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Abstract
Let W be a simply laced Weyl group of finite type and rank n. If W has type 𝐸7, 𝐸8 or 𝐷𝑛 for n even, then the root
system of W has subsystems of type 𝑛𝐴1. This gives rise to an irreducible Macdonald representation of W spanned
by n-roots, which are products of n orthogonal roots in the symmetric algebra of the reflection representation. We
prove that in these cases, the set of all maximal sets of orthogonal positive roots has the structure of a quasiparabolic
set in the sense of Rains–Vazirani. The quasiparabolic structure can be described in terms of certain quadruples of
orthogonal positive roots which we call crossings, nestings and alignments. This leads to nonnesting and noncrossing
bases for the Macdonald representation, as well as some highly structured partially ordered sets. We use the 8-roots
in type 𝐸8 to give a concise description of a graph that is known to be non-isomorphic but quantum isomorphic to
the orthogonality graph of the 𝐸8 root system.
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1. Introduction

If W is a finite simply laced Weyl group, then it is possible to find a basis of the reflection representation
V of W that consists of orthogonal positive roots when W has type 𝐸7, 𝐸8 or 𝐷𝑛 for n even. The
goal of this paper is to demonstrate that the set 𝑋 = 𝑋 (𝑊) of such bases has a rich combinatorial
structure, both by identifying X with a subset of a Macdonald representation of W and by regarding X
as a quasiparabolic set in the sense of Rains and Vazirani [43]. A quasiparabolic set for a Weyl group
W is a W-set equipped with an integer-valued height function satisfying two axioms that specify how
the action of a reflection changes the height. The axioms generalize properties satisfied by quotients of
arbitrary Coxeter groups by their parabolic subgroups that allow one to deform the action of Coxeter
group on the quotient to create a corresponding module for the Iwahori–Hecke algebra of the group.

Let W be a finite Weyl group with root system Φ and Dynkin diagram Γ. Let V be the reflection
representation of W defined over Q (see Section 2.1), and let 𝑉∗ be the dual of V over Q. The space
of all rational-valued polynomial functions on V is then the symmetric algebra Sym(𝑉∗), which is a
W-module via the contragredient action (𝑤 · 𝜙) (𝑥) = 𝜙(𝑤−1 (𝑥)). Let Ψ be a subsystem of Φ, meaning
that ∅ ≠ Ψ ⊂ Φ and that Ψ is also a root system, and let Φ+ and Ψ+ be the set of positive roots in Φ
and Ψ, respectively. Following [39], we use the (positive definite) inner product on V to identify V with
𝑉∗, and we define the Macdonald representation 𝑗ΓΨ (sgn) = 𝑗ΦΨ (sgn) of W given by Ψ to be the cyclic
Q𝑊-submodule of Sym(𝑉∗) � Sym(𝑉) generated by 𝜋Ψ, where

𝜋Ψ =
∏
𝛼∈Ψ+

𝛼.

A short argument shows that the Macdonald representation is an absolutely irreducible W-module.
When W has type 𝐸7, 𝐸8 or 𝐷𝑛 for n even, Φ contains subsystems of type 𝑛𝐴1. The set Ψ+ for any

such subsystem Ψ consists of n orthogonal positive roots, and we call an element of the form 𝑤.𝜋Ψ (for
𝑤 ∈ 𝑊) an n-root. Thus, an n-root has the form 𝛼 =

∏𝑛
𝑖=1 𝛽𝑖 where the elements 𝛽𝑖 are orthogonal roots.

Conversely, since W acts transitively on the set of maximal sets of orthogonal roots (Lemma 3.2), every
product of n orthogonal roots is an n-root. The transitivity of this W-action also implies that any two
subsystems of type 𝑛𝐴1 in Φ give rise to the same Macdonald representation, which we will thus simply
denote as 𝑗Φ𝑛𝐴1

(sgn). The representation 𝑗Φ𝑛𝐴1
(sgn) and the n-roots within it are the central objects of

study in this paper, and we summarize their definition below.

Definition 1.1. Let Φ be a root system of type 𝐸7, 𝐸8 or 𝐷𝑛 for n even. Let W be the Weyl group of
Φ, and let V be the reflection representation of W. We denote the Macdonald representation 𝑗ΦΨ (sgn) ⊂
Sym(𝑉∗) � Sym(𝑉) arising from any subsystem Ψ of type 𝑛𝐴1 in Φ by 𝑗Φ𝑛𝐴1

(sgn). We call each element
of the form 𝛼 =

∏𝑛
𝑖=1 𝛽𝑖 ∈ 𝑗Φ𝑛𝐴1

(sgn), where 𝛽1, · · · , 𝛽𝑛 are orthogonal roots of Φ an n-root of W.

Given an n-root 𝛼 =
∏𝑛

𝑖=1 𝛽𝑖 , the factors 𝛽𝑖 are unique up to reordering and multiplication by nonzero
scalars because they are the irreducible factors of𝛼 in the unique factorization domainQ[𝛼1, 𝛼2, . . . , 𝛼𝑛],
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where the 𝛼𝑖 correspond to the simple roots of Φ. We say 𝛼 is positive if all the factors 𝛽𝑖 may be taken
to be positive or, equivalently, if evenly many of the components are negative. If 𝛼 =

∏𝑛
𝑖=1 𝛽𝑖 is a

positive root with all the 𝛽𝑖 positive, we call the roots 𝛽𝑖 the components of 𝛼. An n-root 𝛼 is negative
if −𝛼 is positive. It is immediate from the definitions that if 𝛼 is an n-root, then −𝛼 is also an n-root,
and that precisely one of 𝛼 and −𝛼 is positive, similarly to how roots appear in positive-negative pairs
in ordinary root systems. If 𝛼 is either a root or an n-root, we define the absolute value of 𝛼, denoted
|𝛼 |, to be the positive element in the pair {𝛼,−𝛼}. (We may view both ordinary roots and n-roots as
special cases of k-roots, by which we mean products in Sym(𝑉∗) of k orthogonal roots of W for any
fixed integer 1 ≤ 𝑘 ≤ 𝑛. The notion of k-roots plays an important role in our previous papers [30] and
[28], and we will occasionally speak of 4-roots, even when 𝑛 ≠ 4, in this paper.)

The set Φ+
𝑛 of all positive n-roots admits a natural W-action given by 𝑤(𝛼) = |𝑤(𝛼) |. Simi-

larly, the set X of sets of n orthogonal roots admits a natural W-action given by 𝑤({𝛽1, · · · , 𝛽𝑛}) =
{|𝑤(𝛽1) |, · · · , |𝑤(𝛽𝑛) |}. The map sending each set {𝛽1, · · · , 𝛽𝑛} ∈ 𝑋 to the product

∏𝑛
𝑖=1 𝛽𝑖 ∈ Φ+

𝑛

respects these two W-actions, and we use it to identify X with Φ+
𝑛. In other words, we identify each

positive n-root with its set of components.
We show that X has the structure of a quasiparabolic set under a suitable height function 𝜆 (Theo-

rem 4.5). As we explain in sections 3 and 4, to understand this structure, it is useful to consider quadruples
𝑄 = {𝛽1, 𝛽2, 𝛽3, 𝛽4} of four orthogonal roots with the property that (𝛽1 + 𝛽2 + 𝛽3 + 𝛽4)/2 is also a root.
We call such quadruples coplanar quadruples and show that they fall into three distinct types, called
crossings, nestings and alignments. The height function 𝜆 is given by 𝜆(𝛾) = 𝐶 (𝛾) + 2𝑁 (𝛾), where
𝐶 (𝛾) and 𝑁 (𝛾) are the numbers of crossings and nestings in 𝛾, respectively, for each 𝛾 ∈ 𝑋 . The terms
‘crossing’, ‘nesting’ and ‘alignment’ are motivated by the theory of perfect matchings (Remark 3.11).

