. Analysis of wall heat transfer

In compressible channels with periodic boundary conditions in wall-parallel directions,
the total energy is conserved, and energy exchange occurs on the wall. Many researchers
have studied symmetric isothermal channels where there is no temperature difference
between the two walls. However, wall heat transfer behaviours in compressible channels
with asymmetric thermal wall conditions have not been studied, and this section is devoted
to this problem.

5.1. Heat transfer modes in a compressible channel with asymmetric thermal walls
In a compressible channel with asymmetric thermal walls, the heat transfer property of
the high-temperature wall depends largely on its wall temperature Tw,t, whereas the heat
transfer at the low-temperature wall is the same, i.e. transferring heat out of the channel
through the wall. This can be easily seen from the mean temperature profiles shown
in figures 3(b) and 8. It is evident that there are three kinds of heat transfer modes in
such a system. If we denote by TA the mean temperature at the adiabatic wall in an I–A
case at prescribed Re and Ma, the three modes can be categorized as the sub-adiabatic,
quasi-adiabatic and super-adiabatic modes, respectively, as depicted in figure 14(a–c). For
TL ≤ Tw,t < TA, i.e. the sub-adiabatic mode shown in figure 14(a), there is a peak of the
mean temperature profile, Tmax, which is located between the channel centre and the top
wall while satisfying dT/dy = 0, and heat is transferred out of the fluid system through
both walls. A special case is the channel with symmetric isothermal walls, i.e. Tw,t = TL.
In such a situation, Tmax is located at the channel centre according to the symmetry, and an
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Tmax

TL TL TL

Tw,t < TA Tw,t = TA Tw,t > TA

qw ≈ 0

qw qw qw

qw

qw

Tmax

(a) (b) (c)

Figure 14. Heat transfer modes between the fluid and the walls in a compressible channel with asymmetric
thermal walls. (a) Sub-adiabatic state TL ≤ Tw,t < TA (TA is the mean temperature at the adiabatic wall in the
I–A case), where heat is transferred out of the fluid system through both walls. (b) Adiabatic (quasi-adiabatic)
state Tw,t = TA, where heat is transferred out of the fluid system through the bottom wall and almost no net
heat exchange occurs between the top wall and the fluid. (c) Super-adiabatic state Tw,t > TA, where heat is
transferred into the fluid system through the top wall and is transferred out of the fluid system through the
bottom wall.

empirical scaling of Tmax was proposed by Song et al. (2022) recently. When Tw,t = TA,
i.e. the quasi-adiabatic mode shown in figure 14(b), Tmax is located at the top wall where
qw ≈ 0 or dT/dy ≈ 0, and no net heat exchange occurs between the top wall and the
fluid. Heat can only be transferred out of the fluid system through the bottom wall. When
Tw,t > TA, i.e. the super-adiabatic mode shown in figure 14(c), Tmax is again located at the
top wall. However, dT/dy /= 0 and heat is transferred to the fluid from the top wall, and it
can only be transferred out of the fluid system through the bottom wall. Therefore, TA can
be viewed as an important quantity for separating the different heat transfer modes.

5.2. Wall heat flux analysis
Now we investigate the wall heat flux by using integral analysis (Zhang & Xia 2020; Sun
et al. 2021; Zhang, Song & Xia 2021; Wenzel, Gibis & Kloker 2022; Xu, Wang & Chen
2022). In the present study, we start with the internal energy equation (Mittal & Girimaji
2019), and its Reynolds-averaged form can be expressed as (see also (4.10))

∂

∂y
(q̄y + CvρT ′′v′′) = −p̄

∂v̄

∂y
− p′ ∂u′

k
∂xk︸ ︷︷ ︸

Pd

+ τi2
∂ui

∂y
+ τ ′

ij
∂u′

i
∂xj︸ ︷︷ ︸

Va

. (5.1)

Here, Pd = −PKm − Ck3 and Va = εKm + εk, where the four terms are the energy
transfer/exchange terms between {k} and {em} and between {Km} and {em} in § 4.
Integrating (5.1) from −1 to y, we obtain the heat flux balance at an arbitrary wall-normal
location y:

qw|y=−1 = q̄y( y) + CvρT ′′v′′( y) −
∫ y

−1
Pd( y1) dy1 −

∫ y

−1
Va( y1) dy1. (5.2)

