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Abstract

Practitioners allocate substantial resources to technical analysis whereas academic theories
of market efficiency rule out technical trading profitability. We study this long-standing
puzzle by applying a diverse set of machine learning algorithms. The results show that an
investor can find profitable technical trading rules using past prices, and that this out-of-
sample profitability decreases through time, showing that markets have become more
efficient over time. In addition, we find that the evolutionary genetic algorithm’s attitude
in not shying away from erroneous predictions gives it an edge in building profitable
strategies compared to the strict loss-minimization-focused machine learning algorithms.

I. Introduction

Technical trading rules use past prices and volume data to infer future prices.
These rules are usedwidely by investment professionals and advertised regularly by
popular retail brokers and finance websites. In academia, there is an ongoing debate
over the profitability of technical trading rules. Academics’ semi-strong theory of
market efficiency states that share prices reflect all publicly available information
and thus trading rules based on prices and volume should not be profitable. Even the
weak-form theory of market efficiency says that prices and volume information
cannot be used to predict future returns.

The evidence gathered by researchers on the profitability of technical trading
rules is contradictory. Some studies find technical trading profitability (Neftci
(1991), Brock, Lakonishok, and LeBaron (1992), Neely, Weller, and Dittmar
(1997), Sullivan, Timmermann, and White (1999), Lo, Mamaysky, and Wang
(2000), and Kavajecz and Odders-White (2004)), and others conclude the opposite
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(Fama and Blume (1966), Bessembinder and Chan (1998), Allen and Karjalainen
(1999), Ready (2002), and Bajgrowicz and Scaillet (2012)). Bajgrowicz and
Scaillet (2012) argue that the studies concluding in favor of technical trading
profitability are suffering from two main issues: i) they do not take the transaction
costs into account, and ii) data-snooping, that is, whether the investors could have
chosen the best performing trading rules ex ante. Examining a set of 7,846 trading
rules, Bajgrowicz and Scaillet (2012) show that an investor would have never
been able to select the best-performing strategies with profitable out-of-sample
performance.

In this article, we exploit machine learning technology to search for profit-
able trading rules. We do so by utilizing a diverse set of methods in the machine
learning repertoire, including evolutionary genetic algorithm besides standard
loss-minimization algorithms (i.e., support vector machine, decision tree, random
forest, and ensemble learning). In addition, our experiments are accompanied by
rigorous controls for data-snooping and transaction costs. Our results show that an
investor would have been able to find profitable technical trading rules ex ante,
but that this out-of-sample profitability decreases through time. Moreover, our
findings advocate using evolutionary genetic algorithm over loss-minimization-
based machine learning algorithms (such as random forest and decision trees).

Developments in machine learning gave rise to many different methodolo-
gies that can be divided into two parts based on the optimization objectives: i) the
standard machine learning algorithms that are concerned with minimizing mean-
square errors of the model fit; and ii) evolutionary algorithms that are suitable
to optimize any economic objective. The lack of restriction in setting the search
direction result in the evolutionary algorithms not shying away from erroneous
predictions for the purpose of achieving more accurate overall fit to the data. This
article examines the profitability of technical trading rules via the lens of machine
learning algorithms and in doing so, it provides a comprehensive comparison of the
evolutionary relative to the standard machine learning algorithms.

We start by applying the evolutionary genetic algorithm to the technical
trading profitability puzzle. The genetic algorithm views the search for profitable
trading rules from an optimization perspective. The optimization problem is defined
by three ingredients: a search space, an objective function, and a set of constraints.
The search space is a large set of trading strategies, the objective is to find strategies
with high risk-adjusted returns, and the constraints are whether the risk-adjusted
returns are statistically significant and whether the strategies incur low transaction
costs. The optimization problem has several local optima given that several trading
rules can yield high and statistically significant risk-adjusted returns.

The genetic algorithm machine learning technique adopts the principles of
natural evolution and is founded upon the notion that “the strongest survive.”
It starts with a randomly generated population (a set of trading rules) and applies
the concept of evolution to generate stronger population sets. It repeats this routine
to find the strongest members that survive until the final generation. The innovative
feature of the genetic algorithm approach is theway inwhich the notion of evolution
is applied to generate stronger population sets and to find several local optima.

We control for data-snooping in the genetic algorithm’s search for profitable
rules. If one searches long enough one can always find a profitable rule; however,
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this may be just a fortunate coincidence. We take several steps to combat the data-
snooping issue in the genetic algorithm process. First, in the optimization proce-
dure, we separate the performance of trading rules into two distinct periods: a
training period and a selection period. The selection period acts as a validation
filter tomake sure that the trading rules found by the algorithm in the training period
are not simply a fortunate aberration. Second, for those trading rules that perform
well in the training and selection periods, we evaluate the performance in a third
period, the out-of-sample period. Consistent out-of-sample performance indicates
that machine learning can be used to detect profitable trading rules. Third, we
evaluate the performance of strategies in other data sets as an additional out-of-
sample robustness.

For our baseline results, we apply the algorithm to find profitable technical
trading rules in the different NYSE/AMEX volatility-decile portfolios between
Jan. 1, 1965, and Dec. 31, 2014. With the volatility-decile portfolios, we can see
whether variation in information uncertainty (noise-to-signal ratio or volatility)
influences the profitability of trading rules. This is because, with higher informa-
tion uncertainty, investors tend to underreact to public information (Zhang (2006))
and rely more on technical signals, compared to the fundamental signals (Han,
Yang, and Zhou (2013)).

With the economic objective of maximizing the out-of-sample abnormal
returns, we find that the algorithm consistently selects technical trading rules that
perform well out-of-sample. The set of optimized technical trading rules uncovered
by the machine learning algorithm is able to generate an average out-of-sample
4-factor alpha of 25.8% annually for a diversified portfolio of volatility deciles. We
compare this article’s approach to an alternative set of technical trading strategies
based on moving averages examined by Han et al. (2013). Our approach out-
performs their set of moving average strategies on average by 21.6% annually. In
addition, out-of-sample profitability decreases through time. On average, for each
year since 1975, the abnormal return of optimized rules decreases by 0.63%. The
decrease in abnormal returns is consistent with markets becoming more efficient
over time.

We take several steps to address the data-snooping concerns in the genetic
algorithm’s search. First, we conduct a placebo test to show that the results are not
driven by some mechanical regression process or a fortunate adaptation of rules to
the data.We scramble the data set along the time dimension and apply our algorithm
to the scrambled data. Any predictability from prices should be broken in the data
set, and so applying the optimization procedure should fail to identify profitable
technical trading rules. We apply this placebo test to the NYSE/AMEX volatility-
decile portfolios and find that the optimized set of trading rules consistently pro-
duces negative alphas out-of-sample.

In addition, we examine the performance of the genetic algorithm on other
data sets (i.e., NYSE/NASDAQ/AMEX size-decile portfolios and large stocks)
and also with other objective functions (i.e., Sharpe ratio). When testing the NYSE/
NASDAQ/AMEX size-decile portfolios from Jan. 1, 1965, to Dec. 31, 2014, the
results show the same positive out-of-sample performance as in volatility-decile
portfolios. We also apply our algorithm to individual stocks. We use a rolling set of
100 highly capitalized stocks in each out-of-sample year from 1975 to 2014, apply

Brogaard and Zareei 1433

https://doi.org/10.1017/S0022109022001120  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109022001120


our algorithm to each individual stock, and build a diversified portfolio across the
optimized trading rules and stocks. This portfolio, after including transaction costs,
earns consistent positive excess returns and generates high Sharpe ratios out-of-
sample. This profitability is orthogonal to market, size, value, and momentum
factors, and it decreases through time with a substantial drop after 2005.

Next, we investigate the profitability of technical trading using a set of
standard loss-minimization machine learning algorithms, that is, linear classifica-
tion models (regularized SVMþ logistic regression), decision tree, KNN, random
forest, and an ensemble of machine learners (that include boosting besides bagging
of classification trees). We use the same investment procedure as the genetic
algorithm that is in each out-of-sample year, we use the last 10 years of price
data to train the machine learning algorithm for the purpose of predicting buy and
sell signals. To overcome possible overfitting problems, we use a 10-fold cross-
validation procedure to train the machine learning models. Applying the standard
machine learning algorithms to the 10 NYSE/AMEX volatility decile portfolios,
we observe a similar pattern as the genetic algorithm. The out-of-sample alphas are
promising in the early years (the 1970s) with alphas ranging up to 60% annually
net-of-cost. However, the performance depreciates post-2000whichmatches nicely
with the findings of the genetic algorithm.

We compare the performance of the genetic algorithm to the standard machine
learning algorithms by regressing the genetic algorithm’s out-of-sample returns on
the standard machine learning algorithms’ returns when solving the same problem:
investing in the 10 NYSE/AMEX volatility decile portfolios from 1975 to 2014.
The results show a positive and significant intercept (generalized alpha) for each of
the standard algorithms that translates into better performance of the genetic algo-
rithm relative to the standard machine learning algorithm. For example, the genetic
algorithm earns a generalized alpha of 9.32% (t = 8.99) relative to the Random
Forest machine learning algorithm. Overall, the results show that the genetic
algorithm’s flexibility in setting up the search space, the economic objective,
and the add-in constraints give it an edge relative to the standard machine learning
algorithms such as decision trees and random forest.

This article contributes to several strands of literature. First, we add to the
studies that examine the profitability of technical trading rules. One main challenge
in these studies is data-snooping. Researchers tackle this issue in different ways. For
example, Sullivan, Timmermann, and White (1999) locate technical trading prof-
itability by employing the data-snooping bootstrap reality check used by White
(2000). However, this data-snooping test is flawed because we cannot know if the
investors could have chosen those technical trading rules without the benefit of
foresight. Bajgrowicz and Scaillet (2012) show that, for a set of 7,846 trading rules,
and using false discovery rate methodology to account for data-snooping, an
investor would have never been able to select the best performing strategies with
profitable out-of-sample performance. Our article addresses the data-snooping
concern by using a machine learning algorithm that constructs technical trading
rules for ex ante trading over the previous 10 years. We show that an investor
could have profited from technical trading rules ex ante, although this profitability
has dropped substantially in recent years.
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The article also contributes to the literature on asset pricing anomalies.
Anomalies in asset pricing are cross-sectional or time-series empirical patterns
that are inconsistent with a central asset pricing model. Systematically searching
for anomalies is a slow process; there are voluminous amounts of data that can be
combined and conditioned, and, even if an anomaly is identified, it may be due to
overfitting. Yan and Zheng (2017) searched for cross-sectional anomalies among
18,000 trading signals constructed from accounting information. Our article,
in contrast, uses machine learning technology to hasten and regulate the search
for time-series anomalies. We use the recent developments in machine learning
that combine data-mining and optimization techniques while controlling for
data-snooping. We set the fitness function in the genetic algorithm to find out-
of-sample 4-factor alphas, and this fitness function can be modified to account for
other factor exposures.

In addition, this article contributes to ongoing research on using machine
learning in empirical asset pricing (see, e.g., Rossi (2018), Chen, Pelger, and Zhu
(2019), and Gu, Kelly, Zhou (2020)). These papers apply machine learning to the
current known predictors in asset pricing and show that machine learning adds to
the out-of-sample performance by capitalizing on nonlinearities among already
known predictors. Our article departs from these studies. Our machine learning
algorithm does not have prior knowledge on the shape of the viable predictors. We
feed price information into the algorithm, which extracts predictors (features) from
the prices. In short, our algorithm can be looked at as a mix of data mining and
machine-learning technology.

Our findings provide empirical support for the studies documenting anom-
aly and technical trading performance deterioration through time (e.g., McLean
and Pontiff (2016), Linnainmaa and Roberts (2018)). The idea is that, because
of increased computing power, “arbitrageurs’ ability to attack mispricing has
improved over time” (Linnainmaa and Roberts (2018)). On this note, Dugast
and Foucault (2020) provide a theoretical study showing that “greater computing
power raises the average quality of the predictors used in equilibrium and there-
fore price informativeness. The first effect raises speculators’ expected trading
profit while the second reduces it.” This theoretical finding fits nicely with the
results in our article. Our algorithm requires a vast amount of computational
power.1 Nordhaus (2001) shows that computing power has increased by an average
of 55% per year since 1940, with growth post-1980 at around 80% per year. The
phenomenal increase in computational power is necessary for our article’s analysis.
The profitability of our algorithm in earlier years (e.g., the 1970s), when current
computing power was barely even imaginable, matches the first effect in Dugast
and Foucault (2020) – the increase in the quality of predictors (and subsequently,
trading profits). Later on, as the computing power grows even more (post-2000),
we observe the increase in price informativeness that leads to a decrease in
trading profit.

