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Abstract

Soybean production contributes to ca. 60% of global plant-based protein used for food and
feed. Brazil is the largest soybean producer and exporter, with 60% from tropical and 40%
from subtropical environments. Nitrogen (N) can play an essential role in the storage of pro-
teins in seeds; thus, it could be a key factor in increasing the quantity and quality of seeds in
high-yielding soybean crops. Unlike in temperate environments, there is a gap of knowledge
on whether soybean grown under tropical and subtropical climates are limited by N-fertiliza-
tion to sustain the seed yield increase without detriments in seed protein concentration. This
study aimed to evaluate the effect of N-fertilization on soybean seed yield, protein and oil con-
centrations in tropical and subtropical environments in Brazil, thus contributing to agricul-
tural intensification procedures and food security studies. Two levels of N-fertilization (0
and 1000 ka/ha) were tested across 11 tropical or subtropical environments. The range of lati-
tudes explored here was from 12°S to 29°S, representing the major soybean-producing regions
in Brazil either under rainfed or irrigated conditions. We found that seed yield responses to N-
fertilization were significant (in some environments under rainfed with an average increase of
7%) or not significant (in irrigated). Seed protein increases due to improved N-fertilization
(on average 4% for irrigated and 12% for rainfed conditions) were much higher than previous
reports from temperate environments. Regardless of N supply and water deficit, there was a
trend of seed protein and oil concentration increasing toward lower latitudes.

Introduction

Soybean [Glycine max (L.) Merr.] production provides a base for global food security because
it is the most important source of vegetable protein, widely used in food and feed products
(Beta and Isaak, 2016; Smárason et al., 2019; Parisi et al., 2020; Wajid et al., 2020). Brazil is
the largest soybean producer in the world, with over 41.5 million ha (based on the 2021/
2022 harvest) in tropical or subtropical environments, it accounts for 36% of global soybean
production (USDA, 2021). It is estimated that the world’s population will rise from 7.7 to 9.8
billion between 2017 and 2050 (United Nations, 2017); this will require a considerable increase
in the quantity and quality (protein and oil concentration) of food production (United
Nations, 2017). In this sense, with limited new land on which to expand and an emphasis
on sustainable systems, increases in soybean production should come primarily from increased
production per unit area, requiring sustainable agricultural intensification (Cassman and
Grassini, 2020; Marin et al., 2022).

Seed protein and oil concentration play a significant role in determining the quality of soy-
bean food products (Clarke and Wiseman, 2000; Friedman and Brandon, 2001; Li et al., 2021).
Usually, the soybean quality is measured by the amount of oil extracted and final crude protein
concentrations in the soybean meal (Singh and Koksel, 2021; Wen et al., 2021). Some soybean
importers currently offer premiums for soybean containing higher amounts of protein (Pathan
et al., 2013; William et al., 2020; Lakkakula et al., 2021), while some countries exclude or apply
penalties to soybeans from regions when quality requirements are not met. China, for instance,
requires minimums of 33.5% of protein and 18% of oil concentration (Hertsgaard et al., 2019).
Therefore, advances in our understanding of the effects of agricultural practices on soybean
seed quality under tropical and subtropical environments can contribute to food security
and agribusiness.

Soybean seed yield is linearly related to the total plant N uptake (Salvagiotti et al., 2008;
Tamagno et al., 2017). The soybean crop obtains N from the symbiotic fixation of atmospheric
N2 (SNF), soil N mineralization and N from irrigation or water table; not usually relying upon
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N-fertilizer application (Herridge et al., 2008; Randall, et al., 2008;
Reis et al., 2021). Soybeans derive between 25 and 75% of their
total nitrogen from SNF process (Deibert et al., 1979;
Salvagiotti et al., 2008; Collino et al., 2015). However, there has
been a concern recently about whether SNF would be sufficient
to meet the increased N needs for high-yielding soybean crops
(Cafaro La Menza et al., 2017, 2019, 2020; Basal and Szabó,
2020). These studies were conducted under temperate environ-
ments and reported that N-fertilization could contribute to
increasing soybean yield. Temperate soils are generally viewed
as more favourable to crop production than tropical because of
higher nutrient levels (Rosenzweig and Liverman, 1992; Caubet
et al., 2020). In contrast, soils in humid tropics tend to be highly
leached of nutrients due to high temperatures, intense rainfall and
erosion that accelerate the decay of soil organic matter, resulting
in a decreased C:N ratio (Rosenzweig and Liverman, 1992;
Alemayehu et al., 2018). The N-fertilization on tropical soybean
has been little explored in scientific papers.

