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Abstract. A Constructive Logic of Evidence and Truth (LETC) is introduced.

This logic is both paraconsistent and paracomplete, providing connectives for con-

sistency and determinedness that enable the independent recovery of explosiveness

and the law of excluded middle for specific propositions. Dual connectives for in-

consistency and undeterminedness are also defined in LETC. Evidence is explicitly

formalised by integrating lambda calculus terms into LETC, resulting in the type

system LETλ
C . In this system, lambda calculus terms represent procedures for con-

structing evidence for compound formulas based on the evidence of their constituent

parts. A realisability interpretation is provided for LETC, establishing a strong con-

nection between deductions in this system and recursive functions.

§1. Introduction. The aim of the project behind the Logics of Evi-
dence and Truth (LET’s), initiated by the publication of [Carnielli and
Rodrigues, 2019], is to offer an interpretation of paraconsistent logics
in which contradictions are epistemically viewed as conflicting evidence,
where evidence for a proposition A is understood as reasons supporting
the belief that A is true. Under this view, the project is antagonistic
(or orthogonal) to the dialetheist approach, that is, the view that true
contradictions exist, cf. [Priest, 1987], since the LETs cannot support a
real contradiction, at the risk of trivialisation. The project actually has
a dual purpose: to formalise the notion of evidence, a concept that has
received limited attention from both philosophers and logicians.

Some interesting developments include Kripke-style semantics for these
logics, which allows the concept of evidence to be viewed as a modal-
ity, as described in [Antunes, Carnielli, Kapsner, and Rodrigues, 2020],
and the proposal of Bayesian paraconsistent epistemology, as in [Carnielli
and Bueno-Soler, 2024]. What remains to be done is a proper algebraic
interpretation of these logics.

The Basic Logic of Evidence (BLE), proposed in [Carnielli and Ro-
drigues, 2019] is extended to the Logic of Evidence and Truth (LETJ).
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BLE was conceived to formalise deductions based on evidence, in the above
sense. In BLE the negation connective, here denoted by ∼, formalises fal-
sity; thus evidence for ∼A can be understood as reasons for believing in
the falsity of A, and reasons for believing in the falsity of the falsity of
A are taking as reasons for believing in A (consequently ∼∼A and A
are equivalent in BLE). BLE is a paraconsistent and paracomplete logic.
Contradictions in BLE reflect the existence of conflicting evidence, and
the paraconsistency of BLE corresponds to the possible existence of con-
flicting evidence without leading to a deductive collapse. On the other
hand, the paracompleteness of BLE corresponds to the possible lack of
evidence for some propositions and their negations. Although conceived
with different motivations, BLE turns out to be equivalent to the propo-
sitional fragment of Nelson’s Paraconsistent Logic, usually denoted by N4
(see, for instance, [Kamide, 2005]). LETJ is obtained by extending BLE
with a primitive classicality operator ◦, which allows to recover simulta-
neously the explosiveness of contradictions and the excluded middle for
some propositions. Evidence for a proposition A can be non-conclusive,
in the sense that it may not absolutely determine the truth of A. The
formula ◦A represents the existence of conclusive evidence for either the
truth or the falsity of the proposition A, and reasoning under conclusive
evidence follows the rules of classical logic (this is what the Derivability
Adjustment Theorem shows), hence the name given to the operator ◦.

Another logic of evidence and truth (LETF), and a probabilistic seman-
tics for it, is proposed in [Rodrigues, Bueno-Soler, and Carnielli, 2021].
LETF is an extension of the Logic of First-Degree Entailment (FDE), also
known as Belnap-Dunn four-valued logic, and which corresponds to the
fragment of N4 without implication. LETF is a slightly modified version
of LETJ, which additionally to the classicality operator ◦ also contains a
non-classicality operator • (i.e. LETF is LETJ dropping implication and
adding the non-classicality operator). The operator • is dual to ◦ in the
sense that, while ◦A implies the classical behaviour of A, a non-classical
behaviour of A implies •A. The elimination of implication in LETF is due
to some difficulties in the probabilistic interpretation of this connective.

A summary of recent work on Logics of Evidence and Truth (LETs) is
presented in [Rodrigues, Coniglio, Antunes, Bueno-Soler, and Carnielli,
2023], where a new LET named LETK and its first-order extension QLETK

are also introduced, and an application of these logics to the problem
of abduction is shown. LETK is an extension of LETF with a classical
implication connective.

Here, a Constructive Logic of Evidence and Truth, denoted by LETC,
is introduced. LETC is a definitional extension of N4⋆, which in turn is
an extension of N4 with a co-implication operator and bottom and top
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particles. LETC extends N4⋆ by defining connectives for consistency, in-
consistency, determinedness and undeterminedness. In LETC, differently
of the other LETs, explosiveness of contradictions and excluded middle
cannot be simultaneously recovered by a single classicality operator, but
they can be independently recovered by the operators of consistency and
determinedness, respectively.

Truth and falsity are treated asymmetrically in Intuitionistic Logic
(Int): the truth of a proposition signifies the existence of a proof for
it and is established directly, whereas the falsity of a proposition is
proven indirectly by demonstrating the impossibility of constructing a
proof for it. This is reflected in the definition of intuitionistic negation
as ¬A ≡ A → ⊥. In Int, it is not possible to directly prove the fal-
sity of a proposition. Moreover, the very nature of intuitionistic falsity is
debatable (cf. [Shramko, 2012]).

In contrast, LETC maintains full symmetry between truth and falsity,
allowing for direct proofs of both the truth and falsity of a proposition.
Additionally, LETC enables an interesting distinction between truth and
the impossibility of falsity, as well as between falsity and the impossibil-
ity of truth – concepts that are inseparable in classical logic and whose
distinction appears muddled in Int.

As discussed below, these differences allow us to reinterpret the notion
of ‘constructive proof’ as ‘direct proof’. This leads us to understand the
proof of ¬A in Int as a direct proof of the impossibility of A’s truth,
rather than as an indirect (and thus non-constructive) proof of A’s fal-
sity. Against this backdrop, LETC proves to be constructively richer than
Int, as it also allows direct proofs of the falsity of propositions and the
impossibility of their truth.

In order to explicitly formalise evidence, lambda calculus terms are
added to LETC, obtaining a type system denoted by LETλ

C. Some usual

properties of type systems are proven for LETλ
C: lemmas of generation,

free variables, uniqueness of types (under a strong equivalence defined on
formulas), substitution and subject reduction, and a normalisation the-
orem. Our proposal of representing evidence by lambda calculus terms,
is a different approach for the explicit formalisation of evidence in the
justification logics proposed in [Artemov, 2008], which are obtained by
understanding the necessity operator of some modal logics as implicitly
representing the existence of evidence, and by transforming the necessity
operator into justification polynomials (or justification terms) for explic-
itly represent evidence. Artemov’s approach is used in [Fitting, 2017] for
providing an explicit formalisation of evidence for BLE, by translating
BLE into the modal logic KX4 and constructing the justification logic JX4
from KX4.
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A multimodal system that combines S4 and KX4 into a single formal
system, denoted as SKX4+, is introduced in [Carnielli, Frade, Rodrigues,
and Bueno-Soler, 2024]. The motivation behind this integration is to
develop a logic that, given the embeddings of Int and BLE into S4 and
KX4, can effectively represent the deductive behavior of factive and non-
factive evidence. To clarify this, it is useful to recall that non-factive
evidence refers to evidence that neither implies nor guarantees the truth
of the sentence it is supposed to support, while factive evidence is evidence
that implies or guarantees the truth of the sentence it supports.