1In our study, the average time needed to find the optimum trading rules for a diversified portfolio of
10 NYSE/AMEX volatility deciles for the 40-year sample using a computer with an Intel Core (TM) CPU
i7–2600 and 16GMRAM is 459.29 days (11,022.97 hours).We run our analysis on a supercomputer with
an Intel Xeon E5-2690v4 CPU and 128 GB memory per node via parallel computing procedures.
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II. Searching for Profitable Trading Rules

This section describes the machine learning algorithm. Our search is focused
on finding profitable technical trading rules based on past prices. An example of
a technical trading rule is a moving-average strategy (Han et al. (2013), Han, Zhou,
and Zhu (2016)), which functions by producing buy and sell signals based on price
patterns. Han et al. (2013) find that moving average strategies generate positive and
statistically significant abnormal returns through time.

There are three benefits to concentrating the search process on technical trading
rules. First, modeling the technical trading rules is straightforward and gives us a
computationally inexpensive opportunity to perform a data-mining procedure. Sec-
ond, technical analysis encompasses prediction rules with unknown statistical prop-
erties using past information. The rules are often developed ad hoc by practitioners.
Perhaps the most well-known technical trading rule that has penetrated academia is
the momentum strategy. The Jegadeesh and Titman (1993) momentum strategy has
become a core asset pricing factor, starting with the 4-factor Fama and French model
(Carhart (1997)). Third, because trading rules operate by generating buy and sell
signals, they can be directly applied as a trading strategy. The next subsections
elaborate on the apparatus of the machine learning algorithm.

A. Searching Mechanism

Our objective is to find strategies with the highest risk-adjusted returns
(alphas). The constraints are i) for the risk-adjusted returns to be positive and
statistically significant and ii) for the incurred transaction costs to be lower than a
specific level. We formulate the search criteria as an optimization problem:

maximizealpha strategyð Þ
subject to :

p‐value strategyð Þ< levelp‐value
transaction cost strategyð Þ< leveltransaction cost,

(1)

where alpha strategyð Þ is the risk-adjusted return of the trading rule. We require the
alpha to be statistically significant by requiring the p-value to be lower than a
specific value, levelp�value:2 In addition, leveltransaction cost is the maximum level of
transaction costs that wewant the strategy to incur. The above optimization function
can be adopted to include other objective functions (e.g., minimizing variance,
maximizing the Sharpe ratio) and other constraints (e.g., drawdown).

Solving the optimization problem in equation (1) involves several obstacles.
First, the objective function is nondifferentiable. The abnormal return of a technical
trading rule is a discrete number and depends on the form of the rule under review,
so we cannot employ the conventional gradient-based methods to find optimal
solutions. Second, the search space may have several local optima, and we may get
trapped in a nonprofitable trading rule in the search life-span. Third, the size of the

2The variable, levelp�value, can also function as a control mechanism for data-snooping. Harvey, Liu,
and Zhu (2016) and Mclean and Pontiff (2016) have pointed out the concerns of data mining due to the
large number of anomalies being discovered in the literature and in response they propose increasing the
t-statistic threshold for accepting anomalies.
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search space is large because of the multitude of possible technical trading rules. To
overcome these challenges, we employ a genetic algorithm approach. The genetic
algorithm is ideal for solving optimization problems with nondifferentiable objec-
tive functions. In addition, the stochastic nature of a genetic algorithm decreases the
chances of getting stuck in a local optimum, so such an algorithm is suitable for
finding optimum solutions in large search spaces. These characteristics make the
genetic algorithm approach preferable for our analysis (Neely, Weller, and Dittmar
(1997), Allen and Karjalainen (1999), and Potvin, Soriano, and Vallee (2004)).

Genetic algorithms adopt the principles of natural evolution (schema theorem:
best-observed building block or schema survives) in searching for an optimal
solution. The approach was developed by Holland (1962), (1975) and since then
has been applied in various fields such as economics, management science, engi-
neering, and cognitive science. The genetic algorithm generates a sample popula-
tion of solution candidates. The solution candidates are ranked according to a
specific fitness function (objective function). A new population is generated by
combining solution candidates according to their relative fitness using crossover
and mutation operators. The crossover operator generates new solution candidates
by inserting partial characteristics of fitted candidates into newly born solution
candidates. The mutation operator inserts random changes in the structure of
solution candidates to generate new solutions. The algorithm keeps generating
new fitted populations until a stop criterion is reached.

B. Trading Rule Representation

Any trading rule representation is set to have three main characteristics. First,
as we want all available possibilities to be reachable before starting the search
process, it should cover a large set of viable technical trading rules. Second, the
trading rules should be feasible. A random integration of functions and operators
may result in meaningless rules that only increase the computational expensiveness
of the search process. Thus, the trading rules should follow a predefined structure
that guarantees the generation of reasonable trading rules. Third, any large set of
rules should encompass well-known technical trading rules.

Our trading rule representation insures these characteristics. We adopt a tree-
format representation of the solution candidates. However, their representation
suffers from the absence of a definitive imposed structure on trading rules, resulting
in the generation ofmeaningless trading rules thatmake the algorithm’s job of finding
optimum solutions cumbersome. Improving upon their representation, we ensure that
the generated solution candidates are sensible. Instead of blindly combining functions
and operators to construct a trading rule, we confirm that the generated trading rules
are valid and acceptable (improving the closure property of the solution candidates
where all trees are to be synthetically valid composite functions). We ensure validity
by imposing a level-based structure on the trading rules whereby at each level a
definitive set of functions and operators are included. A description of trading rules
encoding and lists of functions and operators in each level is described in Table 1.

The tree structure has four levels. In the root node, level 1, we use Boolean
operators and functions (If-then-else, and, or) that establish the buy or sell signal.
In the second level, we incorporate relational operators (>, <) that return zero or
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one value. In the third level, we include real functions (Average, Maximum,
Minimum,Median, Lag, Volatility, RSI, and Filter). Selecting Average, Maximum,
Minimum, and Lag functions are supported byNeftci (1991), who shows that many
trading rules rely on specific patterns of local extremes of past data.

TheVolatility function compares the volatility of the underlying variable in the
selected days to the volatility across the entire input information length.RSI, the
relative strength index, is a technical indicator determining whether a stock is over-
bought or over-sold. It ismeasured byRSI = 100�100=ð1þRS∗Þ, where RS∗ is the
average number of days that the underlying variable is above its average divided by
the average number of days that it is lower than its average. Assuming the under-
lying variable is the asset’s price, an RSI above 70 regards the asset being over-
bought, and a value lower than 30 suggests it is over-sold.

The Filter operator is responsible for generating trading signals similar to filter
rules in the context of technical analysis. Assuming price is the underlying variable
for the operator, the Filter operator takes in two parameters, Pr: a value between�1
and 1 and Days: number of days, and produces Pt�DaysþPr�Pt�Days , where
Pt�Days is the price value number of Days before today, t. Comparing the price
today with the calculated price, the rule generates a trading signal.

Level 4 in the trading rules’ tree structure includes the input variables. We
use price and return as the input market information that is inserted in the signal
generation process.3 The number of observations inserted into the trading rules

TABLE 1

Trading Rule Representation

Table 1 presents the variables and functions employed in each of the four levels of a trading-rule tree. In level 1, we consider
Boolean operator and functions and, in level 2, the relational operators. Real functions are assigned to level 3, where s stands
for input variables. In level 4, we have two sets of inputs: the real variables and the terminals that indicate the type of input
variables.

Levels Operator

Level 1:
Boolean operator and functions If-Then-Else

and
or

Level 2:
Relational operator <

>

Level 3:
Real functions Avg s, daysð Þ

Max s, daysð Þ
Min s, daysð Þ
Median s, daysð Þ
Lag s, daysð Þ
Volatility s, daysð Þ
RSI s, daysð Þ
Filter s, Pr, daysð Þ

Level 4:
Real variables P :Price

R :Return
Pr: Random number in [�1, 1]

Terminals Days: Number of days before today
Pt : Price of the current day
Rt : Return of the current day

3Trading volume is an additional variable that can provide useful information into the trading rule
mechanism (Grundy and McNichols (1989), Blume, Easley, and O’Hara (1994)). We use volume as
input information when we apply our algorithm to individual stocks in Section V.C.2.
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depends on the terminal, Days, that specifies the number of days before the current
day. Moreover, if the real function Filter is chosen in level 3, we also include Pr, a
random number between �1 and 1, as an input to the trading rule.

Figure 1 presents an example of a possible trading rule. This rule consists of
two branches. The left one generates a short-selling signal. According to the rule,
we short the asset if the price is lower than the average of prices in the last 80 days.
The right branch is responsible for the buy signal. We buy the underlying asset if
the price today is higher than the average price in the last 20 days. In the case when
the branches generate opposite signals (buy and sell), we hold the risk-free asset.
The example in Figure 1 presents a case in which the root node includes an
“If-Then-Else” operator. A more complicated case of trading rules can employ
“and” and “or” operators in the root node.

The 4-level representation of trading rules can generate up to 130 million
possible rules using data only from the last 100 days. In addition, the mechanism is
able to produce well-known technical trading rules, such as filter, moving average,
support and resistance, and breakout rules.

C. Fitness Value

The fitness value sets the search direction in the genetic algorithm. This
function combines the objective function and the constraints in the optimization
problem in expression (1). In this subsection, we explain how the fitness value is
computed.

For a trading rule, a zero-cost portfolio is calculated by subtracting the trading
rule’s return (~Rt) from the return of the buy-and-hold strategy (Rt). The portfolio’s
return is PRt = ~Rt�Rt. Next, we regress the zero-cost portfolio return on the Fama
and French 4-factor portfolio returns4:

FIGURE 1

Trading Rule Example

Figure 1 presents an example of a trading rule. In this case, webuy the asset when the price today is higher than the average of
prices over the last 20 days (right branch: Buy) and short the asset when the price is lower than the average of prices over the
last 80 days (left branch: Sell). We hold the risk-free asset when both or none of the conditions are satisfied.

Avg

>

If-

Then-

Else

Sell

Pt

80P

Avg

<

If-

Then-

Else

Buy

Pt

20P

4We consider alternative asset pricing models, CAPM, 3-factor, and 5-factor models, in the robust-
ness tests.
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PRt = αþβMKTrMKTþβSMBrSMBþβHMLrHMLþβMOMrMOMþ ϵt,(2)

where rMKT, rSMB, rHML, and rMOM are the returns on market, size, value, and
momentum portfolios. We apply Newey and West (1987) standard errors. α mea-
sures the abnormal risk-adjusted return and is the variable that our algorithm aims
to maximize. From equation (2) we obtain the value of α and its corresponding
p-value.

We also take the transaction costs into account. Following Balduzzi and Lynch
(1999), Lynch and Balduzzi (2000), Han (2006), and Han et al. (2013), transaction
costs are assumed to be incurred when trading the underlying asset (long or short).
We assume no costs when trading the 30-day T-bill. We calculate the breakeven
transaction cost (BETC) value that makes the average return of the trading strat-
egy’s return (~Rt) equal to zero. Balduzzi and Lynch (1999) use 1 basis point (bps)
and 50 basis points (bps) as the lower and upper bounds for transaction costs.
In order to show the algorithm’s ability to identify profitable tradeable rules, we
require the search to find trading rules with a BETC higher than 25 bps in our
baseline analysis.5

The fitness value for trading rule i, after accounting for p-value and transaction
costs, is computed as:

FITNESSi =
αi , if p�valuei ≤ 0:1 and BETCi≥25bp
�M , Otherwise

,
n

(3)

where αi is the alpha value computed for trading rule i, andM is an arbitrarily large
number. This fitness function in our baseline analysis ensures the survival of trading
rules with abnormal returns that are statistically significant at least at the 10% level
while the BETC is higher than 25 bps.

D. Optimization Procedure

Having designed the search mechanism, the next step is to optimize the testing
procedure. We start by creating a set of randomly generated trading rules from the
universe of possible trading rules called the primary set. The primary set represents
the raw trading rules before any optimization procedure takes place. The population
evolves via genetic algorithm by producing new populations while ensuring the
survival of the fittest.

To create the new evolved populations of trading rules, we employ crossover
and mutation operators. The crossover operator aims to produce new trading rules
by using the characteristics of the existing population members. In crossover, we
randomly select two rules in the existing population (“parents” in the genetic
algorithm context) and switch one branch from the buy-side of one rule with a
branch from the sell-side of another trading rule. The branches are chosen randomly

5Lynch and Balduzzi (2000) consider the same level of transaction cost. In addition, Sadka and
Scherbina (2007) investigate the TAQ data set and estimate 25 bps as the average effective spread for a
typical stock and a typical trade. Besides, in Section V.C.2 when trading individual stocks, we use the
yearly fixed transaction cost estimates from Jones (2002) before 2000 and the actual daily quoted
bid–ask spreads for each individual stock from TAQ data set after 2000.
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in both rules. Two new rules are generated. In the genetic algorithm literature, the new
rules are referred to as offspring. Appendix A demonstrates a crossover operation.