As a quasiparabolic set, the set X is equipped with a partial order ≤𝑄, which is the weakest partial
order such that 𝑥 ≤𝑄 𝑟𝑥 whenever r is a reflection such that 𝜆(𝑥) ≤ 𝜆(𝑟𝑥). We use the theory of
quasiparabolic sets to prove that X has a unique maximally aligned n-root, 𝜃𝐴, and a unique maximally
nesting n-root, 𝜃𝑁 ; these two elements are the unique minimal and maximal element of X with respect
to ≤𝑄, respectively (Proposition 4.11). The n-roots that avoid alignments, or the alignment-free n-roots,
form a quasiparabolic set 𝑋𝐼 ⊂ 𝑋 of a certain maximal parabolic subgroup𝑊𝐼 of W. The corresponding
partial order on 𝑋𝐼 allows us to show that X also has a maximally crossing element, 𝜃𝐶 , and that it is
the unique minimal element of 𝑋𝐼 (Proposition 5.2 (iii)). The set 𝑋𝐼 has a natural bipartite structure,
with the n-roots in 𝑋𝐼 with even levels and those with odd levels partitioning 𝑋𝐼 into two equal-sized
components that are interchanged by every reflection in 𝑊𝐼 (Remark 5.3).

The alignment-free n-roots in X are one of three families that avoid a particular type of coplanar
quadruple, the other two being those that avoid crossings and avoid nestings. Section 5 studies these three
families together. We use a version of Bergman’s diamond lemma to show that the noncrossing elements
of X form a basis for the Macdonald representation, as do the nonnesting positive n-roots (Theorem 5.5).
In addition, the noncrossing basis behaves somewhat like a simple system in a root system (Theorem 5.7)
and may be viewed as a canonical basis (Remark 5.8). The nonnesting basis is naturally parametrized by
a particular interval [1, 𝑤𝑁 ] in the weak Bruhat order of W and has the structure of a distributive lattice
(Theorem 5.13). The element 𝑤𝑁 , which we call the nonnesting element of W, is the unique shortest
element taking the maximally crossing n-root 𝜃𝐶 to the maximally aligned element 𝜃𝐴. We note that
the noncrossing basis is essentially the same as a basis that appears in the work of Fan [23, Section 6]
and others, although the realization of the basis as polynomials in roots seems to be new.

We say that two positive n-roots are sum equivalent or 𝜎-equivalent if their sets of components have
the same sum. We show that the 𝜎-equivalence classes are in canonical bijection with the nonnesting
and the noncrossing elements of X in the following way: each 𝜎-equivalence class is an interval
[𝛽1, 𝛽2]𝑄 = {𝛾 ∈ 𝑋 : 𝛽1 ≤𝑄 𝛾 ≤𝑄 𝛽2} in the quasiparabolic order ≤𝑄, where the minimal element 𝛽1
and maximal element 𝛽2 are the unique nonnesting and noncrossing n-roots in the class, respectively.
The alignment-free elements in X form a single 𝜎-equivalence class that is maximal with respect to a
natural order (Proposition 5.15). Any set of 𝜎-equivalence class representatives forms a basis for the
Macdonald representation, and the change of basis matrix between any two such bases, such as the
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one between the nonnesting and noncrossing basis, is always unitriangular with integer entries once the
bases are suitably ordered (Theorem 5.16).

As we explain in Section 7.3, the feature-avoiding n-roots and 𝜎-equivalence classes in the set X can
all be characterized abstractly using the quasiparabolic structure of X, without using the combinatorics
of sets of roots. This raises the possibility of extending the notions of alignment-free, noncrossing and
nonnesting elements to more general quasiparabolic sets.

The theory developed in this paper has various natural connections to many previous works. In
type 𝐷𝑛 for an even integer 𝑛 = 2𝑘 , the n-roots correspond naturally to perfect matchings of the set
[𝑛] = {1, 2, . . . , 𝑛}, and the crossings, nestings and alignments in n-roots recover the corresponding
notions in the theory of matchings. Besides matchings, the quasiparabolic set X can be identified with
the set of fixed-point free involutions in 𝑆𝑛, which is one of the original motivating examples of a
quasiparabolic set [43, Section 4]. The level function 𝜆 = 𝐶 + 2𝑁 appears as a useful statistic on
matchings in [52, 20, 15] and has a natural interpretation in the context of combinatorial game theory
[36]; see Section 6.1.

The Macdonald representation 𝑗Φ𝑛𝐴1
(sgn) in type 𝐷𝑛 for n even recovers a Specht module in a very

natural way: the action of the Weyl group W factors through an obvious sign-forgetting map (Equation
(2.2)) to induce an 𝑆𝑛-module structure on the Macdonald representation for the symmetric group 𝑆𝑛,
and the resulting module is isomorphic to a realization of the Specht module corresponding to the two-
row partition (𝑘, 𝑘) due to Rhoades [47] (Proposition 6.2). The noncrossing bases and nonnesting bases
have been studied extensively as the web basis and the Specht basis, respectively, of the Specht module
[48, 35, 34, 32]; see Section 6.1.

In type 𝐸7, the Macdonald representation contains 135 positive 7-roots and has degree 15 [19, Propo-
sition 4.12]. This representation has a long history, going back the work of Coble in 1916 [16, (65)]
on the Göpel variety. There are also applications of 7-roots to quantum information theory and super-
gravity [12, Section IV G], [22]. In this case, the elements of the quasiparabolic set 𝑋𝐼 are in canonical
bijection with the 30 distinct labellings of the Fano plane, and the maximal and minimal elements
are given by {136, 145, 127, 235, 246, 347, 567} and {123, 145, 246, 257, 347, 356, 167}, respectively
(Proposition 6.5).

In type 𝐸8, there are 2025 positive 8-roots. The bases of orthogonal roots have applications to physics,
where they can be used to prove the Kochen–Specker theorem in quantum mechanics [57] (Section 7.2).
The Macdonald representation in this case has degree 50 but seems not to have been studied much
before. The quasiparabolic set 𝑋𝐼 in this case is a bipartite structure with 240 elements. As we explain
in Section 6.3, either partite component can be used to define a graph that has an interesting relationship
with two strongly regular graphs studied recently by Schmidt [51] (Remark 6.13). Those two graphs
each have 120 vertices, and they have the remarkable property of being quantum isomorphic (in the
sense of [3]) but not isomorphic.

The properties of n-roots summarized in the last three paragraphs are explained in more detail in
Section 6. It is worth noting that while these properties are type-specific, we have attempted to develop
the theory of n-roots in a type-independent way in the other parts of the paper in general. In particular,
we give a uniform proof for the fact that the positive n-roots form a quasiparabolic set in types 𝐸7, 𝐸8,
and 𝐷2𝑘 (Theorem 4.5). While it is possible to verify the theorem for types 𝐸7 and 𝐸8 using direct
computation (which we did, using the software SageMath [49]) and then separately deduce the theorem
for type 𝐷2𝑘 by considering the 𝑆2𝑘 -action on its fixed-point free involutions, our uniform proof of
the theorem relying on Proposition 4.7 has the advantage of being more conceptual and revealing
more details about the action of reflections on n-roots. Some of these details will be further used in a
forthcoming paper [31], where we will generalize aspects of this paper and study quasiparabolic sets
arising from k-roots for more general values of k.

The rest of the paper is organized as follows. We recall the basics of root systems in Section 2.
Section 3 introduces the key notions of crossings, nestings and alignments in an n-root, and we connect
them to the theory of quasiparabolic sets in Section 4. Section 5 studies the alignment-free, noncrossing
and nonnesting n-roots. Section 6 discusses the details of n-roots in the types 𝐷𝑛 with n even, 𝐸7 and 𝐸8.
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Section 7 concludes the paper and includes discussions of the Poincaré polynomial of the set X and of
orbits of n-roots under the action of Coxeter elements.

2. Review of root systems

In this section, we recall the basic properties of simply laced root systems of finite type. We will mostly
follow the notation of the first two chapters of [33], except in the case of type 𝐸7, where we follow
[26, Section 4].

2.1. Weyl groups, root systems and reflection representations

The root systems in this paper will be irreducible simply laced root systems of finite type, whose
Dynkin diagrams are shown in Figure 1. The vertices of the Dynkin diagram Γ index the simple roots
Π = {𝛼𝑖 : 𝑖 ∈ Γ}. The root lattice ZΠ is the free Z-module on Π. We define a Z-bilinear form B on
ZΠ × ZΠ by

𝐵(𝛼𝑖 , 𝛼 𝑗 ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if 𝑖 = 𝑗 ;
−1 if 𝑖 and 𝑗 are adjacent in Γ;
0 otherwise.

