
Canad. Math. Bull. Vol. 67 (4), 2024, pp. 936–939
http://dx.doi.org/10.4153/S0008439524000316
© The Author(s), 2024. Published by Cambridge University Press on behalf
of Canadian Mathematical Society

On some convexity questions
of Handelman
Brian Simanek

Abstract. We resolve some questions posed by Handelman in 1996 concerning log convex L1 func-
tions. In particular, we give a negative answer to a question he posed concerning the integrability of
h2(x)/h(2x) when h is L1 and log convex and h(n)1/n → 1.

1 Introduction

In [1], Handelman investigated eventual positivity of power series and deduced
its existence for a wide variety of functions by appealing to a particular maximal
function. If h ∶ (0,∞) → (0,∞) is continuous, then he defined the maximal function

Hh(a) =max
b≥a

h(b)
h(a + b) .

Note that H takes values in [0,∞]. This maximal function was introduced in [1],
where some of its properties are discussed. In particular, it is meaningful to have an
understanding of when hHh is integrable on (0,∞). It is easy to see that if h is log
convex, then Hh(x) = h(x)/h(2x). This led Handelman to ask the following question
(see [1, p. 338]):

Question 1.1 If h ∶ (0,∞) → (0,∞) is a log convex function that is integrable on
(0,∞) and satisfies lim supn→∞ h(n)1/n = 1, then is it true that h(x)2/h(2x) is also
integrable on (0,∞)?

One of our main results is a demonstration that the answer to Question 1.1 is “no.”
In fact, we will prove the following result:

Theorem 1.2 There is a function h ∶ (0,∞) → (0,∞) that is log convex, integrable on
(0,∞), satisfies limn→∞ h(n)1/n = 1, and is such that hr(x)/h(rx) is not integrable on
(0,∞) for any r > 0.

Our proof of Theorem 1.2 is constructive in that we will show how to actually create
a counterexample.
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Also in [1], Handelman made the following conjecture (see the discussion follow-
ing [1, Theorem 9]):

Conjecture 1.3 Suppose h ∶ (0,∞) → (0,∞) is a log convex function that satisfies

lim
n→∞

h(n)
h(n + 1) = 1(1.1)

and h2(x)/h(2x) is integrable on (0,∞). Then h is also integrable on (0,∞).

Our second main result is the following:

Theorem 1.4 Conjecture 1.3 is true.

Remark We should point out that the hypothesis (1.1) is essential to proving
Theorem 1.4, for otherwise, one could take h(x) = xx as a counterexample. We also
remind the reader of an observation made by Handelman in [1, p. 338], which is that
the condition (1.1) for a log convex function h is equivalent to the condition that the
series∑ h( j)t j has radius of convergence exactly 1.

In addition to Question 1.1 and Conjecture 1.3, Handelman also asked: if a function
h is log convex and integrable on (0,∞), then is h2(x)/h(2x) also integrable on
(0,∞) (see [1, p. 331])? We believe this question is still open.

The remainder of the paper is devoted to the proofs of Theorems 1.2 and 1.4. Our
methods are elementary and require only basic facts about convex functions (see [2]
for a discussion of many tools in convexity theory).

2 Proofs

The purpose of this section is to prove all of the results discussed in the Introduction
section.

2.1 The construction

In this section, we will resolve Question 1.1. Let us write h(x) = exp( f (x)), where
f (x) is convex. Since h ∈ L1(R+), it must be that limx→∞ f (x) = −∞. The remaining
condition on h implies limn→∞ f (n)/n = 0, or equivalently (by the convexity of f )
limx→∞ f ′(x) = 0 provided f ′(x) exists. In fact, the function f we construct will be
piecewise linear and hence f ′(x) will be undefined on a discrete set. We will choose
sequences {an}∞n=0, {mn}∞n=0, and {bn}∞n=0 so that

f (x) = mn x + bn , x ∈ [an , an+1],(2.1)

and f is continuous.
To begin our construction, let {mn}∞n=0 be a fixed sequence of negative real

numbers that monotonically increases to 0. With this fixed sequence in hand, we will
construct the sequence {an}∞n=0 inductively, and the sequence {bn}∞n=0 will then be
defined implicitly in order to make f continuous.
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We begin our construction of the sequence {an}n≥0 by defining a0 = 0 and we also
define b0 = 0. Now, choose a1 large enough so that
•

− em0 a1

m1
< 1

2
•

a1 > 1 = a0 + e−b0 .