The mutation operator aims to preserve the diversity in the population. We
apply two different mutation operation techniques. First, we follow Allen and
Karjalainen (1999) and implement mutations by doing a crossover between a
randomly chosen rule in the existing population and a newly generated trading
rule. Using the newly generated rule introduces additional diversity in the pop-
ulation. Second, we apply another form of mutation operation by simply inserting
newly generated rules into the population. The two mutation operations increase
genetic diversity in the optimization process.

We apply the crossover and mutation operations to the existing population
in order to generate new sets of trading rules. We generate one new population
using the crossover operator. Each crossover operation generates two new rules.
We apply the crossover operator until we generate the same number of rules as in
the population set. In addition, we use the mutation operator to generate two new
populations. The three new populations, generated by cross-over and mutation
operations, have the characteristics of the existing (survived) population as well as
random characteristics to preserve the genetic diversity. The newly generated
populations are merged with the existing ones, and the fitness values are evalu-
ated. Next, we sort the rules based on the fitness values and select a population of
rules with the highest fitness values.

Applying the algorithm to a specific time period potentially introduces a data-
snooping problem. Any profitable rule that we discover may only be so for those
data points used in the optimization procedure. To address this data-snooping issue,
we divide the time span of the algorithm’s information input into two periods: a
training period and a selection period. The selection period acts as a validation
period to ensure that the profitable rules found by the genetic algorithm in the
training period are not simply an example of data snooping. We start by searching
along the training period to construct new populations; after selecting the fittest
trading rules in the training period, we reevaluate them in the selection period. The
successful rules from the selection period are added to a final data set, the Final Set.
In the next generations, the members in the Final Set are updated until the stopping
criterion (in our case, a maximum number of generations) is reached. Table 2
presents the genetic algorithm procedure in detail.

Two parameters that influence the performance of the optimization process
are population size, |POP| (number of rules in the population set) and number of
generations, |GEN| (the number of times that the population is reproducing using
cross-over and mutation operators). A larger population size results in a higher
number of optimized trading rules after the completion of optimization procedure.
However, larger population size makes the optimization more computationally
expensive. The choice of population size thus involves a trade-off between a greater
number of optimized solution candidates and computational cost. We follow Allen
and Karjalainen (1999) and choose a population size of 500, a number large enough
to result in a meaningful evaluation of the algorithm performance while still
computationally manageable. In robustness tests, we run a limited number of
experiments with other population sizes (100, 1000, 2000), and the results are
economically similar.
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The choice of the number of generations, |GEN|, also carries a trade-off
between computational expensiveness of the procedure and optimized character-
istics of the solution candidates. From theDarwinism perspective, more generations
mean more competition, survival, and reproduction in the evolution process. In the
optimization procedure, a higher |GEN| results in better-performing rules but also
means more computational expense.We report the results using 20 generations.We
use 50 and 100 generations for a limited number of robustness tests, and the results
are qualitatively similar.

Allen and Karjalainen (1999) also apply a genetic algorithm to search for
profitable trading rules. Their results show that the genetic algorithm cannot find
profitable rules; However, we show that it has been possible to create profit out-of-
sample. Apart from benefiting from much higher computational power, our algo-
rithm is different in two aspects. First, we provide a standardized mechanism to
generate technical trading rules. In particular, a trading rule has four levels with a
predetermined set of variables or functions in each level. Because the machine
learning algorithm’s objective is to find local optima, by imposing a structure on the
search space we make sure that the rules follow a valid structure, which substan-
tially reduces the computational cost. Second, the fitness function that determines
the appropriateness of trading rules is changed from excess returns to risk-adjusted
return filtered by significance and transaction costs level. This leads to automatic
removal of trading rules with statistically insignificant risk-adjusted returns and
high transaction costs. One downside is that this form of setting the fitness function
increases the computational cost of the optimization process. In the next sections,
we evaluate the performance of our machine learning algorithm.

TABLE 2

The Optimization Procedure

Table 2 presents the algorithm designed to search for profitable technical trading rules. |POP| is the size of the population, and
|GEN| is the number of generations that the algorithm is run.

Step 1
Generate a random population with |POP| individual trading rules (Primary Set)
Compute the fitness value of rules in the training period
Save the set of rules as the Current Population

Step 2
Compute the fitness value of the rules in the Current Population in the selection period
Save them as the initial best rules in the Final Set

Step 3
Crossover
Select two random rules from the Current Population at random and apply crossover operator
(Generate |POP| new rules)
Mutation
Select one random rule from the Current Population and also generate a new rule; apply crossover operator
(Generate |POP|/2 rules)
Generate random individual rules (Generate |POP|/2 rules)
Calculate the fitness of the new rules in the training period and add them to the Current Population. Sort all the trading

rules based on the fitness values in the training period and select the |POP| fittest rules as the Current Population

Step 4
Compute the fitness value of the new rules in the Current Population in Step 3 in the selection period
Add them to the best rules in the Final Set
Sort all the trading rules in the Final Set based on the fitness values in the selection period and select the |POP| fittest

rules as the new best rules in the Final Set
Stop if |GEN| generations has passed
Back to step 3
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III. Can Machine Learning Find Profitable Rules Ex Ante?

In this section, we examine the algorithm’s performance. We begin by
describing the data and a number of implementation choices, and, later, we report
the results.

A. Data and Implementation

For the baseline analysis, we use 10 NYSE/AMEX volatility-decile portfolios
from July 1, 1965, to Dec. 31, 2014, as the test assets.6 Volatility-decile portfolios
capture variation in information uncertainty across stocks. When there is higher
information uncertainty, investors tend to underreact to public information (Zhang
(2006)) and rely more on technical signals, compared to the fundamental signals
(Han et al. (2013)). Therefore, using volatility-decile portfolios gives us a labo-
ratory to see whether higher uncertainty (or noise-to-signal ratio) leads to more
profitable trading rules.

We assume a 5-year training period and a 5-year selection period.7 The rolling
analysis is as follows: we start from 1965 and use the 5-year training period (1965–
1969) and 5-year selection period (1970–1974) as the input to the algorithm. After
optimization, we test the performance of trading rules in the 1 year out-of-sample
(1975). Next, we roll the input data by 1 year and use the 5-year training period
(1966–1970) and 5-year selection period (1971–1975) as input to the algorithm and
evaluate the performance of the algorithm’s output rules in the 1 year out-of-sample
period (1976). We repeat the procedure until 2014. In addition, in each rolling
window, we perform the analysis 20 times (i.e., 20 simulations) to make sure that
the results are not driven by an auspicious 1-time run of the algorithm.

Our main interest is in the performance of the Final Set, which contains the set
of optimized technical trading rules. As an alternative benchmark, we use the set
of moving-average strategies in Han et al. (2013) who show that moving average
(MA) strategies generate positive and economically and statistically significant
CAPM, Fama–French 3-factor, and Fama–French 4-factor alphas with low transac-
tion costs.8 They use a list of moving-average strategies with lag lengths from 3 to
200. We follow the same procedure and generate a set of moving average strategies
with lags between 3 and 100, which we call the Moving-Average Set.9

We also consider the Primary Set as a benchmark. Recall that the Primary Set
is the initial randomly drawn trading rules over which we optimize to produce the

6Later as a robustness check, we consider NYSE/AMEX/NASDAQ size decile portfolios and also
individual stocks.

7We also study different duration of training and selection periods (3, 8, and 10 years) and the results
are qualitatively similar. Overall, for longer duration of training and selection periods, we get better
results; however, longer duration leads to higher computational cost and less out-of-sample data.

8Han et al. (2013) use 10 NYSE/AMEX volatility decile portfolios between July 1, 1963, to Dec.
31, 2009, to show the well-performance of moving average (MA) strategies. In an untabulated analysis,
we compare our optimized rules with MA strategies in the same exact data set and the same periods
as in Han et al. (2013). The relative performance of strategies is economically similar to the baseline
results in our article.

9We choose 100 because in the baseline optimization we use the information up to 100 days before.
The results are economically similar when using 200 days.
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Final Set. If the optimization adds no value, then the Final Set and the Primary Set
should perform similarly.

B. Asset-by-Asset Performance

Table 3 reports the summary statistics of annualized out-of-sample 4-factor
alphas for the three sets of trading rules across volatility-decile portfolios.

Table 3 has four key insights. First, the Final Set generates higher average
alphas than the other trading rule sets across volatility decile portfolios. For exam-
ple, in the lowest volatility-decile portfolio, the Final Set generates a 14.27%
annualized abnormal return, while the Moving-Average Set and Primary Set gen-
erate abnormal returns of 4.76% and� 1.26%, respectively. Second, as the portfolio
volatility increases, average alpha values increase for the rules in the Final Set and
the Moving-Average Set. For example, the Final Set in the lowest volatility-decile
portfolio generates 14.27% and for the highest volatility-decile portfolio, it gener-
ates 22.98%.

TABLE 3

Summary Statistics

Table 3 reports the summary statistics for out-of-sample Fama–French 4-factor annualized alphas in percentages. Primary Set
is a randomly generated set of technical trading rules. Final Set is the set of optimized trading rules after applying the
optimization procedure. Moving Average Set is the set of moving average strategies using lags of 3 to 100 days. The alpha
values are computed on all of the NYSE/AMEX volatility-decile portfolios between Jan. 1, 1965, and Dec. 31, 2014. We use a
rollingprocedurewith 5-year trainingperiod, 5-year selectionperiod, and1-year out-of-sampleperiod.We run theoptimization
procedure for 20 simulations. A time series of alpha values is calculated by averaging alphas across the rules and simulations
in each set.We reportN (average number of unique trading rules in each rolling period and simulation), Mean (average value),
Std. Dev. (standard deviation), Skew (skewness), Kurt (kurtosis), 25% (first quartile), Median, and 75% (third quartile).

Sets N Mean Std. Dev. Skew Kurt 25% Median 75%

Low volatility Moving average 98 4.76 14.12 1.44 5.82 �3.08 2.15 12.53
Primary 500 �1.26 13.97 0.43 4.86 �13.18 �5.32 2.35
Final 332 14.27 15.21 1.14 4.27 2.28 9.26 23.17

2 Moving average 98 2.49 13.34 0.67 3.67 �5.17 2.22 12.08
Primary 500 �1.34 13.68 0.08 4.83 �12.95 �4.77 2.13
Final 304 16.52 15.39 0.91 3.17 4.23 11.33 22.36

3 Moving average 98 1.09 15.51 0.73 3.88 �7.59 0.68 11.32
Primary 500 �1.25 13.79 �0.11 4.73 �12.62 �4.43 2.65
Final 271 20.27 18.31 0.93 3.50 5.39 14.36 29.06

4 Moving average 98 0.33 18.83 0.10 5.60 �8.85 0.67 12.89
Primary 500 �1.33 14.99 �0.26 5.08 �13.31 �4.62 3.07
Final 285 23.86 19.64 0.65 3.13 7.20 19.71 34.90

5 Moving average 98 0.70 21.95 0.26 4.16 �9.94 0.81 14.97
Primary 500 �1.12 16.06 �0.09 5.00 �13.33 �4.06 4.34
Final 292 29.35 21.57 0.48 2.85 11.63 25.02 40.79

6 Moving average 98 1.86 23.79 0.27 3.56 �10.91 2.40 17.69
Primary 500 �0.95 16.87 �0.11 5.14 �12.86 �3.42 5.42
Final 302 29.82 20.92 0.33 3.10 14.10 27.38 41.11

7 Moving average 98 3.26 24.57 0.52 4.00 �11.39 2.70 19.63
Primary 500 �0.82 18.19 �0.09 5.46 �12.88 �3.03 6.61
Final 323 33.54 25.01 0.58 3.84 14.01 29.78 47.20

8 Moving average 98 7.79 25.79 0.54 3.76 �7.44 6.56 25.89
Primary 500 �0.07 19.27 �0.15 4.95 �10.94 �0.01 10.94
Final 338 33.33 22.95 0.59 3.85 16.85 30.91 43.69

9 Moving average 98 11.3 27.7 0.5 3.7 �4.7 9.5 30.4
Primary 500 �0.3 22.3 0.1 4.7 �13.6 �0.9 11.6
Final 361 32.4 27.4 0.4 3.0 10.7 30.7 47.5

High volatility Moving average 98 8.35 32.88 0.22 3.13 �10.08 8.65 30.61
Primary 500 �4.92 37.68 �0.48 4.36 �37.95 �15.56 4.50
Final 304 22.98 36.95 0.29 3.13 �3.22 20.46 44.51
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Third, the difference between the average alphas generated by the Primary Set
and the Final Set confirms that the algorithm adds value. The Final Set contains
strategies that generate positive abnormal returns whereas the Primary Set does not.
For instance, in the lowest volatility decile portfolio, the Primary Set generates an
average of�1.26%, and the Final Set generates an average of 14.27%, showing that
the algorithm successfully optimizes. Fourth, the algorithm finds fewer number of
rules than themaximum number of possible rules (i.e., the size of the population set,
or 500 rules). For the lowest volatility portfolio, the algorithm finds only 332 unique
trading rules that satisfy the search criteria.

