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In the radiation hydrodynamic simulations used to design inertial confinement fusion
(ICF) and pulsed power experiments, nonlinear radiation diffusion tends to dominate
CPU time. This raises the interesting question of whether a quantum algorithm can be
found for nonlinear radiation diffusion which provides a quantum speedup. Recently,
such a quantum algorithm was introduced based on a quantum algorithm for solving
systems of nonlinear partial differential equations (PDEs) which provides a quadratic
quantum speedup. Here, we apply this quantum PDE (QPDE) algorithm to the problem of
a non-equilibrium Marshak wave propagating through a cold, semi-infinite, optically thick
target, where the radiation and matter fields are not assumed to be in local thermodynamic
equilibrium. The dynamics is governed by a coupled pair of nonlinear PDEs which are
solved using the QPDE algorithm, as well as two standard PDE solvers: (i) Python’s
py-pde solver; and (ii) the KULL ICF simulation code developed at Lawrence-Livermore
National Laboratory. We compare the simulation results obtained using the QPDE
algorithm and the standard PDE solvers and find excellent agreement.

Keywords: plasma nonlinear phenomena, fusion plasma

1. Introduction

Inertial confinement fusion (ICF) and pulse power experiments are complex and
financially expensive to execute. There is thus a clear need for design work that tests
whether an experimental concept will perform as expected. Radiation-hydrodynamics
(RH) computer simulation codes are the primary computational tool used for such design
work, with the equations of RH (Castor 2004) providing the foundation for all such codes.
Constructed for accuracy, robustness and efficiency, they are elaborate, multi-physics and
massively parallel codes. Simulation runs can take hours to weeks to complete, depending
on the number of spatial dimensions, resolution and physics model chosen, as well as the
particular design being tested. The equations of RH are a coupled set of nonlinear partial
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differential equations (PDEs) expressing the conservation of fluid mass, linear momentum
and energy, as well as nonlinear PDEs for the radiation and matter fields.

For our purposes, it is the radiation package used in RH codes that is of interest. These
packages come in several variants. The first, and most accurate, describes full photon
transport coupled to the matter fields. This is the most expensive variant in which the
radiation field is non-Planckian, spatially inhomogeneous and anisotropic. It is rarely
used since the matter conditions are dense enough that the second and third variants are
excellent approximations for ICF capsule implosion and burn. The second variant, and next
on the accuracy scale, is multi-group diffusion coupled to matter fields. Here, the radiation
is also non-Planckian and spatially inhomogeneous, although now is assumed to be nearly
isotropic. Finally, the third variant is the two-temperature (2 T) diffusion approximation
where the radiation is assumed to be Planckian, although still inhomogeneous, nearly
isotropic and coupled to matter fields. It is most frequently used when simulating the burn
stage of an ICF capsule where the plasma is very dense, and has the virtue of allowing
relatively fast simulation runs (when compared with the first two variants). Due to its
robustness and wide use, we focus on the third variant here.

Given the difficulty of RH simulations, it is natural to ask whether a quantum computer
might provide a quantum speedup for such simulations. A first step towards a quantum
RH algorithm is already possible as a quantum algorithm for simulating hydrodynamic
flows exists which provides a quadratic speedup (Gaitan 2020). This quantum algorithm
was soon generalized to a quantum algorithm for solving systems of nonlinear PDEs with a
quadratic speedup (Gaitan 2021). Recently, the quantum PDE (QPDE) algorithm was used
to simulate nonlinear radiation diffusion (NRD) in the case where the radiation and matter
fields are in local thermodynamic equilibrium (LTE) (Gaitan, Graziani & Porter 2024).
The algorithm was verified by applying it to a standard NRD test problem – a Marshak
wave propagating through a cold, optically thick, semi-infinite slab of matter. A numerical
simulation of the QPDE algorithm applied to this problem was carried out and the results
found were compared with those produced by a standard PDE solver. Excellent agreement
was found.

In this paper we show how the QPDE algorithm can be applied to the 2 T diffusion
approximation described above. This approximation is relevant for ICF and pulse power
experiments where the radiation and matter fields can go out of LTE. Consequently,
although our test problem will again be a Marshak wave, we allow for non-LTE so that the
matter and radiation local temperatures need not be equal. The Marshak wave dynamics
is now determined by a coupled pair of nonlinear PDEs which describe the exchange
of energy between the radiation and matter fields. We numerically simulated application
of the QPDE algorithm to the 2 T Marshak wave problem and compared the results
found with those obtained using two well-known PDE solvers. The first comparison uses
Python’s py-pde solver (Zwicker 2020) as the standard PDE solver, while the second uses
the KULL ICF simulation code developed at Lawrence-Livermore National Laboratory
(LLNL) (Rathkopf et al. 2000).

We shall see below that the QPDE algorithm is a hybrid classical-quantum algorithm
which uses a quantum computer to evaluate definite integrals from which a global
PDE solution is constructed. The hybrid nature of this algorithm produces a number of
advantages over fully quantum nonlinear PDE algorithms.