If 𝛼𝑖 ∈ Π, then we define the simple reflection 𝑠𝑖 = 𝑠𝛼𝑖 to be the Z-linear operator ZΠ → ZΠ given by

𝑠𝑖 (𝛽) = 𝛽 − 𝐵(𝛼𝑖 , 𝛽)𝛼𝑖 .

The Weyl group 𝑊 = 𝑊 (Γ) is the finite group generated by the simple reflections.
The root system of W is the set Φ = {𝑤(𝛼𝑖) : 𝛼𝑖 ∈ Π, 𝑤 ∈ 𝑊}. Each element of Φ is called a root. The

group W acts transitively on Φ, and the form B is W-invariant in the sense that 𝐵(𝛼, 𝛽) = 𝐵(𝑤(𝛼), 𝑤(𝛽))
for all 𝑤 ∈ 𝑊 and all 𝛼, 𝛽 ∈ Φ. We say two roots are 𝛼, 𝛽 ∈ Φ are orthogonal if 𝐵(𝛼, 𝛽) = 0.

Each root 𝛼 ∈ Φ gives rise to a reflection in W, which is the self-inverse Z-linear operator
𝑠𝛼 : ZΠ → ZΠ generalizing simple reflections and given by the formula

𝑠𝛼 (𝛽) = 𝛽 − 𝐵(𝛼, 𝛽)𝛼. (2.1)

The reflections in W form a single conjugacy class. The Q-vector space 𝑉 := Q ⊗Z ZΠ affords the
reflection representation of W, where each reflection 𝑠𝛼 acts by Equation (2.1).

A subset Ψ of Φ is called a subsystem if Ψ is itself a root system (in the sense of [33, Section 1.2]).
For each root 𝛼 ∈ Φ, the set Φ𝛼 := {𝛽 ∈ Φ : 𝐵(𝛼, 𝛽) = 0} is automatically a subsystem.

2.2. Positive and simple systems

A subset Δ of a root system Φ is called a simple system if Δ is a vector space basis for V and every
root is a linear combination of Δ with coefficients of like sign. Given such a system Δ , we say a root
𝛼 =

∑
𝑖∈Γ 𝑐𝑖𝛼𝑖 is positive (with respect to Δ) if 𝑐𝑖 ≥ 0 for all i, and we call 𝛼 negative if 𝑐𝑖 ≤ 0 for all i.

The sets of positive and negative roots are denoted by Φ+
Δ and Φ−

Δ , and they are setwise negations of
each other. For each root 𝛼, the integer ht(𝛼) =

∑
𝑖∈Γ 𝑐𝑖 is called the height of 𝛼. The set {𝛼𝑖 : 𝑐𝑖 ≠ 0}

is called the support of 𝛼 (with respect to Δ).
Each simple system Δ also gives rise to a partial order ≤Δ on Φ, which is defined by the condition

that 𝛼 ≤ 𝛽 if and only if 𝛽 − 𝛼 is a nonnegative linear combination of Δ . With respect to this partial
order, Φ has a unique maximal element, 𝜃Δ , called the highest root.

The set of simple roots Π is an example of a simple system, and the corresponding set of positive
roots is an example of a positive system. Recall that each positive system P contains a unique simple
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Figure 1. Dynkin diagrams of irreducible simply laced Weyl groups.

system, which is the set Δ𝑃 of all elements in P that cannot be expressed as positive linear combinations
of other elements of P. The maps Δ ↦→ Φ+

Δ and 𝑃 ↦→ Δ𝑃 are mutually inverse bijections between
the sets of simple systems and positive systems in Φ [33, Theorem 1.3]. The simple systems of Φ are
conjugate to each other under the action of W, as are the positive systems.

From now on, we choose Π as the default simple system of Φ and choose Φ+
Π as the default positive

system. For each notion defined above relative to a general simple system Δ , an omission of the subscript
in the corresponding notation will indicate that Π is chosen as Δ . For example, the set of positive roots
with respect to Π will be denoted by Φ+.

For any subsystem Ψ of Φ, the set Ψ+ := Ψ ∩ Φ+ is automatically a positive system of Ψ. We call
Ψ+ the induced positive system of Ψ with respect to Φ+. We call the corresponding simple system of Ψ
the induced simple system of Ψ.

If Ψ is a subsystem of the form Φ𝛼 (i.e., if Ψ is the subsystem of roots orthogonal to a root 𝛼), then
we denote the induced simple system by Π𝛼. The elements of Π𝛼 are thus the positive roots orthogonal
to 𝛼 that cannot be expressed as a nonnegative linear combination of other positive roots orthogonal
to 𝛼. Note that the elements of Π𝛼 may not all lie in Π, but every simple root 𝛼𝑖 ∈ Π that lies in Ψ and
is orthogonal to 𝛼 will lie in Π𝛼. We denote the Weyl group corresponding to Π𝛼 by 𝑊𝛼, so that Φ𝛼

is the root system of 𝑊𝛼. It is known that 𝑊𝛼 is the stabilizer of 𝛼 under the action of W and 𝑊𝛼 is a
direct product of irreducible simply laced Weyl groups [7, 1]. We will recall the known Dynkin type of
the groups 𝑊𝛼 in the next subsection.

Example 2.1. Let W be the Weyl group of type 𝐷5 and let 𝛼2 be the simple root of W under the labelling
used in Figure 1. The induced simple system of Φ𝛼2 is given by the disjoint union

Π𝛼2 = {𝛽1 = 𝛼2 + 2𝛼3 + 𝛼4 + 𝛼5} � {𝛽2 = 𝛼1 + 𝛼2 + 𝛼3, 𝛽3 = 𝛼4, 𝛽4 = 𝛼5},
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where each root in one part of the union is orthogonal to every root in the other part. The Weyl group
𝑊𝛼2 corresponding to Φ𝛼2 is the direct product 𝑊 (𝐴1) ×𝑊 (𝐴3) of the Weyl groups of types 𝐴1 and
𝐴3, generated respectively by the sets {𝑠𝛽1 } and {𝑠𝛽2 , 𝑠𝛽3 , 𝑠𝛽4 }.

2.3. Explicit constructions

We now recall well-known explicit realizations of the root systems of types 𝐴, 𝐷 and E in coordinate
systems. Let 𝜀1, 𝜀2, . . . , 𝜀𝑛 be the usual standard basis of the Euclidean space R𝑛. The vectors {𝜀𝑖 − 𝜀 𝑗 :
1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛} form a root system of type 𝐴𝑛−1. The simple roots Π = {𝛼1, 𝛼2, . . . , 𝛼𝑛−1} are given by
𝛼𝑖 = 𝜀𝑖 − 𝜀𝑖+1. A root 𝜀𝑖 − 𝜀 𝑗 is positive if 𝑖 < 𝑗 and negative if 𝑖 > 𝑗 . The highest root (with respect to
Π) is 𝜀1 − 𝜀𝑛. The bilinear form B is the Euclidean inner product on R𝑛, and two roots are orthogonal
if and only if they have disjoint support. The Weyl group is isomorphic to 𝑆𝑛 and acts by permuting the
standard basis 𝜀1, .., 𝜀𝑛. The stabilizer 𝑊𝛼 of each root 𝛼 is a Weyl group of type 𝐴𝑛−3, which is trivial
if 𝑛 ≤ 3.