While Artemov’s justification logics aim to provide a new evidence-
based foundation for epistemic logics, our goal here is to offer a func-
tional (and constructive) interpretation of evidence-based reasoning. To
this end, we use lambda terms to explicitly represent evidence, drawing
on the methods and philosophy of type theory. This approach contrasts
with Artemov’s use of justification polynomials. In our framework, the
variables of lambda terms represent arbitrary evidence, while more com-
plex lambda terms describe procedures that enable evidence to be derived
from other evidence.

In order to emphasise the constructive aspects of LETC, a Kleene-style
realisability interpretation is provided for this logic. This establishes a
strong connection between derivations in LETC and recursive functions.

The Dynamic Logics of Evidence-Based Beliefs, introduced in [Benthem
and Pacuit, 2011], are a proposal to formalise evidence-based reasoning
by taking into account its dynamic properties. These logics are defined by
extending the neighbourhood semantics for modal logics, where evidence
is formalised as families of sets of worlds. This formalisation turns out
to be very technical and difficult to understand intuitively. Contrarily,
the LETs (particularly LETC) formalise a instantaneous view of evidence-
based reasoning, in the sense of considering only evidence accessible at a
given time, and the rules of deduction are based on a rather intuitive con-
ception of the acceptance of propositions according to existing evidence.
This instantaneous approach to evidence, however, creates a dynamic of
movement, much like in cinema, with the evidence being continuously
changed and updated.

In the area of Artificial Intelligence, the logics of evidence and truth
can be useful in the formalisation and automation of deductions from
information sources (for instance, some databases or the Web) where there
may be a lack of information or conflicting information, which may lead
to neither accepting a proposition nor its negation, or to having reasons
to accept both a proposition and its negation. Classical logic is clearly not
apt for such contexts because, when applied to information, the excluded
third states that it is complete (i.e. there is always enough information to
determine, for any given proposition, that it or its negation is true), and
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the explosion principle states that any proposition can be derived from
contradictory information, leading to a deductive collapse.

In addition to LETC being a logic suitable for formalising inferences in
contexts with missing or conflicting information, the addition of terms to
this logic can allow the construction of explanations based on the evidence
for the inferences made.

This article is structured as follows: Section 2 introduces LETC through
a natural deduction system. Section 3 extends LETC with the addition of
lambda terms. Section 4 outlines several relevant properties of LETλ

C. A
realisability interpretation for LETC is presented in Section 5, followed by
a discussion of the constructive nature of this logic in Section 6. Finally,
Section 7 provides concluding remarks and suggest directions for future
research.

§2. A natural deduction system for LETC. We begin by describing
the system N4⋆, an extension of Nelson’s paraconsistent logic N4 with a
co-implication operator (�) and bottom (⊥) and top (⊤) particles. The
signature of N4⋆ is SN4⋆ = {∧,∨,→,�,∼,⊥,⊤}, and the set of formulas
is defined in the usual way. The unary operator ∼ is called constructive
negation (or strong negation), and a formula B � A can be read as A
co-implies B or as B excludes A (cf. [Wansing, 2008, Footnote 2]).

The natural deduction system for N4⋆ is presented in Table 1. Analo-
gously as the rules of Int can be interpreted by means of the existence of
proofs, each one of the rules in N4⋆ admits an implicit interpretation in
terms of evidence: if there is evidence for accepting the formulas in the
premises, there is evidence for accepting the formula in the conclusion.
Assumptions correspond to the presupposition of existence of evidence
(details in [Carnielli and Rodrigues, 2019]).

The fragment of N4⋆ without ⊤ and � is equivalent to N4⊥, which
is an Odintsov’s extenstion of N4 with a bottom particle introduced in

[Odintsov, 2008]. As ⊤ and � can be defined in N4⊥ by ⊤ def
= ∼⊥ and B�

A
def
= ∼(∼A→ ∼B), the semantics for N4⊥ presented in [Odintsov, 2008]

is also adequate for N4⋆.

Remark 1. Before going further, we outline here some reasons for
working with natural deduction in this paper. In contrast to Hilber-
tian axiomatisation, natural deduction systems are more aligned with
intuitive reasoning. The introduction and elimination rules for logical
connectives in natural deduction help to clarify the connectives them-
selves. This approach makes proofs more goal-oriented, as they begin
with assumptions and apply inference rules to simplify or construct con-
clusions. Furthermore, in natural deduction, the normalisation property
ensures that every proof has a normal form, meaning that redundant
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(I⊤)⊤
⊥ (E⊥)
A

A B (I∧)
A∧B

A∧B (E1∧)
A

A∧B (E2∧)
B

A (I1∨)
A∨B

A∨B

[A ]

...
C

[B ]

...
C (E∨)

C

B (I2∨)
A∨B

[A ]

...
B (I→)

A → B

A → B A (E→)
B

∼A B (I�)
B � A

B � A
(E1�)∼A

B � A
(E2�)

B

(I∼⊥)∼⊥
∼⊤ (E∼⊤)
A

∼A (I1∼∧)∼(A∧B)

∼(A∧B)

[∼A ]

...
C

[∼B ]

...
C

(E∼∧)C

∼B (I2∼∧)∼(A∧B)

∼A ∼B (I∼∨)∼(A∨B)

∼(A∨B)
(E1∼∨)∼A

∼(A∨B)
(E2∼∨)∼B

A ∼B (I∼→)
∼(A → B)

∼(A → B)
(E1∼→)

A

∼(A → B)
(E2∼→)∼B

[∼A ]

...
∼B (I∼ �)∼(B � A)

∼A ∼(B � A)
(E∼ �)∼B

A (I∼∼)∼∼A
∼∼A (E∼∼)
A

Table 1. Natural deduction system for N4⋆.

steps (such as unnecessary assumptions or intermediate steps) can be
eliminated. This property is rarely found in Hilbertian systems. From a
computational complexity perspective, Hilbert systems are typically NP-
complete or even PSPACE-complete, whereas natural deduction systems
are not inherently NP-complete. This distinction helps explain the ded-
ication that proof theorists like Gerhard Gentzen, Stanis law Jaśkowski,
Dag Prawitz and Michael Dummett have devoted to natural deduction
systems.
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An equivalence operator ↔ can be defined in N4⋆ as usual A ↔ B
def
=

(A→ B)∧(B → A). As in N4, substitution by equivalent formulas in N4⋆

is not valid. For instance, in N4⋆ the equivalence (B �A) ↔ (B∧∼A) is
provable, whereas the equivalence ∼(B�A) ↔ ∼(B∧∼A) is not provable.

However, a strong equivalence operator ⇔ can be defined by A ⇔ B
def
=

(A↔ B)∧(∼A↔ ∼B), and substitution by strongly equivalent formulas
is valid.

In N4⋆, the connectives ∧ and ∨ are dual, because A∨B is strongly
equivalent to ∼(∼A∨∼B) (these formulas are practically the same in
this system). Moreover, the connectives → and � can also be seen as
dual, because B � A is strongly equivalent to ∼(∼A → ∼B) (which can
be easily proven using the rules in Table 1). It is therefore possible to
define the connectives ∨ and � in terms of the connectives ∧, → and
∼, rather than regarding them as primitive. Nevertheless, we consider ∨
and � to be primitive connectives. This is with the aim of making the
duality between the connectives and the symmetry between truth and
falsity more evident.

In N4⋆, an intuitionistic negation ¬ is defined by ¬A def
= A → ⊥ and a

co-negation ¬is defined by ¬A def
= ⊤�A. While the intention of Nelson’s

constructive negation is to express falsity (i.e. ∼A must be interpreted as
‘A is false’, cf. [Nelson, 1949]), intuitionistic negation must be interpreted
as expressing impossibility of truth (i.e. ¬A must be interpreted as ‘it is
impossible that A be true’ or as ‘it is impossible to construct a proof of A’,
cf. [Shramko, 2012]). Accordingly, the formula ∼ ¬A, which is strongly
equivalent to ¬∼A, must be understood as the impossibility of the falsity
of A. Under such interpretations, the following theorem shows that, in
N4⋆, the falsity of a formula A is not equivalent to the impossibility of
the truth of A (item 1), and the truth of a formula A is not equivalent
to the impossibility of the falsity of A (item 2). However, the falsity of a
formula A is equivalent to the falsity of the impossibility of the falsity of
A (item 3), and the truth of a formula A is equivalent to the falsity of the
impossibility of the truth of A (item 4). The other items show additional
properties of the interaction between negations in N4⋆.