C. Portfolio Performance

Instead of investing in each asset separately, we can more realistically create a
portfolio. Here we consider a case in which we diversify across all of the volatility-
decile portfolios. The analysis assumes an investor uses the algorithm, finds
optimized rules specific to each asset, and invests equally across the rules. The
summary statistic for the out-of-sample results is presented in Table 4.

A diversified portfolio across the rules in the Final Set results in an average
annualized alpha of 25.8%, higher than the Moving Average Set’s alpha of 4.2%
and the Primary Set’s alpha of �1.3%.

Although the overall average statistics are useful to determine the overall
performance of the different Sets, the time series dynamics is also of interest.
Figure 2 presents the average annualized out-of-sample alphas for the different sets
of trading rules in a diversified portfolio across volatility-decile assets through time.

The alpha values for the Final Set in Figure 2 show that the algorithm produces
positive alphas most years. In addition, the Moving-Average Set usually generates
positive returns through time, albeit at a lower level than the Final Set, and with
more frequent and larger negative alpha years. The Primary Set consistently gen-
erates near zero or negative abnormal returns. Not surprisingly, blindly investing
using randomly generated technical trading rules does not outperform the Fama and
French 3-factor benchmark.

The Final Set in Figure 2 appears to have a downward slope to its alpha
generation over time. To test for a statistically significant negative time trend, we
perform a simple OLS regression. We construct a time trend variable, yeart, which

TABLE 4

Summary Statistics: Diversifying Across Assets

Table 4 reports the summary statistics of Fama–French 4-factor annualized alphas for a diversified portfolio of technical
trading rules. Primary Set contains a randomly generated set of technical trading rules. Final Set is the set of optimized trading
rules after applying the optimization procedure. Moving Average Set is the set of moving average strategies using lags of 3 to
100 days. The alpha values are computed on all of the NYSE/AMEX volatility-decile portfolios between Jan. 1, 1965, and Dec.
31, 2014.We use a rolling procedurewith 5-year training period, 5-year selection period, and 1-year out-of-sample period.We
run the optimization procedure for 20 simulations. The time series of alpha values is calculatedby averagingalphas across the
rules, volatility deciles, and simulations in each out-of-sample year. We report Mean (average value), Std. Dev. (standard
deviation), Skew (skewness), Kurt (kurtosis), 25% (first quartile), Median, and 75% (third quartile).

Sets Mean Std. Dev. Skew Kurt 25% Median 75%

Moving-average 4.2 23.1 0.6 4.7 �7.5 3.3 17.6
Primary �1.3 20.4 �0.8 9.0 �14.3 �4.2 5.2
Final 25.8 24.5 0.6 4.1 7.1 22.1 38.8
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starts from 1 in 1975, the first year of out-of-sample results, and increases by 1 unit
every year until 2014. We compute the average out-of-sample alpha values in the
Final Set for each out-of-sample year.We regress the average yearly alpha values on
the time trend variable. The results are presented in Table 5.

The first row in Table 5 tests a portfolio of trading rules across all the volatility
assets, and the next 10 rows test each of the volatility assets separately.We focus on
the overall result in the first row. The estimated coefficient on the time trend is
negative and statistically significant. The negative coefficient of�0.63 implies that,
as each year goes by, the performance of a set of optimized trading rules decreases
by 0.63%. As sufficient techniques and computational power have been available
since the early 2000s, it is feasible that the decreasing time trend is due to a 1-time
shift, not a gradual slope. It is beyond the scope of this article to attempt to
disentangle the functional form of the time trend.10

The decrease in out-of-sample alphas is consistent with the theoretical findings
of Dugast and Foucault (2020). They show that the increase in computing power
raises i) average quality of predictors and ii) price informativeness. In our setting,
we can observe these two effects separately. In the early years (e.g., the 1970s),
implementing our algorithm was impossible because the current computational

FIGURE 2

Performance Through Time

Figure 2 reports the out-of-sample Fama–French 4-factor annualized alphas in percentages through time. Primary Set
is a randomly generated set of technical trading rules. Final Set is the set of optimized trading rules after applying the
optimization procedure. Moving Average Set is the set of moving average strategies using lags of 3 to 100 days. The alpha
values are computed on all of the NYSE/AMEX volatility-decile portfolios between Jan. 1, 1965, and Dec. 31, 2014. We use a
rolling procedure with 5-year training period, 5-year selection period, and 1-year out-of-sample period. We run the optimiza-
tion procedure for 20 simulations. In each out-of-sample year, we compute the average alphas over the rules, volatility deciles,
and simulations.
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10In Appendix E, we examine the relationship between a measure of computational power – the
number of transistors on integrated circuits (transistor count) – and the out-of-sample alphas. We show
that there is a clear negative relation between the computing power and the out-of-sample alphas that is
especially evident after the year 2000 with the sharp rise of computing power.
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power was not available. Therefore, applying our algorithm led to the identification
of high-quality predictors, and trading rules in the early years gain high average
abnormal returns. Later in time, when the computing power and also the machine
learning techniques become available, we see a reduction in trading rules’ perfor-
mance. This pattern is in line with an increase in price informativeness due to
increased computational power that has led to lower expected trading profit.11

The negative trend in the average alphas is also consistent with studies on
anomalies’ performance deterioration through time (e.g., Linnainmaa and Roberts
(2018)). Our algorithm’s job is to find an optimized set of time-series anomalies
with an imposed trading rule structure (functions and input variables). We show
that out-of-sample abnormal returns have declined, suggesting that markets have
become more efficient. That is, fewer mispricings exist that violate the weak-form
of market efficiency. Furthermore, our results do not depend on knowing the
anomalies ex ante. The conventional approach in investigating the performance

TABLE 5

Regression of Alphas and Time Trend

Table 5 reports the estimation results for an OLS regression of average 4-factor annualized alphas of trading strategies in
out-of-sample years on a time trend variable, yeart . The time trend variable starts from 1 in 1975 and increases by 1 unit each
year until 2014. The Final Set is a set of optimized trading rules that comes from applying the optimization procedure to each of
the NYSE/AMEX volatility-decile portfolios between Jan. 1, 1965, and Dec. 31, 2014. We use a rolling procedure with 5-year
training period, 5-year selection period, and 1-year out-of-sample period. We run the optimization procedure for 20
simulations. For the diversified portfolio across assets, the time series of alpha values is calculated by averaging alphas
across the rules, volatility deciles, and simulations in each out-of-sample year. For each individual volatility decile, the time
series of alpha values is calculated by averaging alphas across the rules and simulations in each out-of-sample year. The
values in parentheses are t-statistics.

Intercept Yeart R2

Diversifying across assets 36.15 �0.63 0.177
(6.98) (�2.86)

Low volatility 15.64 �0.16 0.016
(3.35) (�0.79)

2 27.09 �0.70 0.300
(6.64) (�4.03)

3 35.43 �1.11 0.531
(8.90) (�6.56)

4 41.59 �1.27 0.550
(9.49) (�6.81)

5 48.46 �1.41 0.530
(9.59) (�6.55)

6 48.26 �1.31 0.480
(9.26) (�5.92)

7 54.21 �1.43 0.408
(8.21) (�5.11)

8 53.68 �1.35 0.275
(9.09) (�5.38)

9 53.30 �1.18 0.275
(7.30) (�3.79)

High volatility 12.21 0.20 0.005
(1.06) (�0.42)

11We also investigate the performance of other machine learning algorithms in profiting out-of-
sample from detecting patterns in past prices. Appendix D shows the out-of-sample results for five other
machine learning algorithms: support vector machine, decision tree, KNN, random forest, an ensemble
of machine learners. The results in Appendix D also show that computational power improves market
efficiency through time.
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of anomalies (Chordia, Subrahmanyam, and Tong (2014), McLean and Pontiff
(2016), and Linnainmaa and Roberts (2018)) is constrained by the researcher
knowing the anomalies ex ante, which creates a bias with the ad hoc specification
of anomalies. Using this article’s approach, we do not need to know the anomalies;
we systematically uncover them.12

Next, we examine the risk–return trade-off by calculating the Sharpe ratio on
the raw excess returns (not alphas). We compute the average value of the out-of-
sample Sharpe ratios of rules across the simulations for a diversified portfolio of
volatility deciles each year. Figure 3 reports the results.

The graph shows that using the machine learning algorithm can lead to
sizeable positive Sharpe ratios through time that are consistently greater than 1
and that consistently decline through time. The average Sharpe ratio in 1975 is
about 4.2 and it reduces to about 1 in 2014.

Next, we test whether the trading strategy is implementable or whether trans-
action costs nullify the alpha. We consider a 1-sided transaction cost of 5 basis
points. For each transaction that occurs, we subtract 5 basis points from the return.
As we move between a long position in the asset, holding the risk-free asset, and
a short position in the asset we subtract a reasonable transaction cost. Figure 4
presents the results for abnormal returns after transaction costs for a diversified
portfolio across volatility deciles. The figure shows that even after accounting for
transaction costs the profitability of the optimized trading rules remains.

FIGURE 3

Annualized Out-of-Sample Sharpe Ratio Through Time

Figure 3 reports the out-of-sample average Sharpe ratios through time. Final Set is the set of optimized trading rules after
applying optimization procedure to each of the NYSE/AMEX volatility-decile portfolios between Jan. 1, 1965, and Dec.
31, 2014. We use a rolling procedure with 5-year training period, 5-year selection period, and 1-year out-of-sample period.
We run the optimization procedure for 20 simulations. In each out-of-sample year, we compute an average of Sharpe ratio
values over the rules, volatility deciles, and simulations.
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12We also examine the average BETC values across volatility decile portfolios through time.We find
that the average transaction cost level needed to nullify the profitability of trading rules also decreases
over time (with a sharp decline after 2005). This shows that over time, it has become harder to trade
weak-form inefficiencies into positive returns.
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IV. Characterizing the Trading Signals

This section examines the characteristics of optimized trading rules in the
Final Set. First, we look at the direction of the positions that the rules hold over time.
Next, we evaluate whether the buy or sell side signals drive performance. We also
look into the different types of underlying functions used in the optimized rules.
Before examining the portfolio allocation, we characterize the diversity of the
selected trading strategies. We conclude by observing how trading rules evolve
across the volatility deciles over time.

A. Signal Direction

Our search algorithm enjoys flexibility in selecting its investment direction.
In this subsection, we study the frequency of buy, sell and hold risk-free signals
generated by the optimized rules. As an example of what we count as a buy/sell
signal, suppose that a rule generates signals as follows in 5 consecutive days: [buy-
buy-buy-sell-sell]. Following the signals, we buy the underlying asset in day 1,
hold it for 3 days, and then in day 4, change the position to a short-sell one. In the
example, we count one buy signal and one sell signal. We only count the signals
that require an action from the investor. For each rule in the out-of-sample period
we count the number of buys, sells, and out-of-market signals averaged across all
of the simulations. The results are presented in Figure 5.

FIGURE 4

Performance and Transaction Cost

Figure 4 presents 4-factor Fama–French annualized alphas through time with a 5-bps transaction cost. In each out-of-sample
year, we search for a set of optimized trading rules by applying our algorithm to each of the NYSE/AMEX volatility-decile
portfolios between Jan. 1, 1965, and Dec. 31, 2014. We use a rolling procedure with 5-year training period, 5-year selection
period, and 1-year out-of-sample period. In applying each trading rule, as we move between a long position in the asset,
holding the risk-free asset, and a short position in the asset, we subtract a transaction cost of 5 bps. We run the optimization
procedure for 20 simulations. In each out-of-sample year, wecompute the average alphas over the rules, volatility deciles, and
simulations.
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Figure 5 produces two key takeaways. First, the frequency of buy, sell, and
neutral signals are relatively stable over the sample period. Second, the buy signals
make up roughly 40%, and the sell and hold risk-free signals each make up about
30% of the actionable signals.

We next examine whether the performance of the trading rules comes from
both the long and short positions or if one dominates the other. In Table 6, we look
at the return summary statistics across the volatility portfolios generated from the
buy, sell and hold-risk-free signals.

