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To expand on recent work, we introduce collisional terms in the analysis of the warm
ion–electron, two-fluid equations for a homogeneous plasma at rest. Consequently, the
plasma is now described by six variables: the magnetisation, the ratio of masses over
charges, the electron and ion sound speeds, the angle between the wave vector and the
magnetic field and a new parameter describing the electron–ion collision frequency. This
additional parameter does not introduce new wave modes compared with the collisionless
case, but does result in complex mode frequencies. Both for the backward and forward
propagating modes the imaginary components are negative and thus quantify collisional
damping. We provide convenient (polynomial) expressions to quantify frequencies and
damping rates in all short- and long-wavelength limits, including the cutoff and resonance
limits, whilst the one-fluid magnetohydrodynamic limit is retained with the familiar
undamped slow, Alfvén and fast waves. As collisions only introduce a damping, the
previously introduced labelling of the wave modes S, A, F, M, O and X can be kept
and assigned based on their long- and short-wavelength behaviour. The obtained damping
at cutoff and resonance limits is parametrised with the collision frequency, and can be
tailored to match known kinetic damping expressions. It is demonstrated that varying the
angle can introduce crossings between the wave modes, as was already present in the ideal
ion–electron case, but also a collision frequency exceeding a critical collision frequency
can lead to crossings at angles where previously only avoided crossings were found.

Keywords: astrophysical plasmas, complex plasmas, plasma waves

1. Introduction

Two-fluid, ion–electron plasmas often appear as introductory examples in textbooks to
highlight the variety of wave modes a plasma supports, such as in Thorne & Blandford
(2017) and Gurnett & Bhattacharjee (2017). The analysis of these wave modes is usually
limited to propagation parallel and perpendicular to the magnetic field, which poses
problems as these angles of propagation exhibit special behaviour. Properties of these
wave modes have been analysed in many textbooks, e.g. Stix (1992) and Goedbloed,
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Keppens & Poedts (2019). They have been revisited for a variety of different conditions
and angles of propagation in a number of recent works (Keppens & Goedbloed 2019b,a;
Keppens, Goedbloed & Durrive 2019; De Jonghe & Keppens 2020; Choi et al. 2023).
The main result from these previous works that will be generalised and re-evaluated to
collisional plasma conditions is that the six ideal plasma wave modes at perpendicular
and parallel orientation can exhibit crossings between the wave modes, depending on
the parameter regime, whereas such crossings are strictly avoided for all oblique angles
between the direction of propagation and the background magnetic field, resulting in a
single frequency ordering across all wavelengths. Based on this ordering, those works
emphasised a new consistent labelling scheme for all six wave mode pairs present at any
angle of propagation, in ideal ion–electron plasmas at finite temperatures. Such labelling
best uses the slow-Alfvén-fast (or S-A-F) labels for the lowest-frequency modes, which
map on the pure ideal magnetohydrodynamic (MHD) long-wavelength description, whilst
the modified Langmuir, ordinary and extra-ordinary mode labels (hence M-O-X) pick up
the strict ordering between generalised electrostatic and light waves at short wavelengths
and high frequencies. This clear SAFMOX ordering is only broken at purely parallel
or purely perpendicular orientations. At the oblique orientations, avoided crossings then
signify a change in polarisation along a solution branch, as seen in e.g. Huang & Lyu
(2019), whereas true crossings reflect a decoupling of the two modes resulting in a stable
polarisation along each solution branch.

In this paper we further explore this behaviour with the introduction of an additional
parameter, the ion–electron collision frequency ν. The wave modes found previously will
still be present and we will therefore also use the SAFMOX labelling scheme, as presented
in De Jonghe & Keppens (2020), where we assign the labels based on their behaviour
in the long- and short-wavelength limits. In all figures we will use the colour scheme
green-S, red-A, blue-F, purple-M, cyan-O, black-X, as used also in our earlier studies of
the collisionless variants. When branches overlap in the figures, they are drawn as dashed
lines to better distinguish them.

We start from a homogeneous background with uniform magnetic field B and electrons
and ions at rest. Considering the energy, momentum and continuity equations for
each species s = i, e as well as the full set of Maxwell equations, we perturb with
small oscillations and assume plane wave solutions ∼ exp i(k · x − ωt). In this Fourier
description, we will always adopt real-valued components of the wavevector k (such that
its magnitude k = 2π/λw has a real wavelength λw), and in the ideal case, the frequency ω
is always real valued as well. Collisions will allow for complex-valued frequencies, which
encode wave damping in their imaginary parts. Furthermore, assuming charge neutrality
Zni = ne with Z the ion charge number and ne, ni the electron and ion number densities,
respectively, a set of 8 equations in 8 variables is obtained after linearisation and some
manipulation. The derivation, based on Denisse, Delcroix & Levitt (1962), can be found in
Goedbloed et al. (2019). The result of a linearisation of these equations is also shown later
in (2.1). The determinant of this system provides a polynomial P(ω, k) whose solutions to
P(ω, k) = 0 are the wave modes present in the plasma. This polynomial has successfully
been used in the analysis of these wave modes in the previously mentioned works, and
we will similarly start from the general system of equations. The parameters describing
the plasma are the electron and ion plasma frequencies ωps, cyclotron frequencies Ωs and
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sound speeds vs, respectively,