Theorem 2.1. 1. ⊬ ∼A ↔ ¬A (neither ⊢ ∼A → ¬A nor ⊢ ¬A →
∼A).

2. ⊬ A↔ ∼ ¬A (neither ⊢ A→ ∼ ¬A nor ⊢ ∼ ¬A→ A).
3. ⊢ ∼A↔ ∼∼ ¬A (and also ⊢ ∼A↔ ¬A).
4. ⊢ A↔ ∼¬A.
5. ⊢ ∼¬A⇔ ¬∼A.
6. ⊢ ∼ ¬A⇔ ¬∼A.
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Proof. Using the natural deduction system for provable formulas and
any of the semantics for N4⊥ presented in [Odintsov, 2008] for unprovable
formulas. ⊣

It is important to highlight that the distinctions between truth and im-
possibility of falsity, and between falsity and impossibility of truth, cannot
be made in other logics, such as classical or intuitionistic logic. These are
remarkable features of N4⋆ that are important for the constructive prop-
erties of this logic, as explained in Section 6.

The following theorem shows some properties of formulas related with
the principles of explosiveness (or ex contradictione [sequitur] quodlibet)
and excluded middle (or tertium non datur) in N4⋆.

Theorem 2.2. 1. ⊢ ¬(A∧∼A) ⇔ ∼ ¬(A∨∼A).
2. ⊢ ¬(A∧∼A) ↔ (A∨∼A), but ⊬ ¬(A∧∼A) ⇔ (A∨∼A).
3. ⊢ ¬(A∧∼A) ⇔ ∼¬(A∨∼A).
4. ⊢ ∼¬(A∧∼A) ↔ (A∧∼A), but ⊬ ∼¬(A∧∼A) ⇔ (A∧∼A).
5. ⊢ ∼¬(A∧∼A) ⇔ ¬(A∨∼A).
6. ⊢ ∼ ¬(A∧∼A) ⇔ ¬(A∨∼A).

Proof. Using the natural deduction system for provable formulas and
any of the semantics for N4⊥ presented in [Odintsov, 2008] for unprovable
formulas. ⊣

The previous theorem motivates the following definitions of connectives
for consistency (◦), inconsistency (•), determinedness (✩) and undeter-
minedness (★). The logic LETC is the result of adding to N4⋆ such defi-
nitions.

◦A def
= ¬(A∧∼A),

✩A
def
= ¬(A∧∼A) (equivalently,✩A

def
= ∼¬(A∨∼A)),

•A def
= ¬(A∨∼A) (equivalently, •A def

= ∼◦A),

★A
def
= ¬(A∨∼A) (equivalently,★A

def
= ∼✩A).

Note that although the definition of the consistency connective is similar
to the one proposed by da Costa in his well-known hierarchy of Incon-
sistent Formal Systems Cn, our definition differs in a significant way. We
employ two negations in place of one, with each negation representing a
distinct concept (namely the impossibility of truth and falsity).

The following properties are immediate from the previous definition of
connectives and theorems.

Theorem 2.3. 1. A,∼A, ◦A ⊢ B.
2. •A ⊢ A∧∼A and A∧∼A ⊢ •A.
3. ✩A ⊢ A∨∼A, A ⊢ ✩A and ∼A ⊢ ✩A.
4. A,★A ⊢ B and ∼A,★A ⊢ B.
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§3. Adding lambda-terms to LETC: making evidence explicit.
A BHK-style interpretation of LETC in terms of evidence for accepting
or rejecting propositions is presented below. This informal interpretation
gives us the intuitions for adding lambda terms to LETC. The empty-
set symbol (∅) is used to represent evidence for accepting propositions
which are self-evident (i.e. propositions accepted without need of proofs
or explanations):

• Evidence for accepting A∧B is a pair (e1, e2) where e1 is evidence
for accepting A and e2 is evidence for accepting B.

• Evidence for accepting A∨B is a pair (e1, e2) where e1 = 0 and e2 is
evidence for accepting A, or e1 = 1 and e2 is evidence for accepting
B.

• Evidence for accepting A → B is a method that converts evidence
for accepting A into evidence for accepting B.

• Evidence for accepting B � A is a pair (e1, e2) where e1 is evidence
for rejecting A and e2 is evidence for accepting B.

• Evidence for accepting ∼A is evidence for rejecting A.
• There is no evidence for accepting ⊥.
• ∅ is evidence for accepting ⊤.
• Evidence for rejecting A∧B is a pair (e1, e2) where e1 = 0 and e2 is

evidence for rejecting A, or e1 = 1 and e2 is evidence for rejecting
B.

• Evidence for rejecting A∨B is a pair (e1, e2) where e1 is evidence for
rejecting A and e2 is evidence for rejecting B.

• Evidence for rejecting A → B is a pair (e1, e2) where e1 is evidence
for accepting A and e2 is evidence for rejecting B.

• Evidence for rejecting B �A is a method that converts evidence for
rejecting A into evidence for rejecting B.

• Evidence for rejecting ∼A is evidence for accepting A.
• ∅ is evidence for rejecting ⊥.
• There is no evidence for rejecting ⊤.

Note that the previous clauses only state what constitutes evidence for
accepting or rejecting compound formulas, based on evidence for accept-
ing or rejecting their constituent parts. There is no clauses stating what
constitute evidence for accepting or rejecting propositional variables be-
cause, as argued in [Carnielli and Rodrigues, 2019], it depends on the area
of study and the subject matter, and this is not a problem of logic.

In order to explicitly express evidence, based on the previous informal
interpretation of LETC, lambda-terms from an extended lambda calculus
(λC-calculus) are added to LETC, obtaining LETλ

C. The λC-calculus is
an extension of the pure lambda-calculus with (two kinds of) pairs and
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projections, injections, case distinction, empty term, impossible (or ex-
ception) terms and (two kinds of) identities.1 LETλ

C is really a type system
whose types are the formulas of LETC and whose terms are the elements
of the λC-calculus. Two kinds of pairs and projections are used to ensure
the uniqueness of types (module strong equivalence). The first kind will
be used for conjunctions and negations of disjunctions, while the second
kind will be used for co-implications and negation of implications. Pairs
of the second kind will be called combined pairs, since they always have
a term of a formula and a term of a negated formula. The two kinds of
identities are used to differentiate terms of formulas and of their double
strong negations.

To define the set of terms of the λC-calculus, we consider a denumerable
set of variables V , whose elements represent the evidence that is assumed
to exist. We shall use the last letters (possibly with subscripts) of the
Latin alphabet x, x1, . . . , y, y1, . . . to denote elements of V , and letters
r, s, t to denote arbitrary λC-terms.

Definition 3.1. The set of terms of the λC-calculus, denoted by Λ, is
defined by the following grammar:

Λ =V | (variables)

λV.Λ | ap(Λ,Λ) | (abstractions and applications)

(Λ,Λ) | π1(Λ) | π2(Λ) | (pairs and projections)

⟨Λ,Λ⟩ | π∗1(Λ) | π∗2(Λ) | (combined pairs and projections)

in1(Λ) | in2(Λ) | (injections)

case Λ of [V ]Λ or [V ]Λ | (case distintion)

∅ | E(Λ) | (empty and exception terms)

id(Λ) | id−1(Λ) (identities)

We shall use r[x := s] to denote the result of substituting s for the
free occurrences of x in r (changing bound variables to fresh variables
if necessary to avoid creating new occurrences of bound variables). The
β-reduction relation on Λ is defined as follows.