(i) The only data that need to be sent to a quantum computer to execute the QPDE
algorithm are the integrand values used to approximate the above definite integrals.
How this is done using quantum circuits is explained in Gaitan (2024). These values
are computed using a classical computer.
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(ii) As explained in Gaitan (2020, 2021), nonlinear and/or dissipative terms present
in a system of PDEs contribute terms to the above mentioned integrand. Such
processes only affect its algebraic form. Their presence causes no difficulties when
determining the integrand values since they are easily evaluated using a classical
computer. Thus the challenges faced by fully QPDE algorithms due to nonlinear and
dissipative processes do not arise in our QPDE algorithm.

(iii) As will be seen below, our QPDE algorithm, at its coarsest level of description,
has two steps. The first reduces the nonlinear PDEs to nonlinear ODEs. This step
can be done in a number of different ways using standard numerical methods for
PDEs. As will be shown in forthcoming papers, the numerical toolbox used by
applied mathematicians, computational scientists and engineers to implement stable,
high-resolution numerical computations can be straightforwardly incorporated into
our QPDE algorithm. These papers show how finite volume, finite element and
spectral methods can be incorporated, as well as weighted effectively non-oscillatory
methods that can handle PDEs giving rise to solutions with discontinuities
such as shock waves. With our QPDE algorithm, PDE subject matter experts
are not required to reinvent the wheel to use a quantum computer to produce
stable, high-resolution PDE solutions, as their existing powerful toolbox can be
straightforwardly incorporated into this algorithm.

The structure of this paper is as follows. In § 2 we briefly summarize the QPDE
algorithm and explain how it is applied to a system of nonlinear PDEs. In § 3 we apply the
QPDE algorithm to the coupled pair of PDEs driving the 2 T Marshak wave dynamics.
We present the results of a numerical simulation of the QPDE algorithm applied to this
problem, and compare them with those found using the py-pde Python PDE solver. The
comparison provides strong evidence that the QPDE algorithm correctly solves the 2 T
Marshak wave problem. Specifically, and as expected: (i) the radiation and matter fields
are seen to evolve into LTE; and (ii) the equilibrium/1 T Marshak wave (Gaitan et al.
2024) is seen to emerge as the large time limit of the non-equilibrium/2 T Marshak wave
dynamics. In § 4 we repeat the comparison of § 3, this time using the LLNL/KULL ICF
radiation diffusion solver as the standard PDE solver. We again find: (i) clear evidence
that the QPDE algorithm correctly solves the 2 T Marshak wave problem; and (ii) that the
radiation and matter fields evolve into LTE. Finally, we make closing remarks in § 5.

2. The QPDE algorithm

We briefly describe how the QPDE algorithm is constructed. For a detailed presentation,
including a discussion of the Russian doll-like hierarchy of supporting quantum
algorithms, see Gaitan (2024).

The task of the QPDE algorithm is to find an approximate, bounded solution of a system
of nonlinear PDEs

∂U
∂t

= F [U, U i, . . . , U i1,...in ], (2.1)

where the exact solution U(x, t) is a d-component vector field defined on a: (i) spatial
region D with boundary ∂D; and (ii) time interval 0 ≤ t ≤ T . The function F is assumed to
be nonlinear, and depends on U and its spatial partial derivatives up to order n, where U i =
∂U/∂xi; . . . ; U i1···in = ∂nU/∂xi1 · · · ∂xin . We hold off on stating the initial and boundary
conditions until § 3. The Supporting Information for Gaitan (2021) showed how systems
of nonlinear PDEs containing time partial derivatives of order greater than one and/or
a non-autonomous function F [t, U, U i, . . . , U i1···in ] can be reduced to the form given in
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(2.1). The QPDE algorithm is thus applicable to a large family of systems of nonlinear
PDEs which includes those typically encountered in science and engineering applications.

The QPDE algorithm, at its coarsest level of description, consists of two steps. The first
step is to discretize space while leaving time as a continuous parameter. Thus the spatial
continuum parameterized by x is replaced by a spatial grid containing M uniformly spaced
grid points (in the simplest case) parameterized by x(I) = x0 + IΔ, where I = (i1, i2, i3),
ik ∈ {1, . . . , mk} (k = 1, 2, 3), M = m1m2m3 and Δ is the spacing between grid points
along any coordinate direction. The solution U(x, t) is now restricted to grid points:
UI(t) ≡ U(x(I), t). Absent a spatial continuum, spatial partial derivatives no longer
exist and must be approximated. Here, we use a finite difference (FD) approximation
(Pletcher, Tannehill & Anderson 2013). This replaces spatial partial derivatives of
U(x, t) with algebraic expressions of {UI(t)}. Inserting the FD approximations into
F [U, U i, . . . , U i1,...in ] yields an algebraic expression f I(U) at each grid point x(I). Time
t is now the only continuous parameter and so the partial time derivative in (2.1) becomes
a total derivative. The result of the spatial discretization is the reduction of the system of
nonlinear PDEs to a coupled set of nonlinear ordinary differential equations (ODEs),

dUI

dt
= fI(U), (2.2)

with an ODE associated with each grid point x(I) in the interior of D. We explain how the
driver function f I(U) is determined in § 3. The initial and boundary conditions for (2.2)
are obtained by evaluating the initial and boundary conditions for (2.1 at the grid points
x(I) in the interior of D, and on the boundary ∂D, respectively.

