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Harmonic Polynomials Associated With
Reflection Groups
Yuan Xu

Abstract. We extend Maxwell’s representation of harmonic polynomials to h-harmonics associated to a reflec-
tion invariant weight function hk. LetDi , 1 ≤ i ≤ d, be Dunkl’s operators associated with a reflection group.
For any homogeneous polynomial P of degree n, we prove the polynomial |x|2γ+d−2+2nP(D){1/|x|2γ+d−2} is
a h-harmonic polynomial of degree n, where γ =

∑
ki andD = (D1, . . . ,Dd). The construction yields a

basis for h-harmonics. We also discuss self-adjoint operators acting on the space of h-harmonics.

1 Introduction

Among many properties satisfied by the harmonic polynomials, there is Maxwell’s theory
of poles, which states that for any multiindex α ∈ Nd, |α|1 = α1 + · · · + αd = n, the
polynomials |x|2n+d−2∂α{|x|−d+2} is a harmonic polynomial of degree n in Rd, where ∂α =
∂α1

1 · · · ∂
αd
d and |x| is the usual Euclidean norm of x ∈ Rd ([8, p. 251] and [9, Chapter 4]).

Moreover, it is also known that for any η ∈ Sd−1, the sphere shell in Rd, and d ≥ 3,

|x|2n+d−2〈η, ∂〉n{|x|−d+2} = (−1)n|x|nC((d−2)/2)
n (〈x ′, η〉),(1.1)

where x = rx ′ with r = |x|, 〈x, y〉 denote the usual inner product of Rd and C(λ)
n is the

Gegenbauer polynomial of degree n with index λ. This formula is called Maxwell’s repre-
sentation in [10, p. 69], we note that the sign (−1)n is missing in [10]. Since the right hand
side of (1.1) is the zonal polynomial, the collection of Maxwell’s representation consists of
a basis of harmonic polynomials.

The purpose of this paper is to extend Maxwell’s construction to h-harmonics devel-
oped by Dunkl [3–6] recently. The theory of h-harmonics is analogous to the theory of
ordinary harmonics, it uses finite reflection groups in place of orthogonal group in the
classical theory. The role of the partial differentials is replaced by a family of commuta-
tive differential-difference operators, called Dunkl’s operators, and the surface measure is
replaced by measures invariant under the reflection groups. Let G be a finite reflection
group on Rd with the set R+ = {vi : i = 1, 2, . . . ,m} of positive roots; assume that
|vi | = |v j | whenever σi is conjugate to σ j in G, where σi = σvi , 1 ≤ i ≤ m, are re-
flections with respect to vi . For a nonzero vector v ∈ Rd the reflection σv is defined by
xσv := x − 2(〈x, v〉/|v|2)v, x ∈ Rd. Then G is a subgroup of the orthogonal group gener-
ated by the reflections {σi : 1 ≤ i ≤ m}. Let k be a multiplicity function defined on R+,
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which is an m-tuple of real numbers ki , 1 ≤ i ≤ m, such that ki = k j whenever σi is con-
jugate to σ j in G. The differential-difference operators, Di (Dunkl’s operators), associated
to G and k are defined by ([4])

Di f (x) := ∂i f (x) +
m∑

j=1

k j
f (x)− f (xσ j)

〈x, v j〉
〈v j , ei〉, 1 ≤ i ≤ d,(1.2)

where ∂i is the ordinary partial derivative with respect to xi and e1, . . . , ed are the standard
unit vectors of Rd. It is proved in [4] that D1, . . . ,Dd commute, that is, DiD j = D jDi

for all 1 ≤ i, j ≤ d. The h-Laplacian, which plays the role similar to that of the ordinary
Laplacian, is defined by

∆h = D2
1 + · · · + D2

d.(1.3)

The fundamental relation between the h-Laplacian and the orthogonality is as follows. For
ki ≥ 0, 1 ≤ i ≤ m, we consider the inner product defined on polynomials

( f , g)hk =

∫
Sd−1

f (x)g(x)h2
k(x) dω, hk(x) :=

m∏
i=1

|〈x, vi〉|
ki .(1.4)

The function hk is a positively homogeneous G-invariant function of degree γ, where for
abbreviation, we introduce the index γ =

∑m
i=1 ki . Let Pn := Pd

n denote the space of
homogeneous polynomials of degree n in x = (x1, . . . , xd). A polynomial P ∈ Pd

n is
orthogonal to all polynomials of degree less than n with respect to ( f , g)hk if and only if
∆hP = 0 ([3]). The elements of Hh

n := Pd
n ∩ ker∆h are called h-harmonics, and Hh

n is the
space of h-harmonic polynomials of degree n. When hα = 1 the h-harmonics become the
ordinary harmonics, which satisfy the classical Laplacian equation∆P = 0. The dimension
of Hh

n is

dim Hh
n = dim Pn − dim Pn−2 =

(
n + d − 1

n

)
−

(
n + d− 3

n− 2

)
.