ωpe ≡
√

e2ne

ε0me
, Ωe ≡ eB

me
, ve ≡

√
γ pe

neme
,

ωpi ≡
√

Z2e2ni

ε0mi
, Ωi ≡ ZeB

mi
, vi ≡

√
γ pi

nimi
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.1)

Here, γ denotes the ratio of specific heats, and ms and ps the mass and pressure of each
species, respectively. Additionally, e is the fundamental charge, ε0 the vacuum permittivity
and B signifies the magnetic field strength |B|. We furthermore introduce the plasma
frequency ωp ≡

√
ω2

pe + ω2
pi and combined skin depth δ ≡ c/ωp, where c is the light speed,

to make all quantities dimensionless

ω̄ ≡ ω/ωp, e ≡ ωpe/ωp, E ≡ Ωe/ωp, v ≡ ve/c

k̄ ≡ kδ, i ≡ ωpi/ωp, I ≡ Ωi/ωp, w ≡ vi/c.

}
(1.2)

The remaining parameters are μ = Zme/mi, denoting the ratio of masses over charges, and
the quantities λ = cos θ and τ = sin θ , where θ is the angle between the wave vector k and
the background magnetic field. Note that

e2 = 1
1 + μ

, i2 = μ

1 + μ
, I = μE, (1.3a–c)

and the normalised sound and Alfvén speeds squared can be written as (De Jonghe &
Keppens 2020)

c2
s = i2v2 + e2w2 = μv2 + w2

1 + μ
, c2

A = EI
1 + EI

= μE2

1 + μE2
. (1.4a,b)

Finally, ν̄ = ν/ωp provides a measure for the electron–ion collision frequency. The
collision frequency ν is related to the resistivity η as η = me(e2ne)

−1ν. Taking for η the
Spitzer resistivity, values of ν̄ are, for example, for typical solar coronal loop parameters
of the order of ∼10−8. In this paper, however, we will consider ν̄ a free parameter and vary
it across multiple orders of magnitude. This is done for two reasons: laboratory plasma
conditions may indeed realise much higher collisionality, and further we will argue that a
judicious choice of the collisional parameter ν̄ may come from full kinetic theory, where
damping rates of certain plasma wave modes are known analytically (such as is the case
for collisionless Landau damping of electrostatic plasma oscillations).

Our paper is organised as follows. In § 2, we discuss the general dispersion relation and
how the electron–ion collision frequency enters. Then, we analyse various limit behaviours
of the dispersion relation in § 3. Lastly, we employ dispersion diagrams to illustrate the
behaviour of the wave modes at parallel, perpendicular and oblique orientations in § 4
before concluding in § 5.

2. Dispersion relation
As noted in the introduction, the dispersion relation for a general ion–electron, two-fluid

plasma with collisional effects can be obtained as the determinant of the following 8 × 8
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ω12 ω11 ω10 ω9 ω8 ω7 ω6 ω5 ω4 ω3 ω2 ω 1

1 α60 β50 α50 β40 α40 β30 α30
k
k2 α51 β41 α41 β31 α31 β21 α21
k3

k4 α42 β32 α32 β22 α22 β12 α12
k5

k6 α33 β23 α23 β13 α13 β03 α03
k7

k8 α24 β14 α14 β04 α04

TABLE 1. Structure of the dispersion relation. Bold coefficients are independent of ν̄.

matrix (see Goedbloed et al. 2019):
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω2 − k2c2 0 ωωpe 0 0 −ωωpi 0 0
0 ω2 − k2c2 0 −ωωpe 0 0 ωωpi 0

ωpe 0 ω + iν λΩe 0 −i
√

μν 0 0
0 −ωpe λΩe ω + iν τΩe 0 −i

√
μν 0

0 0 0 ωτΩe
ω2 + iνω

−k2v2
e − ω2

pe
0 0

ωpeωpi

−i
√

μνω

−ωpi 0 −i
√

μν 0 0 ω + iμν −λΩi 0
0 ωpi 0 −i

√
μν 0 −λΩi ω + iμν −τΩi

0 0 0 0
ωpeωpi

−i
√

μνω
0 −ωτΩi

ω2 + iμνω

−k2v2
i − ω2

pi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2.1)

which results in a twelfth-order polynomial in ω and fourth order in k2 of the form∑
0�m�6
0�n�4

αmn ω̄2mk̄2n + iν̄(1 + μ)
∑

0�p�5
0�q�4

βpq ω̄2p+1k̄2q = 0, (2.2)

where αmn and βpq are real coefficients. Note that this implies that all even powers of ω̄
have a real coefficient whilst all odd powers of ω̄ have a purely imaginary coefficient. Just
like in the ideal case, the non-zero αmn satisfy 3 � m + n � 6 and, similarly, we now have
3 � p + q � 5 for the non-zero βpq. This structure is highlighted in table 1, which shows
all non-zero coefficients. Their full expressions can be found in Appendix A.

The presence of collisions is dictated by the collision frequency ν̄, which in the matrix
form always appears accompanied by an imaginary factor i. In the dispersion relation
itself, however, both α and β coefficients can feature real terms proportional to ν̄2. The
ν̄-independent coefficients have been highlighted in bold in table 1.