The second step is to use a quantum nonlinear ODE algorithm to solve (2.2). In
Gaitan (2020, 2021) a quantum algorithm due to Kacewicz (Kacewicz 2006) was used,
although any quantum nonlinear ODE algorithm will do. To flesh out this second step,
we briefly describe application of Kacewicz’ algorithm to (2.2). To unclutter the notation,
we suppress the subscripts on UI(t) and f I(t). The algorithm: (i) returns an approximate,
bound solution α(t) to the exact solution U(t) of (2.2) over the time interval 0 ≤ t ≤ T;
(ii) guarantees the error ε in the approximate solution satisfies an upper bound (see (2.4))
with probability 1 − δ; and (iii) gives a quadratic speedup over classical nonlinear ODE
algorithms.

Kacewicz’ algorithm consists of five steps. As we shall see, only the last step requires
a quantum computer. The first step partitions the time interval 0 ≤ t ≤ T into n primary
subintervals by introducing n + 1 uniformly spaced intermediate times t0 = 0, . . . , ti =
ih, . . . , tn = T , where h = T/n. The ith primary subinterval [ti, ti+1] is denoted Ti, with i =
0, . . . , n − 1. Step two partitions each primary subinterval Ti into Nk = nk−1 secondary
subintervals by introducing Nk + 1 uniformly spaced intermediate times ti,0 = ti, . . . , ti,j =
ti + jh̄, . . . , ti,Nk = ti+1, where h̄ = h/Nk = T/nk. The jth secondary subinterval [ti,j, ti,j+1]
in Ti is denoted Ti,j. The third step associates with each primary subinterval Ti a parameter
yi. The parameter y0 is set equal to the ODE initial condition, y0 ≡ U0, while the remaining
parameters y1, . . . , yn−1 approximate the exact solution U(t) at the times t1, . . . , tn−1,
respectively (viz. U(ti) ≈ yi for i ∈ {1, . . . , n − 1}). Step five will explain how these n − 1
parameters are assigned values. Step four uses Taylor’s method (Iserles 2009; Gautschi
2012), to approximate the exact solution U(t) in each of the secondary subintervals
Ti,j using a truncated Taylor series αi,j(t) expanded about the time ti,j. The approximate
solution αi(t) in primary subinterval Ti is then defined in terms of the local approximate
solutions αi,j(t) so that when t ∈ Ti,j, then αi(t) = αi,j(t). For example, if t ∈ Ti,0, then
αi(t) = αi,0(t), and similarly for all other secondary subintervals Ti,j. Finally, αi(t) is
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required to be continuous throughout Ti. Thus αi,j(t) and αi,j+1(t) must agree at their
common boundary time ti,j+1 : αi,j(ti,j+1) = αi,j+1(ti,j+1). The final condition placed on
αi(t) is that αi(ti) ≡ yi. The fifth step derives a relation that allows {yi} to be determined
iteratively

yi+1 = yi +
∫ ti+1

ti

dtf (αi(t)) (0 ≤ i ≤ n − 2). (2.3)

Kacewicz’ algorithm requires a quantum integration algorithm to evaluate the integral on
the right-hand side of (2.3). It is important to appreciate that this is the only task in this
quantum algorithm that requires a quantum computer. All other calculations are done on
a classical computer. In the work reported below, we use Novak’s quantum integration
algorithm (Novak 2001) to evaluate the integrals. The procedure for determining the
{yi} begins with y0 ≡ U0. Knowing y0 determines the approximate solution α0(t) (for
details, see Kacewicz 2006; Gaitan 2020, 2021). Inserting α0(t) into the ODE driver
function f (αi(t)) determines the integrand in (2.3) for i = 0. Novak’s quantum integration
algorithm is used to approximate the integral and the value returned is (classically) added
to y0 to give y1. Knowing y1 gives α1(t), which is substituted into f (αi(t)) for i = 1
and its integral over T1 is approximated using Novak’s algorithm. The value returned is
added to y1 to give y2, etc. At the end of the iteration procedure all approximate solutions
α0(t), . . . , αn−1(t) are determined and the approximate ODE solution is α(t) = αi(t) for
t ∈ Ti.