For the general theory and many important properties of h-harmonics, we refer to [3–7]
and the references there. There is also the connection to the multivariate orthogonal poly-
nomials associated to the quantum Calogero models. We refer to [1, 2] and the references
therein.

We are interested in finding a basis for h-harmonics. We extend Maxwell’s construction
to h-harmonics in Section 2, and discuss the operators acting on the space of h-harmonics
in Section 3, where we use h-harmonics associated with the symmetric group Sn as an
example.

2 Construction of h-Harmonics

We start with the following two basic formulae about the action of Dunkl’s operators and
h-Laplacian:

Lemma 2.1 Let λ be a real number and g ∈ Pn. Then

Di(|x|
λg) = λxi |x|

λ−2g + |x|λDig,(2.1)
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and

∆h(|x|λg) = 2λ(d/2 + λ/2− 1 + n + γ)|x|λ−2g + |x|λ∆hg,(2.2)

where if λ < 0, then both of these identities hold at Rd \ {0}.

Proof Since |x|λ is invariant under the action of the reflection group, it follows from the
definition of Di in (1.2) that

Di(|x|
λg) = ∂(|x|λ)g + |x|λDig,

from which (2.1) follows. The identity (2.2) can be proved using (2.1). For λ = 2m, m an
integer, (2.2) also appeared in [3, Lemma 1.9]; the proof there holds for all λ real.

Definition 2.2 For any α ∈ Nd, We define homogeneous polynomials Hα by

Hα(x) := |x|2γ+d−2+2|α|1Dα{|x|−2γ−d+2},(2.3)

where D = (D1, . . . ,Dd) and Dα = Dα1
1 · · ·D

αd
d .

The fact that Hα is a homogeneous polynomial, in fact, an h-harmonic, is proved in the
following theorem. Let us introduce the notation that ei = (0, . . . , 1, . . . , 0), 1 ≤ i ≤ d,
where 1 is at the i-th position.

Theorem 2.3 For each α ∈ Nd, Hα is an h-harmonic polynomial of degree |α|1, that is,
Hα ∈ Hh

|α|1
. Moreover, Hα satisfy the recursive relation

Hα+ei (x) = −(2γ + d − 2 + 2|α|1)xiHα(x) + |x|2DiHα.(2.4)

Proof First we prove that Hα is a homogeneous polynomial of degree |α|1. We use induc-
tion on n = |α|1. Clearly H0(x) = 1. Assume that Hα has been proved to be a homoge-
neous polynomial of degree n for |α|1 = n. Using the identity (2.1) it follows that

DiHα = (2γ + d− 2 + 2|α|1)xi |x|
2γ+d−4+2|α|1Dα{|x|−2γ−d+2}

+ |x|2γ+d−2+2|α|1DiD
α{|x|−2γ−d+2},

from which the recursive formula (2.4) follows from the definition of Hα. Since Di : Pn 
→
Pn−1, it follows from the recursive formula that Hα+ei is a homogeneous polynomial of
degree n + 1 = |α|1 + 1.

Next we prove that Hα is an h-harmonic, that is, we show that ∆hHα = 0. Setting
λ = −2n− 2γ − (d − 2) in the identity (2.2), we conclude that

∆h{|x|
−2n−2γ−d+2g} = |x|−2n−2γ−(d−2)∆hg,

for g ∈ Pn. In particular, for g = 1 and n = 0, we conclude that ∆h(|x|−2γ−d+2) = 0 for
x ∈ Rd \ {0}. Hence, setting g = Hα, |α|1 = n and using the fact that D1, . . . ,Dd are
commuting, it follows that

∆hHα = |x|
2n+2γ+(d−2)∆hD

α{|x|−2γ−d+2}

= |x|2n+2γ+(d−2)Dα∆h{|x|
−2γ−d+2} = 0,
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which holds for all x ∈ Rd since Hα is a polynomial.