The consistent increase in soybean yield and decrease in seed
protein concentration often raise a debate on the need for extra N
supply. In temperate environments, with maturity group (MG)
ranging from I to IV, N-fertilization on soybean has been widely
explored. For instance, Ray et al. (2006) and Salvagiotti et al.
(2009) obtained seed yield increase between 130 and 438 kg/ha,
while Cafaro La Menza et al. (2017, 2019) obtained seed yield
increase around 600 kg/ha, and an average seed protein concen-
tration increase of 0.9 g/100 g with N-fertilizer and under irrigated
conditions. Further, Córdova et al. (2020) obtained soybean yield
increase ranging from 300 to 1000 kg/ha, while in a recently pub-
lished study, Pannecoucque et al. (2022) obtained an average
increase in seed yield of 209 kg/ha and a decrease of 2.0 g/100 g
of protein concentration, using seed inoculation and 35 kg N/ha
at R1. Finally, Wesley et al. (1998) and Brar and Lawley (2020)
reported non-significant N effects on seed yield and protein con-
centration. In tropical and subtropical environments (with MG
ranging from V to VIII), efforts have been made by a few
researchers to understand the soybean responses to
N-fertilization. Cordeiro and Echer (2019) obtained 439 kg/ha
increase in soybean yield (there is no information about protein
concentration) when N-fertilization was combined with more effi-
cient N-fixing bacteria rates under unfavourable environments,
while Hungria et al. (2006) and Zilli et al. (2021) applied 200
kg N/ha and did not obtain any seed yield increase (there is no
information about protein concentration).

The N limitation for soybean in temperate environments is
driven by the yield level (larger limitation in high than lower
yield levels) and indigenous soil N supply of the production envir-
onment (Cafaro La Menza et al., 2017, 2019). Still, it is unclear if
these drivers also apply to tropical and subtropical environments.
Seed protein concentration reports in soybean studies with
N-fertilization under tropical and subtropical environments are
scarce, and there is comparatively less research (and without a
consistent protocol) on soybean seed yield responses to N supply
in tropical and subtropical than in temperate environments. Our
scientific question is how N supply could improve soybean yields
and protein concentration in tropical and subtropical conditions.
Therefore, this research adopted consistent N-fertilization treat-
ments applied to soybean grown in tropical and subtropical envir-
onments under irrigation or rainfed condition in Brazil to
investigate whether N supply can significantly increase seed
yield and/or seed protein or oil concentration (latitude range:
12°S to 29°S). We sought to test the hypothesis that soybean

seed yield and/or protein concentration are limited by N supply
under tropical and subtropical conditions. Our goal was to evalu-
ate the effects of N supply on soybean yield, and seed quality
under rainfed and irrigated conditions and across 17 degrees of
latitude range of tropical and subtropical environments in Brazil.