Now, set b1 = m0a1 −m1a1 and observe that m1a1 + b1 = m0a1.
Now, let us assume that {a j}n

j=0 and {b j}n
j=0 have already been defined. We will

now show how one can choose an+1 and then bn+1 to complete the construction.
Indeed, as above, we will choose an+1 large enough so that

− emn an+1+bn

mn+1
< 1

2n+1 ,

an+1 >max{an + e(1−t)bn ∶ t ∈ [0, n]} .

Then define

bn+1 = mn an+1 + bn −mn+1an+1

and observe that

mn+1an+1 + bn+1 = mn an+1 + bn .(2.2)

Proceeding inductively, we arrive at two sequences {an}∞n=0 and {bn}∞n=0. It is clear
from our construction that an+1 > an + 1 (since 1 ∈ [0, n]) and so each an is positive
(except a0) and limn→∞ an = ∞. Therefore, this procedure defines f on all of (0,∞)
if we define f by (2.1). Notice also that an > 0 and mn > mn−1 inductively implies that
each bn < 0 when n > 0.

Now, let us check that this function has the desired properties. First of all, since
mn → 0 monotonically, it is clear that f (n)/n → 0 and also that f is convex. Now we
calculate

∫
∞

0
h(x)dx = ∫

∞

0
e f (x)dx =

∞

∑
n=0
∫

an+1

an
emn x+bn dx

≤
∞

∑
n=0
∫
∞

an
emn x+bn dx

=
∞

∑
n=0
− emn an+bn

mn

= − 1
m0
+
∞

∑
n=1
− emn−1 an+bn−1

mn
(we use (2.2) here)

< − 1
m0
+
∞

∑
n=1

2−n ,

which is clearly finite. Therefore, h ∈ L1(R+) as desired.
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Finally, fix r ∈ (0,∞) and choose N ∈ N so that r < N . Notice that

hr(x)
h(rx) = e(r−1)bn , x ∈ [an , an+1].

Therefore,

∫
∞

0

hr(x)
h(rx)dx =

∞

∑
n=0

e(r−1)bn(an+1 − an) >
∞

∑
n=N

e(r−1)bn(an+1 − an) >
∞

∑
n=N

1,

by construction, so hr(x)
h(rx) /∈ L1(R+). This completely answers Question 1.1.

2.2 The conjecture

In this section, we will prove Theorem 1.4. The log convexity of h implies that h is
either monotone increasing on (A,∞) for some A ≥ 0 or monotone decreasing on
(0,∞). In the latter case, we have h(x) ≥ h(2x) and so

∫
∞

0
h(x)dx ≤ ∫

∞

0

h2(x)
h(2x)dx < ∞,

so h is integrable.
If h is monotone increasing on (A,∞), then log(h(x)) is also increasing on

(A,∞). Note that the convexity implies that we can choose A so that log(h(x)) is
strictly monotone increasing on (A,∞), for otherwise h would be constant on some
interval [B,∞). This would contradict the assumption that h2(x)/h(2x) is integrable
on (0,∞). Since log(h(x)) is convex, it must be that there is some constant c > 0 so
that

log(h(n + 1)) − log(h(n)) ≥ c, n > A.

This implies h(n + 1)/h(n) ≥ ec , which means h cannot satisfy (1.1). Therefore, this
case cannot occur, and we have proven Theorem 1.4.
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