The values in Table 6 are the tþ1ð Þth day returns conditioned on the type of
signals (buy, hold, sell) at day t averaged over the out-of-sample years and the
simulations. For deciles, 1–8 long signals make up over 50%, and short signals
make up less than 25%. In deciles 9 and 10 the long signal is less than 50%, and the
short signal occurs more than 25% of the time.

Table 6 shows that both the short and long signals predict future returns and
contribute to the algorithm’s success. Optimized rules for the lowest and highest
volatility-decile portfolio generate on average a mean return of 0.113% daily
(28.48% annually) and 0.245% (61.74% annually), respectively. The correspond-
ing value for a simple buy and hold strategy is 0.049% and 0.183% for the lowest
and highest volatility-decile portfolios, respectively. The average next day return
across all the strategies for the buy signals is 0.168% and 0.245% daily for the
lowest and highest volatility-decile portfolios, respectively. The average next day
return conditioned on the short-selling signals is 0.130% and 0.197% daily for the
lowest and highest volatility decile portfolios, respectively.

FIGURE 5

Trading Signals

Figure 5 shows thepercentageof buy, sell, andhold risk-free signals across the optimized trading rules in the Final Set. In each
out-of-sample year, we search for a set of optimized trading rules, Final Set, by applying our algorithm to each of the NYSE/
AMEX volatility decile portfolios between Jan. 1, 1965 and Dec. 31, 2014. We use a rolling procedure with 5-year training
period, 5-year selection period, and 1-year out-of-sample period. We run the optimization procedure for 20 simulations. In
each out-of-sample year, we compute the percentage of buy, sell, and hold risk-free signals averaged over the rules, assets,
and simulations.
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B. Signal Functions

We further explore the types of functions and variables employed in the trading
rules. Do the optimized rules tend to capitalize on a particular function or variable in
their structure? Table 7 summarizes the characteristics of the trading rules in the
Final Set when the underlying asset is the lowest and highest NYSE/AMEX

TABLE 6

Summary Statistics: Trading Signals

Table 6 reports the summary statistics for returns conditioned on the type of trading signals (Buy, Hold risk-free, Sell) in the
Final set. In eachout-of-sample year, we search for a set of optimized trading rules, Final Set, by applying our algorithm to each
of the NYSE/AMEX volatility deciles between Jan. 1, 1965, and Dec. 31, 2014. We use a rolling procedure with 5-year training
period, 5-year selection period, and 1-year out-of-sample period. We run the optimization procedure for 20 simulations. N for
Long (Hold risk-free, Short) stands for the number of timeswe are either buying (holding risk-free asset, short-selling) the asset
or already bought (held risk-free asset, short-sold) the asset. We also report % of N (percentage of each signal), Avg Ret
(Average return), Avg Std (Average standard deviation), and Avg Skew (Average skewness).

N % of N Avg. Ret. Avg. Std. Avg. Skew

101.998 0.113 0.003 0.325
Low volatility Long 53.412 52 0.168 0.003 �0.084

Hold risk-free 27.215 27 0.023 0.000 �0.129
Short 21.371 21 0.130 0.004 0.249

2 All 103.132 0.123 0.004 0.293
Long 54.351 53 0.174 0.004 �0.030
Hold risk-free 25.474 25 0.023 0.000 �0.151
Short 23.307 23 0.155 0.005 0.200

3 All 102.884 0.123 0.004 0.295
Long 54.192 53 0.174 0.004 �0.028
Hold risk-free 25.402 25 0.023 0.000 �0.152
Short 23.290 23 0.156 0.005 0.201

4 All 102.679 0.124 0.004 0.267
Long 51.927 51 0.176 0.004 �0.019
Hold risk-free 26.251 26 0.023 0.000 �0.183
Short 24.501 24 0.155 0.005 0.149

5 All 102.583 0.125 0.004 0.270
Long 51.952 51 0.177 0.004 �0.018
Hold risk-free 26.177 26 0.023 0.000 �0.181
Short 24.454 24 0.156 0.005 0.152

6 All 102.814 0.126 0.004 0.271
Long 52.009 51 0.178 0.004 �0.016
Hold risk-free 26.143 26 0.023 0.000 �0.185
Short 24.663 24 0.158 0.005 0.151

7 All 102.799 0.127 0.004 0.269
Long 52.050 51 0.179 0.004 �0.016
Hold risk-free 26.085 26 0.023 0.000 �0.181
Short 24.664 24 0.158 0.005 0.151

8 All 102.762 0.126 0.004 0.266
Long 51.980 51 0.177 0.004 �0.012
Hold risk-free 26.169 26 0.023 0.000 �0.182
Short 24.613 24 0.158 0.005 0.139

9 All 110.459 0.235 0.008 0.750
Long 45.627 45 0.316 0.009 1.113
Hold risk-free 26.802 26 0.023 0.000 �0.377
Short 38.029 37 0.315 0.010 �0.271

High volatility All 93.472 0.245 0.009 2.548
Long 36.852 36 0.485 0.012 2.105
Hold risk-free 28.651 28 0.023 0.000 �0.159
Short 27.968 27 0.197 0.008 0.295

Diversifying across assets All 102.558 0.147 0.005 0.539
Long 50.435 49 0.219 0.005 0.290
Hold risk-free 26.437 26 0.023 0.000 �0.190
Short 25.686 25 0.176 0.006 0.132
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volatility-decile portfolios.13 All the values are averaged over the rolling out-of-
sample windows over the 20 simulations.

We focus on the results for the lowest volatility-decile portfolio (the highest
volatility-decile portfolios follow a similar pattern). Themaximumnumber of times
a function or real variable (Price or Return) can be used is 1,884 (when each side of
trading rules is a 2-branch tree). However, it is possible for the rules to have only
one branch on the buy and sell side. The functions Minimum and Median are used
the most. Price is used more than Return as an input to the optimized trading rules.
The results also suggest that no single function or variable dominates.We explore the
diversity of trading rules in Section IV.C.

C. Strategy Diversity

Section IV.B suggests that the trading rules depend on a variety of signals.
Here we directly test the diversity of the trading rules. Specifically, we examine
whether all the strategies in the Final Set generate the same set of signals. Given that

TABLE 7

Characteristics of Trading Rules

Table 7 reports the number of real functions and types of input variables in the Final Set. Final Set is the set of optimized trading
rules after applying the optimization procedure with a rolling procedure of 5-year training period and 5-year selection period.
We run the optimization procedure for 20 simulations on the highest and lowest NYSE/AMEX volatility decile portfolios from
Jan. 1, 1965, to Dec. 31, 2014. All the values are averaged over the out-of-sample years and simulations.

Lowest Volatility Decile Highest Volatility Decile

Set Buy Sell Total Buy Sell Total

Panel A. Real Functions

Average Primary 93.10 93.65 186.75 93.33 94.43 187.75
Final 139.03 164.23 303.25 147.38 129.58 276.95

Minimum Primary 95.75 93.65 189.40 94.63 93.10 187.73
Final 201.08 155.18 356.25 140.48 132.98 273.45

Maximum Primary 92.45 95.18 187.63 92.55 92.03 184.58
Final 78.40 53.05 131.45 84.95 55.70 140.65

Median Primary 94.05 93.88 187.93 91.15 92.80 183.95
Final 135.70 156.40 292.10 137.83 156.28 294.10

Lag Primary 94.28 92.78 187.05 91.75 94.15 185.90
Final 54.05 44.45 98.50 87.13 65.93 153.05

Volatility Primary 94.23 93.50 187.73 95.60 92.43 188.03
Final 66.00 34.78 100.78 73.73 39.00 112.73

RSI Primary 92.65 95.73 188.38 96.88 93.83 190.70
Final 153.10 132.35 285.45 148.85 136.50 285.35

Filter Primary 94.33 93.93 188.25 94.70 92.90 187.60
Final 130.10 104.03 234.13 120.23 98.98 219.20

Panel B. Real Variables

Price Primary 500.18 501.63 1,001.80 503.83 498.08 1,001.90
Final 1,192.73 1,119.43 1,310.35 1,167.58 1,046.73 1,212.40

Return Primary 250.65 250.65 501.30 246.75 247.58 494.33
Final 515.55 477.30 491.55 523.55 513.85 543.08

13Because of the large number of optimized rules, we are unable to list them. For example, for the
Final Set in the lowest volatility decile portfolio in Table 3, there are 332 rules on average across out-of-
sample years. There will be 332�20 simulationsð Þ�40 yearsð Þ= 265,600 rules in the overall analysis
assuming the rules are unique through time. We address the diversity of trading rules in Section IV.C.
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similar signals result in similar returns across the strategies, we focus the analysis on
the returns. Table 8 reports the summary statistics for the pair-wise correlation
values of the out-of-sample returns for the optimized trading rules in the Final Set.

A correlation close to 1 implies the same signal-generation procedure along
the optimized trading rules and that the algorithm uses the same signal-generation
procedure. Lower correlation values suggest that the optimization procedure finds
dissimilar trading rules. On average, the correlation among strategies’ returns is
approximately 0.65. The moderate average pairwise correlation reveals the use-
fulness of the optimization process in finding a diversified portfolio of technical
trading rules.

Figure 6 presents the boxplot for correlation values through time. The corre-
lation values across trading rules are computed for each out-of-sample year from
1975 and pulled together across simulations and assets. We draw the boxplot for

TABLE 8

Return Correlation

Table 8 reports the summary statistics for the out-of-sample return correlations among trading rules in the Final set. The Final
Set is the set of optimized trading rules after applying optimization procedure to each of the NYSE/AMEX volatility-decile
portfolios between Jan. 1, 1965, and Dec. 31, 2014. We use a rolling procedure with 5-year training period, 5-year selection
period, and 1-year out-of-sample period. We run the optimization procedures for 20 simulations. The correlation values are
pooled together over years and simulations.We reportMean (average value), SD (standard deviation), Skew (skewness), Kurt
(kurtosis), 25% (first quartile), and Median, 75% (third quartile).

Mean Std. Dev. Skew Kurt 25% Median 75%

Low volatility 0.73 0.14 �0.72 3.88 0.65 0.75 0.83
2 0.73 0.15 �0.84 4.23 0.65 0.75 0.84
3 0.69 0.18 �0.72 3.76 0.58 0.71 0.81
4 0.61 0.21 �0.52 3.87 0.49 0.60 0.75
5 0.65 0.21 �0.62 3.45 0.52 0.67 0.80
6 0.64 0.20 �0.54 3.43 0.52 0.65 0.78
7 0.66 0.19 �0.62 3.69 0.55 0.68 0.79
8 0.65 0.19 �0.71 3.90 0.54 0.66 0.78
9 0.69 0.18 �0.84 4.04 0.57 0.71 0.83
High volatility 0.71 0.18 �1.03 4.32 0.60 0.74 0.84
Diversifying across assets 0.77 0.19 �1.17 4.87 0.61 0.75 0.86

FIGURE 6

Average Correlation Across Trading Rules Through Time

Figure 6 shows the average out-of-sample return correlations among trading rules in the Final Set in each out-of-sample year
from1975 to 2014. The Final Set is the set of optimized trading rules after applying optimization procedure to eachof theNYSE/
AMEX volatility-decile portfolios between Jan. 1, 1965 and Dec. 31, 2014. We use a rolling procedure with 5-year training
period, 5-year selection period, and 1-year out-of-sample period. We run the optimization procedures for 20 simulations. The
correlation values between trading rule returns are pooled together over assets and simulations in each out-of-sample year.
The box plot contains the average value in red line, first quartile as lower tail of box, and third quartile as upper tail of the box.
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each out-of-sample year. Figure 6 shows that the algorithm finds a variety of trading
rules throughout the sample period.

D. Portfolio Allocation

Before testing the robustness of the machine learning algorithm, we consider
how the algorithm allocates resources across the 10 volatility deciles. Recall that the
portfolio allocation depends on the number of trading rules that survive in the Final
Set for each volatility decile. Thus, asking how the algorithm allocates resources
across the volatility deciles is the same as asking how many trading rules in each
volatility decile make it into the Final Set. Figure 7 presents the weight allocation
across volatility-decile portfolios through time.