In the case of a collisionless ideal two-fluid plasma, the system can be further reduced
to a 6 × 6 symmetric system of equations with real entries, ensuring real solutions that
indicate 6 pairs of forward–backward propagating, undamped waves. In general, the
governing twelfth-order polynomial prevents an easy factorisation, as was already noted
for general ideal warm ion–electron plasmas by De Jonghe & Keppens (2020). Where the
resulting polynomial in the collisionless case could be written as a polynomial in ω̄2 and
k̄2, the one arising from the non-zero collision frequency is to be solved for its zeros, whilst
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it is written in ω̄ and k̄2. It remains possible, however, to obtain general information about
the structure of the solutions from the polynomial. The solutions can still be interpreted
as pairs of backward and forward propagating waves, but with both solutions damped, i.e.
pairs that take the form {

ω̄1 = a − ib,

ω̄2 = −a − ib
a, b ∈ R

+, (2.3)

with the symmetries Re(ω̄1) = −Re(ω̄2) and Im(ω̄1) = Im(ω̄2). This structure of the
solutions is not unexpected compared with previous results, as the collisions only
introduce a damping and with no mechanisms for growth, we should thus expect a negative
imaginary part to the solutions. Furthermore the system of equations was obtained for a
homogeneous medium at rest, which is not subject to effects that break the symmetry
between forward and backward propagating waves. In the next section, we first analyse
limit behaviours for the 6 wave modes, where we expect to connect with known results
from corresponding ideal conditions. In order to simplify notation, we will drop the
overhead bars from now on and every quantity is assumed dimensionless unless otherwise
specified.

3. Limits

The dispersion relation simplifies greatly when there is no external magnetic field or
when one considers one of the four extremal regimes corresponding to various limits
of ω and k. These limits are the cutoffs, resonances, local high-frequency and global
low-frequency limits. Furthermore the long- and short-wavelength behaviour is used to
assign labels to each wave mode, following the same conventions as De Jonghe & Keppens
(2020).

3.1. Unmagnetised plasma
When the plasma is not permeated by an externally applied magnetic field, i.e. B = 0,
the parameter E vanishes and consequently, so does λ. Hence, in this case the dispersion
relation is only determined by 4 parameters: μ, v, w and ν. Just like in the ideal case, the
dispersion relation factorises if the plasma is unmagnetised

ω2 [ω (ω2 − k2 − 1
)+ iν(1 + μ)(ω2 − k2)

]2 × {
ω4 + iν(1 + μ)ω3

− ω2 [1 + k2(v2 + w2)
]− iν(1 + μ)ωk2c2

s + k2(c2
s + k2v2w2)

}
= 0. (3.1)

As expected, this equation reduces to (7) in De Jonghe & Keppens (2020) for an ideal
plasma, i.e. ν = 0. The resistive equation still features a trivial factor ω2, but the doubly
degenerate factor ω(ω2 − k2 − 1) and the biquadratic factor ω4 − ω2[1 + k2(v2 + w2)] +
k2(c2

s + k2v2w2) from the ideal equation are both modified with additional terms with
imaginary coefficients, proportional to iν(1 + μ).

3.2. Resonances
The resonances are found when we look for finite asymptotic frequency ω values in
the short-wavelength k → ∞ limit. Here, we distinguish two cases, warm and cold
plasmas. Indeed, our general treatment covers both these limits, as cold plasma conditions
can simply set the corresponding thermal speeds v and/or w to zero. In the case of a
warm plasma, the limit of k → ∞ corresponds to considering the highest-order terms
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in k, i.e. the bottom row (α24, β14, α14, β04, α04) in table 1. Dividing these terms by
v, w �= 0 as we are dealing with a warm plasma, the dispersion relation simplifies to the
fourth-order polynomial[

ω2 + iν(1 + μ)ω − λ2μE2]2 − λ2E2(1 − μ)2ω2 = 0. (3.2)

The four roots of this polynomial are then structured as in (2.3) and correspond to the
resonances found in the plasma

ω(k → ∞) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

±
[

1
2
λE(1 − μ) + 1

2
√

2

√
A +

√
A2 + B2

]

− i
2

[
ν(1 + μ) + 1√

2

√
−A +

√
A2 + B2

]
,

±
[

1
2
λE(1 − μ) − 1

2
√

2

√
A +

√
A2 + B2

]

− i
2

[
ν(1 + μ) − 1√

2

√
−A +

√
A2 + B2

]
,

(3.3)

where
A = (λ2E2 − ν2)(1 + μ)2, B = 2ν(1 + μ)λE(1 − μ). (3.4a,b)

In accordance with (13) in De Jonghe & Keppens (2020), the resonances reduce to
ω = ±λE, ±λμE in the collisionless case (ν → 0). We will use these expressions
to predict the frequencies and their damping rates of the ion and electron cyclotron
resonances found at short wavelengths, as shown further in full dispersion diagrams.

Returning to (3.2), the effect of collisions becomes apparent by noting that the collision
frequency always appears multiplied by the factor (1 + μ). Hence, one can expect the
damping of the electron and ion cyclotron resonances to depend on the ratio of masses
over charges μ. This is unsurprising since we expect the electrons to feel the effect of
collisions with ions more than the ions due to their smaller mass. Similarly, the cyclotron
frequencies themselves will depend on the ratio of masses over charges as well, as could
already be seen for the ideal case where the solutions differ by a factor μ. As a result, for a
given set of parameters, we find numerically that the electron and ion resonance damping
rates found in (3.2) are approximately related by a factor μ, in agreement with existing
literature (Braginskii 1965).

