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Abstract. We consider elliptical galactic models, whose dynamical system consists of a three-
dimensional isotropic harmonic oscillator plus a potential given by a homogeneous polynomial of 
degree four with an additional discrete symmetry. We identify families of simple periodic orbits by 
studying the reduced phase space. 

1. Triaxial Galaxies 

Most galaxies do not show a violent activity; on the contrary, they are supposed to 
exhibit a stationary behaviour. Only a few years ago, it was thought that the elliptical 
galaxies were rather simple axisymmetric systems. However, it is not completely 
true. Thus, the study of the dynamics of elliptical galaxies has become a very 
interesting subject of research. As a consequence of the observations made during 
the last two decades, astronomers have learned that many galactic components are 
not spherical nor do they possess an axial symmetry, but they are, indeed, triaxial 
objects. There is also an evidence about the fact that many galaxy bulges are triaxial 
structures. Even barred galaxies evolve towards non-symmetric objects. 

Three-dimensional oscillators are used to model the dynamics of the elliptical 
galaxies. Considering an idealized non-rotating elliptical galaxy and choosing an 
appropriate reference frame, we can take the gravitational potential V as a smooth 
function which can be expanded in power series around the origin. In addition to 
that, we restrict ourselves to the isotropic case. Observations strongly suggest that 
most triaxial potentials can be described as having equal frequencies (de Zeeuw, 
1985). Thus, the unperturbed Hamiltonian function in Cartesian variables reads as 
U2 = \ (X2 + Y2 + Z2) + \ u>2{x2 + y2 + z2) where u> has the physical dimension 
of a frequency. The model we take is a prototype of a galaxy. The perturbation 
contains only quartic terms but such that V is symmetric with respect to the three 
principal planes. That is, H4 = &o x4 + 61 y4 + b% z4 + 64 x2 y2 + 67 x2 z2 + 610 y2 z2, 
where b{ are small-size and real parameters with dimensions [L T]~2. 

2. The Reduced Phase Space 

The oscillator symmetry permits to convert the original system H into a normalized 
Hamiltonian. The reduction is regular since H is isotropic (for details see Yanguas, 
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1998). Moreover, the reduced space is the fourth-dimensional space C P (Moser, 
1970). It is generated by the nine quadratic generators: 

*i=<J*a? + X2, 7r2 = w V + Y2, n3=u2z2 + Z2, 
Tr4 = u>2xy + XY, ir5-co2xz + XZ, ir6 = u)2 yz + Y Z, 
ITT — xY — yX, TT& = xZ — zX, T9 = yZ — zY . 

The first six describe the solution of the equations for harmonic oscillators, that 
is, the ellipse in three dimensional space. The other three invariants nj, 7r8 and ng 
give the position of the plane in space, as they are the components of the angular 
momentum vector (except for the sign of 7r8). Apart from the constraint of the 
energy -K\ + mi + ^3 = 2 h, the other independent relations are: 

Tl ""2 = IT2. + W2 7rf, 7Tl7r3 = 7 T ^ + W 2 7 r | , 

7T2 7T3 = 7T? + W2 7T§, X* 7T6 = 7T2 7TS + U)2 7T7 7T9, 
2 2 

7Ti 7T6 = 7T4 7T5 + UT 7T7 1Tg, 7T3 7T4 = 7T5 7T6 + U 1T% 1Tg . 

The reduction procedure is accomplished by the Lie-Deprit method using sym-
plectic variables (Yanguas, 1998). Up to third order, the reduced Hamiltonian reads 
as JCV = \ (TT! + 7T2 + TT3) + s2 /C2/(48 w6) + 0(e4) where £ 2 is 

3 60 TT2 + b4 7Tl 7T2+3 61 7T2+&7 7Tl 7T3 + 6lO ^2 ^ 3 + 3 &2 ^ 3 + 2 64 ^ 4 + 2 67 7 r |+2 &10 7rg. 

Now we set up the differential system and apply Liouville's Theorem: *, = 
{TT; , IC2} , i = 1, • • . ,9 . Previously we had computed (Yanguas, 1998) the Poisson 
brackets {iti , XJ } to have an explicit expression of the x,. The critical points of this 
system are the simple periodic orbits in terms of the &;. We reproduce the results 
given in (de Zeeuw, 1985) obtaining fourteen families of periodic orbits. The 
advantage of our procedure is that we can make the analysis using the generators 
ofCP2and covering therefore, the whole reduced system. Besides, we manipulate 
quadratic polynomial equations instead of Poisson series. This is very adequate for 
a commercial symbolic processor. 
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