1For a good introduction to lambda calculus and type theory, see [Sørensen and
Urzyczyn, 2006].

https://doi.org/10.1017/bsl.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10


A FORMALISATION OF CONSTRUCTIVE EVIDENCE-BASED REASONING 11

Definition 3.2. The one step β-reduction relation on Λ, denoted by
→β, is the least compatible relation on Λ with base rules:2

ap(λx.r, s) →β r[x := s]

π1((r, s)) →β r

π2((r, s)) →β s

π∗1(⟨r, s⟩) →β r

π∗2(⟨r, s⟩) →β s

case in1(t) of [x]r or [y]s→β r[x := t]

case in2(t) of [x]r or [y]s→β s[y := t]

id(id−1(t)) →β t

id−1(id(t)) →β t

The multi-step β-reduction relation on Λ, denoted by ↠β, is the reflexive
and transitive closure of →β.

We shall use F(LETC) to denote the set of formulas of LETC. The
notions of statement, declaration, context and judgement are defined as
usual in type systems: A statement is an expression of the form t : A,
where t ∈ Λ and A ∈ F(LETC) (in such a statement t is called the
subject); a declaration is a statement with a variable as subject; a context
is a set of declarations with different subjects; and a judgement has the
form Γ ⊢ t : A, with Γ a context and t : A a statement. A judgement
Γ ⊢ t : A in LETλ

C means that there is a derivation of statement t : A,
with open declarations (or assumptions) in Γ, using the rules in Table 2.
Intuitively, x1 : B1, . . . , xn : Bn ⊢ t : A means that if we consider that
xi represents evidence for accepting Bi, for 1 ≤ i ≤ n, then t represents
evidence for accepting A (evidence for accepting ∼B is the same that
evidence for rejecting B).

The following theorem, which has a simple proof, shows that LETλ
C

actually achieves the objective for which it was designed: to formalise
evidence in an explicit way. Moreover, the lambda terms and their reduc-
tion rules give us procedures to calculate evidence of compound formulas
from their constituent parts.

Theorem 3.3. B1, . . . , Bn ⊢ A in LETC iff there is t ∈ Λ such that
x1 : B1, . . . , xn : Bn ⊢ t : A in LETλ

C.

Proof. For the left to right direction, take the proof of B1, . . . , Bn ⊢ A
in LETC and add lambda terms according to the rules of LETλ

C. For the

2The compatibility of →β allows to apply the base β-reduction rules to sub-terms;
i.e. if r →β s, and if t′ is the result of substituting s for an occurrence of r in t, then
t →β t′. For a formal definition see [Sørensen and Urzyczyn, 2006].
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(Iλ⊤)∅ : ⊤
t : ⊥

(Eλ
⊥)E(t) : A

r : A s : B
(Iλ∧)(r, s) : A∧B

t : A∧B
(E1λ∧)π1(t) : A

t : A∧B
(E2λ∧)π2(t) : B

t : A
(I1λ∨)in1(t) : A∨B

t : A∨B

[x : A ]

...
r : C

[ y : B ]

...
s : C

(Eλ
∨)case t of [x]r or [y]s : C

t : B
(I2λ∨)in2(t) : A∨B

[x : A ]

...
t : B

(Iλ→)
λx.t : A → B

r : A → B s : A
(Eλ

→)
ap(r, s) : B

r : ∼A s : B
(Iλ�)⟨r, s⟩ : B � A

t : B � A
(E1λ�)π∗

1(t) : ∼A

t : B � A
(E2λ�)π∗

2(t) : B

(Iλ∼⊥)∅ : ∼⊥
t : ∼⊤

(Eλ
∼⊤)E(t) : A

t : ∼A
(I1λ∼∧)in1(t) : ∼(A∧B)

t : ∼(A∧B)

[x : ∼A ]

...
r : C

[ y : ∼B ]

...
s : C

(Eλ
∼∧)case t of [x]r or [y]s : C

t : ∼B
(I2λ∼∧)in2(t) : ∼(A∧B)

r : ∼A s : ∼B
(Iλ∼∨)(r, s) : ∼(A∨B)

t : ∼(A∨B)
(E1λ∼∨)π1(t) : ∼A

t : ∼(A∨B)
(E2λ∼∨)π2(t) : ∼B

r : A s : ∼B
(Iλ∼→)⟨r, s⟩ : ∼(A → B)

t : ∼(A → B)
(E1λ∼→)

π∗
1(t) : A

t : ∼(A → B)
(E2λ∼→)

π∗
2(t) : ∼B

[x : ∼A ]

...
t : ∼B

(Iλ∼ �)λx.t : ∼(B � A)

r : ∼(B � A) s : ∼A
(Eλ

∼ �)ap(r, s) : ∼B

t : A
(Iλ∼∼)id(t) : ∼∼A

t : ∼∼A
(Eλ

∼∼)
id−1(t) : A

Table 2. Natural deduction system for LETλ
C.

right to left direction, take the proof of x1 : B1, . . . , xn : Bn ⊢ t : A and
drop the lambda terms. ⊣

§4. Some properties of LETλ
C. In this section, some usual properties

of type systems are proven for LETλ
C. Before that, some definitions are

necessary.

Definition 4.1. Let Γ be a context:

https://doi.org/10.1017/bsl.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10


A FORMALISATION OF CONSTRUCTIVE EVIDENCE-BASED REASONING 13

1. The domain of Γ, denoted by Dom(Γ), is the set {x | x : A ∈
Γ, for some A ∈ F(LETC)}.

2. If X ⊆ V , the restriction of Γ to X, denoted by Γ↾X, is the set
{x : A | x : A ∈ Γ and x ∈ X}.

The set of free variables of terms t ∈ Λ, denoted by FV(t), is defined
as usual (the only binding operators are λ in abstractions and [·] in case
distinctions).

Lemma 4.2 (Generation Lemma). 1. If Γ ⊢ x : A, then x : A ∈ Γ.
2. If Γ ⊢ ap(r, s) : A, then there is B such that Γ ⊢ r : B → A and

Γ ⊢ s : B, or there are B and C such that A = ∼C, Γ ⊢ r : ∼(C�B)
and Γ ⊢ s : ∼B .

3. If Γ ⊢ λx.t : A, then there are B and C such that A = B → C and
Γ, x : B ⊢ t : C, or such that A = ∼(C �B) and Γ, x : ∼B ⊢ t : ∼C.

4. If Γ ⊢ (r, s) : A, then there are B and C such that A = B∧C,
Γ ⊢ r : B and Γ ⊢ s : C, or such that A = ∼(B∨C), Γ ⊢ r : ∼B and
Γ ⊢ s : ∼C.

5. If Γ ⊢ ⟨r, s⟩ : A, then there are B and C such that A = ∼(B → C),
Γ ⊢ r : B and Γ ⊢ s : ∼C, or such that A = C � B, Γ ⊢ r : C and
Γ ⊢ s : ∼B.

6. If Γ ⊢ π1(t) : A (respectively Γ ⊢ π2(t) : A), then there is B such that
Γ ⊢ t : A∧B (respectively Γ ⊢ t : B∧A), or there are B and C such
that A = ∼C and Γ ⊢ t : ∼(C∨B) (respectively Γ ⊢ t : ∼(B∨C)).

7. If Γ ⊢ π∗1(t) : A (respectively Γ ⊢ π∗2(t) : A), then there are B and C
such that A = ∼C and Γ ⊢ t : B�C (respectively Γ ⊢ t : ∼(B → C)),
or there is B such that Γ ⊢ t : ∼(A→ B) (respectively Γ ⊢ t : A�B).