Materials and methods

Field experiments

We conducted 11 field experiments under rainfed or irrigated
conditions with a two-way treatment (environment ×
N-fertilization) structure in a randomized complete block design
with four replicates. The experimental plot consisted of 12 rows,
9.0 m long, with a spacing of 0.5 m between rows and 0.04 m
for planting depth. The environments were defined as the com-
bination of locations, seasons, sowing dates and cultivars; with
different crop management:

(i) Sorriso (12°42′S, 55°48′W, 375 a.m.s.l), during two rainfed
cropping seasons [2018/2019 (SO-1) and 2019/2020
(SO-2)], with climate classification of Aw (tropical savanna
climate), conducted under conventional tillage on
Dystrophic Red Yellow Ferrosol, where the crop before plant-
ing was an 8-year degraded pasture area for SO-1, and maize
for SO-2;

(ii) Piracicaba (22°42′S, 47°30′W, 546 a.m.s.l), during three
rainfed and three irrigated cropping seasons [2017/2018
(PI-1), 2018/2019 (PI-2) and 2019/2020 (PI-3)] with a cli-
mate classification of Cwa (high-altitude tropical)
(Koeppen, 1948), conducted under conventional tillage on
a Eutric Rhodic Ferralic Nitisol, the previous crop was
maize (Zea mays L.) for P1-1 and PI-3, and wheat
(Triticum aestivum L.) for PI-2, area with a 5-year history
of soybean yield >4.5 Mg/ha;

(iii) Cruz Alta (28°38′S, 53°36′W, 476 a.m.s.l), during one rainfed
cropping season [2018/2019 (CA-1)], with a climate classifi-
cation of Cfa (humid subtropical, with well-defined summer
and winter seasons) (Koeppen, 1948), conducted under
no-tillage practices on Dystrophic Red Acrisol, the previous
crop was wheat, area with a 28-year history of soybean
yield >4.5 Mg/ha;

(iv) Tupanciretã (28°48′S, 53°48′W, 466 a.m.s.l) during one
rainfed and one irrigated cropping season [2019/2020
(TU-1)], with a climate classification of Cfa, conducted
under no-tillage on Dystrophic Red, the previous crop was
maize, area with a 26-year history of soybean yield >4.5
Mg/ha (Table 1 and Fig. 1).

The irrigation amounts applied in the experiments were deter-
mined by the potential evapotranspiration determined by the
Priestley and Taylor (1972) method; computed using the daily
weather data measured with well-calibrated sensors from the
on-site weather station (see Table 1 and Supplementary Figs
S1–S5). The Priestley–Taylor method was applied under min-
imum advection conditions and using empirical parameter α =
1.26 (Pereira and Villa Nova, 1992; Figueiredo Moura da Silva
et al., 2019, 2021, 2022). The water amount required was applied
with sprinkler irrigation by centre pivot sprinklers Senninger
Model i-Wob-UP3 at Piracicaba, and centre pivot sprinklers
Plona KS 1500 at Tupanciretã.
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N-fertilizer treatments were defined as (i) no N-fertilizer (0N),
where the soybean only relied on indigenous soil N sources (inor-
ganic soil N, mineralized N and SNF); and (ii) with N-fertilizer
(1000N). The total amount of 1000 kg N/ha fertilizer was calcu-
lated using a soybean yield target of 8945 kg/ha; this value was
based on the maximum soybean yield documented in Brazil,

until the season 2016/2017, in contest areas in Brazil (CESB,
2017 and later reported by Battisti et al., 2018). The N-fertilizer
source was urea (46-0-0) applied on the surface. It is noteworthy
that our objective was not to replicate the management of soybean
contest areas, we only sought a maximum yield seed reference to
compute supplementing N-fertilizer on soybeans.

Table 1. Description of field experiments conducted in Piracicaba, Sorriso, Cruz Alta and Tupanciretã

Sites Environment Cultivar (MG) Season Sowing date
Growing

seasona (days)
Sowing density

(plant/m2) Rainfall (mm) Irrigation (mm)

Sorriso SO-1 TMG7063 (7.0) 2018/19 Nov 20 98 30 903 –

SO-2 NS701 (7.0) 2019/20 Nov 01 100 30 893 –

Piracicaba PI-1 TMG7062 (7.0) 2017/18 Dec 26 96 28 632 50

PI-2 TMG7062 2018/19 Nov 09 100 28 692 260

PI-3 TMG7062 2019/20 Nov 27 103 28 830 150

Cruz Alta CA-1 65i65RSF (6.5) 2018/19 Nov 28 123 35 923 –

Tupanciretã TU-1 65i65RSF (6.5) 2019/20 Dec 03 118 35 352 270

MG, maturity group.
aTime between VE (emergence) and R7 (beginning of maturity), using phenological stages proposed by Fehr and Caviness (1977).