The vectors {±𝜀𝑖 ± 𝜀 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} form a root system of type 𝐷𝑛. The simple roots
{𝛼1, 𝛼2, . . . , 𝛼𝑛} are given by 𝛼𝑖 = 𝜀𝑖 − 𝜀𝑖+1 for 𝑖 < 𝑛, and 𝛼𝑛 = 𝜀𝑛−1 + 𝜀𝑛. If 𝑖 < 𝑗 , then the roots
𝜀𝑖 ± 𝜀 𝑗 are positive, and the roots −𝜀𝑖 ± 𝜀 𝑗 are negative. The highest root is 𝜀1 + 𝜀2. The bilinear form
B is the Euclidean inner product, and two roots 𝛼 and 𝛽 are orthogonal if and only if either (a) 𝛼 and
𝛽 have disjoint support or (b) 𝛼 and 𝛽 have the same support and 𝛼 ≠ ±𝛽. The Weyl group has order
2𝑛−1𝑛! and acts by signed permutations of the standard basis, with the restriction that each element
effects an even number of sign changes [33, Section 2.10]. The stabilizer of a root is a Weyl group of
type 𝐴1 + 𝐷𝑛−2, meaning 𝑊 (𝐴1) ×𝑊 (𝐷𝑛−2), where we interpret 𝐷3 as 𝐴3 and 𝐷2 as 𝐴1 + 𝐴1. There
is a well-known homomorphism 𝜙 from 𝑊 (𝐷2𝑛) to the symmetric group 𝑆2𝑛 resulting from forgetting
the signs in a signed permutation; it is given by the following formula:

𝜙(𝑠𝑖) =

{
(𝑖, 𝑖 + 1) if 𝑖 < 2𝑛;
(2𝑛 − 1, 2𝑛) if 𝑖 = 2𝑛.

(2.2)

Let 𝜀0, 𝜀1, . . . , 𝜀7 be the standard basis of R8. The root system of type 𝐸7 may be regarded as a subset
of R8 as follows. There are 56 roots of the form ±2(𝜀𝑖 − 𝜀 𝑗 ) where 0 ≤ 𝑖 ≠ 𝑗 ≤ 7, and there are 70 roots
of the form

∑7
𝑖=0 ±𝜀𝑖 , where the signs are chosen so that there are four + and four −. The simple roots

are 𝛼1, 𝛼2, . . . , 𝛼7, where 𝛼𝑖 = 2(𝜀𝑖 − 𝜀𝑖+1) for 1 ≤ 𝑖 ≤ 6, and

𝛼7 = −𝜀0 − 𝜀1 − 𝜀2 − 𝜀3 + 𝜀4 + 𝜀5 + 𝜀6 + 𝜀7.

A root of the form 2(𝜀𝑖 −𝜀 𝑗 ) is positive if 0 < 𝑖 < 𝑗 or 𝑗 = 0, and negative otherwise. A root of the form∑7
𝑖=0 ±𝜀𝑖 is positive if and only if 𝜀0 occurs with negative coefficient. The highest root is 2(𝜀1 − 𝜀0).

The bilinear form B is 1/4 of the Euclidean inner product. The stabilizer of a root is a Weyl group of
type 𝐷6. We call the coordinates 𝜀𝑖 Fano coordinates because they are particularly compatible with the
combinatorics of the Fano plane; this will be important in Section 6.2.

Let 𝜀1, 𝜀2, . . . , 𝜀8 be the standard basis of R8. The root system of type 𝐸8 may be regarded as a subset
of R8 as follows. There are 112 roots of the form ±2(𝜀𝑖 ± 𝜀 𝑗 ) where 1 ≤ 𝑖 ≠ 𝑗 ≤ 8, and there are 128
roots of the form

∑8
𝑖=1 ±𝜀𝑖 , where the signs are chosen so that the total number of − is even. The simple

roots are 𝛼1, 𝛼2, . . . , 𝛼8, where

𝛼1 = 𝜀1 − 𝜀2 − 𝜀3 − 𝜀4 − 𝜀5 − 𝜀6 − 𝜀7 + 𝜀8,

𝛼2 = 𝜀1 + 𝜀2, and 𝛼𝑖 = 𝜀𝑖−1 − 𝜀𝑖−2 for all 3 ≤ 𝑖 ≤ 8. If k is the largest integer such that 𝜀𝑘 appears in 𝛼
with nonzero coefficient c, then 𝛼 is positive if and only if 𝑐 > 0. The highest root is 2(𝜀7 + 𝜀8). The
bilinear form B is 1/4 of the Euclidean inner product. The stabilizer of a root is a Weyl group of type
𝐸7. We call the coordinates 𝜀𝑖 the standard coordinates for 𝐸8.
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3. Combinatorics of coplanar quadruples

A matching of [2𝑛] := {1, 2, . . . , 2𝑛} is a collection of pairwise disjoint size-2 subsets, or 2-blocks, of
[2𝑛]. The matching is perfect if the union of the 2-blocks is the whole of [2𝑛]. If 1 ≤ 𝑎 < 𝑏 < 𝑐 < 𝑑 ≤

2𝑛, then a crossing is a subset of the matching of the form {{𝑎, 𝑐}, {𝑏, 𝑑}}, a nesting is a subset of the
form {{𝑎, 𝑑}, {𝑏, 𝑐}}, and an alignment is a subset of the form {{𝑎, 𝑏}, {𝑐, 𝑑}}. For convenience, we
will often denote each 2-block {𝑎, 𝑏} in a matching simply by 𝑎𝑏 from now on.

In this section, we generalize crossings, nestings and alignments to the notion of coplanar quadruples
in the context of orthogonal sets of roots (Definition 3.9, Remark 3.11). As explained in the introduc-
tion, we can naturally identify each n-root 𝛼 =

∏𝑛
𝑖=1 𝛽𝑖 in the Macdonald representation 𝑗Φ𝑛𝐴1

(sgn)
(Definition 1.1) with the set of its orthogonal components, and it turns out that coplanar quadruples are
very useful for understanding the action of W on the orthogonal sets arising this way. We develop some
key properties of coplanar quadruples in Theorem 3.10, which is the main result of Section 3. We also
show that crossings, nestings and alignments can be distinguished from each other based on the heights
of the roots that they contain (Proposition 3.13), and we give a precise description of the ways in which
two coplanar quadruples can overlap (Proposition 3.20).

3.1. Coplanar quadruples

We gather a few facts about n-roots and define coplanar quadruples in this subsection. The following two
results on maximal orthogonal sets of roots are well known, but we include proofs for ease of reference.
Lemma 3.1. Let W be a Weyl group of type 𝐷𝑛 for n even. Suppose that 𝑛 = 2𝑘 ≥ 4.
(i) Every maximal orthogonal set of roots is of the form

{ ± (𝜀𝑖1 + 𝜀 𝑗1 ), ±(𝜀𝑖1 − 𝜀 𝑗1 ), ±(𝜀𝑖2 + 𝜀 𝑗2 ), ±(𝜀𝑖2 − 𝜀 𝑗2 ), . . . , ±(𝜀𝑖𝑘 + 𝜀 𝑗𝑘 ), ±(𝜀𝑖𝑘 − 𝜀 𝑗𝑘 )},

where we have {𝑖1, 𝑗1, . . . , 𝑖𝑘 , 𝑗𝑘 } = {1, 2, . . . , 2𝑘 − 1, 2𝑘} as sets and the signs are chosen inde-
pendently.

(ii) Every maximal orthogonal set of positive roots is of the form

{𝜀𝑖1 + 𝜀 𝑗1 , 𝜀𝑖1 − 𝜀 𝑗1 , 𝜀𝑖2 + 𝜀 𝑗2 , 𝜀𝑖2 − 𝜀 𝑗2 , . . . , 𝜀𝑖𝑘 + 𝜀 𝑗𝑘 , 𝜀𝑖𝑘 − 𝜀 𝑗𝑘 },

and these sets are in bijection with perfect matchings {{𝑖1, 𝑗1}, {𝑖2, 𝑗2}, . . . , {𝑖𝑘 , 𝑗𝑘 }} of the set [𝑛]
that satisfy 𝑖𝑟 < 𝑗𝑟 for all 1 ≤ 𝑟 ≤ 𝑘 .

Proof. Let R be a maximal orthogonal set of roots. By symmetry, we may reduce to the case where
all the roots in R are positive. If R contains the root 𝜀𝑖 ± 𝜀 𝑗 , then R must also contain the root 𝜀𝑖 ∓ 𝜀 𝑗
because otherwise 𝑅 ∪ {𝜀𝑖 ∓ 𝜀 𝑗 } would be a set of orthogonal roots that was larger than R. It follows
that R consists of 𝑛/2 pairs of roots such that each pair has the same support, and roots from distinct
pairs have disjoint supports. This completes the proof of (i).