8. If Γ ⊢ in1(t) : A (respectively Γ ⊢ in2(t) : A), then there are B and
C such that A = (B∨C) and Γ ⊢ t : B (respectively Γ ⊢ t : C), or
such that A = ∼(B∧C) and Γ ⊢ t : ∼B (respectively Γ ⊢ t : ∼C).

9. If Γ ⊢ case t of [x]r or [y]s : A, then there are B and C such that
Γ ⊢ t : B∨C, Γ, x : B ⊢ r : A and Γ, y : C ⊢ s : A, or such that
Γ ⊢ t : ∼(B∧C), Γ, x : ∼B ⊢ r : A and Γ, y : ∼C ⊢ s : A.

10. If Γ ⊢ E(t) : A, then Γ ⊢ t : ⊥ or Γ ⊢ t : ∼⊤.
11. If Γ ⊢ id(t) : A, then there is B such that A = ∼∼B and Γ ⊢ t : B.
12. If Γ ⊢ id−1(t) : A, then Γ ⊢ t : ∼∼A.

Proof. By inspection of the rules of LETλ
C. ⊣

Lemma 4.3 (Free Variables Lemma). 1. If Γ ⊢ t : A, then FV(t) ⊆
Dom(Γ).

2. If Γ ⊢ t : A, then Γ↾FV(t) ⊢ t : A.

Proof. By structural induction on t. ⊣

Lemma 4.4 (Uniqueness of Types). If Γ ⊢ t : A and Γ ⊢ t : B, then
⊢ A⇔ B.
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14 JUAN C. AGUDELO-AGUDELO AND WALTER CARNIELLI

Proof. By structural induction on t. ⊣

Lemma 4.5 (Substitution Lemma). If Γ, x : A ⊢ r : B and Γ ⊢ s : A,
then Γ ⊢ r[x := s] : B.

Proof. By structural induction on r. ⊣

Lemma 4.6 (Subject Reduction). If Γ ⊢ t : A and t↠β s, then Γ ⊢ s :
A.

Proof. First proving the case of one step β-reductions (i.e. for
t →β s), the general case follows for induction on the number of β-
reductions. As the relation →β is a compatible relation on Λ, gener-
ated by some base rules (see 3.2), the proof proceeds by induction on
the generation of →β. For the base rules, we only show the case when
t = case in1(r) of [x]p or [y]q and s = p[x := r] (the other cases are sim-
ilar or easier): From Γ ⊢ t : A, by the Generation Lemma (item 9), we
have two cases:

1. There is B and C such that Γ ⊢ in1(r) : B∨C, Γ, x : B ⊢ p : A and
Γ, y : C ⊢ q : A: From Γ ⊢ in1(r) : B∨C, by Generation Lemma
(item 8), we have that Γ ⊢ r : B. Then, from Γ, x : B ⊢ p : A and
Γ ⊢ r : B, by the Substitution Lemma, we have that Γ ⊢ p[x := r] :
A.

2. There is B and C such that Γ ⊢ in1(r) : ∼(B∧C), Γ, x : ∼B ⊢ p : A
and Γ, y : ∼C ⊢ q : A: Similar to the previous case.

The proofs for the compatibility rules are routine (but lengthy) inductive
steps. ⊣

Definition 4.7. A term t ∈ Λ is legal if there is a context Γ and a
formula A such that Γ ⊢ t : A.

Theorem 4.8 (Normalisation Theorem). Every legal term is strongly
normalising.

Proof. Let us consider the simple typed λ-calculus extended with
products, sums, empty type and unity type (denoted by ∧, ∨, ⊥ and ⊤,
respectively). This calculus, which we will denoted by Eλ, is a fragment of
LETλ

C (Eλ is LETλ
C dropping the rules for co-implication and constructive

negation), and can also be seen as a fragment of Intuitionistic Type The-
ory (ITT) (in the version presented in [Martin-Löf, 1984], for instance).
Therefore, the strong normalisation of ITT implies the strong normalisa-
tion of Eλ. A term translation function φ, from terms of the λC-calculus
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to terms of the extended λ-calculus used in Eλ, can be defined by:

φ(x) = x, φ(λx.t) = λx.φ(t),

φ(ap(r, s)) = ap(φ(r), φ(s)), φ((r, s)) = (φ(r), φ(s)),

φ(πi(t)) = πi(φ(t)) (i ∈ {1, 2}), φ(⟨r, s⟩) = (φ(r), φ(s)),

φ(π∗i (t)) = πi(φ(t)) (i ∈ {1, 2}), φ(ini(t)) = ini(φ(t)) (i ∈ {1, 2}),

φ(case t of [x]r or [y]s) = case φ(t) of [x]φ(r) or [y]φ(s),

φ(∅) = ∅, φ(E(t)) = E(φ(t)),

φ(id(t)) = φ(t), φ(id−1(t)) = φ(t).

Considering that the types of Eλ are generated by the set of propositional
variables V ′ = V ∪ {p | p ∈ V }, a type translation function ψ, from types
of LETλ

C to types of Eλ, can be defined by:

ψ(p) = p, ψ(∼ p) = p,

ψ(⊥) = ⊥, ψ(⊤) = ⊤,
ψ(A∧B) = ψ(A)∧ψ(B), ψ(A∨B) = ψ(A)∨ψ(B),

ψ(A→ B) = ψ(A) → ψ(B), ψ(B �A) = ψ(B)∧ψ(∼A),

ψ(∼⊥) = ⊤, ψ(∼⊤) = ⊥,
ψ(∼(A∧B)) = ψ(∼A)∨ψ(∼B), ψ(∼(A∨B)) = ψ(∼A)∧ψ(∼B),

ψ(∼(A→ B)) = ψ(A)∧ψ(∼B), ψ(∼(B �A)) = ψ(∼A) → ψ(∼B),

ψ(∼∼A) = A.

By induction on t, it can be proven that if Γ ⊢ t : A in LETC, then
{φ(s) : ψ(B) | s : B ∈ Γ} ⊢ φ(t) : ψ(A) in Eλ. Moreover, if t has an
infinite reduction chain in λC-calculus, then φ(t) has an infinite reduction
chain in the extended λ-calculus used in Eλ. Consequently, as Eλ satisfies
strong normalisation, then LETλ

C satisfies strong normalisation. ⊣

§5. Realisability interpretation for LETC. A realisability interpre-
tation of Heyting Arithmetic (HA) was proposed in [Kleene, 1945]. Under
such interpretation, codes of recursive functions are assigned to prov-
able formulas of HA, establishing in this way a connection between prov-
ability in HA and recursive functions, which in a certain way justifies
that Int is indeed constructive (at least in the formalisation of arith-
metic). [Nelson, 1949] extends Kleene’s notion of realisability interpret-
ing arithmetic formulas by two recursively and simultaneously defined
notions of positive realisability (P-realisability) and negative realisability
(N-realisability), and presents a formal system of number theory, to which
we shall refer as Nelson Arithmetic (NA), that satisfies such realisability
interpretations. NA is basically the result of substituting the axioms for
(intuitionistic) negation in HA by axioms of a constructive negation, which
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formalises constructive falsity in a dual way of constructive truth. The
logic axioms of NA are what comprise what is currently known as Nel-
son’s Logic, and a variation of this logic (presented in [Almukdad and
Nelson, 1984]), in which the explosiveness of the constructive negation
is avoided, is currently known as Nelson’s Paraconsistent Logic. As pre-
viously mentioned, the propositional fragment of Nelson’s paraconsistent
logic is usually denoted by N4. Based on Nelson’s notions of positive and
negative realisabilty, dropping the clauses for elementary arithmetical for-
mulas and for quantifiers, and adding some clauses for �, ⊥ and ⊤, the
realisability interpretation of formulas of N4⋆ (and also of LETC) can be
defined as follows, where p(·, ·) denote a fixed primitive recursive bijection
from N2 to N (a pair coding function), and φl is the partial recursive func-
tion with index l (under some fixed enumeration of the partial recursive
functions).