When considering the cold plasma case, however, the highest-order non-vanishing
coefficients correspond to k4 and it is from these terms that we then obtain the resonances.
As there were three resonances present in the collisionless cold plasma regime (Keppens
& Goedbloed 2019a), we now expect a sixth-order polynomial, which turns out to be

ω6 + 3iν (1 + μ) ω5 − [
1 + E2 (1 + μ2)+ 3ν2 (1 + μ)2]ω4

− iν (1 + μ)
[
2 + (

E2 + ν2) (1 + μ)2]ω3

+ [
μE2(1 + μE2) + λ2E2 (1 − μ + μ2)+ ν2 (1 + μ)2 (1 + 2μE2)

]
ω2

+ iν (1 + μ) μE2 (1 + λ2 + μE2)ω − λ2μ2E4 = 0. (3.5)

This reduces to (10) in Keppens & Goedbloed (2019a) for ν → 0, as expected. One could
use this polynomial expression valid for cold ion–electron plasmas to quantify numerically
how the three resonances behave at varying angles (i.e. λ), for different magnetisations E
or study the special case of a cold pair plasma where μ = 1.
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3.3. Cutoffs
The cutoffs are found where the frequency values attain finite limit values
in the long-wavelength limit k → 0. This corresponds to only considering the
coefficients independent of k in the general dispersion relation, i.e. the top row
(α60, β50, α50, β40, α40, β30, α30) in table 1, and leads to the following polynomial
describing the cutoffs:

ω6 [ω2 + iν(1 + μ)ω − 1
] [(

ω2 + iν(1 + μ)ω − μE2 − 1
)2 − (1 − μ)2E2ω2

]
= 0.

(3.6)

Again, only the odd powers of ω have imaginary coefficients that scale with ν so that,
in the limit ν → 0, the polynomial reduces to the one considered in the collisionless case
Keppens & Goedbloed (2019a). Where in the purely ideal case a total of three solutions in
ω2 were expected, we now find 6 solutions in ω, which appear in three pairs of the form
given by (2.3), showing that all three cutoff frequency limits are changed by a (collisional)
damping mechanism.

Denoting

C = 4 + (E2 − ν2)(1 + μ)2, D = 2ν(1 + μ)E(1 − μ), (3.7a,b)

the solutions of (3.6) can be written as

ω(k → 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

± 1
2

√
4 − ν2(1 + μ)2 − 1

2
iν(1 + μ),

ωu ≡ ±
[

1
2

E(1 − μ) + 1

2
√

2

√
C +

√
C2 + D2

]

− i
2

[
ν(1 + μ) + 1√

2

√
−C +

√
C2 + D2

]
,

ωl ≡ ±
[

1
2

E(1 − μ) − 1

2
√

2

√
C +

√
C2 + D2

]

− i
2

[
ν(1 + μ) − 1√

2

√
−C +

√
C2 + D2

]
.

(3.8)

Note that these expressions are consistent with the collisionless limit ν → 0 found in (7)
of Keppens & Goedbloed (2019a). In this limit, the first expression reduces to ±1, whereas
the second and third solutions reduce to the square roots of the expression for the upper
and lower cutoff frequencies ω2

u and ω2
l there, respectively, as already suggested by the

notation.
These limits are influenced by only two parameters (apart from ν), namely the

magnetisation E and the charge to mass ratio μ, and do not depend on the propagation
angle of the wave. We will use the complex zeros of (3.6) to check cutoff limits attained
at long wavelengths in the dispersion diagrams that follow. Note that, similarly to the
collisionless case, the upper limit ωu always corresponds to the X mode, whereas the M
and O modes are defined by their behaviour in the local high-frequency limit. As a result,
assigning a mode label to each cutoff frequency depends on whether the M and O modes
cross or not. This depends on the parameter regime (De Jonghe & Keppens 2020).
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3.4. Local, high-frequency limit
Similar to the collisionless case, we consider both ω, k → ∞ whilst keeping ω/k finite. In
table 1, this means that the terms on the bottom diagonal (α60, α51, α42, α33, α24) become
dominant. However, since these terms are independent of ν, keeping only these terms in
the leading-order approximation, as was done for the ideal case by De Jonghe & Keppens
(2020), discards all the information about the wave damping. Therefore, including the
lower β-diagonal (β50, β41, β32, β23, β14) as well provides a first-order correction to the
undamped limit solution. This results in a dispersion relation of terms of combined orders
12 and 11 in ω and k. Dividing by k12 and adopting the notation y = ω/k gives, in factorised
form,

y3( y2 − 1)2

{
y( y2 − v2)( y2 − w2)

+ iν(1 + μ)

k

[
2( y2 − v2)( y2 − w2) + y2( y2 − c2

s )
]} = 0. (3.9)

As anticipated, the electromagnetic X and O modes ω2/k2 = 1 travel at light speed and
are undamped, whereas the last factor, describing the electron and ion sound wave limits,
i.e. ω2/k2 = v2 and ω2/k2 = w2 respectively in the ideal case, is modified by a collisional
term, indicative of damping. Further note that the equation does not feature E and the
waves are thus unaffected by the external magnetic field in this limit. Next, observe that
the equation simplifies even more if one considers cold ions (w = 0) or electrons (v = 0).
Finally, note that the factor describing the sound waves is actually fifth order in y, i.e. a pair
of forward–backward travelling sound waves, one for each species, and one extra mode.
This remaining solution is an evanescent wave with Re(ω) = 0 and Im(ω) < 0. Since this
is likely an artefact of the imperfect approximation and the mode does not propagate, it
will also not be illustrated in the following plots.