Fig. 1. Soybean harvest area distribution in Brazil. Data source: Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística, 2021).
Black stars indicate field experiments.
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We assumed that the crop accumulates 79 kg N/ha in its
aboveground biomass per each additional 1000 kg of seed yield
(Salvagiotti et al., 2008; Tamagno et al., 2017), with an extra
40% of N applied to compensate for N losses through ammonia
volatilization (Cantarella et al., 2018), and another 1.5% N
applied to compensate N losses by leaching and runoff
(Libardi and Reichardt, 1978; Oliveira et al., 2007). The urea

amount applied was split into five applications during the crop-
ping season following crop N demand reported by Thies et al.
(1995) and Bender et al. (2015): (i) 10% in second-node (V2);
(ii) 10% in fourth-node (V4); (iii) 20% in full bloom stage
(R2); (iv) 30% in beginning pod stage (R3); (v) 30% in begin-
ning seed stage (R5). For both treatments, the seeds were inocu-
lated with Bradyrhizobium elkanii (strains SEMIA 587 and

Fig. 2. Seed yield under irrigated or rainfed conditions, with zero (0N) or 1000 kg N/ha (1000N). For experiments conducted in Piracicaba (PI) under three seasons,
Sorriso (SO) under two seasons, Cruz Alta (CA) under one season, and Tupanciretã (TU) under one season. The experiments were shown from the locations of low
latitude (left) to high latitude (right). Means followed by different letters, uppercase among environments and lowercase between N-treatment for each environ-
ment, differ by Tukey test (P < 0.05).
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SEMIA 5019) at a concentration of 5 × 109 CFU/ml (colony-
forming units).

Macronutrient fertilization was computed based on surface
and subsurface soil analysis. Soil nutrient initial levels among
all experiments were as follows: 0.9–3.1% of organic matter
(Walkey–Black method), 0.7–27.0 mg P/dm3 (Melich-1 method),
0.2–5.4 Kmmolc/dm

3 (Melich-1 method), 4.0–19Mgmmolc/
dm3 (extracted by calcium acetate), 10.6–44.2 Ca mmolc/dm

3

(extracted by calcium acetate), 3.0–15.0 mg S/kg (turbidimetry
method) (see Supplementary Table S1). The soil fertilization
sought to reach: P > 26 mg/m3, K > 2.5 mmolc/dm

3, Mg > 13
mmol/dm3, Ca > 26 mmolc/dm

3, S > 15 mmol/dm3. The soybean
micronutrients were supplied via foliar fertilization based on the
crop cycle and extraction and export of micronutrients (see
Supplementary Table S2).

Water deficit was computed as the difference between water
input (precipitation and/or irrigation) and computed potential
evapotranspiration. Phenological stages, according to Fehr and
Caviness (1977), were tracked every 5 days in all experiments and
recorded dates of emergence (VE), beginning flowering (R1), begin-
ning pod (R3), beginning seed (R5) and physiologicalmaturity (R7)
(Fig. 2), when 50% of the plants were at each stage (Fehr and
Caviness, 1977). Field measurements for each experiment included
(i) seed yield (kg/ha), (ii) seed protein concentration (Kjeldahl
method) and (iii) seed oil concentration (Goldfish method). The
seed yield, seed protein and oil concentration values were expressed
at 0.13 kg H2O/kg seed. Seed yield, seed protein and oil concentra-
tion samples were collected (hand-harvested) on three centre rows
(9 m2) of the experimental plot for each treatment and replication of
each season.