Definition 5.1. The following clauses define whether a natural num-
ber l P-realises or N-realises a formula of N4⋆.

(1P) No l P-realises ⊥.
(1N) No l N-realises ⊤.
(2P) l P-realises ⊤ (for every l ∈ N).
(2N) l N-realises ⊥ (for every l ∈ N).
(3P) l P-realises A∧B iff l = p(m,n), m P-realises A and n P-realises B.
(3N) l N-realises A∧B iff l = p(m,n), m = 0 and n N-realises A, or m > 0

and n N-realises B.
(4P) l P-realises A∨B iff l = p(m,n), m = 0 and n P-realises A, or m > 0

and n P-realises B.
(4N) l N-realises A∨B iff l = p(m,n), m N-realises A and n N-realises B.
(5P) l P-realises A→ B iff, for every m that P-realises A, φl(m) P-realises

B.
(5N) l N-realises A → B iff l = p(m,n), m P-realises A and n N-realises

B.
(6P) l P-realises B �A iff l = p(m,n), m N-realises A and n P-realises B.
(6N) l N-realises B �A iff, for every m that N-realises A, φl(m) N-realises

B.
(7P) l P-realises ∼A iff l N-realises A.
(7N) l N-realises ∼A iff l P-realises A.

In order to make more intuitive the relationship between P-realisability
and provability in LETC (Theorem 5.2 below), and also to establish a
connection with our explicit representation of evidence by means of λC-
terms, we shall consider that evidence is codified by natural numbers, thus
every assignation of natural numbers to free variables of λC-terms, in a
deduction in LETλ

C, will give as a particular justification of such deduction
based on evidence .
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Theorem 5.2. For every natural number n ≥ 1, if B1, . . . , Bn ⊢ A,
there is a recursive function h : Nn→N such that, if the natural numbers
l1, . . . , ln P-realise B1, . . . , Bn, respectively, then h(l1, . . . , ln) P-realises
A.

Proof. Let us suppose that B1, . . . , Bn ⊢ A. By Theorem 3.3, there
is t ∈ Λ such that x1 : B1, . . . , xn : Bn ⊢ t : A in LETλ

C. We will
suppose that the variables x1, . . . , xn range over N, thus any substitution
of natural numbers l1, . . . , ln for variables x1, . . . , xn, in the context x1 :
B1, . . . , xn : Bn, will give as a particular assumption of realisers of the
formulas B1, . . . , Bn. Now, we will show the existence of the function
h in the statement of the theorem, by structural induction on t, where
the context x1 : B1, . . . , xn : Bn will be denoted by Γ, and the sequence

of natural numbers l1, . . . , ln will be denoted by
−→
l . The similarity in

the proofs of subcases is by taking into account that a natural number
l P-realises the (constructive) negation of a formula iff it N-realises the
formula.

1. If t ∈ V : By the Generation Lemma (item 1), there is i ∈ {1, . . . , n}
such that t = xi and A = Bi, then h is the projection function

defined by h(
−→
l ) = li.

2. If t = ap(r, s): By the Generation Lemma (item 2), we have the
following two cases:
(a) There is B such that Γ ⊢ r : B → A and Γ ⊢ s : B: By

inductive hypothesis there are recursive functions h1 : Nn→N
and h2 : Nn→N such that, if

−→
l P-realise B1, . . . , Bn, respec-

tively, then h1(
−→
l ) P-realises B → A and h2(

−→
l ) P-realises B.

Then φh1(
−→
l )(h2(

−→
l )) P-realises A. The function h can then be

defined by h(
−→
l ) = U1(h1(

−→
l ), h2(

−→
l )), where U1 is the univer-

sal partial recursive function with one parameter given by the
Kleene’s Normal Form Theorem (see, for instance, [Epstein and

Carnielli, 2008, Section 16.E.]). Then: U1(h1(
−→
l ), h2(

−→
l )) =

φh1(
−→
l )(h2(

−→
l )).

(b) There are B and C such that A = ∼C, Γ ⊢ r : ∼(C � B) and
Γ ⊢ s : ∼B: Similar to the previous case.

3. If t = λx.r: By the Generation Lemma (item 3), we have the follow-
ing two cases:
(a) There are B and C such that A = B → C and Γ, x : B ⊢

r : C: By inductive hypothesis there is a recursive function h1 :

Nn+1→N such that, if
−→
l , l P-realise B1, . . . , Bn, B, respectively,

then h1(
−→
l , l) P-realises C. Let h1 = φn+1

z , by Kleene’s s-m-n
Theorem (see, for instance, [Epstein and Carnielli, 2008, Section

16.F.]), there is a recursive function sn1 such that φn+1
z (

−→
l , l) =
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φ1
sn1 (z,

−→
l )

(l). The function h can then be defined by h(
−→
l ) =

sn1 (z,
−→
l ).

(b) There are B and C such that A = ∼(C �B) and Γ, x : ∼B ⊢ t :
∼C: Similar to the previous case.

4. If t = (r, s): By the Generation Lemma (item 4), we have the fol-
lowing two cases:
(a) There are B and C such that A = B∧C, Γ ⊢ r : B and Γ ⊢ s : C:

By inductive hypothesis there are recursive functions h1 : Nn→N
and h2 : Nn→N such that, if

−→
l P-realise B1, . . . , Bn, respec-

tively, then h1(
−→
l ) P-realises B and h2(

−→
l ) P-realises C. The

function h can then be defined by h(
−→
l ) = p(h1(

−→
l ), h2(

−→
l )).

(b) There are B and C such that A = ∼(B∨C), Γ ⊢ r : ∼B and
Γ ⊢ s : ∼C: Similar to the previous case.

5. If t = ⟨r, s⟩: Similar to the previous case.
6. If t = π1(r) (respectively t = π2(r)): By the Generation Lemma

(item 6), we have the following two cases:
(a) There is B such that Γ ⊢ r : A∧B (respectively Γ ⊢ r : B∧A):

By inductive hypothesis there is a recursive function h1 : Nn→
N such that, if

−→
l P-realise B1, . . . , Bn, then h1(

−→
l ) P-realises

A∧B (respectively B∧A). The function h can then be defined

by h(
−→
l ) = u1(h1(

−→
l )) (respectively h(

−→
l ) = u2(h1(

−→
l ))), where

u1(·) (respectively u2(·)) is a fixed recursive unpairing function
of the first coordinate (respectively the second coordinate).

(b) There are B and C such that A = ∼C and Γ ⊢ r : ∼(C∨B)
(respectively Γ ⊢ r : ∼(B∨C)): Similar to the previous case.

7. If t = π∗1(r) (respectively t = π∗2(r)): Similar to the previous case.
8. If t = in1(r) (respectively t = in2(r)): By the Generation Lemma

(item 8), we have the following two cases:
(a) There are B and C such that A = (B∨C) and Γ ⊢ r : B

(respectively Γ ⊢ r : C): By inductive hypothesis there is

a recursive function h1 : Nn→N such that, if
−→
l P-realise

B1, . . . , Bn, then h1(
−→
l ) P-realises B (respectively C). The func-

tion h can then be defined by h(
−→
l ) = p(0, h1(

−→
l )) (respectively

h(
−→
l ) = p(1, h1(

−→
l ))).

(b) There are B and C such that A = ∼(B∧C) and Γ ⊢ r : ∼B
(respectively Γ ⊢ r : ∼C): Similar to the previous case.