Figure 7 shows that through most of the sample we allocate weights equally
across the volatility deciles. Each asset gets about 10% each year. However, starting
in 2005, the weight allocation across decile portfolios changes. After 2005, the
lowest and highest volatility-decile portfolios are the main investment vehicles.
For example, in 2014, 35% of trading rules are from the lowest volatility-decile
portfolio and another 30% are from the highest volatility decile. Although
explaining the stark shift in portfolio allocation after 2005 is beyond the scope
of this article, we find this a fascinating event.14

FIGURE 7

Weight Allocation of Volatility Deciles Through Time

Figure 7 reports the weights invested in each decile in a diversified portfolio of volatility deciles through time. We compute the
weights as the fraction of the number of rules in the Final Set for each volatility decile to the total number of optimized rules
across the volatility deciles in each out-of-sample year. The Final Set is the set of optimized trading rules after applying
optimization procedure to each of theNYSE/AMEX volatility-decile portfolios between Jan. 1, 1965, andDec. 31, 2014.Weuse
a rolling procedure with 5-year training period, 5-year selection period, and 1-year out-of-sample period. We run the
optimization procedures for 20 simulations. The portfolio allocation weights are averaged over the rules and simulations.
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14There can be several explanations for this stark shift in portfolio allocation after 2005. The possible
explanations are the rise in computational power (see Appendix E), the increase in the utilization of
machine learning models in the investment industry; and also changes in the regulation that advocates
more competition and hence, more price informativeness (e.g., Reg NMS).
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In addition, in order to examine whether the same predictability mechanism
drives the trading rules of different volatility decile portfolios, we apply the final
rules of each volatility decile portfolio to other volatility decile portfolios. The
results, reported in Appendix D, show that the trading rules found in the higher
volatility-decile portfolios result in higher average out-of-sample alpha when
applied to other decile portfolios. Thus, we conclude that different predictability
mechanisms drive the set of rules found in each of the decile portfolios.15

V. Robustness

This section addresses three possible concerns. First, we conduct a placebo test
to show that the results are not driven by some mechanical regression process or a
fortunate adaptation of rules to the data. Second, we consider other asset pricing
models to test whether the trading rule anomalies we find can be explained by other
factor models. Third, as an additional out-of-sample test, and to ensure that the
results do not merely hold for one specific set of assets, we repeat the analysis on
different data sets, that is, NYSE/NASDAQ/AMEX size-decile portfolios and
individual stocks.

A. Placebo Test

The results may be driven by some mechanical regression process or simply
a fortunate adaptation of rules to the data. To address this concern, we run the
following experiment.We scramble the data set along the time dimension and apply
the optimization procedure to the scrambled data. Any predictability from prices
should be broken in the data set, and so applying the optimization procedure
should be unsuccessful in identifying trading rules. We use the 10 NYSE/AMEX
volatility-decile portfolios from July 1, 1965, to Dec. 31, 2014.We assign a random
number to each time period and sort the data by the random number. We use the
same setting for the algorithm as in our baseline analysis in Section II, that is, 5-year
training periods, 5-year selection periods, 1-year out-of-sample period, 20 simula-
tions, population size of 500, and generation number of 20. The results are pre-
sented in Table 9.

The average out-of-sample alphas are negative consistent with expectations.
If the performance of the optimization procedure is a result of detecting trends, as
we argue, scrambling the data causes the optimization procedure to be unsuccessful.
As expected, we find that the Final Set consistently produces negative alphas.

B. Choice of Asset Pricing Model

We use the Fama and French 4-factor asset pricing model as the benchmark to
calculate alphas. It is possible that the results are driven by some unmodeled risk
factor. To address this, we reevaluate the out-of-sample performance of the optimized
trading rules in the Final Set in Section II using CAPM (with market portfolio),
3-factor (with market, size, and value portfolios, Fama and French (1993)) and
5-factor (with market, size, value, profitability, and investment portfolios, Fama

15We thank the reviewer for this constructive comment.
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and French (2015)) asset pricing models. We obtain the data on the factor portfolios
from Kenneth French’s website (http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/). The results with the alternative asset pricing models are reported
in Table 10.

The optimized rules in the Final Set continue to consistently generate abnor-
mal returns and to perform better than the Primary and Moving Average Sets.

TABLE 9

Summary Statistics: Placebo Test

Table 9 reports the out-of-sample Fama–French 4-factor annualized alphas in percentages for optimized trading rules in the
randomly scrambled data. The data sets are the NYSE/AMEX volatility-decile portfolios from July 1, 1965, to Dec. 31, 2014. In
each volatility decile, we assign a random number to each time period and sort the data by the random number. Our
optimization algorithm is applied to the scrambled data using a 5-year training, a 5-year selection period, and 1-year out-
of-sample period. We run the optimization procedures for 20 simulations. Alpha values are averaged over the simulations and
also the out-of-sample years.N is the average number of unique trading rules found in each rolling period and each simulation.
We also report Mean (average value), Std. Dev. (standard deviation), Skew (skewness), Kurt (kurtosis), 25% (first quartile),
Median, and 75% (third quartile).

N Mean Std. Dev. Skew Kurt 25% Median 75%

Low volatility 333 �3.45 9.70 0.25 5.48 �9.28 �3.32 2.20
2 304 �6.34 17.57 0.45 4.08 �17.46 �8.19 4.67
3 271 �7.90 26.15 �0.13 3.20 �24.90 �8.09 9.83
4 285 �8.48 23.10 �0.53 3.44 �23.46 �6.02 7.87
5 292 �11.38 27.15 0.36 3.10 �30.12 �13.88 3.95
6 303 �10.16 34.01 0.83 5.01 �31.61 �11.82 6.64
7 323 �26.63 30.50 �0.28 3.27 �45.98 �26.52 �3.97
8 338 �22.66 41.98 �1.44 8.72 �39.61 �19.30 0.23
9 361 �9.96 34.50 0.38 3.27 �33.87 �11.41 11.64
High volatility 305 �47.43 43.20 �0.54 3.93 �71.45 �43.97 �18.98

TABLE 10

Other Factor Models

Table 10 reports the summary statistics of out-of-sample annualized alphas in percentage for three other asset pricingmodels:
CAPM (with market portfolio) in Panel A, Fama–French 3-factor model (with market, size, and value) in Panel B, and Fama–
French 5-factor model (withmarket, size, value, investment, and profitability) in Panel C. The set of trading rules is the same as
in Section II. Primary Set is a randomly generated set of technical trading rules. Final Set is the set of optimized trading rules
after applying the optimization procedure. Moving-Average Set is the set of moving-average strategies using lags of 3 to 100
days. The alpha values are computed on all of the NYSE/AMEX volatility-decile portfolios between Jan. 1, 1965, and Dec. 31,
2014.We use a rolling procedurewith 5-year training period, 5-year selection period, and 1-year out-of-sample period.We run
the optimization procedure for 20 simulations. A time series of alpha values is calculated by averaging alphas across the rules
and the simulations in each set. We report Mean (average value), Std. Dev. (standard deviation), Skew (skewness), Kurt
(kurtosis), 25% (first quartile), Median, and 75% (third quartile).

Sets Mean Std. Dev. Skew Kurt 25% Median 75%

Panel A. CAPM

Moving-average 7.28 23.96 1.25 6.72 �5.75 4.23 19.42
Primary �1.19 22.57 �0.32 7.40 �15.71 �4.00 7.24
Final 23.59 25.46 1.07 5.60 6.24 20.23 35.15

Panel B. Three Factor

Moving-average 4.96 22.43 0.58 4.74 �7.11 3.94 18.47
Primary �1.08 20.17 �0.74 8.95 �13.47 �3.39 6.07
Final 25.09 23.43 0.54 4.14 7.14 21.84 37.94

Panel C. Five Factor

Moving-average 7.33 33.67 1.50 7.06 �10.93 �0.16 19.74
Primary �1.41 13.64 0.24 4.24 �13.41 �5.49 2.35
Final 13.08 13.51 0.89 3.52 1.89 9.19 20.32
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C. Choice of Underlying Asset

The search procedure may possibly perform well because of the choice of the
underlying assets (10 volatility-decile portfolios). To eliminate this possibility, and
as additional out-of-sample tests, we repeat the analysis on the NYSE/NASDAQ/
AMEX size-decile portfolios and also on individual stocks.

1. Size-Decile Portfolios

We first report the Kendall rank correlation coefficients between size-decile
and volatility-decile portfolios to confirm that the size and volatility portfolios are
sufficiently unrelated. Panel A of Table 11 reports the correlation values.

The correlations between the portfolios are scattered between 0.31 and 0.78.
Overall, the rank correlation between the size-decile and volatility-decile portfolios
is low to moderate, so using the size deciles gives us a new setting for testing the
algorithm’s ability to recognize patterns.

We repeat the machine learning analysis on the size decile portfolios as the
alternative data set. We use the time period Jan. 1, 1965, to Dec. 31, 2014, and
deploy the same search procedure (5 years of training period, 5 years of selection
period, and 1 year of out-of-sample period). The results are presented in Panel B
of Table 11 for the out-of-sample years from Jan. 1, 1975, to Dec. 31, 2014.

Panel B of Table 11 provides the summary statistics for annualized alpha
values for the Primary Set, Final Set, and Moving Average Set. The Primary Set
again performs poorly, consistently generating negative alphas across the size-
decile portfolios. Themoving average strategy performance improves as wemove
toward smaller decile portfolios, consistent with the results of Han et al. (2013).
The Final Set performs better than the moving average strategies across the size
deciles. The last row in Panel B of Table 11 shows the results for a diversified
portfolio of rules across size decile portfolios. The average alpha for the Final
Set is higher than the benchmark values of Moving Average Set and the Primary
Set. While the Moving Average Set gains an average annualized alpha of 9.97%,
the improved rules in the Final Set generate an alpha of 32.32% on average
out-of-sample.

2. Individual Stocks

We also apply our algorithm to individual stocks. Because running our algo-
rithm is computationally expensive we focus on the largest 100 stocks each year
in the NYSE/AMEX/NYSE from 1965 to 2014 with prices higher than $5 (and
nonmissing prices over the last 10 years). Beside prices, we also use daily volume
as an input to the algorithm.

For individual stocks, we use two separate fitness functions: i) average excess
return and ii) Sharpe ratio. For average excess return, we set the fitness function
equal to average return in excess of risk-free rate if the t-statistics of the null
hypotheses with mean equal to zero is higher than 2; otherwise, the fitness function
is equal to -M (M is a large value). For the Sharpe ratio, we set the fitness function
equal to this ratio if the t-statistics of a null hypothesis of the average Sharpe ratio is
higher than 2 (we do this test by bootstrapping each rule’s daily returns); otherwise,
the fitness value is a large negative number (�M).
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TABLE 11

Size Decile Portfolios

Panel A of Table 11 reports the Kendall rank correlation coefficients between the NYSE/AMEX/NASDAQ size-decile portfolios
and the NYSE/AMEX volatility-decile portfolios from Jan. 1965 to Dec. 2014 and (Panel B) the summary statistics for out-of-
sample Fama–French 4-factor annualized alphas for the trading rules across size-decile portfolios. Primary Set is a randomly
generated set of technical trading rules. Final Set is the set of optimized trading rules after applying the optimization
procedure. Moving-Average Set is the set of moving-average strategies using lags of 3 to 100 days. The alpha values
are computed on all of the NYSE/AMEX volatility-decile portfolios between Jan. 1, 1965, and Dec. 31, 2014. We use a rolling
procedure with 5-year training period, 5-year selection period, and 1-year out-of-sample period. We run the optimization
procedure for 20 simulations. A time series of alpha values is calculated by averaging alphas across the rules and the
simulations in each set. We report N (average number of unique trading rules in each rolling period and simulation),
Mean (average value), Std. Dev. (standard deviation), Skew (skewness), Kurt (kurtosis), 25% (first quartile), Median, and
75% (third quartile).