As mentioned briefly above, Kacewicz (2006) showed that for Hölder class driver
functions, the error ε in the approximate solution α(t) returned by his algorithm satisfies

ε = sup
0≤t≤T

‖U(t) − α(t)‖ = O(1/nαk), (2.4)

with probability 1 − δ. Here: (i) n is the number of primary subintervals; (ii) k is related
to the number of secondary subintervals in a primary subinterval: Nk = nk−1; (iii) αk =
k(q + 1) − 1, where q = r + ρ, r + 1 is the number of terms kept in the truncated Taylor
series αi,j(t), and ρ is the Hölder exponent. Kacewicz (2006) showed that to achieve this
performance, the upper bound ε1 on the error δI of the value I of the integral (over a
secondary subinterval) must be

ε1 = 1/nk−1, (2.5)

and the probability 1 − δ1 that δI < ε1 is

1 − δ1 = (1 − δ)1/nk
. (2.6)

Finally, an explanation of how the parameters n and k are determined, given the upper
bound ε1, is given in the Supplementary Information for Gaitan (2020). The essential
parameters for the above construction are then ε1 which controls the time partitioning,
and δ which controls the number of times the QPDE algorithm must be rerun to ensure
that the bound (2.4) is satisfied with probability 1 − δ. See Gaitan (2024) for a detailed
presentation of the above remarks. For the simulations results presented below, we chose
ε1 = 0.005 and δ = 0.001.

Kacewicz (2006) showed that his quantum nonlinear ODE algorithm provides a
quadratic quantum speedup over classical nonlinear ODE algorithms, and Gaitan (2021)
showed that the QPDE algorithm inherits this quadratic speedup.
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3. Non-equilibrium Marshak wave problem: first verification

We consider a radiation source at temperature T0 in contact (through a planar interface)
with a cold, semi-infinite, optically thick slab of matter. The radiation undergoes nonlinear
diffusion as it penetrates the matter, manifesting as a propagating thermal front. The
radiation and matter exchange energy locally so that the radiation cools down and the
matter heats up. After a period of time the radiation and matter come into LTE, and from
then on propagate as an equilibrium Marshak wave (Marshak 1958). Our focus here is the
approach to LTE, and the emergence of the equilibrium Marshak wave.

Following Marshak we assume the diffusion is one-dimensional, and that hydrodynamic
effects can be ignored so that the matter remains at rest and at constant density ρ0. We
ignore scattering, tracking only absorption, so that the Planck and Rosseland absorption
coefficients σP and σR are equal. The opacity κ is

κ = σR/ρ = 1/ρλR, (3.1)

where λR is the Rosseland mean free path. The opacity κ is assumed to have a power-law
dependence on matter density ρ and temperature T

κ = OρOTρX0
ρ T−γ . (3.2)

Although we choose values for Oρ , OT , X0
ρ and γ in § 4, for purposes of this section, only

γ is needed. The results presented in this section use γ = 3.5.

3.1. Governing system of nonlinear PDEs
The governing nonlinear PDEs for this problem are the radiation and matter energy
balance equations (Pomraning 1979; Graziani 2005)

∂εR

∂t
− ∂

∂x

[
c
3
λR

∂εR

∂x

]
= c
λR

[aT4 − εR], (3.3)

∂

∂t
(CVT) = − c

λR
[aT4 − εR]. (3.4)

Here, εR = aT4
R is the radiation energy density; TR is the local radiation temperature; c is

the speed of light; T is the local matter temperature; and CV is the matter heat capacity per
volume. From the above remarks we have

λR = 1
κρ

= Tγ

OρOTρ1+X0
ρ

. (3.5)

We can define a characteristic length scale λ0 by evaluating (3.5) at the given density
ρ = ρ0 and temperature T = T0

λ0 = Tγ

0

OρOTρ
1+X0

ρ

0

, (3.6)

and a characteristic energy density
ε0 = aT4

0 . (3.7)

Our first task is to express (3.3) and (3.4) in dimensionless form. We start with the
radiation PDE. To begin, divide (3.3) by ε0, and let ε ≡ εR/ε0 = (TR/T0)

4

∂ε

∂t
− ∂

∂x

[
c
3
λR

∂ε

∂x

]
= c
λR

[(
T
T0

)4

− ε

]
. (3.8)
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Here, 0 < x < ∞ and x = 0 corresponds to the location of the interface separating the
radiation source and the matter. Next, we introduce dimensionless coordinates for space
and time: z = x/λ0 and τ = ct/λ0. Multiplying (3.8) by λ0/c gives

∂ε

∂τ
− ∂

∂z

[
1
3

(
λR

λ0

)
∂ε

∂z

]
= λ0

λR

[(
T
T0

)4

− ε

]
. (3.9)

Finally, from (3.5) and (3.6), we have

λR

λ0
=
(

T
T0

)γ

. (3.10)

Defining T ≡ T/T0, and inserting (3.10) in (3.9) gives

∂ε

∂τ
− ∂

∂z

[
D(T )

