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Abstract Recently, Hong and Li launched a systematic study of length-four pattern avoidance in inver-
sion sequences, and in particular, they conjectured that the number of 0021-avoiding inversion sequences
can be enumerated by the OEIS entry A218225. Meanwhile, Burstein suggested that the same sequence
might also count three sets of pattern-restricted permutations. The objective of this paper is not only
a confirmation of Hong and Li’s conjecture and Burstein’s first conjecture but also two more delicate
generating function identities with the ides statistic concerned in the restricted permutation case and
the asc statistic concerned in the restricted inversion sequence case, which yield a new equidistribution
result.
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1. Introduction

The history of the study of patterns in permutations dates back to the first volume
of MacMahon’s 1915 magnum opus Combinatory Analysis [17, Vol. I, Sect. III, Ch. V].
Meanwhile, modern treatment of permutation classes is commonly known to have its first
appearance in Knuth’s Volume 1 of The Art of Computer Programming [12, Sect. 2.2.1],
another masterpiece in discrete mathematics and computer science. See Kitaev’s mono-
graph [11] and Vatter’s survey [22] for detailed accounts of this charming history.
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Let Sn be the set of permutations of {1, 2, . . . , n} =: [n]. We know that it has a natural
coding using In := {(e1, e2, . . . , en) : 0 ≤ ei < i} given by

Θ : π = (π1, π2, . . . , πn) 7→ (e1, e2, . . . , en), where ei = |{j < i : πj > πi}|. (1.1)

Since the sum of the entries in Θ(π) gives the number of inversions (i.e., pairs (i, j ) with
i < j and πi > πj) of π, we usually call sequences in In inversion sequences of length n.
Given a sequence W = w1w2 · · ·wn, we say that W contains a fixed pattern P =

p1p2 · · · pk if there is a subsequence of W that is order isomorphic to P. Otherwise, we
say that W avoids the pattern P. For example, the sequence w1w2 · · ·w6 = 315 616
contains the pattern 011 since the subsequence w1w4w6 = 366 is order isomorphic to 011
but avoids 201 since none of the subsequences are order isomorphic to this pattern.
In general, for P1, . . . , Pr, a family of patterns, we denote by Sn(P1, . . . , Pr) (respec-

tively, In(P1, . . . , Pr)) the set of permutations (respectively, inversion sequences) that
simultaneously avoid P1, . . . , Pr.
One of the most important questions in the prolific study of patterns in permutations

or inversion sequences concerns the enumeration of sequences avoiding a certain family of
patterns. As a well-known example [11, Proposition 2.1.3], one has |Sn(231)| = 1

n+1

(
2n
n

)
,

the nth Catalan number. This result is partly attributed to Knuth [12, pp. 242–243].
For pattern avoidance in inversion sequences, on the other hand, we witness the pio-
neering works of Corteel et al. [5] and Mansour–Shattuck [18]. For instance, |In(012)|
equals the (2n − 1)th Fibonacci number, while |In(000)| is the (n + 1)th Euler num-
ber. Further intriguing connections between pattern avoiding permutations and pattern
avoiding inversion sequences were investigated extensively in [13–16].
It is worth noting that for permutations, when the pattern family contains patterns

of different lengths, their enumerations enjoy wide-ranging motivations and may lead to
unexpected links. For instance, as a byproduct from their combinatorial study of Schubert
polynomials, Billey et al. [1] showed that

|Sn(321, 2143)| = 2n+1 −
(
n+ 1

3

)
− 2n− 1.

A result involving patterns of lengths 4 and 6, which was first conjectured by Egge and
later confirmed by Burstein and Pantone [3] and Bloom and Burstein [2], states that for
each τ ∈ {246135, 254613, 524361, 546132, 263514}, we have

|Sn(2143, 3142, τ)| =
n∑

d=0

1

n− d+ 1

(
2n− d

n− d, n− d, d

)
,

the nth large Schröder number. Quite recently, during his systematic investigation of
West’s ‘stack-sorting map’, Defant [6] enumerated Sn(2341, 3241, 45231) by recognizing
it as the set of preimages of Sn(231, 321).
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As the study of such enumerations continues, many open problems also emerge in an
endless stream. Let

A(x) =
∑
n≥1

a(n)xn := x+ 2x2 + 6x3 + 23x4 + 101x5 + 480x6 + · · ·

be the unique formal power series solution to the functional equation:

A(x) =
(
1 +A(x)

)(
x+A(x)2 − xA(x)2

)
. (1.2)

By the Lagrange inversion formula, we have

a(n) =
1

n
[xn−1]

(
1

1− x− x2
+ x

)n

=
1

n

n−1∑
k=0

(
n

k + 1

)
[xk](1− x− x2)−(k+1)

=
1

n

n−1∑
k=0

(
n

k + 1

) k∑
j=0

(
k + j

j

)(
j

k − j

)
.

The coefficients of A(x) are registered as sequence A2182251. in the OEIS [21]. On 20
December 2017, Burstein posed in [21, A218225] the following conjecture.

Conjecture 1.1. (Burstein). The value a(n) counts the number of permutations of
length n that avoid one of the following sets of patterns:

(3124, 42153, 24153), (2134, 42153, 24153), (2143, 42135, 24135).

On the other hand, following Chern’s work [4] on 0012-avoiding inversion sequences,
Hong and Li [10] recently presented a systematic study of other length-four pattern
restricted cases. In particular, they conjectured that the series A(x) also generates
|In(0021)|; see [10, Conjecture 23].

Conjecture 1.2. (Hong–Li). The value a(n) counts the number of inversion
sequences of length n that avoid the pattern 0021.