Part (ii) follows from (i) and the fact that if 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, then the roots 𝜀𝑖 ± 𝜀 𝑗 are positive. �

It follows from Lemma 3.1 (ii) that a maximal orthogonal set of positive roots in type 𝐷𝑛 (for n
even) contains the root 𝜀𝑖 − 𝜀 𝑗 if and only if it contains the root 𝜀𝑖 + 𝜀 𝑗 . We will call such a pair of roots
{𝜀𝑖 ± 𝜀 𝑗 } a collinear pair of roots.
Lemma 3.2. If W is a Weyl group of type 𝐸7, 𝐸8 or 𝐷𝑛 with 𝑛 ≥ 4 even, then W acts transitively on the
set M(𝑊) of unordered maximal sets of orthogonal roots of W.
Proof. Recall from Section 2 that the group𝑊 (𝐷𝑛) can be regarded as the group of signed permutations
of n objects in which there is an even number of sign changes. Such a group acts transitively on the set
described in Lemma 3.1 (i).

Now suppose W has type 𝐸7, and let 𝛼 be a root of W. Then by Section 2, the stabilizer 𝑊𝛼 is a
Weyl group of type 𝐷6 whose root system is the set Φ𝛼 of roots that are orthogonal to 𝛼. Since 𝑊𝛼 acts
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transitively on Φ𝛼, it follows that there is a well-defined bijection [𝑅] ↦→ [𝑅∪ {𝛼}] from the set of 𝑊𝛼-
orbits on M(𝑊𝛼) to the set of W-orbits on M(𝑊), where the orbit [𝑅] of every 6-tuple 𝑅 ∈ M(𝑊𝛼)

is sent to the orbit [𝑅 ∪ {𝛼}] of the 7-tuple 𝑅 ∪ {𝛼}. It then follows that W acts transitively on M(𝑊),
as desired.

Finally, if W has type 𝐸8, then for each root 𝛼 of W, the stablizer𝑊𝛼 is of type 𝐸7. A similar argument
to the one above shows that W acts transitively on M(𝑊) because 𝑊𝛼 acts transitively on M(𝑊𝛼). �

We are ready to define coplanar quadruples. The following proposition offers multiple equivalent
characterizations of them.

Proposition 3.3. Let 𝑄 = {𝛽1, 𝛽2, 𝛽3, 𝛽4} be a set of four mutually orthogonal roots for a simply laced
Weyl group W with root system Φ, and let 𝛾 = (𝛽1 + 𝛽2 + 𝛽3 + 𝛽4)/2. The following are equivalent:

(i) 𝛾 is a root (i.e., the elements of Q sum to twice a root);
(ii) Q is contained in a subsystem Ψ of type 𝐷4;

(iii) there is a unique subsystem Ψ of type 𝐷4 such that (𝑄 ∪ {𝛾}) ⊂ Ψ ⊆ Φ, and we have

Ψ = {±𝛽1, ±𝛽2, ±𝛽3, ±𝛽4, (±𝛽1 ± 𝛽2 ± 𝛽3 ± 𝛽4)/2},

where all the signs are chosen independently.

Proof. We first prove that (i) implies (iii). Assume that 𝛾 is a root. Any root subsystem containing
𝑄 ∪ {𝛾} also contains 𝑠𝛽𝑖 (𝛽𝑖) = −𝛽𝑖 for each i, as well as all roots of the form

𝑠𝜖1
𝛽1
𝑠𝜖2
𝛽2
𝑠𝜖3
𝛽3
𝑠𝜖4
𝛽4
(𝛾),

where we have 𝜖𝑖 ∈ {0, 1} for all i. The 16 roots listed above can also be expressed as

(±𝛽1 ± 𝛽2 ± 𝛽3 ± 𝛽4)/2.

We have constructed all 24 roots in the set Ψ listed in the statement, and this is the cardinality of a root
system of type 𝐷4. To prove (iii), it now suffices to show that Ψ is a root system of type 𝐷4. Because
the elements of Q are orthogonal vectors of the same length, we may choose Euclidean coordinates
𝛽1 = 𝜀1 − 𝜀2, 𝛽2 = 𝜀1 + 𝜀2, 𝛽3 = 𝜀3 − 𝜀4 and 𝛽4 = 𝜀3 + 𝜀4. With respect to these coordinates, we have

Ψ = {±𝜀𝑖 ± 𝜀 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 4},

which indeed forms a root system of type 𝐷4, as desired.
It is immediate that (iii) implies (ii).
In the usual notation for the simple roots of type 𝐷4, the orthogonal roots 𝛼1, 𝛼3, 𝛼4, and 𝛼1 + 2𝛼2 +

𝛼3 +𝛼4 sum to 2𝛼, where 𝛼 is the root 𝛼1 +𝛼2 +𝛼3 +𝛼4. Lemma 3.2 applied to a root system of type 𝐷4
then implies that the sum of every orthogonal quadruple of roots in a root system of type 𝐷4 is equal to
2𝛼′ for some root 𝛼′. It follows that (ii) implies (i), which completes the proof. �

Definition 3.4. A set Q of four mutually orthogonal roots for a simply laced Weyl group is called a
coplanar quadruple if it satisfies the equivalent conditions of Proposition 3.3. In this case, we call the
set Ψ from Proposition 3.3 the 𝐷4-subsystem associated to Q.

Coplanar quadruples can be described explicitly in coordinates in type D:

Lemma 3.5. Let W be a Weyl group of type 𝐷𝑛 for n even and 𝑛 ≥ 4. Then four positive roots of W form
a coplanar quadruple if and only if they consist of two collinear pairs of roots (i.e., if and only if they
are of the form 𝜀𝑖 + 𝜀 𝑗 , 𝜀𝑖 − 𝜀 𝑗 , 𝜀𝑘 + 𝜀𝑙 , 𝜀𝑘 − 𝜀𝑙 for four distinct indices 𝑖, 𝑗 , 𝑘, 𝑙 where 𝑖 < 𝑗 and 𝑘 < 𝑙).

Remark 3.6. In the setting of Lemma 3.5, we may naturally identify the coplanar quadruple
{𝜀𝑖 ± 𝜀 𝑗 , 𝜀𝑘 ± 𝜀𝑙} with the matching {𝑖 𝑗 , 𝑘𝑙} of the set {𝑖, 𝑗 , 𝑘, 𝑙}.
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Remark 3.7. Recall that reflections in 𝑊 (𝐷𝑛) act on the reflection representation as signed permuta-
tions, with 𝑠𝛼 (𝜀𝑖) = 𝜀 𝑗 if 𝛼 = 𝜀𝑖 − 𝜀 𝑗 and 𝑠𝛼 (𝜀𝑖) = −𝜀 𝑗 if 𝛼 = 𝜀𝑖 + 𝜀 𝑗 . It follows that 𝑊 (𝐷𝑛) acts on
the set {𝜀2

1, · · · , 𝜀
2
𝑛} as ordinary permutations, with 𝑠𝛼 (𝜀

2
𝑖 ) = 𝜀2

𝑗 for all distinct 𝑖, 𝑗 . When n is even,
it then follows from Lemmas 3.1 and 3.5 that the action of 𝑊 (𝐷𝑛) on n-roots factors through the map
𝜙 : 𝑊 (𝐷𝑛) → 𝑆𝑛 from Equation (2.2) to induce an action of 𝑆𝑛 on n-roots. In particular, each reflection
𝑟 ∈ 𝑊 (𝐷𝑛) acts in the same way as 𝜙(𝑟) on every n-root of 𝑊 (𝐷𝑛).

Proof of Lemma 3.5. The ‘if’ implication holds since the four roots in the given form sum to twice the
positive root 𝜀𝑖 +𝜀𝑘 . To prove the ‘only if’ implication, let 𝑄 = {𝛽1, 𝛽2, 𝛽3, 𝛽4} be a coplanar quadruple.
Recall from Section 2 that two roots in type 𝐷𝑛 are orthogonal if and only if they have the same or disjoint
support. It follows that if no two roots in Q have the same support, then the supports of 𝛽1, 𝛽2, 𝛽3, 𝛽4
contain a total of eight distinct coordinates 𝜀𝑖 , in which case the sum 𝛾 = 𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 cannot be
twice a root. We may therefore assume, without loss of generality, that {𝛽1, 𝛽2} = {𝜀𝑖 ± 𝜀 𝑗 } for some
𝑖 < 𝑗 . This implies 𝛽1 + 𝛽2 = 2𝜀𝑖 . The condition that Q is an orthogonal set summing to twice a root
then forces us to have {𝛽3, 𝛽4} = {𝜀𝑘 ± 𝜀𝑙} for some elements 𝑘, 𝑙 distinct from i and j with 𝑘 < 𝑙. �

The next proposition shows that the action of W on n-roots is local to coplanar quadruples in the
following sense: whenever a reflection in W does not fix a maximal orthogonal set R of roots, it must
change exactly four elements of R that form a coplanar quadruple, and it changes these four elements to
another coplanar quadruple with the same associated 𝐷4-subsystem.