∂ε

∂z

]
=
[
T 4 − ε

]
(T )

γ , (3.11)

where the diffusion coefficient D(T ) = (T )γ /3.
Repeating the same sequence of steps on the matter PDE ((3.4)) gives

∂

∂τ

[(
CV

aT3
0

)
T
]

= −λ0

λR
[T 4 − ε]. (3.12)

Since aT3
0 has the units of heat capacity per volume, we can define a dimensionless matter

heat capacity per volume

�C = CV

aT3
0

. (3.13)

For the results presented in figures 1 and 2 below we set �C = 0.01, while for figure 3
�C = 0.1. Using (3.10) and (3.13) in (3.12) gives

∂T
∂τ

= − 1
�C

[T 4 − ε]
(T )γ

. (3.14)

Thus we arrive at our dimensionless pair of governing nonlinear PDEs

∂ε

∂τ
− ∂

∂z

[
D(T )

∂ε

∂z

]
= [T 4 − ε]

(T )γ
, (3.15)

∂T
∂τ

= − 1
�C

[T 4 − ε]
(T )γ

. (3.16)

Finally, we specify the boundary and initial conditions imposed on the PDE solutions.
The boundary conditions at the interface, z = 0, are

ε(0, τ ) = 1, (3.17)

T (0, τ ) = 1. (3.18)

We impose floating boundary conditions at the right computational boundary, zM = 1,
which allows the Marshak wave to propagate through this boundary (the subscript on z
is a grid point label we introduce in § 3.2). Thus, for example, for the radiation energy
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FIGURE 1. Approach to LTE. We plot the results of the approximate solution found through
numerical simulation of the QPDE algorithm applied to the non-equilibrium Marshak wave
problem. The solid curves show the radiation temperature versus position at six different times,
while the dots do the same for the matter temperature. The colours encode the different times
shown in the figure. We clearly see the propagating thermal front due to nonlinear radiation
diffusion, and the increase of the local matter temperature until LTE is established with the
radiation.

density ε, the boundary value ε(zM, τ ) is obtained by extrapolating the line going through
the interior data points (zM−2, ε(zM−2, τ )), (zM−1, ε(zM−1, τ )). The resulting boundary
conditions are

ε(zM, τ ) = 2ε(zM−1, τ ) − ε(zM−2, τ ), (3.19)

T (zM, τ ) = 2T (zM−1, τ ) − T (zM−2, τ ), (3.20)

for τ > 0. For τ = 0 we set T (zM, 0) = 0.01 for the simulations results presented in
figures 1 and 2, while T (zM, 0) = √

0.1 for the simulation results presented in figure 3.
The matter initial condition is a rapidly decaying exponential passing through the

boundary value at z1 = 0 ((3.18)) and T (zM, 0) = 0.01

T (z, 0) = T (zM, 0) + [T (0, 0) − T (zM, 0)] × exp
[−z/0.01

]
, (3.21)

and the initial condition for the radiation is

ε(z, 0) = [T (z, 0)]4 . (3.22)

3.2. Applying the QPDE algorithm
As discussed in § 2, the first step in applying the QPDE algorithm to (3.15) and
(3.16) is to discretize space. We thus introduce a spatial grid containing M grid points
z1, . . . , zM. Here, z1 = 0 and zM = 1 are, respectively, the left and right boundaries of
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FIGURE 2. Emergence of equilibrium Marshak wave. We plot the simulation results produced
by the QPDE algorithm applied to both the NMWP considered in this paper, and the EMWP
considered in Gaitan et al. (2024). Unlike with the NMWP, the EMWP assumes LTE exists
between the radiation and matter. The solid curves and dots correspond to the radiation and
matter temperatures for the NMWP, respectively, at ten times. The data shown are for sufficiently
large times that the NMWP solution has effectively reached LTE. The crosses correspond to the
LTE temperature of the EMWP. We see that the QPDE solution of the NMWP at large times is
converging to the EMWP solution, properly capturing the emergence of the equilibrium Marshak
wave as the large time limit of the NMWP solution.

our computational domain. The grid points z2, . . . , zM−1 are the interior points. In the
simulations discussed in § 3.3, we set M = 101, giving a grid spacing of �z = 0.01.