If γ = 0, then the h-harmonics reduce to the ordinary harmonics. The definition of Hα
is then reduced to Maxwell’s construction of harmonics.

It turns out that Hα is related to the projection operator projHh
n

: Pn 
→ Hh
n. In [3]

Dunkl proved that the projection operator is given by

projHh
n

P =

[n/2]∑
j=0

1

4 j j!(−γ − n + 2− d/2) j
|x|2 j∆

j
hP,(2.5)

where the normalization is determined by the fact that projHh
n

Q = Q for Q ∈ Hh
n.

Theorem 2.4 For α ∈ Nd and |α|1 = n,

Hα(x) = (−1)n2n(γ − 1 + d/2)n projHh
n
{xα}.(2.6)

Proof We use induction on n = |α|1. The case n = 0 is evident. Suppose that the equation
has been proved for all α such that |α|1 = n. By the definition of Hα we have

Dα{|x|−2γ−(d−2)} = an|x|
−2γ−2n−(d−2)

[n/2]∑
j=0

1

4 j j!(γ − n + 2− d/2) j
|x|2 j∆

j
h{x
α},

where an = (−1)n2n(γ − 1 + d/2)n. Applying Di to this equation and using the identity

(2.1) with g = ∆ j
h{x
α}, we conclude, after carefully computing the coefficients, that

DiD
α{|x|−2γ−(d−2)}

= an(−2γ − 2n− d + 2)|x|−2γ−2n−d

×

[(n+1)/2]∑
j=0

1

4 j j!(γ − n + 2− d/2) j
|x|2 j[xi∆

j
h{x
α} + 2 j∆ j−1

h Di{x
α}],

where we have also used the fact that Di commutes with∆h. Now, using the identity

∆
j
h{xi f (x)} = xi∆

j
h f (x) + 2 jDi∆

j−1
h f (x), j = 1, 2, 3, . . . ,

(see, for example, [4, p. 173]) and the fact that an+1 = an(−2γ − 2n− d + 2), we conclude
that Hα+ei = an+1 projHh

n+1
{xα+ei}, which completes the induction procedure.

An immediate consequence of this theorem is the following corollary.

Corollary 2.5 The projection operator proj : Pn 
→ Hh
n is given by,

projHh
n

P(x) =
1

(−1)n2n(γ − 1 + d/2)n
|x|2n+2γ+d−2P(D){|x|−2γ−d+2}.(2.7)
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The theorem shows that there is a one-to-one correspondence between xα and Hα. Since
every h-harmonic in Hh

n can be written as a linear combination of xα with |α| = n, we
conclude that the set {Hα : |α|1 = n} contains a basis of Hh

n. However, the h-harmonics
in this set are not linearly independent, since there are dim Pn of them which is more than
dim Hh

n. Nevertheless, it is not hard to derive a basis from this set of Hα. In fact, the linearly
dependent relations among the set {Hα : |α|1 = n} are given by

Hβ+2e1 + · · · + Hβ+2ed = |x|
2n+2γ+d−2Dβ∆h{|x|

−2γ−d+2} = 0

for each β ∈ Nd such that |β|1 = n − 2. There are exactly dim Pn−2 = #{β ∈ Nd : |β|1 =
n− 2} linear dependent relations. For each of these relations, we can exclude one polyno-
mial from the set {Hα : |α|1 = n}. The remain dim Hh

n (= dim Pn−dim Pn−2) harmonics
still span Hh

n; hence, they form a basis for Hh
n. We note that the basis is not unique, since

we can exclude any one of the polynomials Hβ+2e1 , . . . ,Hβ+2ed for each dependent relation.
For example, we may exclude Hβ + 2ed for all |β|1 = n− 2 from {Hα : |α|1 = n} to obtain
a basis. We summarize the results in the following.

Corollary 2.6 The set {Hα : |α|1 = n} contains a basis of Hh
n. Moreover, one particular

basis can be taken as {Hα : |α|1 = n, αd = 0, 1}.

For example, if n = 2 and d = 3, then a basis of Hh
2 consists of polynomials

{H1,1,0, H1,0,1, H0,1,1, H2,0,0, H0,2,0}.

Such a basis for Hh
n, however, is not an orthonormal one; that is, although Hα are orthog-

onal to polynomials of lower degree with respect to the inner product (1.4), they are not
orthogonal to each other.