Yet another topic of substantial significance is the investigation of various statistics
for permutations or inversion sequences. Here, we list a few of them that are commonly
used: for w a permutation or an inversion sequence of length n,

. the number of ascents: asc(w) := |{i ∈ [n− 1] : wi < wi+1}|;

. the number of descents: des(w) := |{i ∈ [n− 1] : wi > wi+1}|;

for π a permutation of length n,

1. This OEIS sequence starts with the zeroth entry, so its generating function is A(x)/x in our notation.
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1182 S. Chern, S. Fu and Z. Lin

. the number of inverse descents: ides(π) := des(π−1), where π−1 is the inverse
permutation of π;

. the number of excedances: exc(π) := |{i ∈ [n] : πi > i}|;

for e an inversion sequence of length n,

. the number of distinct positive entries: dist(e) := |{ei : i ∈ [n] and ei > 0}|.

Recall that for n ≥ 1, k ≥ 0, the Eulerian numbers are defined by

〈
n

k

〉
:=

k+1∑
j=0

(−1)j
(
n+ 1

j

)
(k − j + 1)n.

We may also define the Eulerian polynomials by

En(t) :=
n−1∑
k=0

〈
n

k

〉
tk.

It is known (see, e.g. [19, Sect. 1.4]) that

∑
π∈Sn

tdes(π) = En(t).

Usually, we say that a statistic is Eulerian if its distribution gives En(t). Thus, des, and
equivalently, asc and ides are Eulerian over permutations. Also, a direct implication of the
natural coding Θ in Equation (1.1) is that for any π ∈ Sn, des(π) = asc(Θ(π)). Hence,
asc is also Eulerian over inversion sequences. For some nontrivial examples, Foata and
Schützenberger [8] showed by a bijection called the ‘transformation fondamentale’ from
Sn to itself that exc is Eulerian over permutations, and Dumont [7] proved that dist is
Eulerian over inversion sequences.
In general, two statistics that are equidistributed over permutations and/or inversion

sequences are a priori no longer equidistributed when the two sets are restricted by certain
pattern avoidance conditions, even if the two restricted subsets are already known to be
equinumerous. However, there are still a few exceptions. For example, by the works of
Corteel et al. [5] and Fu et al. [9],

∑
π∈Sn(2413,3142)

tdes(π) =
∑

e∈In(021)

tasc(e). (1.3)

Inspired by the above relation, Lin and Kim [14] constructed a bijection between
Sn(2413, 4213) and In(021), which proves a surprising sextuple equidistribution, includ-
ing the set-valued statistics of the positions of descents and ascents.
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In this paper, we will focus our attention on Burstein’s first conjecture and Hong and
Li’s conjecture, but also with statistics considered. To begin with, we generalize the series
A(x) as

A(x, t) := x+ (1 + t)x2 + (1 + 4t+ t2)x3 + (1 + 10t+ 11t2 + t3)x4 + · · · , (1.4)

which is the unique formal power series solution to the functional equation:

A(x, t) =
(
1 +A(x, t)

)(
x+ tA(x, t)2 − xt2A(x, t)2

)
. (1.5)

Note that A(x, 1) = A(x).
The main result of this paper is the following theorem, which affords us two com-

binatorial interpretations of A(x, t) in terms of the Eulerian distributions over pattern
restricted permutations and inversion sequences, respectively.

Theorem 1.1. Let A(x, t) be as in Equation (1.4). Then

∑
n≥1

xn
∑

π∈Sn(3124,42153,24153)

tides(π) = A(x, t) (1.6)

and

∑
n≥1

xn
∑

e∈In(0021)

tasc(e) = A(x, t). (1.7)

Hence, ides over Sn(3124, 42153, 24153) is equidistributed with asc over In(0021).

The following is a quick consequence of our main result by setting t =1.

Corollary 1.2. (i). Burstein’s First Conjecture is true, i.e. Conjecture 1.1 is true for
(3124, 42153, 24153); (ii). Hong and Li’s Conjecture 1.2 is true.

2. Burstein’s first conjecture with inverse descents

For convenience, we write I := {3124, 42153, 24153}, the set of patterns in Burstein’s
first conjecture. Let us define

P(x, t) :=
∑
n≥1

xn
∑

π∈Sn(I)

tides(π). (2.1)

We begin with some useful definitions and initial observations.
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We associate with each permutation π ∈ Sn+1 a unique word wπ of length n consisting
of letters L and R as follows. Suppose πk = 1, we let

wπ = w1w2 · · ·wn, where wi :=

L, if πj = i+ 1 for a certain j < k,

R, if πj = i+ 1 for a certain j > k.

Intuitively, as we scan the entries of π from 2 to n +1, the word wπ simply records
whether we are at a position that is to the left or right of the entry 1. We introduce the
length of the longest alternating subword of any word w on the alphabet {L,R}:

alt(w) := max{|u| : u is a subword of w with no consecutively repeated letters}.

For a permutation π ∈ Sn, we define

. the alternating length: alt(π) := 0 for n =1, and alt(π) := alt(wπ) for n ≥ 2.

Denote Sn,k the set of permutations in Sn with alternating length equal to k.

Example 2.1. The permutation π=547912683 corresponds to the word wπ =
RRLLRLRL (for 2, 3 are to the Right of 1; 4 is to the Left of 1; etc.). Thus, alt(π) = 6
and π ∈ S9,6.

The next lemma explains why it might be a good idea to refine Sn as Sn,k when we
deal with Sn(I).

Lemma 2.1. For each permutation π ∈ Sn(I), there is no subword of wπ of the
form LRLR. Consequently, we have alt(π) ≤ 4, and in particular, if wπ starts with L
(i.e. π−1

2 < π−1
1 ), we have alt(π) ≤ 3.

Proof. Taking any permutation π ∈ Sn(I) with πk = 1, suppose on the contrary
that LRLR is a subword of wπ. Then it is always possible to find four indices a, b, c, d,
such that

(1) a < k, b< k and c> k, d > k ;
(2) πa < πc < πb < πd.