Proposition 3.8. Let W be a Weyl group of type 𝐸7, 𝐸8 or 𝐷𝑛 for n even, let 𝛼 be a root, and let R be a
maximal set of orthogonal positive roots. Suppose that neither 𝛼 nor −𝛼 is an element of R.

(i) The root 𝛼 is orthogonal to all but precisely four elements 𝑄 = {𝛽1, 𝛽2, 𝛽3, 𝛽4} of R. The elements
of Q form a coplanar quadruple, and we have 2𝛼 = ±𝛽1 ± 𝛽2 ± 𝛽3 ± 𝛽4 for suitable choices of signs.

(ii) Let Ψ be the 𝐷4 subsystem associated to Q. Then we have 𝛼 ∈ Ψ, and the set 𝑠𝛼 (𝑄) = {𝑠𝛼 (𝛽𝑖) :
1 ≤ 𝑖 ≤ 4} is also a coplanar quadruple whose associated 𝐷4-subsystem is Ψ.

Proof. To prove (i), it suffices by Lemma 3.2 to do so for a fixed R. Suppose first that W is of type 𝐷𝑛,
and choose

𝑅 = {𝜀1 + 𝜀2, 𝜀1 − 𝜀2, 𝜀3 + 𝜀4, 𝜀3 − 𝜀4, . . . , 𝜀𝑛−1 + 𝜀𝑛, 𝜀𝑛−1 − 𝜀𝑛}.

The root 𝛼 must be of the form ±𝜀𝑖 ± 𝜀 𝑗 , where i and j come from different parts of the partition
{{1, 2}, {3, 4}, . . . , {𝑛 − 1, 𝑛}}. It follows that the support of 𝛼 has one element in common with the
support of each of precisely four elements of R making up two collinear pairs, and that 𝛼 is orthogonal
to all the other elements of R. Furthermore, the roots 𝛽1, 𝛽2, 𝛽3 and 𝛽4 that are not orthogonal to 𝛼 are
of the form ±𝜀ℎ ± 𝜀𝑖 and ±𝜀 𝑗 ± 𝜀𝑘 , where |{ℎ, 𝑖, 𝑗 , 𝑘}| = 4. It follows that 2𝛼 can be written in the form
±𝛽1 ± 𝛽2 ± 𝛽3 ± 𝛽4 for suitable choices of signs.

Next, suppose that W has type 𝐸8, and choose

𝑅 = {2(𝜀1 + 𝜀2), 2(𝜀1 − 𝜀2), 2(𝜀3 + 𝜀4), 2(𝜀3 − 𝜀4), 2(𝜀5 + 𝜀6), 2(𝜀5 − 𝜀6), 2(𝜀7 + 𝜀8), 2(𝜀7 − 𝜀8)}.

If 𝛼 has the form 2(±𝜀𝑖 ± 𝜀 𝑗 ), then the proof is completed using the same argument as in type 𝐷8. The
other possibility is that we have 𝛼 =

∑8
𝑖=1 ±𝜀𝑖 , where the signs are chosen so that there is an even number

of minus signs. In this case, 𝛼 is orthogonal to precisely one of the roots {2(𝜀 𝑗 − 𝜀 𝑗+1), 2(𝜀 𝑗 + 𝜀 𝑗+1)},
according as 𝜀 𝑗 and 𝜀 𝑗+1 occur in 𝛼 with the same or with opposite coefficients. It follows that 𝛼 is
orthogonal to precisely four elements of R and that 2𝛼 can be expressed in the required form.

Now suppose that W has type 𝐸7. By Section 2.3, we may identify the root system of W with the set
of roots orthogonal to the highest root 𝜃 in the root system of type 𝐸8, so that 𝑅 ∪ {𝜃} is a maximal set
of orthogonal roots in type 𝐸8. By the above paragraph, 𝛼 is orthogonal to four of the roots in 𝑅 ∪ {𝜃},
but one of these roots is 𝜃 itself. It follows that 𝛼 is orthogonal to three elements of R and that 2𝛼 can be
expressed as a signed sum of the other four elements of R, as required. This completes the proof of (i).
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It follows from (i) that we have 𝛼 ∈ Ψ, because condition (i) implies condition (iii) in Proposition 3.3.
The element 𝛾 = (𝛽1 + 𝛽2 + 𝛽3 + 𝛽4)/2 is a root because Q is a coplanar quadruple, and the set 𝑠𝛼 (𝑄) is a
coplanar quadruple because its elements sum to twice 𝑠𝛼 (𝛾), which is a root because 𝛾 is. We also have
𝑠𝛼 (𝑄) ⊆ Ψ because both 𝛼 and Q are in Ψ. This implies that Ψ must be the 𝐷4-subsystem associated
to 𝑠𝛼 (𝑄), proving (ii). �

3.2. Crossings, nestings and alignments

We examine coplanar quadruples more closely in this subsection and classify them into three types –
namely, crossings, nestings and alignments. As we will explain in Remark 3.11, our terminology comes
from the theory of matchings, but the following definition makes sense for all the simply laced root
systems considered in this paper.

Definition 3.9. Let 𝑄 = {𝛽1, 𝛽2, 𝛽3, 𝛽4} be a coplanar quadruple of positive orthogonal roots, let Ψ be
the 𝐷4-subsystem associated to Q, let ≤ be the partial order on Ψ relative to the induced simple roots
of Ψ, and let 𝛾 be the root (𝛽1 + 𝛽2 + 𝛽3 + 𝛽4)/2. We say that Q is

(i) a crossing if 𝛽𝑖 ≤ 𝛾 for all i and Q contains the unique ≤-maximal element of 𝑄 ∪ (−𝑠𝛾 (𝑄));
(ii) a nesting if 𝛽𝑖 ≤ 𝛾 for all i and Q contains the unique ≤-minimal element of 𝑄 ∪ (−𝑠𝛾 (𝑄));

(iii) an alignment otherwise.

We also call each crossing, nesting and alignment a feature of type C, type N and type A, respectively.

Theorem 3.10. Let Φ be a root system for a Weyl group of type 𝐸7, 𝐸8 or 𝐷𝑛 for n even. Let Q be a
coplanar quadruple of positive roots of Φ, let Ψ be the associated 𝐷4-subsystem, and let Ψ+ = Ψ ∩Φ+

be the induced positive system of Ψ.

(i) The set Ψ+ contains precisely three distinct quadruples of mutually orthogonal roots. These quadru-
ples are pairwise disjoint and partition Ψ+.

(ii) The three quadruples of orthogonal roots in Ψ+ are all coplanar. Among them there is exactly one
crossing, Ψ+

𝐶 , exactly one nesting, Ψ+
𝑁 , and exactly one alignment, Ψ+

𝐴. In particular, the quadruple
Q cannot be both a crossing and a nesting, and the three conditions in Definition 3.9 are mutually
exclusive.

(iii) Each quadruple in {Ψ+
𝐶 ,Ψ

+
𝑁 ,Ψ

+
𝐴} uniquely determines both of the other two.

(iv) If R is a set of mutually orthogonal roots that is disjoint from Ψ, then either each of the three sets
{𝑅 ∪ Ψ+

𝐶 , 𝑅 ∪ Ψ+
𝑁 , 𝑅 ∪ Ψ+

𝐴} consists of mutually orthogonal roots, or none of them does.
(v) The crossing Ψ+

𝐶 contains no root from the induced simple system of Ψ.
(vi) For each 𝑥 ∈ {𝐶, 𝑁, 𝐴}, let 𝛾𝑥 be the product of the roots in Ψ+

𝑥 , and let 𝜎(𝛾𝑥) be the sum of the
components of 𝛾𝑥 . Then we have 𝜎(𝛾𝐴) < 𝜎(𝛾𝑁 ) = 𝜎(𝛾𝐶 ) and 𝛾𝐶 = 𝛾𝑁 + 𝛾𝐴. Moreover, if 𝛼 is
any component in one of the three 4-roots 𝛾𝐶 , 𝛾𝑁 and 𝛾𝐴, then the reflection 𝑠𝛼 sends the other
two 4-roots to each other; for example, if 𝛼 ∈ Ψ+

𝐶 , then 𝑠𝛼 sends 𝛾𝑁 and 𝛾𝐴 to each other.