We consider the extension of Maxwell’s representation (1.1) of the ordinary harmonics
in the following. We need the intertwining operator V between the commuting algebra of
differential operators and the algebra of Dunkl’s operators. The intertwining operator V is
the unique linear operator defined by

VPn ⊂ Pn, V 1 = 1, DiV = V∂i, 1 ≤ i ≤ d.

In [5], Dunkl introduced the kernel Kn(x, y) defined by

Kn(x, y) = Vx(〈x, y〉n/n!),

where Vx means that V is acting on the variable x. There are many properties of Kn, for
example, Kn(x, y) = Kn(y, x) and DiKn(x, y) = yiKn−1(x, y). In [5], it is shown that the
reproducing kernel of the space Hh

n is given by

Ph
n(x, y) = 2n(γ + d/2)n

[n/2]∑
j=0

1

4 j j!(−γ − n + 2− d/2) j
|x|2 jKn−2 j(η, x).

Since γ = 0 implies that V = id and that h-harmonics becomes the ordinary harmonics,
the following theorem gives the analogy of Maxwell’s representation for h-harmonics.

Theorem 2.7 For η ∈ Sd−1, x = |x|x ′ ∈ Rd,

|x|2n+2γ+(d−2)Kn(η,D){|x|−2γ−d+2} = (−1)n|x|nV [C(γ+(d−2)/2)
n (〈·, η〉)](x ′).
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Proof From the equation DiKn(x, y) = yiKn−1(x, y), it follows that ∆hKn(x, η) =
Kn−2(x, η) since |η|2 = 1. Together with Theorem 2.4 and the formula (2.5), we conclude
that

|x|2n+2γ+(d−2)Kn(η,D){|x|−2γ−d+2}

= (−1)n2n(γ − 1 + d/2)n projHh
n

Kn(η, x)

= (−1)n2n(γ − 1 + d/2)n

[n/2]∑
j=0

1

4 j j!(−γ − n + 2− d/2) j
|x|2 jKn−2 j(η, x)

= (−1)n γ − 1 + d/2

n + γ − 1 + d/2
Ph

n(η, x)

On the other hand, we showed in [14] that for |x ′| = |η| = 1, we have

Ph
n(x ′, η) =

n + γ − 1 + d/2

γ − 1 + d/2
V [C(γ+(d−2)/2)

n (〈·, η〉)](x ′).

Since Ph
n(x, η) ∈ Hh

n, it is homogeneous in x; hence, we can factor |x|n out and use the
above equation to finish the proof.

The importance of the intertwining operator is that it allows to transform certain prop-
erties of the ordinary harmonics to h-harmonics. The above theorem gives just one more
example. At this moment, the explicit formula of V is known only in the case of G = Zd

2

([13], and [5] for d = 1) and S3 ([6]). Recently, the operator has been proved to be positive
by M. Rösler in [12], confirming a conjecture by Dunkl.

For ordinary harmonics, more can be said about the representation. For example, it is
known ([8, p. 251] or [9, p. 134]) that for d = 3,

|x|n+1(∂1 + i∂2)n−m∂m
3 {|x|

−1} = (−1)n−m(n−m)!e±mφPm
n (cos θ),

leads to an orthonormal basis for the spherical harmonics, where Pm
n are the the associated

Legendre’s functions, ∂i = ∂/∂xi , and we use the standard spherical coordinates x1 =
r sin θ sinφ, x2 = r sin θ cosφ, x3 = r cos θ, where r2 = x2

1 + x2
2 + x2

3. However, we do
not know what is a proper analogy of this formula for h-harmonics. In fact, we are not
aware any construction of orthonormal basis for Hh

n at this point. In order to construct an
orthonormal basis from Hα we need to be able to compute the inner product (Hα,Hβ)hk for
|α|1 = |β|1, which turns out to be difficult. One immediate consequence of the recursive
relation (2.4) is the following result.

Lemma 2.8 If both p and q are elements of Hh
n, then∫

Sd−1

xi pqh2 dω = 0, 1 ≤ i ≤ d.(2.8)

Proof Consider Hα and Hβ with |α|1 = |β|1 = n, it follows from (2.4) that

(2γ + d − 2 + 2n)

∫
Sd−1

xiHαHβh2 dω =

∫
Sd−1

DiHαHβh2 dω −

∫
Sd−1

Hα+ei Hβh2 dω = 0,

which implies the desired result since {Hα : |α|1 = n} contains a basis for Hh
n.
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3 Operators Acting on the h-Harmonics

Next we recall that the adjoint D∗i of the operator Di on Hh
n is defined by

(p,Diq)hk = (D∗i p, q)hk , p ∈ Hh
n q ∈ Hh

n+1.