Panel A. Correlation Matrix

Size Decile Portfolios

Large 2 3 4 5 6 7 8 9 Small

Volatility decile portfolios Low volatility 0.31 0.38 0.41 0.43 0.44 0.46 0.47 0.48 0.50 0.49
2 0.38 0.46 0.51 0.56 0.59 0.62 0.63 0.66 0.68 0.65
3 0.40 0.48 0.54 0.59 0.63 0.66 0.69 0.71 0.74 0.70
4 0.41 0.50 0.56 0.61 0.66 0.69 0.72 0.74 0.77 0.70
5 0.42 0.51 0.57 0.63 0.68 0.72 0.74 0.77 0.78 0.70
6 0.43 0.52 0.59 0.65 0.70 0.74 0.76 0.78 0.78 0.68
7 0.45 0.54 0.61 0.67 0.72 0.75 0.77 0.78 0.78 0.66
8 0.46 0.56 0.62 0.69 0.73 0.75 0.76 0.77 0.76 0.63
9 0.49 0.58 0.64 0.69 0.72 0.73 0.73 0.72 0.70 0.58
High volatility 0.53 0.59 0.61 0.61 0.60 0.58 0.56 0.55 0.53 0.43

Panel B. Summary Statistics

Sets N Mean Std. Dev. Skew Kurt 25% Median 75%

Large Moving-average 98 �6.21 19.98 �0.64 6.74 �17.64 �5.05 6.39
Primary 500 �0.45 13.57 0.07 8.52 �8.70 �1.50 4.72
Final 162 19.60 16.25 0.24 2.48 4.77 17.53 32.05

2 Moving-average 98 1.49 21.19 0.50 4.00 �10.80 1.30 15.26
Primary 500 �0.46 16.85 �0.17 5.11 �11.04 �1.66 7.06
Final 325 37.38 21.20 0.28 3.90 22.91 33.60 46.51

3 Moving-average 98 1.94 23.32 0.33 3.91 �10.76 1.39 16.52
Primary 500 �0.21 16.75 �0.12 4.80 �9.96 �0.68 8.14
Final 335 35.95 21.92 �0.05 3.41 21.75 35.92 48.79

4 Moving-average 98 3.68 24.03 0.38 3.80 �8.84 3.72 19.95
Primary 500 �0.04 16.71 �0.05 5.20 �9.42 �0.11 8.63
Final 328 34.82 23.11 0.15 3.31 17.91 32.62 47.02

5 Moving-average 98 5.77 23.50 0.48 4.42 �6.95 6.82 20.34
Primary 500 0.05 16.57 �0.02 5.08 �8.74 0.39 9.20
Final 333 31.58 23.43 0.31 3.61 15.57 29.93 42.87

6 Moving-average 98 9.27 23.72 0.61 4.31 �5.45 8.97 21.91
Primary 500 0.27 17.82 0.14 5.00 �8.75 1.00 11.03
Final 326 28.90 24.88 0.46 3.00 7.39 25.87 42.26

7 Moving-average 98 14.43 25.16 0.67 3.84 �2.07 12.32 30.26
Primary 500 0.53 20.80 0.19 5.17 �9.21 2.21 13.76
Final 373 30.63 24.96 0.21 2.71 10.72 28.28 45.98

8 Moving-average 98 19.01 26.40 1.48 6.75 2.50 15.43 31.37
Primary 500 0.79 23.61 0.32 6.95 �8.76 3.18 15.71
Final 407 32.12 27.21 1.48 6.00 12.74 24.83 44.43

9 Moving-average 98 24.6 28.3 1.7 8.9 5.5 21.9 38.4
Primary 500 1.1 27.7 0.4 7.7 �9.0 4.4 19.3
Final 412 34.6 28.5 1.6 7.5 14.7 30.1 47.0

Small Moving-average 98 25.78 33.44 0.62 5.65 6.20 19.04 38.58
Primary 500 1.12 30.12 0.20 5.72 �11.36 5.79 20.70
Final 370 31.03 30.07 0.97 5.80 12.38 27.14 46.02

Diversifying across assets Moving-average 9.97 26.73 0.87 6.26 �6.03 7.81 24.52
Primary 0.27 20.80 0.39 8.05 �9.43 0.70 11.51
Final 32.32 25.44 0.83 5.35 13.81 29.44 45.25
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In order to take the transaction costs into account, we use two data sets. First,
for the transaction costs from 2000 to 2014, we take the daily quoted spread from
the TAQ data set as the actual transaction cost for each stock. For transaction costs
prior to 2000, we use the fixed yearly average estimated bid–ask spreads on Dow
Jones stocks from Jones (2002). The transaction cost values for each year are
reported in Appendix B.16

For each stock, we apply our algorithm to search for the optimized rules in the
last 10 years (5-year training and 5-year selection period) and then compute the
1-year out-of-sample returns.We do 10 simulations for each of fitness function, that
is, average excess return and Sharpe ratio.

Figure 8 shows the out-of-sample results when maximizing the Sharpe ratio.17

Graph A of Figure 8 reports the average excess return and Graph B shows the
Sharpe ratio of optimized trading rules in the Final Set, averaged over rules, stocks,
and simulations, after transaction cost. The average excess returns after transaction
costs prior to 1990 are consistently positive, while after 1990, we see a decline in
out-of-sample performance. This decline is more apparent post-2000. Furthermore,
the out-of-sample Sharpe ratios after transaction costs are consistently positive and
higher than 0.5 close to 1990 and higher than zero up to 2005. Overall, the decline in
performance in both performance measures is evident post-2000.

In Figure 9, we report the CAPM and Fama and French 4-factor alphas (the
point estimate and the 95% confidence intervals) in each 5-year out-of-sample
interval from 1975. There are three deductions. First, our optimization process
results in consistent positive alphas prior to 2005. We observe that the optimized
rules result in risk-adjusted returns orthogonal towhat we could have achieved from
following market, size, value, and momentum portfolios. Second, alphas clearly
decline over time. For example, following our strategy between 1975 and 1979
would have earned an annualized 4-factor alpha of around 18% out-of-sample after
transaction costs, significant at 5% level. This reduces to about 1% between 2010
and 2014. These results contradict Bajgrowicz and Scaillet (2012) by showing that
in the past an investor could have enjoyed the post-transaction-cost profitability of
technical trading rules through time without prior knowledge of rewarding rules.

VI. Standard Machine Learning Algorithms

The genetic algorithm is flexible in adopting different objective functions
(e.g., in our article, we use genetic algorithm to maximize out-of-sample alpha
and also Sharpe ratio). In addition, the genetic algorithm does a simultaneous search

16In our optimization procedure to search for optimized trading rules, for all the years before 2000,
we use a fixed transaction cost of 27 bps (we choose 27 bps because it is the average transaction cost for
the sample of top 20% of stocks in the year 2000). For each stock from 2000 to 2014, we use a fixed
transaction cost equal to annual average quoted spread from TAQ data set. We fixed the transaction costs
in order to reduce the computational expensiveness of the optimization process. In our out-of-sample
results, presented in the article, we use the actual transaction costs as described above in the text. If from
2000 to 2014, the quoted spread is missing from the TAQ data set for a stock in a particular day, we use
the average quoted spread in that year for that stock.

17We report the results for average-return maximization in Appendix C. The results follow the same
overall pattern through time as in maximizing Sharpe ratio.
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of model structure and model parameters in nonlinear settings. Its stochastic nature
propels the search for a global optimum, avoiding convergence to local optima. On
the other hand, the standard machine learning models, such as KNN or Random
Forest, are directed by a loss-minimization objective function (minimizing the
prediction error or mean squared error) that limits the creative aspect of the search
process. Overall, the accommodating and the stochastic nature of the genetic
algorithm in finding optimum solutions gives it an edge in the optimization process.
This section compares the genetic algorithm to the standard machine learning
models in the search for profitable trading rules.

We use several machine learning algorithms for detecting past price trends for
future trading. These standardmachine learning algorithms are the SVMþLogistic

FIGURE 8

Performance Through Time: Individual Stocks

GraphAof Figure 8 reports the average excess return andGraphB reports the Sharpe ratio in 1-year out-of-sample periods for
the set of optimized trading rules across 100 highly capitalized stocks from NYSE/AMEX/NYSE from 1975 to 2014. For each
out-of-sample year and each stock, we use the last 10 years (5-year training period and 5-year selection period) to search for
optimized trading rules. The fitness value is set as the Sharpe ratio if the t-statistics of a null hypothesis of the average Sharpe
ratio is higher than 2 (we do this test by bootstrapping each rule’s daily returns); otherwise, the fitness value is a large negative
number (�M). We repeat the optimization procedure for each stock for 10 simulations. The results are averaged over stocks,
trading rules, and simulations. We take the transaction costs into account by using the yearly fixed estimates from Jones
(2002) prior to 2000 and actual daily quoted bid–ask spread from the TAQ data set from 2000 to 2014.
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(Regularized SVM þ Logistic Regression), Decision Tree, KNN, Random Forest,
an ensemble of machine learners (Ensemble), and Long Short-Term Memory Net-
work (LSTM Network). Moreover, as a robustness check, we also include a random
investment strategy in which we randomly create signals each day out-of-sample.

As the dependent variable, for each day t, we create a zero–one variable that
is equal to 1 if that day’s return is positive, and zero otherwise. As the set of
features for the Regularized SVM þ Logistic Regression, Decision Tree, KNN,
Random Forest, and Ensemble methods, we use functions of prices and returns.
This feature set includes average return, volatility, skewness, kurtosis, and auto-
correlation in the last 10, 25, 50, and 100 days (in total, 20 features).18 As input to
the LSTM network, we use the last 100 days of prices that is similar to the input
to the genetic algorithm.

For each out-of-sample year, we use the previous 10 years for training the
machine learning algorithm (with 10-fold cross-validation). We use 10 NYSE/
AMEX volatility decile portfolios from 1965 to 2017. In each year from 1975,
we use the previous 10 years to train the machine learning algorithms. Using the
trained algorithm, we predict the buy and sell signals in the out-of-sample period.
This is implemented for each volatility decile portfolio. In computing the out-of-
sample returns, we assume a fixed 5-bps transaction cost.We calculate out-of-sample
alpha for each year and each volatility decile portfolio and report the equal-weighted
alpha across the portfolios.

FIGURE 9

Alphas Through Time: Individual Stocks

GraphAof Figure 9 reports theCAPMalpha andGraphB reports the 4-factor alpha for 5-year out-of-sample periods for the set
of optimized trading rules across 100 highly capitalized stocks from NYSE/AMEX/NYSE from 1975 to 2014. For each out-of-
sample year and each stock, we use the last ten years (5-year training period and 5-year selection period) to search for
optimized trading rules. The fitness value is set as the Sharpe ratio if the t-statistic of a null hypothesis of the average Sharpe
ratio is higher than 2 (we do this test by bootstrapping each rule’s daily returns); otherwise, the fitness value is�M (M is a large
value). We take the transaction costs into account by using the yearly fixed estimates from Jones (2002) prior to 2000 and
actual daily quoted spread from the TAQ data set from 2000 to 2014. We repeat the optimization procedure for each stock for
10 simulations. For each of the 5-year out-of-sample periods, we compute the daily post–transaction cost average excess
return across stocks, rules, and simulations, and compute the annual CAPM and 4-factor alphas. The plot shows the point
estimates and the 95% confidence intervals.

–10

0

10

20

30

C
A

P
M

 A
lp

h
a
 (
in

 p
e
rc

e
n
ta

g
e
s
)

–10

0

10

20

F
o

u
r 

F
a
c
to

r 
A

lp
h
a
 (
in

 p
e
rc

e
n
ta

g
e
s
)

1975–1979
1985–1989
1995–1999
2005–2009

1980–1984
1990–1994
2000–2004
2010–2014

1975–1979
1985–1989
1995–1999
2005–2009

1980–1984
1990–1994
2000–2004
2010–2014

Graph A. CAPM Alpha Graph B. FF4 Alpha

18We also test two other individual feature sets. One is similar to the feature set in the genetic
algorithm that is the last 100 days of prices. Another feature set includes the last 100 days of prices
besides the functions of prices (average return, volatility, skewness, kurtosis, and autocorrelation in the
last 10, 25, 50, and 100 days). The best out-of-sample performance relative to the genetic algorithm is
obtained when using only the functions of prices as the feature set.
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We briefly describe the machine learning algorithms. Linear classification
models (SVM þ Logistic): In this method, the algorithm chooses between various
linear classification models, that is, regularized support vector machines (SVM)
and logistic regression models. We optimize hyperparameters using 10-fold cross-
validation and select the model with the lowest classification error. Decision tree:
The algorithm fit a binary classification decision tree (a tree-like model of deci-
sions) to the training data. The optimal leaf size for the decision trees is estimated
using 10-fold cross-validation. KNN: This algorithm fits a k-nearest neighbor
classification model to the training data. The number of nearest neighbors is
optimized using 10-fold cross-validation. Random forest: This algorithm trains
decision trees to bootstrapped samples of training data and forecast using a forest
of decision trees. The hyper-parameters are optimized using 10-fold cross-validation.
An ensemble of machine learners: In this machine learning approach, we use the
ensemble of classification methods that include boosting besides bagging of
classification trees (i.e., AdaBoost, Random Forest). We choose the model with
the lowest classification error. The hyper-parameters are optimized using 10-fold
cross-validation. Long Short-Term Memory (LSTM) network: We use an input
sequence of size 100 (last 100 days of prices), an LTSM layer with 100 hidden
units, a fully connected layer of size 2, followed by a softmax layer and a
classification layer (buy and short-selling).

Figure 10 presents the out-of-sample 4-factor abnormal returns for the returns
net-of-cost. The results follow a similar pattern as the genetic algorithm over time.
For all of the standard machine learning algorithms, the out-of-sample alphas
show promising performance in the early years (the 1970s), and the performance
decreases through time. Among the algorithms, the LSTM Network and also SVM
þ Logistic linear algorithm show promising performance before 2000 with alphas
ranging up to 60% annually net-of-cost. However, the out-of-sample performance
depreciates post-2000 which matches nicely with the findings of the genetic algo-
rithm. Overall, the results across all of the machine learning algorithms point to an
increase in market efficiency over time.