Furthermore, since π avoids the pattern 3124, we must have d < c. But then if a < b,
we see

πa, πb, πk = 1, πd, πc

matches the pattern 24153; while if a > b, we get from

πb, πa, πk = 1, πd, πc

the pattern 42153. Either case contradicts with the fact that π ∈ Sn(I). �
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Throughout, we make the following decomposition

Sn(I) =
4⊎

i=0

Sn,i(I).

Note that if alt(π) = t, then the longest alternating subword of wπ could be either

u = LRL . . .︸ ︷︷ ︸
t

or u = RLR . . .︸ ︷︷ ︸
t

.

Fortunately, according to the next lemma, it suffices to investigate the first case. For
k ≥ 1, we decompose Sn,k further into two disjoint subsets (with π−1

i the ith entry
of π−1):

SL
n,k := {π ∈ Sn,k : π−1

2 < π−1
1 },

SR
n,k := {π ∈ Sn,k : π−1

2 > π−1
1 }.

We then denote the corresponding generating functions for those permutations avoiding
the pattern set I as

PL
k (x, t) :=

∑
n≥2

xn
∑

π∈SL
n,k

(I)

tides(π),

PR
k (x, t) :=

∑
n≥2

xn
∑

π∈SR
n,k

(I)

tides(π),

respectively.

Lemma 2.2. We have

PR
1 (x, t) = xP(x, t), (2.2)

and for 1 ≤ k ≤ 3,

PR
k+1(x, t) = PL

k (x, t)P(x, t). (2.3)

Proof. Given any permutation π = π1 · · ·πn ∈ Sn(I), we see that π̂ = 1(π1 +
1) · · · (πn+1) is a permutation in SR

n+1,1(I). Conversely, every permutation in SR
n+1,1(I)

must begin with 1 and recovers uniquely a permutation in Sn(I) once the 1 is removed
and all remaining entries decrease by 1. Noting that this correspondence also preserves
the ides statistic, we arrive at Equation (2.2).
Similarly, for 1 ≤ k ≤ 3, we can construct a bijection

φ :
⋃

n≥2 S
L
n,k(I)×

⋃
n≥1 Sn(I) →

⋃
n≥2 S

R
n,k+1(I),

(σ, µ) 7→ π,
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where the image π is obtained from the pair (σ, µ) by first concatenating σ with µ, then
increasing each entry of σ larger than 1 by |µ| and each entry of µ by 1. For instance,

φ(6271435, 3142) = 10 6 11 1 8 7 9 4 2 5 3.

A moment of reflection should reveal that regardless of k =1, 2 or 3, φ is well-defined and
indeed a bijection satisfying that |φ(σ, µ)| = |σ| + |µ|. In terms of generating function,
we see that Equation (2.3) holds by further noting that ides(π) = ides(σ) + ides(µ), since
the eliminated inverse descent from σ−1

1 > σ−1
2 is compensated by π−1

|µ|+1 > π−1
|µ|+2. �

Noting from Lemma 2.1 that SL
n,4(I) = ∅ for all n ≥ 1, we have

PL
4 (x, t) = 0. (2.4)

Now, it remains to compute PL
1 (x, t), PL

2 (x, t) and PL
3 (x, t). We collect them in the next

lemma.

Lemma 2.3. We have

PL
1 (x, t) = xtP(x, t), (2.5)

PL
2 (x, t) = xtC(x, t)P(x, t), (2.6)

PL
3 (x, t) = t

(
P(x, t)− x− xtP(x, t)− xC(x, t)

)
P(x, t), (2.7)

where

C(x, t) =
∑
n≥1

xn
∑

π∈Sn(312)

tides(π).

Proof. First, Equation (2.5) can be derived bijectively in the same way as we
prove Equation (2.2), except that now we append 1 at the right end, thereby increasing
the ides statistic by 1.
For Equation (2.6), suppose that π ∈ SL

n,2(I) decomposes as π = u1v with max(u) <
min(v). Now as two subwords of π, u and v each should avoid the three patterns contained
in I. More precisely, we see that u actually avoids the pattern 312, since any occurrence
of 312 in u together with one entry from v outputs the pattern 3124. Conversely, by
concatenating a permutation σ ∈ Sm(312) with 1 and a permutation µ ∈ Sl(I), then
increasing every entry in σ by 1 and every entry in µ by m +1, we get a permutation
π ∈ SL

m+l+1,2(I). This bijection gives us Equation (2.6) by noting that ides(π) = ides(σ)+

ides(µ) + 1 for the inverse descent from π−1
1 > π−1

2 gives the additional ‘plus one’.
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The proof of Equation (2.7) requires a bijection that is less obvious. We begin with
any permutation σ = σ1 · · ·σn ∈ Sn(I). Increasing all entries by 1 and inserting 1 at the
penultimate position yield

σ̃ = (σ1 + 1) · · · (σn−1 + 1)1(σn + 1).

Let us decide under what conditions σ̃ would be a permutation in SL
n+1,3(I).

(1) n ≥ 2. This explains the term ‘−x ’.
(2) σn > 1. Otherwise, σn = 1 and σ ∈ SL

n,1(I). So by Equation (2.5), this explains the
term ‘−xtP(x, t)’.

(3) σn < n. Otherwise, σn = n and σ1 · · ·σn−1 ∈ Sn−1(312). So this explains the term
‘−xC(x, t)’.

If conditions (1), (2) and (3) are all satisfied, we see that σ̃ is indeed a permutation
in SL

n+1,3(I) with 1 being at the penultimate position. To reach all permutations in⋃
i≥4 S

L
i,3(I), we simply ‘inflate’ the last entry of σ̃ into any permutation µ ∈ S(I) (i.e.,

increase each entry in µ by σn to get µ̃ and then replace the last entry of σ̃ with µ̃) and
then adjust the remaining entries of σ̃ if necessary (i.e., increase by an appropriate amount
and preserve their original relative order relations). Denote the output permutation as
π. Now, this final step of ‘inflation’ corresponds to multiplying by tP(x, t), by further
noting that ides(π) = ides(σ̃) + ides(µ) = 1 + ides(σ) + ides(µ). For example, if

σ = 4213 and µ = 41523,

we follow the above steps to produce

σ̃ = 532 1 4 and µ̃ = 74856 and π = 932 1 74856.