This equation means that the heat transferred into the fluid system through the bottom
wall can be estimated through the first law of thermodynamics within the control volume
[−1, y], i.e. the heat transferred out of the control volume through the top boundary at
location y through the turbulent heat flux CvρT ′′v′′ and the mean molecular heat flux q̄y
subtracts the energy generated inside the control volume through the pressure dilatation
work and the viscous stress work. Note that if the value of qw|y=−1 is negative, the heat is
actually transferred out of the fluid system.
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Case Bq,d Bq,int Error Bq,P Bq,V

TAd −7.065 × 10−2 −7.007 × 10−2 0.81 % −5.609 × 10−5 −7.002 × 10−2

T32 −7.003 × 10−2 −7.005 × 10−2 −0.03 % −5.852 × 10−5 −6.999 × 10−2

T25 −7.536 × 10−2 −7.502 × 10−2 0.45 % −6.458 × 10−5 −7.495 × 10−2

T40 −6.705 × 10−2 −6.701 × 10−2 0.06 % −5.097 × 10−5 −6.696 × 10−2

Table 3. Dimensionless wall heat transfer rate Bq. Here, Bq,d and Bq,int are the calculations where qin is
obtained using qin = qw|y=−1 − qw|y=1 and using the integrals on the right-hand side of (5.4), respectively.
The error is defined as (Bq,d − Bq,int)/Bq,d × 100 %.

Alternatively, we may also integrate (5.1) from y to 1 to obtain

qw|y=1 = q̄y( y) + CvρT ′′v′′( y) +
∫ 1

y
Pd( y1) dy1 +

∫ 1

y
Va( y1) dy1, (5.3)

which can be physically explained similarly. Considering the special case in (5.2) with
y = 1, or subtracting (5.3) from (5.2), the total wall heat flux transferred into the fluid
system can be obtained:

qin = qw|y=−1 − qw|y=1 = −
∫ 1

−1
Pd dy −

∫ 1

−1
Va dy, (5.4)

or equivalently

qout = −qin = qw|y=1 − qw|y=−1 =
∫ 1

−1
Pd dy +

∫ 1

−1
Va dy. (5.5)

Equation (5.5) indicates that the total heat transfer out of the fluid system through the
walls equals the sum of the total pressure dilatation work (the first term on the right-hand
side of (5.5)) and the total viscous stress work (the second term on the right-hand side
of (5.5)) across the channel. A similar formula was obtained in symmetric compressible
turbulent channel flow (Ghosh, Foysi & Friedrich 2010; Zhang et al. 2021). If we normalize
qin by Cpρwuτ Tref at the bottom wall, the dimensionless wall heat transfer rate Bq can be
defined, i.e.

Bq = qin

Cpρwuτ Tref
= qin

Cpρwuτ TL
. (5.6)

Correspondingly, the total pressure dilatation work and total viscous stress work
contributions of Bq can be defined as Bq,P and Bq,V , respectively, according to (5.4). In
table 3, we have calculated Bq from the four cases based on the temperature gradients
on the two walls, i.e. using qin = qw|y=−1 − qw|y=1, as well as that based on the integral
analysis, i.e. using the right-hand side of (5.4), and the results strongly suggest that the
two estimations match very well with each other, and the relative errors are within 1 %.
For the two contribution terms of Bq in the integral analysis, i.e. Bq,P and Bq,V , it is evident
from table 3 that the main contribution is Bq,V , for which the contribution exceeds 99.9 %
of the total Bq, and the contribution of Bq,P is minor, it being around three orders of
magnitude smaller than that of Bq,V . This conclusion is consistent with results reported for
compressible channels of symmetric isothermal walls by Zhang et al. (2021) and physical
intuition.
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Figure 15. Wall-normal distributions of (a) CvρT ′′v′′ and (b) q̄y from the four cases. The quantities are
normalized with CpρwTLuτ at the bottom wall. The results from a compressible channel with symmetric
isothermal walls at Ma = 1.5 and Re = 6000 (circles) from Zhang & Xia (2020) are also shown for
comparison. The inset in (b) shows a zoomed-in plot for −0.8 ≤ y ≤ 0.8.