9. If t = case q of [x]r or [y]s: By the Generation Lemma (item 9), we
have the following two cases:
(a) There are B and C such that Γ ⊢ q : B∨C, Γ, x : B ⊢ r : A

and Γ, y : C ⊢ s : A: By inductive hypothesis there are recur-
sive functions h1 : Nn→N, h2 : Nn+1→N and h3 : Nn+1→N
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such that, if
−→
l , ln+1, ln+2 P-realise B1, . . . , Bn, B,C, respec-

tively, then h1(
−→
l ) P-realises B∨C, h2(

−→
l , ln+1) P-realises A and

h3(
−→
l , ln+2) P-realises A. The function h can then be defined by

h(
−→
l ) =

{
h2(

−→
l , u2(h1(

−→
l ))) if u1(h1(

−→
l )) = 0

h3(
−→
l , u2(h1(

−→
l ))) if u1(h1(

−→
l )) ̸= 0

(b) There are B and C such that Γ ⊢ q : ∼(B∧C), Γ, x : ∼B ⊢ r : A
and Γ, y : ∼C ⊢ s : A: Similar to the previous case.

10. If t = E(r): By the Generation Lemma (item 10), we have the fol-
lowing two cases:
(a) Γ ⊢ r : ⊥: By inductive hypothesis there is a recursive function

h1 : Nn→N such that, if
−→
l P-realise B1, . . . , Bn, then h1(

−→
l )

P-realises ⊥. As ⊥ have no P-realisers, then there are no P-
realisers for all formulas B1, . . . , Bn. Consequently, h can be h1
(or any n-ary recursive function).

(b) Γ ⊢ r : ∼⊤: Similar to the previous case.
11. If t = id(r): By the Generation Lemma (item 11), there is B such

that A = ∼∼B and Γ ⊢ t : B. By inductive hypothesis there is a

recursive function h1 : Nn→N such that, if
−→
l P-realise B1, . . . , Bn,

then h1(
−→
l ) P-realises B. As a natural number l P-realises B iff l

N-realises ∼B, and iff l P-realises ∼∼B, then h can be h1.
12. If t = id−1(r): By the Generation Lemma (item 12) Γ ⊢ r : ∼∼A.

By inductive hypothesis there is a recursive function h1 : Nn→N
such that, if

−→
l P-realise B1, . . . , Bn, then h1(

−→
l ) P-realises ∼∼A.

As a natural number l P-realises ∼∼A iff l N-realises ∼A, and iff l
P-realises A, then h can be h1.

⊣

Corollary 5.3. If B1, . . . , Bn ⊢ A and it is supposed that there are
natural numbers l1, . . . , ln that P-realise B1, . . . , Bn, respectively, then
there is a natural number l that P-realises A (particularly, if ⊢ A, then
there is a natural number l that P-realises A).

Proof. If n ≥ 1, the result immediately follows from Theorem 5.2.
If n = 0 (i.e. if ⊢ A), we proceed by structural induction on A (tak-
ing into account that A cannot be ⊥, nor a propositional variable or a
(constructive) negation of a propositional variable):

1. If A = ⊤, any natural number l P-realises A.
2. If A = B∧C, then ⊢ B and ⊢ C, and by inductive hypothesis there

are l1 and l2 that P-realise B and C, respectively. Consequently
p(l1, l2) P-realises A.
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3. If A = B∨C, as LETC satisfies de disjunction property, then ⊢ B
or ⊢ C. In the first case, by inductive hypothesis there is l that P-
realises B, then p(0, l) P-realises A. In the second case, by inductive
hypothesis there is l that P-realises C, then p(1, l) P-realises A.

4. If A = B → C, then B ⊢ C. By Theorem 5.2, there exists a recursive
function h : N→N such that, if l P-realises B, then h(l) P-realises
C. Consequently, any index of h (under the fixed enumeration of the
partial recursive functions) P-realises A→ B.

5. If A = C�B, then ⊢ ∼B and ⊢ C, and by inductive hypothesis there
are l1 and l2 that P-realise ∼B and C, respectively. Consequently
p(l1, l2) P-realises A.

6. The cases where A = ∼B, with B a compound formula, are similar
to the previous cases.

⊣
Note that there are no clauses for the P-realisation or the N-realisation

of propositional variables, consequently formulas p∨∼ p and ∼(p∧∼ p),
with p ∈ V , have no P-realisers. This justifies the paracomplete and
paraconsistent character of LETC.

In [Rose, 1953], it is proved that there exists an intuitionistic propo-
sitional formula for which the substitution of number-theoretic formulas
for its propositional variables produces realisable but not intuitionisti-
cally provable formulas. Although our definition of P -realisability and
N -realisability of formulas of N4⋆ does not depend on an arithmetic (or
any other) theory, Rose’s result and the fact that N4⋆ is a conservative
extension of intuitionistic propositional logic (cf. [Odintsov, 2008, Corol-
lary 8.6.6]) are strong reasons to believe that the reciprocal of Corollary
5.3 and of Theorem 5.2 are not valid.

§6. On the constructivity of LETC. As stated in [Wansing, 2008,
pp. 341-342]:

Sometimes the term ‘constructive logic’ is used as a synonym
for ‘intuitionistic logic’. However, logics other than intuition-
istic logic have also been said to be constructive, like, for in-
stance, Johansson’s minimal logic, Heyting-Brouwer logic, or
David Nelsons’s logics with strong negation. Whereas there ex-
ists the system of classical propositional and predicate logic, it
is far from clear whether there exists exactly one system of con-
structive logic. In a situation where there are no clear, agreed-
upon, individually necessary and jointly sufficient conditions for
the constructiveness of a logical system, it seems quite difficult
or next to pointless to designate one particular logic as the cor-
rect constructive logic. Nevertheless, for some reasons certain
logics may still be regarded as constructive logics.
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Some reasons to justify that LETC is a constructive logic are the follow-
ing:

• LETC does not satisfy the Principle of Excluded Middle (PEM). Ac-
cording to [Negri and von Plato, 2001, p. 27], ‘Under the constructive
interpretation, the law of excluded middle is not an empty “tautol-
ogy,” but expresses the decidability of proposition A.’ The failure
of PEM is then related to the existence of undecidable propositions,
and is usually used to justify that a logic is constructive. The de-
cidability of a particular proposition A can be expressed in LETC by
✩A.

• LETC satisfies the disjunction property (i.e. if ⊢ A∨B, then ⊢ A or
⊢ B).3 This is another property usually used to justify that a logic
is constructive.

• LETC also satisfies the (negation of) conjunction property (i.e. if
⊢ ∼(A∧B), then ⊢ ∼A or ⊢ ∼B),4 which can be viewed as a con-
structive property dual to the disjunction property.

• As it was shown in Section 3, LETC admits a BHK-style interpre-
tation where evidence for accepting or rejecting compound proposi-
tions are treated as constructions, in an analogous way as the BHK-
interpretation for Int offers a constructive interpretation of that logic
in terms of proofs.

• The system LETλ
C provides an explicit representation of evidence by

means of λC-calculus terms, which represent algorithmic procedures
to calculate evidence of compound propositions base on evidence for
their constituent parts.

• The realisability interpretation provided for LETC, Theorem 5.2 and
Corollary 5.3 establish a strong connection between derivations in
LETC and recursive functions, which also highlights the algorithmic
nature of the evidence building process in LETC.

Since the classical negation of a proposition is true iff the proposition
is false, classical negation expresses falsity. Moreover, the classical nega-
tion of a proposition A can be defined as the intuitionistic negation (i.e.
as A → ⊥), which can be interpreted as the impossibility of A be true.
Consequently, in classical logic there is no distinction between falsity and
impossibility of truth. Intuitionistically, it is less clear whether or not
there is a distinction between falsity and impossibility of truth. Although
[Shramko, 2012] recognises that ‘There is a tradition to present intuition-
istic falsity of a sentence as truth of its (intuitionistic) negation.’ and

3It is well-known that N4 satisfies the disjunction property, and the addition of the
rules for ⊥, ⊤ and � do not destroy this property.