It is not hard to see that the whole process is invertible. Namely, we take any permutation
from

⋃
n≥4 S

L
n,3(I), ‘concentrate’ all the entries to the right of 1 into its minimum to

recover σ̃ after standardization and then remove 1 and decrease other entries by 1 to
further recover σ, which must be a permutation in Sn(I) that satisfies conditions (1),
(2) and (3). In summary, (σ, µ) 7→ π is a bijection and (2.7) is now proved. �

Finally, we are in a position to conclude the proof of Equation (1.6).

Proof of Equation (1.6). Putting together these generating function relations, we
can deduce the following functional equation:

P(x, t) =
(
x+ PR

1 (x, t)
)
+
(
PL
1 (x, t) + PR

2 (x, t)
)
+
(
PL
2 (x, t) + PR

3 (x, t)
)

+
(
PL
3 (x, t) + PR

4 (x, t)
)
+ PL

4 (x, t)

= (1 + P(x, t)) [x+ xtP(x, t) + xtC(x, t)P(x, t)

+t (P(x, t)− x− xtP(x, t)− xC(x, t))P(x, t)]

= (1 + P(x, t))
(
x+ tP(x, t)2 − xt2P(x, t)2

)
,

which simplifies to an identical equation as Equation (1.5). Hence, we arrive
at Equation (1.6). �
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3. Hong and Li’s conjecture

For any inversion sequence e ∈ In, it is always possible to find a unique index p such
that ei = i − 1 for 1 ≤ i ≤ p and ep+1 ≤ p − 1. Note that here p may take the value n,
in which case, we shall view the entry en+1, which does not exist, as −∞. We define

. the initial ascending run: iar(e) := p, the aforementioned index.

Now, we consider a generalization of inversion sequences introduced by Savage and
Schuster [20].

Definition 3.1. Let s = (s1, s2, . . . , sn) be a fixed sequence of positive integers. A
sequence e = (e1, e2, . . . , en) is an s-inversion sequence if 0 ≤ ei < si for all 1 ≤ i ≤ n.
Further, an entry ei is tight if ei = si − 1.

For e an s-inversion sequence of length n, we define

. the number of tight entries: tig(e) := |{i ∈ [n] : ei = si − 1}|.

From the concept of the initial ascending runs, we are naturally led to the set of
(p, p + 2, p + 3, . . . , p + n)-inversion sequences, denoted by In,p, for n and p positive
integers. The following lemma is easy but crucial.

Lemma 3.1. Fix positive integers p and n. There is a natural one-to-one correspon-
dence between

{e ∈ In+p(0021) : iar(e) = p} and In,p(021).

Proof. As every sequence e ∈ In+p(0021) with iar(e) = p is of the form (0, 1, 2, . . . , p−
1, ep+1, ep+2, . . . , ep+n) such that 0 ≤ ep+1 ≤ p − 1, deleting the first p entries of e
produces the sequence ê = (ep+1, ep+2, . . . , ep+n) ∈ In,p. It is routine to check that ê is a
sequence in In,p(021) and this correspondence is one-to-one. �

Let

I(x) :=
∑
n≥1

|In(0021)|xn. (3.1)

The objective of this section is a short proof of Hong and Li’s conjecture, without
considering the asc statistic. To begin with, we introduce the generating function

H(x, s, q) :=
∑

n,p≥1

xnsp
∑

e∈In,p(021)

qtig(e).

We also write the coefficients as

hp(x, q) := [sp]H(x, s, q),

hp,k(x) := [spqk]H(x, s, q).
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First proof of Hong and Li’s conjecture. Let e = (e1, . . . , en) ∈ In,p(021). We
decompose e by considering its rightmost tight entry. There are two cases:
(1). e has no tight entry. Such sequences are in one-to-one correspondence with the

sequences in In,p−1(021) and thus contribute the generating function∑
p≥2

hp−1(x, 1)s
p = sH(x, s, 1).

(2). e has at least one tight entry. Suppose that e` is the rightmost tight entry of e.
There are four subcases:
(2a). ` = n. Every such sequence can be obtained from a (possibly empty) sequence in

In−1,p(021) by adding a tight entry at the end. Thus, this case contributes the generating
function ∑

p≥1

xq (1 + hp(x, q)) s
p = xq

(
s

1− s
+H(x, s, q)

)
.

(2b). 1 ≤ ` < n and e`+1 = e`. Each sequence in this case can be obtained from a
sequence in In−1,p(021) with at least one tight entry by inserting exactly to the right
of any tight entry a new entry of equal size. Note that this construction is in general
one-to-multiple, and if it is executed at the j th tight entry, then the resulting sequence
has precisely j tight entries. Therefore, this case contributes the generating function

x
∑
p,k≥1

hp,k(x)
(
q + q2 + · · ·+ qk

)
sp = x

∑
p≥1,k≥0

hp,k(x)

(
q − qk+1

1− q

)
sp

=
xq

1− q
(H(x, s, 1)−H(x, s, q)) .

(2c). ` = 1 < n and either e`+1 < e` or e`+1 = e` + 1 . In this case, e1 = p − 1, and
in the latter situation e2 = p. Also, the tig statistic equals 1. Such sequences are in
one-to-one correspondence with In−1,p(021) by first deleting e1, and if e2 = p, changing
this entry to p− 1. It follows that the sequences in this case contribute the generating
function

xq
∑
p≥1

hp(x, 1)s
p = xqH(x, s, 1).