Again setting ν = 0, the polynomial simplifies greatly and reduces to

y4( y2 − 1)2( y2 − v2)( y2 − w2) = 0, (3.10)

which is in line with the collisionless limit of (14) in De Jonghe & Keppens (2020). This
local, high-frequency limit is relevant for magneto-ionic theory, where they typically use
the (cold) Appleton–Hartree equation, as well as for its warm extension (De Jonghe &
Keppens 2021), or to quantify the effect of Faraday rotation on electromagnetic waves
(Keppens & Goedbloed 2019a; De Jonghe & Keppens 2021).

3.5. Global, low-frequency limit
The global, low-frequency limit found by taking ω, k → 0 whilst keeping ω/k finite,
corresponding to the upper diagonal (α30, α21, α12, α03) in table 1, remains unaltered with
the introduction of an electron–ion collisional term since ideal MHD can be directly
obtained from the linearised two-fluid, ion–electron model, where this collisional effect
vanishes due to conservation of momentum. As a result, the exact solution obtained in De
Jonghe & Keppens (2020) can be quoted directly (albeit with the substitution I = μE)

ω2

k2
→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ2c2
A,

1
2(1 + μE2)

{
μE2 + c2

s + λ2μE2c2
s ± [
λ4μ2E4c4

s

+2λ2μE2c2
s (c

2
s − μE2 − 2) + (μE2 + c2

s )
2
]1/2}

.

(3.11)
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Collisional effects on wave modes in ion–electron plasmas 9

As noted there, this is actually the relativistically correct expression for the familiar
Alfvén, slow and fast magnetoacoustic MHD wave branches, which are undamped in a
homogeneous plasma, as studied here. This limit behaviour is one of the main motivations
for introducing the SAFMOX labelling scheme. The various limits known from MHD
theory (to cold conditions where cs = 0, or to the Newtonian regime) were also mentioned
in our study of warm pair plasmas (where E = I and μ = 1) in Keppens et al. (2019). Note
that the ideal MHD wave limits show clear anisotropic behaviour as usually visualised in
Friedrichs diagrams, and bring out that the S and A branches (slow and Alfvén) always
vanish for perpendicular propagation (λ = 0).

4. Dispersion diagrams

The dispersion diagrams can now be obtained by solving for the complex
eigenfrequencies ω that appear as zeros for the determinant of (2.1) for a given set of
the parameters E, v, w and μ whilst varying k. Each such diagram is furthermore defined
by the angle parameter λ (and hence τ ) and collision frequency ν. As the typical parameter
values are small and appear in powers when calculating the coefficients, the computation
of the solutions is performed using arbitrary precision arithmetic. We illustrate the wave
modes in two cases, comparing with previous works, the cold pair plasma case discussed
in Keppens & Goedbloed (2019b) and warm ion–electron plasmas covered in De Jonghe
& Keppens (2020), starting with the cold pair plasma case.

In the collisionless ν = 0 cases, the six branches exhibited different behaviour for
parallel, perpendicular and oblique orientations, with wave mode crossings present in
the parallel and perpendicular cases and avoided crossings for all oblique angles. The
crossings at purely parallel and purely perpendicular orientations are well known, as it
is in these special cases that the polynomial factorises easily, and this has been used
throughout the literature to discuss those cases as representative. However, the SAFMOX
labelling intends to acknowledge the strict frequency ordering at all oblique orientations
instead. The same three orientations will again be investigated for a non-zero collision
frequency, paying attention to crossings of previously avoided crossings and vice versa.
Since the solutions exhibit the symmetries expressed in (2.3), it suffices to focus on only
one of the solutions in each pair of wave modes. From now on, we work with the forward
travelling modes (Re(ω) > 0). In each figure, the upper graph illustrates the real parts (i.e.
the temporal frequency) of the solutions and the lower graph the imaginary parts (i.e. the
damping rate). Furthermore, dots shown at the end of all curves are used to illustrate the
predicted limits obtained in the previous section.

Cold pair plasmas are obtained from (2.1) by taking μ = 1 and v, w = 0. This greatly
simplifies the system and reduces the number of wave modes present in the plasma, as
indeed there is no more slow MHD wave at all, so only the AFMOX branches survive.
For warm ion–electron plasmas no further simplifications are made and the full system of
equations is used, and all SAFMOX branches exist. The only difference between the warm
ion–electron plasmas discussed in De Jonghe & Keppens (2020) and those analysed here
is the presence of a non-zero collision frequency ν.