As discussed above, it can be seen from (5.2), (5.3) and (5.4) that q̄y and CvρT ′′v′′
represent the mean heat transfer across the plane y from the bottom part to the top part
of the channel separated by y. If the value is negative, the actual heat transfer direction
is from the top part to the bottom part. Figure 15 shows the wall-normal distributions of
q̄y and CvρT ′′v′′ from the present four cases. The results from a compressible channel
with symmetric isothermal walls at Ma = 1.5 and Re = 6000 from Zhang & Xia (2020)
are also shown for comparison. For the symmetric isothermal case, it is seen that both
terms are zero at the channel centre, y = 0, indicating that there is no mean heat exchange
between the top half and the bottom half of the channel, and that the wall heat flux across
the wall can be attributed to the work done by the viscous stress and the pressure dilatation.
Furthermore, q̄y and CvρT ′′v′′ are antisymmetric about the channel centre y = 0. In the
core region with −0.4 ≤ y ≤ 0.4, the heat generated in this region is transferred out mainly
through the turbulent heat flux term CvρT ′′v′′, whereas the mean molecular heat flux term
q̄y is approximately zero. In contrast, in the near-wall region with |y| ≥ 0.9, q̄y becomes
important and dominates. For the four cases with asymmetric isothermal walls, q̄y and
CvρT ′′v′′ behave very differently, and they are no longer antisymmetric about the channel
centre y = 0. For CvρT ′′v′′, it is negative almost across the channel for all four cases,
demonstrating that heat is transferred from the top part down to the bottom part through
the plane y, except that a small region with very small positive values exists very close to
the top wall for the T25 case (not shown). For q̄y, similar results are obtained. Among the
four cases, the smaller Tw,t is, the larger are the absolute values of q̄y and CvρT ′′v′′, that
is, more heat is transferred from the top part down to the bottom part through the plane y.
Generally, CvρT ′′v′′ dominates over q̄y except very close to the walls. Nevertheless, Bq is
smaller since it is defined as the total heat transferred out of the system, which is different
from the global-mean heat flux (〈q±

w 〉 = (|〈qy〉|y=−1 + |〈qy〉|y=1)/2) defined by Lusher &
Coleman (2022a), and there is heat transferred into the system through the top wall if
Tw,t > TA, as discussed in § 5.1.

From the above analysis, a physical picture emerges: due to the asymmetry of the
thermal wall boundary conditions, the symmetry of the heat transfer property breaks. The
heat generated by the work done by the pressure dilatation and viscous stress in the top half
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of the channel will be transferred both upward and downward, separated by the location
h0 where T̄ reaches its local peak and depends on Tw,t (see discussions in § 5.1), through
q̄y and CvρT ′′v′′. In the bulk region, CvρT ′′v′′ plays the dominant role, whereas in the
near-wall region q̄y dominates.

5.3. Mathematical relationship between wall heat flux and wall friction
In this section, we derive the relationship between the wall heat flux and the wall friction
by using the mean streamwise momentum equation and the mean total energy equation,
which are

∂ρuv

∂y
= ∂τ12

∂y
+ f̄ (5.7)

and
∂Ev

∂y
= −∂pv

∂y
+ ∂τi2ui

∂y
− ∂ q̄y

∂y
+ uf , (5.8)

respectively.
Equations (5.8) and (5.7) are fully integrated from −1 to 1. By using the constraints∫ 1

−1 ρ̄ dy = 2ρm and
∫ 1
−1 ρu dy = 2ρmum (ρm = 1, um = 1), we can derive the following

equation:

qin = qw|y=−1 − qw|y=1 = −(τw|y=−1 − τw|y=1)

∫ 1

−1
ū dy

2
. (5.9)