Statistical analysis

Bartlett test (Milliken and Johnson, 2009) was applied to investigate
the homogeneity of variances, and no significant differences were
observed (P > 0.05) for all experiments. Once the homogeneity of
within-environment variances was obtained, we conducted the
combined analysis of variance to determine the effect of environ-
ments and N treatments on seed yield, seed protein and oil concen-
tration; and the means were compared by the Tukey test
considering the significance level of 5% (agricolae package, Team
R Core, https:/www.r-project.org). The N-fertilizer and environ-
ment were considered a fixed effect, and blocks were considered
a random effect. Linear regression was used to estimate the relation:
(i) between seed protein or oil concentration and water deficit; and
(ii) between seed protein or oil concentration and latitude.

Results

The higher N supply in the 1000N treatment significantly
increased the seed yield by 277 kg/ha (7%) and the seed protein
concentration by 4.3 g/100 g (12%) in tropical and subtropical
environments in Brazil under rainfed conditions (Table 2, Figs
2 and 3). However, the magnitude of the response varied accord-
ing to the environment from −300 kg/ha (−7%) to 596 kg/ha
(+20%) for seed yield and from 2.2 g/100 g (6%) to 6.2 g/100 g
(16%) for protein. In the case of irrigated experiments, the
increased N supply in the 1000N treatment did not affect the
seed yield but increased seed protein concentration by 1.6 g/100
g (4%) (Table 2, Figs 2 and 3). Furthermore, the magnitude of
responses in seed oil concentration due to N supply also varied

Table 2. Analysis of variance for effects of environments, nitrogen (N)-fertilization treatment and interaction between environments × N-fertilization in randomized
complete block design structure in experiments with rainfed conditions

Source of variation Seed yield Seed protein Seed oil

Irrigated experiments

Design structure D.F. F F F

Blocks 3 0.1 0.2 1.6

Treatment structure

Environment 3 28.9*** 33.7*** 231.1***

N 1 2.0 15.0*** 12.9**

Environment × N 3 0.2 0.9 7.9**

Error structure MS MS MS

Block × treatments 21 304 464 1.6 0.1

Rainfed experiments

Design structure D.F. F F F

Blocks 3 2.0 0.7 2.7

Treatment structure

Environment 6 117.8*** 41.4*** 124.0***

N 1 15.2*** 177.3*** 1.58

Environment × N 6 3.6** 4.4** 16.42***

Error structure MS MS MS

Block × treatments 39 69 005 1.6 0.1

D.F., degrees of freedom; F, F-statistic; MS, mean square.
Statistical significance was indicated by: *P < 0.05; **P < 0.01; ***P < 0.001.
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across irrigated and rainfed conditions from −1.2 g/100 g (−8%)
to 1.8 g/100 g (+11%). While seed yield responses to 1000N
were significant (in some environments under rainfed) or not sig-
nificant (in irrigated), the seed protein concentration consistently
increased across both water availability conditions.

We observed that 1000N treatment only promoted a signifi-
cant seed yield increase at 476 kg/ha for PI-1, 596 kg/ha for

PI-2, 627 kg/ha for SO-1 and 452 kg/ha for CA-1 (Fig. 2). The
increase in N supply through the 1000N treatment provided stat-
istically significant gains in seed protein concentration under irri-
gated and rainfed conditions (P < 0.001; Table 2; Fig. 3). The
average seed protein concentration was 41.0 g/100 g for 1000N
and 39.4 g/100 g for 0N treatment under irrigated condition and
40.5 g/100 g for 1000N and 36.2 g/100 g for 0N under rainfed

Fig. 3. Seed protein concentration under irrigated or rainfed conditions, with zero (0N) or 1000 kg N/ha (1000N). For experiments conducted in Piracicaba (PI) under
three seasons, Sorriso (SO) under two seasons, Cruz Alta (CA) under one season and Tupanciretã (TU) under one season. The experiments were shown from the
locations of low latitude (left) to high latitude (right). Means followed by different letters, uppercase among environments and lowercase between N-treatment for
each environment, differ by Tukey test (P < 0.05).
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conditions. The average seed protein concentration increased in
the 1000N compared to the 0N treatment on 1.6 g/100 g in irri-
gated experiments and 4.3 g/100 g in rainfed experiments.
However, the magnitude of the treatment response varied from
2.2 to 6.5 g/100 g in rainfed experiments.