The spatial discretization requires approximation of all spatial partial derivatives. We
used central-difference FD approximations, and used Python’s symbolic mathematics
library SymPy to implement the FD approximations. As explained in § 2, the result of
the spatial discretization is to reduce our pair of PDEs to a pair of ODEs (see (2.2)). The
resulting ODE solution vector U I(t) is

U I(t) =
(

εI(t)

TI(t)

)
, (3.23)

where εI(t) ≡ ε(zI, t); TI(t) = T (zI, t); and 1 ≤ I ≤ M. The driver function that results
from the spatial discretization is

f I(U) =

⎛
⎜⎜⎜⎝

Dj[εj+1 − 2εj + εj−1]
(�z)2

+ [Dj+1 − Dj−1][εj+1 − εj−1]
4(�z)2

+ [T 4
j − εj]

(Tj)γ

− 1
� C

[T 4
j − εj]

(Tj)γ

⎞
⎟⎟⎟⎠ , (3.24)

where Dj = (Tj)
γ /3.
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FIGURE 3. Comparing results of the QPDE algorithm and Python’s py-pde solver for the
NMWP. We compare the approximate solution found using the QPDE algorithm applied to the
NMWP with that found using Python’s py-pde solver. The dots and crosses are the radiation and
matter temperatures versus position, respectively, found using the QPDE algorithm, while the
solid and dashed curves are the radiation and matter temperatures versus position, respectively,
found using the py-pde solver. The simulation results are shown at seven different times, with
each time associated with a different colour. We see that there is excellent agreement between
the two sets of solutions (crosses with dashes, dots with solid) at intermediate to later times, and
good agreement at the earliest times.

The second step in the QPDE algorithm is to use Kacewicz’ quantum ODE algorithm to
solve (2.2) with f I(U) given by (3.24), and the boundary and initial conditions appearing
in § 3.1. We numerically simulated determining an approximate solution of our pair of
ODEs using Kacewicz’ algorithm. Note that we also used SymPy to analytically determine
the first and second time derivatives of f I(U) which are needed to construct the Taylor
polynomials αi,j(t) discussed in § 2. To test the quality of the quantum simulation results,
we also used Python’s PDE solver py-pde to obtain an approximate solution of (3.15) and
(3.16), subject to the boundary and initial conditions of § 3.1. We compare the py-pde
solution with that of the quantum simulation in § 3.3.

3.3. Simulation results
In this section we present our simulation results for the non-equilibrium Marshak wave
problem (NMWP). These simulations used the following parameter values: (i) number of
spatial grid points M = 101; (ii) grid point spacing �z = 0.01; (iii) γ = 3.5; and (iv) for
figures 1 and 2, �C = 0.01, while for figure 3, �C = 0.1. The boundary and initial conditions
were specified in § 3.1.

Figure 1 shows the simulation results obtained by applying the QPDE algorithm to
the NMWP. The governing PDEs are (3.15) and (3.16). The figure plots the radiation
(solid curve) and matter (dots) temperatures versus position at six times. The propagating
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radiation and matter thermal fronts associated with NRD are clearly visible. If we
focus on a particular position z in the figure, we see that the local matter temperature
increases with time as the matter absorbs energy from the radiation. The local matter
temperature continues to increase until it equals the local radiation temperature, signalling
the establishment of LTE. We see that by t = 0.080, the QPDE simulation results indicate
that LTE is effectively established.

In this paper we have considered the NMWP in which the radiation and matter are not
assumed to be in LTE. On the other hand, Gaitan et al. (2024) considered the equilibrium
Marshak wave problem (EMWP) where radiation and matter are assumed to be in LTE. As
was just seen in figure 1, the QPDE algorithm simulation results show the approach of the
radiation and matter to LTE . In figure 2 we plot the QPDE algorithm simulation results for
the NMWP at times that are sufficiently large that the radiation and matter are effectively
in LTE, with the two systems getting closer and closer to LTE as time progresses. We also
plot the QPDE algorithm solution of the EMWP. The solid curve and dots are the radiation
and matter temperatures versus position, respectively, for the NMWP, while the crosses are
the LTE temperature versus position for the EMWP found by the QPDE algorithm. The
results are plotted for ten times, with a different colour associated with each time. We see
that as time progresses the NMWP solution is converging to the EMWP solution. The
QPDE algorithm thus properly captures the emergence of the equilibrium Marshak wave
as the large time limit of the NMWP solution.

In figure 3 we compare the approximate solutions found for the NMWP using the
QPDE algorithm and Python’s py-pde solver. The dots and crosses represent the radiation
and matter temperatures versus position, respectively, found using the QPDE algorithm,
while the solid and dashed curves represent the radiation and matter temperatures versus
position, respectively, found using the py-pde solver. We show results for seven times, each
time encoded with a different colour. Inspection of figure 3 shows that the dots and solid
curves at corresponding times, representing the radiation temperature versus position for
the two simulations, are in excellent agreement at intermediate to later times, and in good
agreement at the earliest times. Similarly, the crosses and dashed curves at corresponding
times, representing the matter temperature versus position for the two simulations, are also
in excellent agreement at intermediate to later times, and in good agreement at the earliest
times. Figures 1–3 provide strong evidence that the QPDE algorithm correctly solves the
NMWP. The QPDE algorithm was similarly verified on the EMWP in Gaitan et al. (2024).