Equation (5.9) still works for compressible channels with symmetric isothermal walls, and
it can also be derived through the overall energy balance, i.e. the heat transferred into
the walls equals the total work done by the driving force (Huang et al. 1995). With the
definition of the skin-friction coefficient Cf = 2(τw|y=−1 − τw|y=1)/(ρmu2

m) and Uavg =∫ 1
−1 ū dy/2, we can define the ratio RH,F, which is similar to the Reynolds analogy factor,

as

RH,F = −Bq

Cf
= γ − 1

2
Ma2 ρmUavg

ρwuτ

= γ − 1
2

Ma2 Re
Reτ

Uavg

um
, (5.10)

where Reτ is the friction Reynolds number at the bottom wall, as listed in table 2. Similarly,
if the flow is driven by the external force ρf in the streamwise direction, RH,F is slightly
modified to

RH,F = −Bq

Cf
= γ − 1

2
Ma2 ρmum

ρwuτ

= γ − 1
2

Ma2 Re
Reτ

. (5.11)

A similar relationship was obtained by Li et al. (2019a) for compressible channels with
symmetric isothermal walls. Table 4 presents the directly calculated values of Cf , Bq,
Uavg and RH,F from the present four cases driven by a uniform external force. Here, RH,F
is estimated using either Bq and Cf or (5.10). The balance for (5.10) is highly accurate, with
relative errors of less than 0.8 %, verifying the energy balance in the current simulations.
Equation (5.10) also shows that RH,F is dependent on Ma, Re, Reτ (at the bottom wall)
and the ratio Uavg/um, making it a response parameter. For fixed Ma and Re, changing
the value of Tw,t will alter the values of Reτ at the bottom wall and Uavg/um. From the
data listed in tables 2 and 4, it can be seen that Uavg/um changes slightly with varying
Tw,t, whereas Reτ at the bottom wall changes greatly. An increase in Tw,t can lead to an
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Case Cf ,d Bq,d −(Bq/Cf )d Uavg/um RH,F Error

TAd 1.505 × 10−2 −7.065 × 10−2 4.694 1.009 4.657 0.79 %
T32 1.508 × 10−2 −7.002 × 10−2 4.643 1.009 4.665 −0.47 %
T25 1.482 × 10−2 −7.536 × 10−2 5.085 1.009 5.073 0.24 %
T40 1.548 × 10−2 −6.705 × 10−2 4.331 1.010 4.322 0.21 %

Table 4. Numerical results for the skin-friction coefficient Cf and wall heat flux coefficient Bq. The error is
defined as (−(Bq/Cf )d − RH,F)/|(Bq/Cf )d| × 100 % and RH,F is defined in (5.10).

increase in Cf (and Reτ at the bottom wall) and a decrease in Bq, and therefore a decrease
in RH,F.

6. Conclusions

This paper presents DNS results for compressible turbulent channel flows with asymmetric
thermal walls at fixed Re = 6000 and Ma = 1.5. The bottom wall is isothermal and fixed at
TL = Tref , while the top wall is either adiabatic (TAd) or isothermal with Tw,t/Tref = 2.5
(T25), 3.234 (T32, the pseudo-adiabatic case) and 4.0 (T40). The study focuses on
examining the similarities and differences between the I–A case and its corresponding
I–PA case, as well as the effect of the wall temperature difference between the two
isothermal walls. It investigates basic turbulent statistics, the heat transfer between the
Favre-averaged mean-flow kinetic energy, the Favre-averaged turbulent kinetic energy and
the Favre-averaged mean internal energy, as well as wall heat transfer properties. The
findings lead to the following conclusions.

(1) Almost all turbulent statistics of the cases TAd and T32 are the same, except for
the temperature-fluctuation-related quantities, such as Trms, where some differences
can be observed in a small region very close to the top wall. This indicates that
the I–A case and its corresponding I–PA case are generally equivalent, and thus the
isothermal wall boundary with Tw,t = TA can be used to replace the actual adiabatic
boundary condition.

(2) The asymmetry of the thermal walls leads to asymmetry of the flow fields and
thermal fields. The profiles of mean velocity, r.m.s. of velocity fluctuations and
Reynolds shear stress can be well matched in the lower half of the channel in the
local semi-local coordinate, but they are less well matched in the upper half of the
channel.