(2d). 1 < ` < n and e`+1 < e`. In this case, if we denote min{ei : 1 ≤ i < `} by m,
then e can be decomposed into two shorter sequences:

ẽ := (e1, e2, . . . , e`−1) ∈ I`−1,p,m(021)

and

ē := (ē`+1, ē`+2, . . . , ēn) ∈ In−`,m+1(021),
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where I`−1,p,m(021) := {e ∈ I`−1,p(021) : the minimal entry of e is m} and

ēi :=

ei if ei < e` (one has ei ≤ m since e avoids 021)

ei − e` +m+ 1 if ei ≥ e`,

for ` + 1 ≤ i ≤ n. This decomposition is reversible. The key observation is that for
fixed p ≥ 1 and 0 ≤ m ≤ p − 1, a member in I`,p,m(021) can be obtained from a
member e ∈ I`,p−m(021), provided that e has 0 as its minimal entry. It follows that
the generating function

∑
`≥1 x

`
∑

e∈I`,p,m(021) q
tig(e) equals hp−m(x, q) − hp−m−1(x, q),

where by convention h0(x, q) = 0. Therefore, this case contributes the generating function

∑
p≥1

xqsp
p−1∑
m=0

(hp−m(x, q)− hp−m−1(x, q))hm+1(x, 1)

=
xq

s

∑
p≥1

p−1∑
m=0

hp−m(x, q)hm+1(x, 1)s
p+1 − xq

∑
p≥1

p−1∑
m=0

hp−m−1(x, q)hm+1(x, 1)s
p

= xq(1/s− 1)H(x, s, q)H(x, s, 1).

Summing over all the above cases yields the functional equation for H(q) := H(x, s, q):

(
1− q + xq2

1− q
− xq (1/s− 1)H(1)

)
H(q) =

(
s+ xq +

xq

1− q

)
H(1) +

xqs

1− s
. (3.2)

We apply the kernel method to solve Equation (3.2) by setting the kernel polynomial

1− q + xq2

1− q
− xq(1/s− 1)H(1)

to be zero. Then, the right-hand side of Equation (3.2) vanishes. Therefore, H(1) satisfies
the system of equations


1− q + xq2

1− q
− xq(1/s− 1)H(1) = 0,(

s+ xq +
xq

1− q

)
H(1) +

xqs

1− s
= 0.

(3.3)
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Finally, we recall that any inversion sequence in In(0021) is either in correspondence
with a sequence in In−p,p(021) for some p by Lemma 3.1 or a sequence with only tight
entries, which is generated by

x+ x2 + x3 + · · · = x

1− x
.

Hence,

I(x) = x

1− x
+H(x, x, 1).

Equivalently,

H(x, x, 1) = I(x)− x

1− x
.

Substituting this expression into Equation (3.3) gives the functional equation for I(x)
1− q + xq2

1− q
− (1− x)q

(
I(x)− x

1− x

)
= 0,

x(1 + q − q2)

1− q

(
I(x)− x

1− x

)
+

x2q

1− x
= 0.

Cancelling q in this system gives

I(x) = (1 + I(x))
(
x+ I(x)2 − xI(x)2

)
,

which is identical to Equation (1.2). �

Remark 3.1. The above analysis does not work well if the asc statistic is taken
into account. The main trouble occurs in Case (2c). Recall that in this case, for e =
(e1, . . . , en) ∈ In,p(021), we have e1 = p − 1 and either e2 < p − 1 or e2 = p. When
e2 < p−1, the asc statistic remains the same after applying the correspondence. However,
when e2 = p, we find that in the resulting sequence, the asc statistic decreases by 1 if
e3 ≤ p − 1 or e3 = p + 1 and remains the same value if e3 = p. Such a bifurcating
behaviour of the asc statistic keeps us away from a neat generating function for this case.

4. Generic 021-avoiding sequences

To attach the asc statistic to the generating function I(x) =
∑

n≥1 |In(0021)|xn, we
have to undertake a more subtle analysis for In,p. This propels us to look at generic
021-avoiding sequences. Let N denote the set of sequences of non-negative integers, and
let Nn denote the set of sequences of length n in N for n ≥ 1. For a sequence w =
w1w2 · · ·wn ∈ Nn, we define

. the largest entry : lar(w) := max{wi : 1 ≤ i ≤ n};

. the smallest entry : sma(w) := min{wi : 1 ≤ i ≤ n};
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. the rightmost position of the largest entry : Rlar(w) := max{i : wi = lar(w)};

. the rightmost position of the smallest entry : Rsma(w) := max{i : wi = sma(w)}.

Now, we split N into two disjoint types:

SL := {w ∈ N : Rlar(w) ≥ Rsma(w)},
LS := {w ∈ N : Rlar(w) < Rsma(w)}.

We also write SLn = SL ∩Nn and LSn = LS ∩Nn.
Define trivariate generating functions:

N (x, u) = N (x, u, t) :=
∑
n≥1

xn
∑

w∈Nn(021)

ular(w)tasc(w),

S(x, u) = S(x, u, t) :=
∑
n≥1

xn
∑

w∈SLn(021)

ular(w)tasc(w),

L(x, u) = L(x, u, t) :=
∑
n≥1

xn
∑

w∈LSn(021)

ular(w)tasc(w).

Note that

N (x, u) = S(x, u) + L(x, u). (4.1)

Let us write the coefficients as

N[−,`](x) = N[−,`](x, t) := [u`]N (x, u),

S[−,`](x) = S[−,`](x, t) := [u`]S(x, u),
L[−,`](x) = L[−,`](x, t) := [u`]L(x, u).

Lemma 4.1. For any w ∈ SLn(021), we have Rlar(w) = n. Namely, the last entry in
w is the largest.