It follows that D∗i is a linear operator that maps Hh
n into Hh

n+1. The definition of Hα pro-
vides an easy access to D∗i .

Theorem 3.1 The action of the adjoint D∗i on Hα ∈ Hh
n is given by

D∗i Hα = −
2n + 2γ + d

2n + 2γ + d − 2
Hα+ei .(3.1)

Proof Let Hα ∈ Hh
n and Hβ ∈ Hh

n+1. Using (2.8) and the recursive relation (2.4) twice, we
conclude that

(Hα,DiHβ)hk = (2γ + 2n + d)(xiHα,Hβ)hk = −
2γ + 2n + d

2γ + 2n + d − 2
(Hα+ei ,Hβ)hk ,

which leads to the desired result.

Since {Hα : |α|1 = n} contains a basis for Hh
n, upon using the recursive relation (2.4)

we end up with an alternative proof to the following result in [4, Theorem 2.1].

Theorem 3.2 For P ∈ Hh
n,

D∗i P = (d + 2n + 2γ)
(

xiP − (d + 2n + 2γ − 2)−1|x|2DiP
)
.(3.2)

The Theorem 3.1 makes it easier to derive properties of D∗i . Among the operators acting
on Pn, the operators DiD

∗
i and D∗i Di are of particular interest, since they are self-adjoint

with respect to the inner product (1.4) and they map Hh
n to Hh

n. Other interesting operators
include DiD

∗
j −D jD

∗
i and D jD

∗
i −DiD

∗
j whose square are self-adjoint on Hh

n. It turns out
that the latter two operators differ only by a constant, and they are also constant multiple
of the operator xiD j−x jDi , which has been used in [7] to find orthogonal decompositions
of Hh

n. Let Ai, j be operators defined by

Ai, jP = D j(xiP)− xiD jP, P ∈ ∪nPn, i = 1, 2, . . . , d.

Lemma 3.3 The operators Ai, j are self-adjoint and they satisfy Ai, j = A j,i . Moreover,

Ai, j f (x) = δi, j f (x) + 2
m∑

s=1

ks f (xσs)〈vs, ei〉〈vs, e j〉/〈v j, v j〉.(3.3)

where δi, j = 0 if i �= j and δi, j = 1 if i = j.
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Proof From the definition of Di , we write Di = ∂i + Di , where the operator Di consists of
the difference part. Then, using the equation that

D j(xi) = 2
m∑

s=1

ks〈vs, ei〉〈vs, e j〉/〈vs, vs〉 = Di(x j),

a straightforward calculation yields that for any polynomial f , we have

D j(xi f ) = ∂ j(xi f ) + xiD j( f ) + 2
m∑

s=1

ks f (xσs)〈vs, ei〉〈vs, e j〉/〈vs, vs〉

= xiD j( f ) + δi, j f + 2
m∑

s=1

ks f (xσs)〈vs, ei〉〈vs, e j〉/〈vs, vs〉.

This leads to the explicit formula of Ai, j and it implies that Ai, j is symmetric with respect
to i, j. Since h2 is G-invariant and for any reflection σs we have

∫
Sd−1

f (xσ j)g(x)h2(x) dω =

∫
Sd−1

f (x)g(xσ j )h2(x) dω,

which shows, by (3.3), that Ai, j is self-adjoint.

Lemma 3.4 For f ∈ Pn, the operator Bi, j defined by

Bi, j f = (2γ + 2n + d− 2)2D jD
∗
i f − (2γ + 2n + d)2D∗i D j f

is self-adjoint. Moreover,

(2γ + 2n + d)2(D∗i D j −D∗j Di) f = (2γ + 2n + d− 2)2(D jD
∗
i −DiD

∗
j f )

= −(2γ + 2n + d− 2)(2γ + 2n + d)2(x jDi − xiD j) f .

Proof From the fact that Ai, j = A j,i it follows that

D j(xi f )−Di(x j f ) = xiD j f − x jDi f .