Proof. By Section 2.3, the roots orthogonal to a given root in type 𝐷4 form a subsystem of type 3𝐴1.
Therefore, each positive root lies in a unique quadruple of mutually orthogonal positive roots, which
proves (i).

Let {𝛼1, 𝛼2, 𝛼3, 𝛼4} be the induced simple roots of Ψ, with 𝛼2 corresponding to the branch node in
the Dynkin diagram. Then the three quadruples from (i) are given by

Ψ+
1 = {𝛼1 + 𝛼2, 𝛼2 + 𝛼3, 𝛼2 + 𝛼4, 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4},

Ψ+
2 = {𝛼2, 𝛼1 + 𝛼2 + 𝛼3, 𝛼1 + 𝛼2 + 𝛼4, 𝛼2 + 𝛼3 + 𝛼4}, and

Ψ+
3 = {𝛼1, 𝛼3, 𝛼4, 𝛼1 + 2𝛼2 + 𝛼3 + 𝛼4}.

The roots in Ψ+
3 add up to twice the root 𝛼 = 𝛼1 +𝛼2 +𝛼3 +𝛼4. The root 𝛼 is strictly lower in the ≤ order

than one of the roots in Ψ+
3 ; therefore, Ψ+

3 is an alignment by Definition 3.9. The roots in Ψ+
1 and Ψ+

2 both
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add up to 2𝜃, where 𝜃 = 𝛼1 +2𝛼2 +𝛼3 +𝛼4. The root 𝜃 is strictly higher in the ≤ order than each element
of Ψ+

1 and Ψ+
2 . Note that we have 𝑠𝜃 (Ψ+

1 ) = −Ψ+
2 and 𝑠𝜃 (Ψ+

2 ) = −Ψ+
1 . Furthermore, the roots 𝛼2 and

𝛼1 +𝛼2 +𝛼3 +𝛼4 are the unique ≤-minimal and unique ≤-maximal elements of Ψ+
1 ∪ Ψ+

2 , respectively.
This implies that Ψ+

1 is a crossing and that Ψ+
2 is a nesting, and it also follows that none of Ψ+

1 ,Ψ
+
2 and

Ψ+
3 is both a crossing and a nesting. The quadruple Q must be one of Ψ+

1 ,Ψ
+
2 and Ψ+

3 , and (ii) follows.
Part (iii) follows from (ii) since each of Ψ+

𝐶 ,Ψ
+
𝑁 and Ψ+

𝐴 uniquely determines Ψ+ as its associated
𝐷4-subsystem by Proposition 3.3 (iii).

Part (iv) holds as each of the quadruples in {Ψ+
𝐶 ,Ψ

+
𝑁 ,Ψ

+
𝐴} is a basis for the span of Ψ+, so that any

root that is orthogonal to every element of one quadruple is also orthogonal to every element of each of
the other quadruples.

Finally, the claims in (v) and (vi) can all be verified by inspection or direct computation based on
the description of Ψ+

𝐶 = Ψ+
1 ,Ψ

+
𝑁 = Ψ+

2 and Ψ+
𝐴 = Ψ+

3 . For the equation 𝛾𝐶 = 𝛾𝑁 + 𝛾𝐴 and the assertion
about 𝑠𝛼 in (vi), one can alternatively prove them using the usual realizations of the root system and
Weyl group of type 𝐷4, where the simple roots are 𝛼1 = 𝜀1 − 𝜀2, 𝛼2 = 𝜀2 − 𝜀3, 𝛼3 = 𝜀3 − 𝜀4 and
𝛼4 = 𝜀3 + 𝜀4 and the group W acts as signed permutations. Under this realization, we have

𝛾𝐶 = (𝜀2
1 − 𝜀2

3) (𝜀
2
2 − 𝜀2

4), 𝛾𝑁 = (𝜀2
1 − 𝜀2

4) (𝜀
2
2 − 𝜀2

3), and 𝛾𝐴 = (𝜀2
1 − 𝜀2

2) (𝜀
2
3 − 𝜀2

4), (3.1)

and the equation 𝛾𝐶 = 𝛾𝑁 +𝛾𝐴 follows as the terms expressed in coordinates satisfy the Ptolemy relation

(𝐴 − 𝐶) (𝐵 − 𝐷) = (𝐴 − 𝐷) (𝐵 − 𝐶) + (𝐴 − 𝐵) (𝐶 − 𝐷). �

Remark 3.11. In the setting of Theorem 3.10, the coordinate forms of the 4-roots 𝛾𝐶 , 𝛾𝑁 , 𝛾𝐴 given
in Equation (3.1) correspond via the bijection of Lemma 3.1 (ii) to the perfect matchings of the set
[4] given by the crossing 𝑚𝐶 = {{1, 3}, {2, 4}}, the nesting 𝑚𝑁 = {{1, 4}, {2, 3}}, and the alignment
𝑚𝐴 = {{1, 2}, {3, 4}}, respectively. Definition 3.9 generalizes the notion of crossings, nestings and
alignments in the sense that a coplanar quadruple in the sense of the definition is a crossing, nesting
or alignment if and only if the corresponding perfect matching of the set [4] is a crossing, nesting or
alignment, respectively, in the context of matchings.

Remark 3.12. Let R be a maximal orthogonal set of positive roots and let 𝛼 be a positive root not in R.
Proposition 3.8 shows that the reflection 𝑠𝛼 changes precisely four elements in R which form a coplanar
quadruple Q and that𝑄 ′ = 𝑠𝛼 (𝑄) is another coplanar quadruple with the same associated 𝐷4-subsystem
as Q. Theorem 3.10 (vi) reveals more about 𝛼,𝑄 and 𝑄 ′: it shows that Q and 𝑄 ′ are two distinct features
from the set {Ψ+

𝐶 ,Ψ
+
𝑁 ,Ψ

+
𝐴} inside the 𝐷4-subsystem Ψ associated to Q, while 𝛼 is in the remaining

feature. We will say that 𝑠𝛼 moves Q in this case; we will also say that 𝑠𝛼 (or 𝛼) moves an X to a Y and
call 𝑠𝛼 an XY move, where X and Y are the distinct types of Q and 𝑄 ′, respectively. Note that knowledge
of Q and Y is enough to determine 𝑄 ′ by Theorem 3.10 (iii), even if 𝛼 is not known. Note also that
Theorem 3.10 (vi) guarantees that 𝑋𝑌 moves exist for any distinct elements X, Y in {𝐶, 𝑁, 𝐴}, so any
two coplanar quadruples sharing the same 𝐷4-subsystem can be connected, up to sign, by a reflection.

The next proposition shows how to distinguish crossings, nestings and alignments from each other
using only the heights of their components. Recall from Section 2.2 that in a root system with simple
system {𝛼1, 𝛼2, · · · , 𝛼𝑛}, the height of each root 𝛼 =

∑𝑛
𝑖=1 𝑐𝑖𝛼𝑖 is the integer ht(𝛼) =

∑𝑛
𝑖=1 𝑐𝑖 .

Proposition 3.13. Let W be a Weyl group of type 𝐸7, 𝐸8 or 𝐷𝑛 for n even. Let 𝑄 = {𝛽1, 𝛽2, 𝛽3, 𝛽4} be
a coplanar quadruple of orthogonal positive roots, ordered so that we have ℎ1 ≤ ℎ2 ≤ ℎ3 ≤ ℎ4 where
ℎ𝑖 = ht(𝛽𝑖) for each i.

(i) We have ℎ1 + ℎ2 + ℎ3 ≠ ℎ4 and ℎ2 + ℎ3 ≠ ℎ1 + ℎ4.
(ii) If ℎ1 + ℎ2 + ℎ3 < ℎ4, then Q is an alignment.