Proof. Assume that Rlar(w) = j < n. Then for any k with j < k ≤ n, we have
wk < lar(w). We also claim that wk > sma(w). Otherwise, Rlar(w) < Rsma(w) and thus
w 6∈ SLn(021). The above also indicates that sma(w) < lar(w). Now we assume that
wi = sma(w) for some i. Since Rlar(w) ≥ Rsma(w) and sma(w) 6= lar(w), we must have
i < j. However, the subsequence wiwjwk satisfies lar(w) = wj > wk > wi = sma(w) with
i < j < k and is therefore order isomorphic to 021, thereby leading to a contradiction. �

Lemma 4.2. We have

S(x, u) = x

(1− u)(1− x+ xt)
+

xt

(1− u)(1− x+ xt)
N (x, u). (4.2)

Proof. Assume that n ≥ 2. Let w = w1 · · ·wn ∈ SLn(021). By Lemma 4.1, we have
wn = lar(w). Also, we note that the subsequence w′ = w1 · · ·wn−1 is in Nn−1(021).
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Further, lar(w′) ≤ wn. Hence, any w ∈ SLn(021) can be uniquely generated by a w′ ∈
Nn−1(021) appended by an entry ` no smaller than `′ := lar(w′). To keep track of the
ascent statistic, we need to distinguish w ′ depending on whether it is in LSn−1(021) or
SLn−1(021).
If w′ ∈ LSn−1(021), then the last entry of w ′ is not the largest by the definition of

LS, and thus it is smaller than `′. Therefore, asc(w) = asc(w′) + 1. If w′ ∈ SLn−1(021),
then the last entry of w ′ is the largest by Lemma 4.1, and thus it equals `′. Therefore, if
` > `′, we have asc(w) = asc(w′) + 1; if ` = `′, we have asc(w) = asc(w′).
Noting that sequences in SL1(021) are generated by

x
∑
`≥0

u` =
x

1− u
,

we have

S(x, u) = x

1− u
+

∑
`′≥0

L[−,`′](x)
∑
`≥`′

xu`t+
∑
`′≥0

S[−,`′](x)

xu`′ +
∑
`>`′

xu`t


=

x

1− u
+

∑
`′≥0

S[−,`′](x)u
`′(x− xt) +

∑
`′≥0

(
L[−,`′](x) + S[−,`′](x)

)∑
`≥`′

xu`t

=
x

1− u
+ (x− xt)S(x, u) + xt

1− u
N (x, u).

This gives the desired relation. �

Lemma 4.3. We have

L(x, u) = N (x, u)

(
S(x, u)− x

1− x

)
. (4.3)

Proof. Let w = w1 · · ·wn ∈ LSn(021). Here n ≥ 2 by the definition of LS. We first
write ` = lar(w) and assume that j = Rlar(w). Since Rlar(w) < Rsma(w), we have j <n.
Also, for any k with j + 1 ≤ k ≤ n, we have

wk < wj = `. (4.4)

Now, we split w into two subsequences: w′ = w1 · · ·wj and w′′ = wj+1 · · ·wn. Then
both w ′ and w ′′ are non-empty and avoid the pattern 021. We also note that the last
entry in w ′ is also the largest, and thus w′ ∈ SL(021).
Let s′ = sma(w′) and assume that wi = s′ for some i with 1 ≤ i ≤ j. Then for any k

with j + 1 ≤ k ≤ n, we have

wk ≤ s′. (4.5)

Otherwise, if wk > s′, then i < j and the subsequence wiwjwk satisfies ` = wj > wk >
wi = s′ and is therefore order isomorphic to 021, which is prohibited.
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By Equations (4.4) and (4.5), we know that lar(w′) > lar(w′′) and sma(w′) ≥ lar(w′′).
For any sequence in SL(021) with lar ≥ 1 (i.e., aside from those sequences consisted of
purely 0’s), we add lar(w′′) to each entry of this sequence. Then the above w ′ is uniquely
generated. This process also preserves the ascent statistic. If we write lar(w′′) = `′′, then
these w ′ are generated by∑

`′≥1

S[−,`′](x)u
`′+`′′ = u`′′

∑
`′≥1

S[−,`′](x)u
`′

= u`′′

S(x, u)−
∑
n≥1

xnu0t0


= u`′′

(
S(x, u)− x

1− x

)
.

Therefore, noting that asc(w) = asc(w′) + asc(w′′), we have

L(x, u) =
∑
`′′≥0

N[−,`′′](x)u
`′′

(
S(x, u)− x

1− x

)

= N (x, u)

(
S(x, u)− x

1− x

)
,

which is our required result. �

Theorem 4.4. We have

N (x, u) =
1− u− 2x+ ux(1− t) + x2(1 + t)

2x(1− x)t
−

√
∆

2x(1− x)t
, (4.6)

where

∆ =
(
1− u− 2x+ ux(1− t) + x2(1 + t)

)2 − 4(1− x)2x2t. (4.7)

Proof. Joining Equation (4.1) with Equation (4.2) gives
S =

xt

(1− u)(1− x+ xt)
N +

x

(1− u)(1− x+ xt)
,

L =
1− u− x+ ux− uxt

(1− u)(1− x+ xt)
N − x

(1− u)(1− x+ xt)
.

Substituting the above into Equation (4.3) yields the following quadratic equation of N :

tx(1− x)N 2 −
(
(t+ 1)x2 − (ut− u+ 2)x− u+ 1

)
N + x(1− x) = 0. (4.8)
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Recalling that N is a formal power series in x, u and t, with initial condition
N (x, 0, t) = x/(1− x), we only have one admissible solution of Equation (4.8), as given
in Equation (4.6). �

5. Hong and Li’s conjecture with ascents

We still start with In,p, the set of (p, p + 2, . . . , p + n)-inversion sequences. Let us split
In,p into two disjoint types:

SLn,p := {e ∈ In,p : Rlar(e) ≥ Rsma(e)},
LSn,p := {e ∈ In,p : Rlar(e) < Rsma(e)}.