(3) In terms of energy transfer behaviour, compared with the energy transfer direction
near the bottom wall, the mean-flow pressure work term PKm and the compressibility
term Ck2 change their transfer direction near the top wall, regardless of whether it is
an adiabatic wall or an isothermal wall with high Tw,t, indicating that the high Tw,t
at the upper wall is the crucial factor leading to the changes in the energy transfer
direction of PKm and Ck2.

(4) By analysing the direction of heat flux on the top high-temperature wall, it is found
that TA can be used as a criterion to determine the direction of heat flux on the
high-temperature sidewall. The turbulent heat flux CvρT ′′v′′ and the mean molecular
heat flux q̄y are responsible for the heat transfer generated by the pressure dilatation
work and the viscous stress work, where the former dominates in the bulk region and
the latter is more important in the near-wall region. The findings have the potential
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Case Reτ �x+ �y+
min �y+

max �z+ Reτ �x+ �y+
min �y+

max �z+ TA

Grid-A 585 12.76 0.73 10.15 7.65 135 2.94 0.17 2.34 1.76 3.234
Grid-B 588 12.83 0.43 6.10 5.14 135 2.94 0.10 1.40 1.18 3.242
Grid-C 586 8.52 0.43 6.08 5.12 134 1.95 0.10 1.40 1.18 3.247

Table 5. Baseline grid resolution (Grid-A: 864 × 240 × 320) and refined grid resolutions (Grid-B: 864 ×
400 × 480; Grid-C: 1296 × 400 × 480) for the TAd case. The data in columns 2–6 and columns 7–12 are the
results normalized by the quantities at the bottom wall (y = −1) and top wall (y = 1), respectively.
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Figure 16. Comparisons between three different grids: (a) mean streamwise velocity (normalized by um),
(b) mean temperature and density (normalized by Tref and ρm, respectively), (c) r.m.s. of the three velocity
fluctuations (normalized by um) and (d) r.m.s. of temperature and density fluctuations (normalized by Tref and
ρm, respectively).

to offer new insights and enhance our understanding of heat transfer phenomena
related to wall turbulence prediction and control.

In the future, we will investigate the effects of Ma and Re, as well as Pr, on
compressible turbulent channel flows with asymmetric thermal walls. Furthermore, we
will try to provide a clear explanation for the linear mean temperature profile in the
central bulk region and improve the mean temperature–velocity relation. Additionally,
this flow problem has the potential to serve as a complementary canonical test case for
assessing the various subgrid-scale models and the Reynolds-averaged Navier–Stokes
models.
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Appendix. Grid refinement for the TAd case

To demonstrate the adequacy of the grid used in this study, two additional cases were
carried out for the TAd case. Grid refinement was performed in the spanwise and
wall-normal directions, as well as in the streamwise direction. The detailed grid resolutions
in wall units, based on the values at the nearest wall, are presented in table 5. Here,
Grid-A (864 × 240 × 320) represents the baseline grid, Grid-B (864 × 400 × 480) is the
spanwise and wall-normal refined grid and Grid-C (1296 × 400 × 480) is the streamwise,
spanwise and wall-normal refined grid. Figure 16 displays a comparison of the mean
velocity, mean temperature, mean density and r.m.s. of velocity, temperature and density
between the baseline grid (Grid-A) and the refined grids (Grid-B and Grid-C). The
statistics demonstrate consistency throughout the entire channel for all three grids. It has
been found that the variations of u∗

τ ( y) = √|τw|/ρ̄( y) (which are not shown here) along y
are quite small under the three grid resolutions. Here, τw is based on the value at the nearest
wall. This illustrates that the three grids have a minimal effect on uτ and the inner-scaled
flow statistics. Additionally, a direct comparison between our TAd case on Grid-A and the
aiB case with Re = 6545, Ma = 1.56 and �z+ = 6.3 from Lusher & Coleman (2022a)
shows excellent agreement. All the previous discussions have demonstrated that our
baseline Grid-A is sufficiently accurate to provide reliable data for the current problem.
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