For experiments conducted under irrigated environments, the
seed oil concentration ranged from 14.1 to 18.7 g/100 g (Fig. 4).

The N treatments provided no statistically significant results for
seed oil concentration under irrigated conditions. Under rainfed
conditions, seed oil concentrations ranged from 14.8 to 20.0 g/
100 g (Fig. 4). The response to N treatments on seed oil concen-
tration was unclear. The average seed oil concentration obtained
in rainfed environments was 17.8% with 0N and 17.7% with
1000N.

Fig. 4. Seed oil concentration under irrigated or rainfed conditions, with zero (0N) or 1000 kg N/ha (1000N). For experiments conducted in Piracicaba (PI) under
three seasons, Sorriso (SO) under two seasons, Cruz Alta (CA) under one season and Tupanciretã (TU) under one season. The experiments were shown from the
locations of low latitude (left) to high latitude (right). Means followed by different letters, uppercase among environments and lowercase between N-treatment for
each environment, differ by Tukey test (P < 0.05).
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There was a positive linear relationship between the seed pro-
tein concentration difference ((1000N − 0N)/0N × 100) and the
water deficit, with R2 = 0.84 (Fig. 5). The relative response in
seed protein concentration due to N supply increased by 4% for
every 100 mm of water deficit. For seed oil concentration, the
water deficit did not explain the variability.

We also found that a large portion of the variability in seed
protein and oil concentration across environments under rainfed
or irrigated conditions was related to the latitude in which the
experiments were conducted (Figs 6(a) and (b)). It is important
to note that the relationship was established using only four
observations representing the sites. The higher seed protein and
oil concentration values occurred in lower latitudes (12°S). The
soybean harvested across Southern Brazil experiments showed
consistently lower seed protein and oil concentrations than
Northern Brazil. The magnitude of the decrease in seed protein
concentration with latitude was slightly higher than in oil
(−0.34× v. −0.20×).

Discussion

Unlike in temperate environments, soybean seed yield failed to
respond to increases in N supply in most tropical and subtropical
environments evaluated in this study. Salvagiotti et al. (2009) and
Cafaro La Menza et al. (2017, 2019, 2020) documented the

existence of N limitation in highly productive environments in
trials in Argentina and the USA, with N-fertilization under irri-
gated conditions. Their findings revealed the potentiality of soy-
bean seed yield increases with ample N supply in temperate
environments with a yield level of >4.5 Mg/ha (based on the
yield history of the area). In our areas with yield level >4.5 Mg/
ha, the seed yield responded to the 1000N treatment only in
PI-3 (rainfed conditions) and Cruz Alta. In these sites, we
sowed cultivars with MGs between 6.2 and 6.5, which are much
longer MGs than the ones used in previous studies in temperate
zones (MGs between 0.0 and 3.8). For PI-1, PI-2 and TU-1, the
indigenous soil N sources were sufficient to reach the same seed
yield level as soybeans with N-fertilizer. Still, the yield target of
8945 kg/ha was not reached in any experiment. It means that
the sowing date may have been a limiting factor in reaching
higher yield; because for the Southern Hemisphere, sowing
between late September and mid-October may be more ideal
for the soybean crop to reach its peak of development (between
R5 and R6) in December (greatest solar energy availability)
(Zanon et al., 2016; Tagliapietra et al., 2021). Therefore, soybean
could have accumulated more carbohydrates and acquire N via
fixation or fertilization.

In our experiments, the SNF could have been indirectly
affected in the few cases where increased seed protein also accom-
panied seed yield response to N-fertilization, for instance in SO-1.