4. Non-equilibrium Marshak wave problem: second verification

In this section we compare the simulation results for the NMWP generated by the QPDE
algorithm and the KULL ICF simulation code. The KULL multiphysics code (Rathkopf
et al. 2000) was developed at LLNL primarily for simulating inertial confinement fusion
processes at the National Ignition Facility. The code is multidimensional, mesh based,
and able to accommodate many types of physics, including multiple radiation transport
options: diffusion, discrete ordinates (also known as SN), and implicit Monte Carlo. In
this section we are comparing with KULL’s radiation diffusion package, which uses a
node-centred finite element discretization.

As the KULL software is designed to predict experimental outcomes, it utilizes
dimensionful parameters in the radiation and matter energy balance PDEs ((3.3) and
(3.4)). The basic units are: [length] = cm; [time] = shakes (sh) = 10−8 s; [energy] =
jerks (jrk) = 1016 ergs; and [temperature] = keV. In these units the speed of light is
c = 299.7925 cm sh−1 and a = 1.372017 × 10−2jrk cm−3keV4. The parameter values used
in the simulations were chosen so that simulation runtimes would not be excessively
long. We discuss this further in § 5. The Rosseland mean free path λR is given by (3.5),
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with Oρ = 0.9053885 cm4.25 g−1.75; OT = 3.162278 keV2; X0
ρ = 0.75; and γ = 2.0. The

constant matter density is ρ = 0.6729501g cm−3. The matter heat capacity per volume
CV = de/dT is obtained from the equation of state

e = Ceosρ
Xeos

ρ TXeos
T , (4.1)

where T and ρ are the matter temperature and density, respectively; Ceos = 4.90693 ×
10−4 jrk cm−3 g−0.91 keV−1; Xeos

ρ = 0.91; and Xeos
T = 1.0. Finally, we define ε ≡ εR/a = T4

R.
Inserting these parameter values into (3.3) and (3.4) we obtain the following governing
PDEs:

∂ε

∂t
− ∂

∂x

[
69.8063Tγ ∂ε

∂x

]
= 429.167

[
T4 − ε

Tγ

]
, (4.2)

∂T
∂t

= −1.72073 × 104

[
T4 − ε

Tγ

]
. (4.3)

The spatial computational domain is 0 cm ≤ x ≤ 8.6258 × 10−2 cm.
The boundary conditions at the left boundary x = 0 are TR(0, t) = T(0, t) = 0.15 keV

so that ε(0, t) = 5.0625 × 10−4 keV4. We again impose floating boundary conditions at
the right boundary xM = 8.6258 × 10−2cm so that for t > 0,

ε(xM, t) = 2ε(xM−1, t) − ε(xM−2, t), (4.4)

T(xM, t) = 2T(xM−1, t) − T(xM−2, t), (4.5)

while for t = 0 we set TR(xM, 0) = T(xM, 0) = 0.015 keV, and so ε(xM, 0) = 5.0625 ×
10−8keV4. The initial condition for the matter temperature T(x, 0) is

T(x, 0) = T(xM, 0) + [T(0, 0) − T(xM, 0)] exp(−x/Δ), (4.6)

where Δ = 8.6258 × 10−4cm. The initial condition for the radiation is ε(x, 0) =
[T(x, 0)]4. The simulations used M = 101, 201, 401 grid points, giving a grid spacing
�x = xM/(M − 1) = {8.6258, 4.3129, 2.1565} × 10−4 cm.

Application of the QPDE algorithm to the dimensionful energy balance PDEs is the
same as described in § 3.2 and so need not be repeated here.

Figure 4 shows the simulation results for the QPDE algorithm and the LLNL/KULL
ICF software for spatial grids using M = 101, 201, 401 grid points. The dots and crosses
are the QPDE radiation and matter temperatures, respectively, while the solid and dashed
curves are the KULL radiation and matter temperatures. We see that for each spatial
grid and each of the times plotted, the agreement is quite good, although the KULL
solution is seen to produce a slightly faster propagating thermal front than the QPDE
solution. Consequently, the agreement between the two simulations slowly deteriorates
with increasing time since the KULL thermal fronts get further and further ahead of the
QPDE thermal fronts with time. Note that the speed difference appears to be an artefact
of the grid size. For the 3 spatial grids considered, the speed difference is largest for the
grid with M = 101 grid points, is smaller for M = 201 and even smaller for M = 401.
This suggests that this speed difference, and hence the deteriorating agreement between
the simulations with time, will go to zero in the continuum limit. To examine this further,
in figure 5 we plot the temperature difference �T = TKULL − TQPDE versus grid position
z for the 3 spatial grids: M = 101, 201, 401. This temperature difference provides a direct
measure of the disagreement between the QPDE and KULL simulation results. The solid

https://doi.org/10.1017/S0022377824000977 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000977


Quantum simulation of non-equilibrium Marshak waves 13

(a) (b)

(c)