4The conjunction property is an immediate consequence of the disjunction property
and the fact that ⊢ ∼(A∧B) ⇔ (∼A∨∼B).
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claims that ‘Brouwer and Heyting seem not to have any special concep-
tion of falsity as a philosophical (or semantic) notion. Whenever they
occasionally speak of falsity, they simply mean intuitionistic negation.’,
he proposes a ‘genuine intuitionistic notion of falsity’ which is not cap-
tured by the intuitionistic negation. On the other hand, as shown in
Section 2, in LETC the notions of falsity and impossibility of truth are
clearly separated.

From a constructive point of view, it seems clear that Int allows only
direct proofs to establish the truth of propositions. However, if it is ac-
cepted that intuitionistic negation represents intuitionistic falsity, then Int
allows only indirect proofs to establish the falsity of propositions. Conse-
quently, if by a ‘constructive proof’ we mean a ‘direct proof’, under the
interpretation of negation as falsity, Int allows only constructive proofs to
establish the truth of propositions and no constructive proofs to estab-
lish the falsity of propositions. However, if we understand intuitionistic
negation as impossibility of truth, Int not only allows constructive (or
direct) proofs to establish the truth of propositions, but also to establish
the impossibility of the truth of propositions. In our view, the correct
interpretation of intuitionistic negation is the later one, and we agree
with Shramko that intuitionistic negation does not represent falsity. The
failure of the (negation of) conjunction property in Int can be seen as a
consequence of the fact that the intuitionistic negation does not represent
falsity.

In LETC, the constructive negation represents falsity (i.e. ∼A can be
interpreted as ‘A is false’), the intuitionistic negation represents impos-
sibility of truth (i.e. ¬A must be interpreted as ‘it is impossible that
A be true’), and the constructive negation of co-intuitionistic negation
represents impossibility of falsity (i.e. ∼ ¬A must be interpreted as ‘it is
impossible that A be false’). As it was shown in Section 2, these notions
are separated in LETC. From a constructive point of view, LETC allows
only direct proofs to establish the truth of propositions and the impossi-
bility of the truth of propositions, and also allows only direct proofs to
establish the falsity of propositions and the impossibility of the falsity of
propositions. Taking ‘direct proof’ as a synonym for ‘constructive proof’,
it follows that LETC is constructively richer than Int.

Intuitively, it seems reasonable to infer the falsity of a proposition from
the impossibility of its truth, and the truth of a proposition from the
impossibility of its falsity, which leads us to consider the inclusion of the
following rules to LETC (taking into account that ∼ ¬A and ¬∼A are
strongly equivalent in LETC):

¬A (E¬)∼A
¬∼A (E¬∼)
A
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However, it is easy to show that the inclusion of these rules makes admis-
sible the following rules:

[∼A]

...
⊥ (RA1)A

[A]

...
⊥ (RA2)∼A

which can be seen as indirect proofs (or proofs by reductio ad absurdum)
for the truth or the falsity of A, respectively. Using the rule (E∼∼), it
can be proven that (E¬) makes admissible (E¬∼), and that (E¬∼) makes
admissible (E¬). Consequently, the addition of either of these two rules
to LETC will cause the system to lose its constructivist properties.

It can also be considered reasonable that the falsity of a proposition
implies the impossibility of its truth, and that the truth of a proposition
implies the impossibility of its falsity, which would lead us to consider
adding the following rules to LETC:

∼A (I¬)¬A
A (I¬∼)¬∼A

It can also be proven that the addition of (I¬) makes admissible (I¬∼),
and that the addition of (I¬∼) makes admissible (I¬). Moreover, it is
evident that the addition of (I¬) to LETC will make the constructive
negation explosive. Consequently, the addition of (I¬) or (I¬∼) to LETC

will result in the system becoming non-paraconsistent, and no longer able
to formalise deductions in contexts with conflicting information.

§7. Concluding remarks and future work. This article introduces
the constructive logic of evidence and truth, LETC, a new system within
the family of LETs. The logic LETC extends N4⋆ (an extension of Nelson’s
paraconsistent logic) by adding connectives for consistency, inconsistency,
determinedness, and undeterminedness. Unlike other LETs, which feature
a classicality operator that simultaneously restores the consistency and
determinacy of certain propositions, LETC provides distinct connectives
for the independent recovery of these properties.

Lambda-calculus terms were incorporated into LETC, resulting in the
type system LETλ

C, which provides an explicit formalisation of evidence.
This approach contrasts with the one presented in [Fitting, 2017]. In
LETλ

C, lambda-calculus terms not only represent evidence but also de-
scribe algorithmic procedures for deriving evidence for compound formu-
las based on evidence for their constituent parts.

The Justification Logics proposed in [Artemov, 2008] generalize the
Logic of Proofs (LP0), introduced by the same author in [Artemov, 1994]
and further developed in [Artemov, 2001], [Artemov and Fitting, 2019].
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LP0 formalises the Brouwer-Heyting-Kolmogorov (BHK) provability in-
terpretation of Intuitionistic Logic, with proofs explicitly represented as
‘proof polynomials.’ This formalisation leads to an embedding within
Peano Arithmetic. However, as noted in the introduction, the goals and
methods of LETC differ significantly from those of justification logics, par-
ticularly from LP0. Nevertheless, it remains an open possibility to apply
LP0-like techniques to formalise the BHK-style interpretation of LETC,
where ‘evidence’ is understood as ‘proof’ within Nelson’s arithmetic sys-
tem.

In addition to the algorithmic interpretation offered by the lambda-
calculus terms in LETλ

C, a realisability interpretation is also offered for
LETC which highlights the constructive properties of this logic, establish-
ing a close relationship between deductions and recursive functions.

As previously stated in Section 6, LETC is a logic that extends Int,
generating new constructivist properties. LETC enables not only con-
structive demonstrations for the truth and the impossibility of truth of
propositions, but also for the falsity and the impossibility of falsity of
propositions. The separation between truth and impossibility of falsity,
and between falsity and impossibility of truth, is a key component for
LETC to achieve its constructivist properties.

Extending LETC to a first-order logic is not particularly difficult. This
can be achieved by incorporating the rules for the quantifiers ∀ and ∃,
along with their negations, as done in Nelson’s logic with quantifiers.
Additionally, the rules for dependent types (Π-types and Σ-types) allow
to extend LETλ

C to a system that includes types for the quantifiers and
their negations. The realisability interpretation also appears to extend
naturally to a first-order version of LETC. However, these extensions
are not presented in this article, as we believe that the most interesting
aspects of our proposal are already captured at the propositional level.

As mentioned in the Introduction, LETC formalises an instantaneous
view of evidence-based deductions, where reasoning is based solely on
the current available information. To capture a more dynamic perspec-
tive—where an agent can revise or incorporate new evidence based on
their deductions—it may be valuable to develop a meta-reasoning archi-
tecture (meta-logic) for LETC. This meta-reasoning could allow for the
modification of hypotheses (or theories) according to reasonable criteria.
Such an approach would separate reasoning based on existing evidence
(formalised within the logical system) from reasoning about the evidence
itself (which would be formalised in the meta-logic). This presents an
exciting avenue for future research.

Although much theoretical and technical work remains before LETC

can be applied to the automation of reasoning in contexts involving con-
flicting and insufficient information, it is worth noting that the concept
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of constructive justification may be particularly well-suited for exploring
algorithmic explainability in the context of Artificial Intelligence.
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