Fig. 5. Variation (Δ) of seed protein concentration (%) between 1000N and 0N treatments (1000N minus 0N) with water deficit across all rainfed conditions (close
circles) in this study (total of seven environments). The Δ of seed protein concentration in irrigated environments is also shown (open circles). Water deficit was
calculated as the difference between water input (precipitation and/or irrigation) and potential evapotranspiration using Priestley–Taylor method. A linear regres-
sion adjusted to the rainfed environments indicates the increase in Δ of seed protein concentration due to N supply with increasing water deficit.
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This environment was limited for SNF for two reasons: firstly,
although the seeds were inoculated with B. elkanii, the soil prob-
ably had a poor inoculum of N-fixing bacteria because, before
planting, it was a degraded pasture area with no prior soybean
crop history (Cordeiro and Echer, 2019). Secondly, a low initial
soil phosphorus content (see Supplementary Table S1) may
reduce root nodulation (Hungria et al., 2006; Pavanelli and
Araújo, 2009). Although the soil was fertilized with phosphorus,
it cannot be certain that the element was available in the early
stages of inoculation. Consistent with our results, Cordeiro and
Echer (2019) obtained an increase of 439 kg/ha (22%) in the soy-
bean yield using N-fertilizer (50 kg/ha) in the first year of sowing
in areas following degraded pasture.

During the cropping season at PI-2, there were water-deficit
periods between R3 and R6 [critical period for N accumulation
and seed number determination (Rotundo et al., 2012; Monzon
et al., 2021; Egli, 2017)], the accumulated rainfall was only 54.3
mm, with 97.8% of rainfall concentration on 77 and 84 DAP

(Fig. 2; Supplementary Fig. S1-b). Water stress affects the survival
and synthesis of leghaemoglobin and nodule function (Sprent,
1971; Patterson and Hudak, 1996; Santachiara et al., 2019).
Similarly, several studies have shown that N uptake and assimila-
tion from the soil are less sensitive to temporary water deficits
than SNF (Purcell and King, 1996; Purcell et al., 2004; Ray
et al., 2006). However, it is still unclear how much yield loss
can be consistently captured with an economically feasible
N-fertilizer amount. Also unknown, is which type, timing and
placement of the N-fertilizer would maximize yield response
and minimize N losses in rainfed environments that usually
experience diverse drought conditions (amount and timing of
water deficit).

N-fertilization on soybean could impact seed composition des-
pite not necessarily affecting seed yields (Assefa et al., 2019). We
found an average potential increase of 1.6 g/100 g (4%) in soybean
seed protein concentration due to N-fertilizer application under
experiments conducted under irrigated conditions. This potential

Fig. 6. Average of seed protein (a) and oil concentration (b) (g/100 g) for experiments conducted under rainfed or irrigated conditions across different latitudes.
Each average includes the four replicates of the 0N and 1000N treatments. Linear regression was adjusted to each relationship between seed protein and oil to
latitude.
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increase was ca. 60% higher than the average of 0.9 g/100 g docu-
mented by Cafaro La Menza et al. (2017, 2019, 2020) with
N-fertilization under irrigated conditions in temperate environ-
ments. Yet, in our experiments conducted under rainfed condi-
tions, we found a larger potential response to N-fertilizer in
terms of seed protein concentration (4.3 g/100 g). This potential
response was twofold higher than the 2.0 g/100 g documented
by Bosaz et al. (2021) under rainfed conditions in a temperate
environment.