By Theorem 3.1, D∗i Hα is a multiple of Hα+ei . Hence, apply D j on the recursive relation
(2.4), we conclude that

−
2γ + 2n + d− 2

2γ + 2n + d
(D jD

∗
i −DiD

∗
j )Hα = −(2γ + 2n + d− 2)

(
D j(xiHα)

−Di(x j Hα)
)

+ 2(x jDiHα − xiD jHα)

= (2γ + 2n + d)(x jDiHα − xiD jHα).
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Moreover, using the fact that DiHα ∈ Hh
n−1 and Theorem 3.2, we conclude that

−
2γ + 2n + d− 2

2γ + 2n + d
D jD

∗
i Hα = −(2γ + 2n + d− 2)D j(xiHα) + 2x jDiHα + |x|2DiD jHα

= −
2γ + 2n + d− 4

2γ + 2n + d− 2
D∗i D jHα − (2γ + 2n + d− 2)Ai, jHα

+ 2x jDiHα − 2xiD jHα.

Putting these two formulae together, we obtain, after rearranging terms, that

−
(2γ + 2n + d− 2)(2γ + 2n + d− 4)

(2γ + 2n + d)2
D jD

∗
i Hα

= −
2γ + 2n + d − 4

2γ + 2n + d − 2
D∗i D jHα

− (2γ + 2n + d − 2)Ai, jHα

+ 2
2γ + 2n + d− 2

(2γ + 2n + d)2
(DiD

∗
j + D jD

∗
i )Hα.

Since both Ai, j and DiD
∗
j + D jD

∗
i are self-adjoint, we conclude that Bi, j are self-adjoint.

The desired identity follows from the fact that Bi, j = B∗i, j = B j,i .

In [7] Dunkl has used the operators Ri, j := (xiD j − x jDi)2 to generate a sequence of
commuting self-adjoint operators acting on the h-harmonics. For the group Z2× · · ·×Z2,
the operators he constructed take the form D∗i Di +

∑i−1
j=1 Ri, j , and their eigenfunctions

form an orthonormal basis for h-harmonics. We can construct a sequence of commuting
operators using Ai, j for the symmetric group.

Symmetric Group The group G = Sd is the symmetric group on d objects. In this case,
the operator Di takes the form

Di f (x) = ∂i f (x) + k0

∑
j �=i

f (x)− f
(
(i, j)x

)
xi − x j

,

where (i, j) is the transposition of xi and x j , (i, j)x = (. . . , x j , . . . , xi , . . . ). In this case, it
can be easily verified that

Ai, j = k0(i, j) and Ai,i = I + k0

d∑
l=1,l �=i

(i, l)

where I stands for the identity operator.

Theorem 3.5 In the case of symmetric group the operators Ci defined by Ci = Ai−
∑i−1

j=1 Ai,l

is a sequence of commuting self-adjoint operators.
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Proof Using the formulae of Ai, j it is easy to see that Ai, j are commuting amongst each
other as long as the indices belong to disjoint sets, and we also have Ai,iA j,l = A j,lAi,i for
i �= j, i �= l. We claim that

[Ai,i −Ai, j ,A j, j] = 0, i > j, and [Ai,l + A j,l,Ai, j] = 0, i �= l �= j,(3.4)

where [A,B] = AB− BA is the commutator. Indeed, we have

[Ai,i −Ai, j ,A j, j] = k2
0

[ ∑
l �=i,l �= j

(i, l), (i, j) +
∑

l �=i,l �= j

( j, l)
]

= k2
0

∑
l �=i,l �= j

([(i, l), (i, j)] + [(i, l), ( j, l)] = 0,

since [(i, l), (i, j)] = (i, j, l) − (i, l, j) = −[(i, l), ( j, l)]. The second claimed equation
follows similarly. Now, for i > j, we have by (3.4) that

[Ci ,C j] = [Ai,i −Ai, j ,A j, j]−
[ i−1∑

l=1,l �= j

Ai,l,A j, j

]
−
[
Ai,i −

i−1∑
l=1

Ai,l,

j−1∑
l=1

A j,l

]

=
[ j∑

l=1

Ai,l

j−1∑
l=1

A j,l

]
=

j−1∑
l=1

[Ai, j + Ai,l,A j,l] = 0,

which proves the desired commuting result.

The operators Ci are essentially the so-called Murphy elements,
∑

j>i(i, j) ([11]). The
author thanks a referee for pointing out the connection.