FIGURE 4. Comparing results of the QPDE and KULL ICF simulations for the NMWP. We
compare the approximate solution found using the QPDE algorithm applied to the NMWP with
that found using LLNL’s KULL ICF radiation diffusion simulation software. We consider 3
spatial grids with (a) M = 101 grid points; (b) M = 201 grid points; and (c) M = 401 grid points.
The dots and plus signs are the QPDE radiation and matter temperatures, respectively, while the
solid and dashed curves are the KULL radiation and matter temperatures. In (a) we see that
both the QPDE and KULL simulation results each show the radiation and matter approaching
local thermal equilibrium as time increases, however, the agreement between the two simulations
which is quite good initially, is seen to slowly deteriorate with time as the KULL radiation and
matter thermal fronts appear to be moving slightly faster than the QPDE radiation and matter
thermal fronts. The same behaviour is seen in (b,c), only the difference in thermal front speeds
is smaller for M = 201, and even smaller for M = 401. This suggests that this speed difference,
and the associated slow deterioration of the agreement in the simulation results with time, is an
artefact of the grid-size that will go to zero in the continuum limit.

curve gives the temperature difference �T for the matter field, and the dashed curve gives
�T for the radiation. We see that the difference in the thermal front speeds for the two
simulations produces a systematic increase in �T with time, and is largest for M = 101, is
much less for M = 201 and much, much less for M = 401. As noted above, this suggests
that the difference in thermal front speeds between the two simulations, and consequently,
their discrepancy measure �T , goes to zero in the continuum limit. Two other suspected
causes for the small difference in thermal front speeds are: (i) the finite time scales
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(a) (b)

(c)

FIGURE 5. Comparing the temperature difference �T = TKULL − TQPDE versus position z for
the QPDE and KULL ICF simulations for the NMWP. We use the temperature difference �T =
TKULL − TQPDE versus position z as a direct measure of the disagreement between the QPDE and
KULL ICF simulation results. The solid curve gives the temperature difference �T for the matter
field, and the dashed curve gives �T for the radiation. (a) Plots �T for a grid with M = 101 grid
points; (b) for M = 201; and (c) for M = 401. We see that the difference in the radiation and
matter thermal front speeds noted in figure 4 causes a systematic increase in �T with time as the
KULL thermal fronts move slightly faster than the QPDE thermal fronts, thus getting further and
further ahead of the QPDE thermal fronts with time. The effect is seen to be largest for the grid
with M = 101, to be much less for the grid with M = 201 and much, much less for the grid with
M = 401. This suggests that the difference in thermal front speeds between the two simulations,
and consequently, their discrepancy �T , is an artefact of the grid size that would appear to go to
zero in the continuum limit.

used to propagate the two simulations forward in time; and (ii) the use of implicit time
stepping versus explicit time stepping in the KULL and QPDE simulations, respectively.
In future work we plan to do a more complete convergence study of the KULL and QPDE
simulations and we anticipate the radiation and matter thermal front speeds for the two
simulations will converge to common speeds. As will be discussed further in § 5, work is
currently underway to implement the implicit version of the QPDE algorithm presented
in Gaitan (2021). With that said, the simulation results presented here provide further
evidence that the QPDE algorithm correctly solves the NMWP, this time when compared
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with the state-of-the-art radiation diffusion package of LLNL’s KULL ICF simulation
software.

5. Discussion

In this paper we applied a QPDE algorithm (Gaitan 2020, 2021), which provides up to a
quadratic quantum speedup, to the NMWP (Pomraning 1979). We showed that the QPDE
algorithm correctly captured the: (i) approach to LTE of the coupled radiation/matter
system; and (ii) emergence of the equilibrium Marshak wave (Marshak 1958) as the large
time limit of the NMWP solution. The QPDE algorithm solution was compared with that
found using Python’s py-pde solver (Zwicker 2020) and the radiation diffusion package
of LLNL’s KULL ICF simulation software (Rathkopf et al. 2000). Both comparisons
provided clear evidence that the QPDE algorithm correctly solves the NMWP.

The QPDE algorithm considered in this paper uses an explicit time development scheme
(see (2.3)). Because the radiation transport time scale is much shorter than the matter time
scale, numerical stability required us to use a secondary subinterval duration time h̄ that is
less than the radiation time scale. This, unfortunately, leads to prohibitively long runtimes
when physical parameters are assigned values typical of ICF experiments. As noted in
§ 4, to mitigate this situation, it was necessary to restrict ourselves to parameter values
that allowed practical simulation runtimes. In an attempt to resolve this issue, work is
currently underway to implement the implicit version of the QPDE algorithm introduced in
Gaitan (2021). Implicit algorithms are typically more stable than explicit algorithms, and
can often be shown to be unconditionally stable. This will allow us to use larger values
of h̄ than is possible with our explicit algorithm, thus reducing runtimes. We anticipate
that this will allow us to simulate the QPDE algorithm with reasonable runtimes, even
when using experimentally relevant ICF parameter values. In fact, present-day RH codes
simulate radiation transport using implicit codes for this reason.
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