4.1. Parallel propagation
For a value of λ = 1 corresponding to parallel propagation, figure 1 illustrates the typical
behaviour of the six wave modes. This figure is for a warm solar coronal loop plasma,
with dimensionless collision frequency ν = 10−8 (all parameters used are in the caption).
The wave modes behave similarly with the collisionless case: the behaviour of the real
frequency variation of the wave modes is not altered nor do previously present crossings
become avoided crossings when varying values of ν. For this set of parameters and
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(a)

(b) (c)

FIGURE 1. Dispersion diagram for parallel propagation for typical coronal loop parameters,
taking μ ≈ 1/1836, E = 0.935, v = 0.018, w = 0.0004 and ν = 10−8. (a) Wave frequencies,
with insets showing the crossing behaviour. (b) Damping rates. (c) Logarithmic scale of damping
rates in small-wavelength regime.

purely parallel propagation, figure 1 shows that three crossings are present, the OM, AS
and SF crossings. The effect of the finite collisional damping is shown clearly for all
branches in the bottom panel of figure 1 (note the scale: all dampings have order 10−8 in
correspondence with the value for ν), where it is seen that the three cutoff limits show
clear damping in agreement with our prediction from (3.6), whilst the F and M branches
also have finite damping.

4.2. Perpendicular propagation
The perpendicular case obtained for λ = 0 is again similar to the collisionless case where
only FMOX branches remain. As expected, only these four wave modes are present as
neither the slow nor the Alfvén wave propagates in this orientation and the corresponding
resonances also vanish for this orientation. The four FMOX remaining modes have a
non-zero imaginary part, and their real parts exhibit no new crossings or avoided crossings
that were not present in the collisionless case. An illustration of the general behaviour for
perpendicular propagation is provided in figure 2, where we again chose the parameters for
a warm plasma in a solar coronal loop, but this time adopted a higher collision frequency,
ν = 10−5. Note how the damping rates are again of the same order of magnitude for the
three MOX cutoff limits, and in the short-wavelength limit for the M mode.

For perpendicularly propagating waves in the cold case, a crossing is illustrated between
the M and O modes in figure 3. Note here how the F and M branches are similarly affected
by collisions (here ν = 0.1), whilst damping also occurs for the three cutoff limits for
M, O and X. This crossing was already present in the collisionless case, illustrating that
the behaviour of crossings at exactly perpendicular propagation remains unaltered by the
collision frequency.
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(a)

(b) (c)

FIGURE 2. Perpendicular dispersion diagram for μ = 1/1836, E = 0.935, v = 0.018,
w = 0.0004 and ν = 10−5. (a) Wave frequencies. (b) Damping rates. (c) Logarithmic scale of
damping rates in small-wavelength regime. Colour scheme is the same as in figure 1.

(a)

(b) (c)

FIGURE 3. Dispersion diagram for a cold pair plasma, taking μ = 1, E = 1.5, v, w = 0,
θ = π/2 and ν = 10−1. (a) Wave frequencies. (b) Damping rates. (c) Logarithmic scale of
damping rates in small-wavelength regime. Colour scheme is the same as in figure 1.

4.3. Oblique propagation
Finally we turn towards the case of oblique angles between the direction of propagation
and the magnetic field lines. Our previous papers (Goedbloed et al. 2019; Keppens &
Goedbloed 2019b; De Jonghe & Keppens 2020) have demonstrated that, in this case, an
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(a)

(b) (c)

FIGURE 4. Dispersion diagram for μ = 1/1836, E = 0.935, v = 0.018, w = 0.0004, θ = π/4
and ν = 10−8. (a) Wave frequencies. (b) Damping rates. (c) Logarithmic scale of damping
rates in small-wavelength regime. The insets in panels (a,b) highlight the (avoided) crossing
behaviour. Colour scheme is the same as in figure 1.

ordering of wave modes exists across all wavenumbers, so that

ωS � ωA � ωF � ωM � ωO � ωX. (4.1)

An initial presumption would be that this is still the case in the collisional regime, at least at
small values for the collision frequency, and could possibly deviate from such behaviour at
larger collision frequencies. As a result, both large and small values of ν were investigated.
Two such results are given in figures 4 and 5, illustrating that, indeed, the low collisional
case mirrors the collisionless case whereas the more collisional plasma exhibits a true
crossing of the wave modes between the A and F modes. (Note that these are the same
two modes for which their (avoided) crossing was observed to be angle dependent in the
ideal plasma in De Jonghe & Keppens (2020).) These two figures are both for 45◦ angle
propagation for the warm solar coronal loop case, but adopt the actual ν = 10−8 value in
figure 4, raised to ν = 0.01 in figure 5.

This furthermore suggests that, for a given set of plasma parameters and a constant
angle, there can be a critical collision frequency determining the transition from avoided
to true crossing for a given wave mode pair. The behaviour of the wave modes across such
a critical collision frequency is illustrated in figure 6 with an angle of θ ≈ 0.7. This shows
that, as the collision frequency increases, the real parts approach each other whilst the
imaginary parts seem to make a near vertical (but still smooth) jump across the avoided
crossing. At the crossing the imaginary parts are very close to each other, but move away
as the collision frequency increases until the imaginary parts smooth out. It would be of
interest to study how the critical collision parameter which turns an AF crossing into an
avoided one varies as the plasma and geometric parameters vary, but this is left for future
work.