Define quadvariate generating functions

G(x, s, u) = G(x, s, u, t) :=
∑
p≥1

∑
n≥1

xnsp
∑

e∈In,p(021)

ular(e)tasc(e),

G∗(x, s, u) = G∗(x, s, u, t) :=
∑
p≥1

∑
n≥1

xnsp
∑

e∈SLn,p(021)

ular(e)tasc(e),

G∗∗(x, s, u) = G∗∗(x, s, u, t) :=
∑
p≥1

∑
n≥1

xnsp
∑

e∈LSn,p(021)

ular(e)tasc(e).

Note that

G(x, s, u) = G∗(x, s, u) + G∗∗(x, s, u). (5.1)

We also write the coefficients as

g∗[n,p,`] = g∗[n,p,`](t) := [xnspu`]G∗(x, s, u),

g∗∗[n,p,`] = g∗∗[n,p,`](t) := [xnspu`]G∗∗(x, s, u),

g∗[−,p,`](x) = g∗[−,p,`](x, t) := [spu`]G∗(x, s, u),

g∗∗[−,p,`](x) = g∗∗[−,p,`](x, t) := [spu`]G∗∗(x, s, u).

Lemma 5.1. We have

G∗(x, s, u) =
xs

(1− s)(1− us)(1− x+ xt)

+
xt

(1− u)(1− x+ xt)
(G(x, s, u)− uG(ux, us, 1)) . (5.2)

Proof. We proceed in an analogous way to the proof of Lemma 4.2. For n ≥ 1,
each sequence e in SLn+1,p(021) is uniquely generated by appending to a sequence e ′ in
In,p(021) by a number ` with `′ =: lar(e′) ≤ ` ≤ n+ p. If e′ ∈ LSn,p(021), then asc(e) =
asc(e′) + 1. If e′ ∈ SLn,p(021), we have two subcases: if ` > `′, then asc(e) = asc(e′) + 1;
if ` = `′, then asc(e) = asc(e′).
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Noting that sequences in SL1,p(021) are generated by

x

p−1∑
`=0

u` =
x(1− up)

1− u
,

we have

G∗(x, s, u) =
∑
p≥1

sp
x(1− up)

1− u
+
∑
p≥1

sp
∑
n≥1

xn
∑
`′≥0

g∗∗[n,p,`′]

n+p∑
`=`′

xu`t

+
∑
p≥1

sp
∑
n≥1

xn
∑
`′≥0

g∗[n,p,`′]

xu`′ +

n+p∑
`=`′+1

xu`t


=

∑
p≥1

sp
x(1− up)

1− u
+
∑
p≥1

sp
∑
n≥1

xn
∑
`′≥0

g∗[n,p,`′]u
`′(x− xt)

+
∑
p≥1

sp
∑
n≥1

xn
∑
`′≥0

(
g∗[n,p,`′] + g∗∗[n,p,`′]

) n+p∑
`=`′

xu`t

=
x

1− u

(
s

1− s
− us

1− us

)
+ (x− xt)G∗(x, s, u)

+
xt

1− u
(G(x, s, u)− uG(ux, us, 1)) .

This gives the desired relation. �

Lemma 5.2. We have

G∗∗(x, s, u) = N (x, us)

(
G∗(x, s, u)− x

1− x

s

1− s

)
. (5.3)

Proof. We proceed in an analogous way to the proof of Lemma 4.3. For n ≥ 2,
each sequence in LSn,p(021) is uniquely generated by appending to a sequence e ′ in
SLn′,p(021) (with 1 ≤ n′ ≤ n − 1) by a sequence e ′′ in Nn−n′(021) such that lar(e′) >
lar(e′′) and sma(e′) ≥ lar(e′′). Such e ′ can be obtained by adding lar(e′′) to each entry of
a sequence in SLn′,p−lar(e′′)(021) with lar ≥ 1. If we write lar(e′′) = `′′, then these e ′ are
generated by

∑
p≥`′′+1

sp
∑
`′≥1

g∗[−,p−`′′,`′](x)u
`′+`′′ = u`′′s`

′′ ∑
p′≥1

∑
`′≥1

g∗[−,p′,`′](x)u
`′sp

′

= u`′′s`
′′
(
G∗(x, s, u)− x

1− x

s

1− s

)
.

https://doi.org/10.1017/S0013091523000652 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000652


Permutation conjecture, inversion sequences and eulerian distributions 1197

Therefore, noting that asc(e) = asc(e′) + asc(e′′), we have

G∗∗(x, s, u) =
∑
`′′≥0

N[−,`′′](x)u
`′′s`

′′
(
G∗(x, s, u)− x

1− x

s

1− s

)

= N (x, us)

(
G∗(x, s, u)− x

1− x

s

1− s

)
,

which is our required result. �

Theorem 5.3. We have

G(x, xt, 1) =
t
(
(1 + x− xt)r − x

)
(1− r)(1− xt)

, (5.4)

where

r = x+ tx2 + (t2 + 2t)x3 + (t3 + 8t2 + 3t)x4

+ (t4 + 22t3 + 27t2 + 4t)x5 + · · · (5.5)

is the unique power series solution (with r→ 0 as x→ 0) to

r3 − (2 + x+ t− xt2)r2 + (1 + 2x)r − x = 0. (5.6)

Proof. For convenience, we define

F(x, u) := G(x, xt, u),
F∗(x, u) := G∗(x, xt, u),

F∗∗(x, u) := G∗∗(x, xt, u).

Combining Equations (5.1) and (5.2) with s 7→ xt gives



F∗(x, u) =
x2t

(1− xt)(1− uxt)(1− x+ xt)
+

xt

(1− u)(1− x+ xt)
F(x, u)

− uxt

(1− u)(1− x+ xt)
F(ux, 1),

F∗∗(x, u) = − x2t

(1− xt)(1− uxt)(1− x+ xt)
+

1− u− x+ ux− uxt

(1− u)(1− x+ xt)
F(x, u)

+
uxt

(1− u)(1− x+ xt)
F(ux, 1).