For the symmetric group, the group elements (i, j) and Dunkl’s operators interact in
simple rules, we have Di(i, j) = (i, j)D j and Dl(i, j) = (i, j)Dl, i �= l �= j. As a conse-
quence, the action of (i, j) on the h-harmonics Hα is given by (i, j)Hα = H(i, j)α. We can
use these facts and the operators Ci to find an orthogonal decomposition of the space of
h-harmonic functions.

Let us consider the case d = 3. In this case, we have

C1 = I + k0(1, 2) + k0(1, 3).

Applying C1 to Hα, |α|1 = n, we see that C1 maps span {Hασ : σ ∈ S3} to itself. As a
linear operator, it follows that C1 has a matrix representation of 6 × 6. With the help of
Mathematica, we found that the matrix has 4 distinct eigenvalues, 1 − k0, 1 + k0, 1 − 2k0

and 1 + 2k0. The corresponding eigenspaces are given by

E1−k0 = span {(Hα −H(1,3)α)+(2, 3)(Hα −H(1,3)α),

(Hα −H(1,2)α) + (2, 3)(Hα −H(1,2)α)} ∩Hh
n;
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E1+k0 = span {−(Hα + H(1,3)α) + (2, 3)(Hα + H(1,3)α),

− (Hα + H(1,2)α) + (2, 3)(Hα + H(1,2)α)} ∩Hh
n;

E1−2k0 = span
{∑
σ∈S3

(−1)sign σHασ
}
∩Hh

n; E1+2k0 = span
{∑
σ∈S3

Hασ
}
∩Hh

n.

Since eigenfunctions belong to different eigenvalues are orthogonal, we have

Theorem 3.6 The space of h-harmonics for S3 admits the orthogonal decomposition,

Hh
n = E1−k0 ⊕ E1+k0 ⊕ E1−2k0 ⊕ E1+2k0 .

Such a decomposition also works for d > 3, but the computation becomes messy. For
d = 4, the matrix is of size 4! = 24, its corresponding eigenvalues are 1 (multiplicity 4),
1 ± k0 (multiplicity 3), 1 ± 2k0 (multiplicity 6), and 1 ± 3k0 (simple), which decomposes
Hh

n into 7 orthogonal subspaces.

The family Ci is not enough to yield a complete orthogonal decomposition of Hh
n. In

order to obtain such an decomposition, it is often necessary to study the operators that are
self-adjoint and map Hh

n to itself. For example, we can look into the action of the operators
DiD

∗
i . Using the basis {Hα}, we can write down the action of DiD

∗
i on Hα for symmetric

group. Indeed, from (2.5) and (2.6) we obtain using (2.1) that

DiHα(x) = (−1)n2n(γ − 1 + d/2)n[Di{x
α} − (2γ + 2n + d− 4)−1xi∆h{x

α}] + |x|2 p(x),

where p ∈ Pn−3. From the correspondence between xα and Hα, we also have

Di{x
α} − (2γ+2n + d− 4)−1xi∆h{x

α}

=
∑

|β|1=n−1

cβxβ(3.5)

= (−1)n−1
(
2n−1(γ − 1 + d/2)n−1

)−1 ∑
|β|1=n−1

cβHβ + |x|2q

where q ∈ Pn−3. However, since DiHα is a h-harmonic, it follows that p = q and

DiHα = −(2γ + 2n + d− 4)
∑

|β|1=n−1

cβHβ.

Thus, we only have to find the coefficients cβ , which can be carried out using (3.5). The
computation of cβ is rather tedious, we have, for example,
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Lemma 3.7 For α ∈ Nd, |α|1 = n, and α1 ≥ α2 ≥ · · · ≥ αd,

DiHα = −(d + 2γ + 2n− 4)αiHα−ei +
d∑

j=1

α j(α j − 1)Hα−2e j +ei

− (d + 2γ + 2n− 4)k
[ i−1∑

j=1

α j−αi−1∑
l=0

Hα−(l+1)e j +lei +
d∑

j=i+1

αi−α j−1∑
l=0

Hα−(l+1)ei +le j

]

+ 2k
∑

1≤p<q≤d

[
−αpHα−ep−eq+ei +

αp−αq−1∑
l=0

(αp − αq − l)Hα−(l+1)ep+(l−1)eq+ei

]
.

Together with Theorem 3.1, we can then find the action of DiD
∗
i on Hh

n. This allows
us to study, for example, the eigenvalues and eigenfunctions of these operators. Further
research will aim at constructing a complete orthogonal decomposition of the space Hh

n by
studying the eigen structures of self-adjoint operators.
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