Since the primary result of previous papers was the fact that the behaviour of wave
modes depends heavily on the angle, this now raises the question whether varying the
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(a)

(b) (c)

FIGURE 5. Dispersion diagram for μ = 1/1836, E = 0.935, v = 0.018, w = 0.0004, θ = π/4
and ν = 10−2. (a) Wave frequencies. (b) Damping rates. (c) Logarithmic scale of damping
rates in small-wavelength regime. The insets in panels (a,b) highlight the (avoided) crossing
behaviour. Colour scheme is the same as in figure 1.

angle θ ∈ (0,π/2) can turn a barely avoided crossing into a true crossing, or vice versa
a true crossing (beyond the critical collision frequency) into an avoided crossing. Hence,
for constant values of the collision frequency the angle was varied. Figure 7 illustrates
a cold pair plasma with θ = π/3, where no crossings are present. Moving towards
the near-parallel case in figure 8 with θ = 0.02 and all other parameters fixed, the 5
wave modes become nearly degenerate and two new FM and AM crossings appear.
Therefore, for a fixed collision frequency, the dispersion diagram features transitions
between crossings and no crossings at oblique angles for variations in the angle.

Since a non-zero collision frequency introduces the possibility of crossings at oblique
angles of propagation, the ideal ordering of

ωS � ωA � ωF � ωM � ωO � ωX (4.2)

is now also violated outside of perfectly parallel or perpendicular propagation. As
illustrated by figures 7 and 8, a crossing at parallel propagation can be maintained
at deviations from parallel propagation up to a critical angle, which is determined by
the collision frequency and increases as the collision frequency increases. In practice,
however, realistic collision frequencies will retain this ordering across the bulk of oblique
angle values for many plasma environments.

One interesting feature is the fact that the imaginary parts of the cutoffs are clearly
organised as the real parts. The imaginary part of the X mode has the highest absolute
value and similarly its real part is always above the other wave modes. The ordering of the
imaginary parts of the M and O modes, however, depends then on the ordering of their real
parts, or in other words whether or not there are crossings between the O and M modes. As
a result we can see that in figure 4 there are no crossings and therefore the ordering in their
imaginary parts is Im(ωX) < Im(ωO) < Im(ωM), whereas in the presence of crossings
such as in figure 1, the order becomes Im(ωX) < Im(ωM) < Im(ωO). Furthermore, since
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(a) (b) (c)

(d) (e) ( f )

FIGURE 6. Zoomed in view of the AF crossings and avoided crossings in the dispersion diagram
for μ = 1/1836, E = 0.935, v = 0.018, w = 0.0004, θ = √

2/2 and varying ν. Colour scheme
is the same as in figure 1.

(a)

(b) (c)

FIGURE 7. Dispersion diagram for a cold pair plasma, taking μ = 1, E = 1.5, v, w = 0,
θ = π/3 and ν = 10−1. (a) Wave frequencies. (b) Damping rates. (c) Logarithmic scale of
damping rates in small-wavelength regime. Colour scheme is the same as in figure 1.

the O and X modes are light waves in the local high-frequency limit, we expect their
imaginary parts to tend to zero, whereas the M mode does have a non-zero damping rate
in this limit. This leads to either a crossing of the real parts of the O and M modes or of
their imaginary parts. The same is true for the X mode, however, since its ordering in the
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(a)

(b) (c)

FIGURE 8. Dispersion diagram for a cold pair plasma, taking μ = 1, E = 1.5, v, w = 0,
θ = 0.02 and ν = 10−1. (a) Wave frequencies. (b) Damping rates. (c) Logarithmic scale of
damping rates in small-wavelength regime. Colour scheme is the same as in figure 1.

real domain is always above the other wave modes, its real part will never cross the M
mode and therefore its imaginary part will always cross the M mode.

5. Conclusion

Starting from the set of equations describing a two-fluid, ion–electron plasma, the
behaviour of the wave modes was analysed in the presence of electron–ion collisions. Due
to the introduction of this collision frequency, the wave modes exhibit different damping
behaviour based on the value of this collision frequency. For parallel and perpendicularly
oriented waves with respect to the background magnetic field, the crossings that were
already present in the collisionless case remain unaltered, with only a damping appearing
as a result of the collisions. For oblique angles, however, the previously avoided crossings
remain avoided for collision frequencies sufficiently small and can become true crossings
once a critical collision frequency is exceeded. As a result, the ordering of the wave modes
that was previously found is now no longer valid in general. The behaviour of the damping
rates as compared with those obtained from kinetic theory has not been explored in this
paper, primarily because ν was taken as a free parameter. It is left for future work to
address proper parametrisations of the collision frequency, to mimic specifically known
(kinetic) damping effects on known wave modes.

In future work, the ion–electron model could also be extended with ion–ion and
electron–electron collision frequencies. Additionally, damping rates could be determined
for the wide variety of whistler waves identified in De Jonghe & Keppens (2021) using
the ion–electron model to investigate how oblique whistlers are affected by damping.
Another aspect not studied here is the actual wave polarisation behaviour along the six
branches, which is encoded in the eigenvectors that belong to the specific solutions on
each branch. That has recently been done for warm two-fluid settings by Choi et al. (2023),
and this treatise can be followed up with a more comprehensive study of wave damping,
polarisation and anisotropic behaviour, as plasma parameters vary.
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Appendix A. Collisional ion–electron dispersion relation

The dimensionless ion–electron dispersion relation including ion–electron collision
frequency ν can be written as a polynomial of the form