Now, it follows by substituting the above into Equation (5.3) with s 7→ xt that
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1− u− x+ ux− uxt

(1− u)(1− x+ xt)
− xt

(1− u)(1− x+ xt)
N (x, uxt)

)
F(x, u)

=
x2t

(1− xt)(1− uxt)(1− x+ xt)

(
1− xt(1− u+ ux− uxt)

1− x
N (x, uxt)

)
−
(

uxt

(1− u)(1− x+ xt)
+

uxt

(1− u)(1− x+ xt)
N (x, uxt)

)
F(ux, 1).

We then make the change of variables u 7→ w/x. Therefore,

K · F(x, x−1w) = C0 − C1 · F(w, 1), (5.7)

where

K =
1− x−1w − x+ w − wt

(1− x−1w)(1− x+ xt)
− xt

(1− x−1w)(1− x+ xt)
N (x,wt),

C0 =
x2t

(1− xt)(1− wt)(1− x+ xt)

(
1− xt(1− x−1w + w − wt)

1− x
N (x,wt)

)
,

C1 =
wt

(1− x−1w)(1− x+ xt)
+

wt

(1− x−1w)(1− x+ xt)
N (x,wt).

Also, we recall from Equation (4.6),

N (x,wt) =
1− wt− 2x+ wxt(1− t) + x2(1 + t)

2x(1− x)t
−

√
∆∗

2x(1− x)t
, (5.8)

where

∆∗ =
(
1− wt− 2x+ wxt(1− t) + x2(1 + t)

)2 − 4(1− x)2x2t.

Applying the kernel method to Equation (5.7) by setting the kernel polynomial K to
be zero, we have

1− x−1w − x+ w − wt

(1− x−1w)(1− x+ xt)
− xt

(1− x−1w)(1− x+ xt)
N (x,wt) = 0,

or

N (x,wt) =
1− x−1w − x+ w − wt

xt
, (5.9)

or by recalling Equation (5.8),

x3 − (2 + w + t− wt2)x2 + (1 + 2w)x− w = 0. (5.10)

Our admissible solution x = x(w) satisfies x → 0 as w → 0 and has the power series
expansion

https://doi.org/10.1017/S0013091523000652 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000652


Permutation conjecture, inversion sequences and eulerian distributions 1199

x = w + tw2 + (t2 + 2t)w3 + (t3 + 8t2 + 3t)w4

+ (t4 + 22t3 + 27t2 + 4t)w5 + · · · .

On the other hand,

F(w, 1) =
C0

C1
,

(by Equation 5.9) = −
t
(
x3 + (wt− w − 2)x2 + wx

)
(1− x)(1− xt)(1− wt)

,

(by Equation 5.10) =
t
(
(1 + w − wt)x− w

)
(1− x)(1− wt)

.

Finally, the desired result follows by renaming the variables (w, x) 7→ (x, r). �

Let

I(x, t) :=
∑
n≥1

xn
∑

e∈In(0021)

tasc(e). (5.11)

We are in a position to establish the following ‘explicit’ expression for I(x, t).

Theorem 5.4. We have

I(x, t) = r

1− r
, (5.12)

where r is as in Equation (5.5).

Proof. Recall that any inversion sequence e in In(0021) is either in correspondence
with a sequence ê in In−p,p(021) for some p by Lemma 3.1, in which case asc(e) =
(p− 1) + asc(ê), or a sequence with only tight entries, which is generated by

x+ tx2 + t2x3 + · · · = x

1− xt
.

Hence,

I(x, t) = x

1− xt
+
∑
p≥1

∑
n≥1

xn+ptp−1
∑

e∈In,p(021)

tasc(e)

=
x

1− xt
+ t−1G(x, xt, 1).

The desired result follows by recalling Equation (5.4). �

Now, we conclude our proof of Equation (1.7).
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Proof of Equation (1.7). By Equation (5.12), we have

r =
I(x, t)

I(x, t) + 1
.

Substituting the above into Equation (5.6) gives

0 =

(
I(x, t)

I(x, t) + 1

)3

− (2 + x+ t− xt2)

(
I(x, t)

I(x, t) + 1

)2

+ (1 + 2x)

(
I(x, t)

I(x, t) + 1

)
− x,

which finally results in

I(x, t) =
(
1 + I(x, t)

)(
x+ tI(x, t)2 − xt2I(x, t)2

)
.

This functional equation is identical to Equation (1.5). �

6. Conclusion

Burstein’s second and third conjectures remain open. It seems that the alt statistic may
still be a key as one can easily modify the proof of Lemma 2.1 to obtain the following
analogous result.

Lemma 6.1. For each permutation π in

Sn(2134, 42153, 24153) or Sn(2143, 42135, 24135),

we have alt(π) ≤ 4.

However, in these two cases, there is an obstacle to deducing parallel relations to those
in Equation (2.3), especially for k =2 and 3.
Finally, for π a permutation of length n, we define

. the number of inverse ascents: iasc(π) := asc(π−1), where π−1 is the inverse
permutation of π;

. the number of right-to-left maxima: rma(π) := |{i ∈ [n] : πj < πi, ∀j > i}|;

. the set of positions of left-to-right minima: LMI(π) := {i ∈ [n] : πj > πi, ∀j < i}.

Our numerical evidence supports the following equidistribution conjectures.

Conjecture 6.1. The triple of statistics (LMI, rma, ides) has the same distribution over
Sn(2134, 42153, 24153) and Sn(3124, 42153, 24153).

Conjecture 6.2. The pair of Eulerian statistics (des, ides) over
Sn(2134, 42153, 24153) has the same distribution as (asc, iasc) over
Sn(2143, 42135, 24135).
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