Different from results obtained for seed protein concentration,
our findings showed unclear relation between N supply and seed
oil concentration: (1) no response in all experiments under irri-
gated conditions and PI-2 under rainfed conditions, (2) negative
response in SO-1, SO-2, PI-1 and TU-1 under rainfed conditions,
and (3) positive response in PI-3 and CA-1 under rainfed condi-
tions. In a meta-analysis study, Rotundo and Westgate (2009)
reported that water stress decreased seed oil concentration dra-
matically for soybean grown in the USA. However, their results
were not consistent with ours in subtropical and tropical environ-
ments in which the water deficit did not consistently affect seed
oil concentration. The seed oil and protein concentration can be
affected by genotype, environment, management and season in
a complex and still unclear way (Rotundo and Westgate, 2009;
Rotundo et al., 2016; Assefa et al., 2019; Bosaz et al., 2021;
Grassini et al., 2021). Unlike protein, the interaction between N
supply, latitudes and water deficit for seed oil did not follow a
clear pattern in tropical and subtropical environments.

Our findings highlighted that N supply is a critical factor in trop-
ical and subtropical soybean systems to increase the seed protein
concentrationand that the protein gapdue toN supply ismuch larger
in tropical and subtropical than in temperate environments. Indeed,
more research efforts are needed to diagnose nutrient limitations
in tropical and subtropical environments and test N-fertilization
timing, rates, placement and fertilizer types for an economical and
environmentally sound response (Rotundo et al., 2022). At the
cropping system level, increasing indigenous soil N supply with
cover crops or different crop rotations and developing novel bacteria
strains with improved SNF performance and survival in the soil will
be needed to close the N gap for seed yield and protein in soybean.

Yet, our findings also revealed that the soybean harvested in
lower latitudes showed consistently higher seed protein and oil
concentrations than in higher latitudes within tropical and sub-
tropical environments. It should be noted that we used only
four points to establish this relationship, so this trend needs to
be confirmed with more data in tropical conditions. In a
meta-analysis, Assefa et al. (2019) reported a reduction in seed
oil and increases in soybean protein concentration in higher lati-
tudes for soybean sowed in the USA. In the same way, Rotundo
et al. (2016) documented higher protein concentrations in lower
latitudes in the northern hemisphere. Thakur and Hurburgh
(2007) compared the quality of samples from different locations
(in the USA and Argentina) and documented that Brazilian soy-
bean had the highest seed oil and protein concentration. The rea-
son for this higher protein concentration may be related to genetic
breeding (flowering-time control and latitudinal adaptation, see
Lu et al., 2017) inherent to cultivars recommended for low-
latitude regions. Yet, this has not enough been elucidated by sci-
ence, more studies are required to advance our understanding of
interactions between soybean protein and latitude.

Although the purpose of this study was not to test
N-fertilization on soybean to make recommendations, it is
important to clarify that N-fertilization applications of that

magnitude can generate substantial volatilization losses that can
exceed 40% (Cantarella et al., 2018). These results alerted us to
a considerable chance of increasing environmental losses under
subtropical and tropical conditions by high rates of the volatiliza-
tion of N-NH3 associated with urea application. Hence, this heavy
fertilization practice (1000N) is not consistent with the sustain-
able intensification principles and is not cost-effective or environ-
mentally appropriate – farmers should not consider the
application of 1000 kg N/ha on soybean in tropical environments.
Thus, improvements in N-management on soybean might
increase protein production in Brazil and contribute to the global
plant-based protein production for a growing population.
However, our findings indicated that improvements in
N-management on soybean might increase protein production
in Brazil and contribute to the global plant-based protein produc-
tion for a growing population.

Conclusions

Eleven soybean experiments were conducted under tropical and
subtropical environments in Brazil with rainfed or irrigated con-
ditions combined with N-fertilization treatment (0 or 1000 kg
N/ha). The N-fertilization under subtropical and tropical condi-
tions resulted in significant (in some environments under rainfed)
or no soybean seed yield effect (under irrigation) and inconsistent
seed oil concentration responses. However, our findings showed
that the ample N supply in the 1000N treatment consistently
increased seed protein concentration in the tropical and subtrop-
ical environments evaluated, and its magnitude was larger than
what was previously reported for temperate environments.
Finally, in lower latitude soybean regions of Brazil, the seed pro-
tein and oil concentration were higher than in higher latitudes.

This paper expands upon the work of the first author’s PhD
thesis.
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