∑
0�m�6
0�n�4

αmn ω2mk2n + iν(1 + μ)
∑

0�p�5
0�q�4

βpq ω2p+1k2q = 0. (A1)

The non-zero coefficients are

α60 = 1, (A2)

α50 = − [
3 + E2(1 + μ2) + 3ν2(1 + μ)2] , (A3)

α51 = −(2 + v2 + w2), (A4)

α40 = 3 + E2(1 + μ)2 + μ2E4 + ν2(1 + μ)2(3 + 2μE2), (A5)

α41 = 4 + 2E2(1 + μ2) + (2 + μ2E2 + λ2E2)v2 + (2 + E2 + λ2μ2E2)w2 + c2
s

+ν2(1 + μ)2

[
2(3 + v2 + w2) − 1 − μ

1 + μ
(v2 − w2)

]
, (A6)

α42 = 1 + 2v2 + 2w2 + v2w2, (A7)

α30 = −(1 + μE2)2, (A8)

α31 = − {
2(1 + μE2)2 + E2(1 + λ2)(1 − μ + μ2) + [

1 + μ2E2 + λ2μE2(3 + μE2)
]
v2

+ [
1 + E2 + λ2μE2(3 + μE2)

]
w2 + [

2 + (1 − 3λ2)μE2] c2
s

+ν2(1 + μ)2 [4 + 3c2
s + μE2 (4 + (1 + λ2)c2

s

)]}
, (A9)

α32 = − {
1 + (1 + μ2)E2 + 2(1 + λ2E2 + μ2E2)v2 + 2(1 + E2 + λ2μ2E2)w2 + 2c2

s

+ [
2 + λ2E2(1 + μ2)

]
v2w2 + ν2(1 + μ)2 (3 + 2v2 + 2w2 + v2w2 + 4c2

s

)}
, (A10)

α33 = −(v2 + w2 + 2v2w2), (A11)
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α21 = μE2(1 + μE2)(1 + λ2) + (1 + μE2)(1 + λ2μE2)c2
s , (A12)

α22 = μE2(1 + μE2) + λ2E2(1 − μ + μ2) + [
(1 + λ2)μ2E2 + 2λ2μE2(2 + μE2)

]
v2

+ [
(1 + λ2)E2 + 2λ2μE2(2 + μE2)

]
w2 + [

2 + (1 − 5λ2)μE2] c2
s

+(1 + λ2μE2)2v2w2 + ν2(1 + μ)2 {1 + 4c2
s + 2μE2 [1 + (1 + λ2)c2

s

]}
, (A13)

α23 = (μ2E2 + λ2E2)v2 + (E2 + λ2μ2E2)w2 + c2
s + 2

[
1 + λ2E2(1 + μ2)

]
v2w2

+ν2(1 + μ)2(v2 + w2 + 2v2w2 + 2c2
s ), (A14)

α24 = v2w2, (A15)

α12 = −λ2μE2 {μE2 + [
2 + μE2(1 + λ2)

]
c2

s

}
, (A16)

α13 = −λ2 {μ2E4(v2 + w2) + E2(1 + μ2)c2
s + 2μE2(1 + λ2μE2)v2w2}

−ν2(1 + μ)2c2
s

[
1 + μE2(1 + λ2)

]
, (A17)

α14 = − [
λ2E2(1 + μ2) + ν2(1 + μ)2] v2w2, (A18)

α03 = λ4μ2E4c2
s , (A19)

α04 = λ4μ2E4v2w2, (A20)

and

β50 = 3, (A21)

β40 = − [
6 + (1 + μ)2(E2 + ν2)

]
, (A22)

β41 = − (
6 + 2v2 + 2w2 + c2

s

)
, (A23)

β30 = (1 + μE2)(3 + μE2), (A24)

β31 = (1 + μ)2(E2 + ν2)(2 + c2
s ) + μE2(3λ2 − 1)

[
c2

s + 1 − μ

1 + μ
(v2 − w2)

]

+2
[

2(2 + v2 + w2) − 1 − μ

1 + μ
(v2 − w2)

]
, (A25)

β32 = 3 + 4v2 + 4w2 + 2v2w2 + 2c2
s , (A26)

β21 = − {
2 + 3c2

s + μE2 [5 + 2c2
s + λ2(1 + 2c2

s )
]+ μ2E4(2 + λ2c2

s )
}
, (A27)

β22 = − {
2(1 + v2 + w2 + v2w2 + 3c2

s ) + (1 + μ)2(E2 + ν2)(1 + 2c2
s )

+2μE2

[
λ2v2w2 + (3λ2 − 1)

(
c2

s + 1 − μ

1 + μ
(v2 − w2)

)]}
, (A28)

β23 = −(2v2 + 2w2 + 4v2w2 + c2
s ), (A29)

β12 = 2c2
s + μE2 [1 + 2c2

s + λ2(1 + 4c2
s )
]+ μ2E4(1 + 2λ2c2

s ), (A30)

β13 = 2v2w2 + 2c2
s + (1 + μ)2(E2 + ν2)c2

s

+μE2

[
4λ2v2w2 + (3λ2 − 1)

(
c2

s + 1 − μ

1 + μ
(v2 − w2)

)]
, (A31)

β14 = 2v2w2, (A32)
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β03 = −λ2μE2c2
s (2 + μE2), (A33)

β04 = −2λ2μE2v2w2. (A34)
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