Furthermore, the placebo test of random investing results in consistent nega-
tive out-of-sample alphas through time. This shows that investing via the machine
learning algorithm is not the same as blindly investing following buy and sell
signals and furthermore, it indicates that the machine learning algorithms create
value over time.

Next, we compare the performance of the standard machine learning algo-
rithms to the genetic algorithm. To do so, we regress the genetic algorithm’s out-of-
sample returns on the standard machine learning algorithms’ returns when solving
the same problem: investing in the 10 NYSE/AMEX volatility decile portfolios
from 1975 to 2014.

Since we regress the genetic algorithm’s out-of-sample return on different
standard machine learning algorithm’s returns, a positive and significant intercept
(generalized alpha) translates into better performance of the genetic algorithm to
the standard machine learning algorithm. The results in Table 12 clearly show the
better performance of the genetic algorithm to most of the standard machine
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learning algorithms. For example, the genetic algorithm earns a generalized alpha
of 2.62% (t = 3.24) relative to the SVM þ Logistic algorithm. Moreover, among
the standard machine learning algorithms, LSTM network shows net-of-cost
performance that is comparable to the genetic algorithm (with a generalized alpha
of 1.56% (t = 1.17)).19

FIGURE 10

Out-of-Sample Fama–French 4-Factor Alpha

Figure 10 reports the Fama–French 4-factor alphas for five machine learning algorithms and a random investment strategy.
The machine learning algorithms are SVMþ Logistic, Decision Tree, KNN, Random Forest, Ensemble Methods and LSTM
Network. In the Random Investment strategy, we randomly assign a signal in each out-of-sample year. We use a 10-year
trainingperiod anda 1-year out-of-sample period. The results correspond to the out-of-sample period.As the set of features for
the Regularized SVMþ Logistic Regression, Decision Tree, KNN, Random Forest, and Ensemble, we use functions of prices
and returns. This feature set includes average return, volatility, skewness, kurtosis, and autocorrelation in the last 10, 25,
50, and 100 days (in total, 20 additional features). As input to the LSTM network, we use the last 100 days of prices, similar to
the input to the genetic algorithm. We use 10 NYSE/AMEX volatility decile portfolios from 1965 to 2017. We use 10-fold cross-
validation to train the machine learning algorithms, assume a fixed transaction cost of 5 bps, and use our algorithm output
signals to engage in buying and short-selling the underlying assets. We apply each machine learning algorithm to each
volatility decile portfolio and compute the out-of-sample alphas as an equal-weighted portfolio of alphas across volatility
decile portfolios.
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19One key factor in determining the performance of the standard machine learning methods is the
input feature set. The genetic algorithm has the feature selection procedure built-in in its process; while,
for the standard machine learning models, we should make sure the right features are chosen. We try to
address this concern by selecting functions of prices and returns for the standard machine learning
models that are comparable to the input features of the genetic algorithm; however, we should note that
there is a chance that we missed on selecting the appropriate features.
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VII. Conclusion

Recent literature provides contradictory evidence on the profitability of tech-
nical trading rules. Some identify technical trading profitability (e.g., Sullivan,
Timmermann, andWhite (1999)) while others do not (e.g., Bajgrowicz and Scaillet
(2012)). A recent study by Bajgrowicz and Scaillet (2012) argues that an investor
could have never been able to pick the technical trading rules ex ante that are
profitable out-of-sample after transaction costs. In this article, we challenge this
argument with machine learning algorithms that aim to find technical trading rules
that are profitable out-of-sample after transaction costs. First, our results show that
the technical trading could have been profitable given the availability of computa-
tional power. This is evident in our results for early years of applying our machine
learning algorithm, and it is in line with Dugast and Foucault’s (2020) theoretical
finding that better computing power raises the average quality of predictors and
hence profitability.

Second, we show that the technical trading was profitable. This is demon-
strated in our results by positive out-of-sample abnormal returns between 1995 and
2005. Third, we show that the technical trading found by our machine learning
algorithm is much less profitable in recent years. This is apparent in our results from
the algorithms’ poor performance after 2005. This is also in line with Dugast and
Foucault’s (2020) conclusion that higher computing power increases price infor-
mativeness and results in lower profitability of predictors.

Our article also provides a comparison of evolutionary genetic algorithm to the
standard loss-minimization machine learning algorithms in finding profitable tech-
nical trading signals. The out-of-sample results show that the genetic algorithm’s
flexibility in setting up the search space, the economic objective, and the add-in
constraints give it an edge relative to the standard machine learning algorithms such
as decision trees and random forests.

TABLE 12

Genetic Algorithm and Standard Machine Learning Algorithms

Table 12 reports the intercepts (generalized alpha) and slopes from regressing the net-of-cost out-of-sample daily portfolio
return of genetic algorithm versus common machine learning algorithms (SVM þ Logistic, Decision Tree, KNN, Random
Forest, Ensemble of machine learners and, LSTM network). We use 10 NYSE/AMEX volatility decile portfolios from 1965 to
2014. We use 10-fold cross-validation to train the standard machine learning algorithms. We assume a fixed transaction
cost of 5 bps, and use the algorithms’ output signals to engage in buying and short-selling the underlying assets. The out-
of-sample return is computed as the equal-weighted average of out-of-sample returns across the volatility decile
portfolios. The intercept (generalized alpha) is annualized and in percentages. The slope is in percentages. The values
in parentheses are t-statistics.

Intercept (Generalized Alpha) Slope

SVM þ Logistic 2.62 �0.04
(3.24) (�0.09)

Decision tree 2.53 �0.36
(2.26) (�0.60)

KNN 2.42 0.12
(3.24) (0.11)

Random forest 2.54 �0.29
(3.18) (�0.42)

Ensemble 2.51 �0.72
(4.18) (�0.95)

LSTM network 1.56 0.19
(1.17) (0.92)

1464 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109022001120  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109022001120


Our article also adds to the literature on uncovering anomalies. We show that
the evolutionary genetic algorithm is useful in searching for time series anomalies.
This complements the study by Yan and Zheng (2017), which searches for cross-
sectional anomalies based on accounting information. Applying our algorithm to
search for time-series 4-factor alphas in the NYSE/AMEX volatility-decile portfo-
lios, we show that it is possible to find time-series anomalies that perform better than
a benchmark set of moving-average strategies. Our results are also in line with
recent evidence on the deterioration of anomalies’ performance through time (e.g.,
Linnainmaa and Roberts (2018)). More generally, this article concerns the appli-
cation of big data exploration in financial economics. Big data analysis comes with
the potential for data-snooping, p-hacking, and data-dredging (see, e.g., Harvey
(2017)). We show that big data paired with sophisticated computational techniques
can be informative in financial economics.

Appendix A. Crossover Operation

The goal of the crossover operation in genetic algorithm is to generate two new
offsprings with shared characteristics of their parents. We explain the operation with
an example. Suppose that we randomly select two trading rules from the existing
population, labeled Parent 1 and Parent 2 (Figure A1). In the cross-over operation, we
substitute the left branch on the buy-side of Parent 1 with the left branch of the sell-side
of Parent 2. The substitution generates two new offsprings added to the existing
population. The offsprings are illustrated in Figure A2.

The trading rules (shown in Figure 1) are chosen randomly from the existing
population for the purpose of cross-over operation. We substitute the buy-side branch
of Parent 1 to the sell-side branch of Parent 2. The resulting trading results, offsprings,
are shown in Figure A2.
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FIGURE A1

Sample Trading Rules
Figure A1 shows the crossover operation between two trading rules (parent 1 and parent 2).
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Appendix B. Average Estimated Bid–Ask Spreads on
Dow Stocks

FIGURE A2

Offsprings from the Crossover Operation
Figure A2 presents the resulting trading rules (labeled as offsprings) from

crossover operation on the trading rules (parents) in Figure A1.
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TABLE B1

Bid–Ask Spread

Table B1 reports the yearly bid–ask spread on Dow Jones Industrial stocks from Jones (2002) between 1975 and 1999. The
values are in basis points (bps).

Year Bid–Ask Spread (bps)

1975 70
1976 60
1977 53
1978 50
1979 52
1980 70
1981 55
1982 50
1983 45
1984 42
1985 62
1986 70
1987 58
1988 50
1989 55
1990 65
1991 50
1992 42
1993 40
1994 38
1995 36
1996 30
1997 25
1998 20
1999 21
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Appendix C. Individual Stocks: Averages Excess Return
as Objective Function

FIGURE C1

Performance Through Time: Individual Stocks

Figure C1 reports the average excess return (Graph A) and Sharpe ratio (Graph B) for 1-year out-of-sample periods for the set
of optimized trading rules across 100 highly capitalized stocks from NYSE/AMEX/NYSE from 1965 to 2014. For each out-of-
sample year and each stock, we use the last 10 years (5-year training period and 5-year selection period) to search for
optimized trading rules. We set the fitness value equal to average return in excess of risk-free rate if the t-statistic of the null
hypotheses with mean equal to zero is higher than 2; otherwise, the fitness function is equal to -M (M is a large value). The
results are averaged over stocks and trading rules. We take the transaction costs into account by using the yearly fixed
estimates from Jones (2002) prior to 2000 and the actual daily quoted spread from the TAQ data set from 2000 to 2014.
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Appendix D. Performance in Population and Data Deciles

FIGURE C2

Alphas Through Time: Individual Stocks

Figure C2 reports the CAPM alpha (Graph A) and 4-factor alpha (Graph B) for 5-year out-of-sample periods for the set of
optimized trading rules across 100 highly capitalized stocks from NYSE/AMEX/NYSE from 1965 to 2014. For each out-of-
sample year and each stock, we use the last 10 years (5-year training period and 5-year selection period) to search for
optimized trading rules. We set the fitness value equal to average return in excess of risk-free rate if the t-statistic of the null
hypotheses with mean equal to zero is higher than 2; otherwise, the fitness function is equal to -M (M is a large value). We take
the transaction costs into account by using the yearly fixed estimates from Jones (2002) prior to 2000 and actual daily quoted
spread from the TAQ data set from 2000 to 2014. For each of the 5-year out-of-sample periods, we compute the average
excess return across stocks for each day (post–transaction cost), and compute the annual CAPM and 4-factor alphas. The
plot shows the point estimates and the 95% confidence intervals.
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FIGURE D1

Annual Average Alphas in Population and Data Deciles

Figure D1 presents the average 4-factor Fama–French annualized alphas with a 5 bp transaction cost adjustment. We define
“Population Decile” as the volatility decile used by the genetic algorithm to search for final rules and also “Data Deciles” as the
volatility decile in which we evaluate the out-of-sample performance of final rules. In each out-of-sample year, we search for a
set of optimized trading rules by applying our algorithm to each of the NYSE/AMEX volatility-decile portfolios (the Population
Deciles) between Jan. 1, 1965, and Dec. 31, 2014. We use a rolling procedure with 5-year training period, 5-year selection
period, and 1-year out-of-sample period. In applying each trading rule, as we move between a long position in the asset,
holding the risk-free asset, and a short position in the asset, we subtract a transaction cost of 5 bps. We run the optimization
procedure for 20 simulations. For the set of rules in each population decile, we compute the average annualized alpha net of
cost in different Data Deciles.
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Appendix E. Computational Power and the Out-of-Sample
Alphas

To further examine the extent to which the increase in computing power is related
to the out-of-sample performance of our machine learning algorithm, we examine the
relationship between a number of transistors on integrated circuits (transistor count) – a
measure of computational power – and the out-of-sample alphas.

E.1. Number of Transistors on Integrated Circuits (transistor count)

According toMoore’s law, the number of transistors on integrated circuits doubles
approximately every 2 years. This measure captures the rise of computational power
through time with observations starting from 1959 (Moore’s original publication was
in 1965).

Figure E1 shows the transistor count in relation to the out-of-sample alphas earned
by our machine-learning algorithm. Clearly, as we move forward in time, the compu-
tational power, measured by the number of transistors per microprocessor increases
while the out-of-sample alphas decreases. The correlation between the out-of-sample
alphas and the transistor count is �0.39 (�0.04).

FIGURE E1

Performance and Transaction Cost

FigureE1presents 4-factor Fama–Frenchannualized alphas through timewith a 5-bps transaction cost. In eachout-of-sample
year, we search for a set of optimized trading rules by applying our algorithm to each of the NYSE/AMEX volatility-decile
portfolios between Jan. 1, 1965, and Dec. 31, 2014. We use a rolling procedure with 5-year training period, 5-year selection
period, and 1-year out-of-sample period. In applying each trading rule, as we move between a long position in the asset,
holding the risk-free asset, and a short position in the asset, we subtract a transaction cost of 5 bps. We run the optimization
procedure for 20 simulations. In each out-of-sample year, we compute an average of Sharpe ratio values over the rules,
volatility decile portfolios, and simulations. The red line shows the transistor count, the number of transistors per micropro-
cessor in each year.
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