(iii) If ℎ1 + ℎ2 + ℎ3 > ℎ4 and ℎ2 + ℎ3 > ℎ1 + ℎ4, then Q is a nesting. In this case, we also have ℎ1 < ℎ2.
(iv) If ℎ1 + ℎ2 + ℎ3 > ℎ4 and ℎ2 + ℎ3 < ℎ1 + ℎ4, then Q is a crossing. In this case, we also have ℎ1 > 1

and ℎ3 < ℎ4.
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Proof. Let Ψ be the type 𝐷4 subsystem associated to Q, and let {𝛼1, 𝛼2, 𝛼3, 𝛼4} be the simple system
of Ψ induced by Φ+, with 𝛼2 corresponding to the branch node in the Dynkin diagram. Then as in
the proof of Theorem 3.10, the set Ψ+ decomposes into the union of the crossing Ψ+

𝐶 , nesting Ψ+
𝑁 and

alignment Ψ+
𝐴 given below:

Ψ+
𝐶 = {𝛼1 + 𝛼2, 𝛼2 + 𝛼3, 𝛼2 + 𝛼4, 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4},

Ψ+
𝑁 = {𝛼2, 𝛼1 + 𝛼2 + 𝛼3, 𝛼1 + 𝛼2 + 𝛼4, 𝛼2 + 𝛼3 + 𝛼4}, and

Ψ+
𝐴 = {𝛼1, 𝛼3, 𝛼4, 𝛼1 + 2𝛼2 + 𝛼3 + 𝛼4}.

If 𝑄 = Ψ+
𝐴, then we have 𝛽4 − 𝛽1 − 𝛽2 − 𝛽3 = 2𝛼2, and 𝛽4 + 𝛽1 − 𝛽2 − 𝛽3 = 2𝛼2 + 2𝛼𝑖 for some

𝑖 ∈ {1, 3, 4}.
If 𝑄 = Ψ+

𝑁 , then we have 𝛽1 < 𝛽 𝑗 for all 𝑗 ∈ {2, 3, 4}. We also have 𝛽4 − 𝛽1 − 𝛽2 − 𝛽3 = −2𝛼𝑖 − 2𝛼2
for some 𝑖 ∈ {1, 3, 4}, and 𝛽4 + 𝛽1 − 𝛽2 − 𝛽3 = −2𝛼𝑖 for some 𝑖 ∈ {1, 3, 4}.

If 𝑄 = Ψ+
𝐶 , then we have 𝛽4 > 𝛽 𝑗 for all 𝑗 ∈ {1, 2, 3}. We also have 𝛽4 − 𝛽1 − 𝛽2 − 𝛽3 = −2𝛼2 and

𝛽4 + 𝛽1 − 𝛽2 − 𝛽3 = 2𝛼𝑖 for some 𝑖 ∈ {1, 3, 4}. Furthermore, none of the 𝛽𝑖 is a simple root of Φ because
none of the 𝛽𝑖 is even a simple root of Ψ.

All the claims in the proposition follow from the above observations. Note that the conditions in (ii),
(iii), and (iv) are exclusive and exhaustive because of part (i). �

Remark 3.14. It can be shown that if W is a Weyl group of type 𝐸7, 𝐸8 or 𝐷𝑛 for n even and the
components of a positive n-root 𝛽 have heights ℎ1, ℎ2, . . . , ℎ𝑛, then the number

∑𝑛
𝑖=1 ℎ

2
𝑖 depends only

on W and is independent of the choice of 𝛽.

3.3. Intersections of coplanar quadruples

Let R be a maximal orthogonal set of roots of W. In this subsection, we first focus on type 𝐸8 and show
that coplanar quadruples in R gives rise to a Steiner quadruple system in this type. We will then use
this result to count coplanar quadruples in R and deduce how coplanar quadruples in R can overlap with
each other, in the general case.
Definition 3.15. A Steiner system 𝑆(𝑡, 𝑘, 𝑁) is a collection B of k-element subsets of the set [𝑁] =
{1, 2, . . . , 𝑁} with the property that every t-element subset is contained in a unique element of B. The
elements of B are called blocks, and we write each block {𝑎, 𝑏, 𝑐, . . . } where 𝑎 < 𝑏 < 𝑐 < . . . as
𝑎𝑏𝑐 . . . . We call B a Steiner triple system if 𝑘 = 3 and a Steiner quadruple system if 𝑘 = 4.
Remark 3.16. A Steiner system 𝑆(𝑡, 𝑘, 𝑁) is also known as a t-(𝑁, 𝑘, 1) design, which is a special
kind of t-designs [18, Section 4.1]. It is well known that, up to isomorphism (by permutations), there
is a unique Steiner triple system 𝑆(2, 3, 7) and a unique Steiner quadruple system 𝑆(3, 4, 8) [4]. The
following 14 quadruples form an example of a Steiner quadruple system, and removing the element 8
from all the quadruples on the left results in a Steiner triple system.

1 2 4 8 3 5 6 7
2 3 5 8 1 4 6 7
3 4 6 8 1 2 5 7
4 5 7 8 1 2 3 6
1 5 6 8 2 3 4 7
2 6 7 8 1 3 4 5
1 3 7 8 2 4 5 6

Lemma 3.17. Let 𝛽1, 𝛽2, 𝛽3 be three mutually orthogonal positive roots of type 𝐸8.
(i) There exists a unique positive root 𝛽4 such that {𝛽1, 𝛽2, 𝛽3, 𝛽4} is a coplanar quadruple.

(ii) If R is a maximal orthogonal set of positive roots of type 𝐸8, and {𝛽1, 𝛽2, 𝛽3} ⊂ 𝑅, then we have
𝛽4 ∈ 𝑅.

https://doi.org/10.1017/fms.2025.10065 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10065


14 R. M. Green and T. Xu

Proof. By [11, Lemma 11 (iii)] and its proof, if 𝑊 = 𝑊 (𝐸8), then W acts transitively on ordered triples
of orthogonal roots, and the set of roots orthogonal to three given mutually orthogonal roots is a root
system of type 𝐴1 + 𝐷4. Since the action of orthogonal triples of roots is transitive, it suffices to prove
(i) for a fixed choice of 𝛽1, 𝛽2 and 𝛽3. If we choose 𝛽1 = 𝛼3 = 2(𝜀2 − 𝜀1), 𝛽2 = 𝛼5 = 2(𝜀4 − 𝜀3) and
𝛽3 = 𝛼7 = 2(𝜀6 − 𝜀5), then it follows from the explicit description of the root system in Section 2.3 that
the only positive root that forms a coplanar quadruple with 𝛽1, 𝛽2 and 𝛽3 is the root 𝛽4 = 2(𝜀8 − 𝜀7).
This proves (i).

The uniqueness property of (i) proves that the set of coplanar quadruples corresponds to the 𝐴1
summand of the 𝐴1 +𝐷4 subsystem. This implies that if 𝛽 is any positive root that is orthogonal to all of
𝛽1, 𝛽2 and 𝛽3, then either 𝛽4 = 𝛽, or 𝛽4 is orthogonal to 𝛽. The maximality of R in the statement of (ii)
implies that 𝛽4 cannot be orthogonal to all elements of R. It follows that 𝛽4 ∈ 𝑅, which proves (ii). �

Lemma 3.18. Let W be a Weyl group of type 𝐸8, and let R be a maximal orthogonal set of roots.

(i) The coplanar quadruples of R endow R with the structure of a Steiner quadruple system 𝑆(3, 4, 8).
(ii) Any two coplanar quadruples of R intersect in either 0, 2, or 4 elements.

Proof. Part (i) is immediate from Lemma 3.17. To prove part (ii), we need to show that any two distinct
quadruples from the Steiner quadruple system are either disjoint or overlap in precisely two elements.
This can be proved by an exhaustive check, or by arguing as follows.

The quadruples in the left column of the table consist of the element 8 together with three points
forming a line in the Fano plane (see Section 6.2). Any two such quadruples intersect in two elements:
the element 8 and the unique point on the intersection of the two lines of the Fano plane. The general
case follows by combining this observation with the fact that each quadruple in the right column is the
complement of the corresponding quadruple in the left column. �

Corollary 3.19. Let W be a Weyl group of type 𝐸7, 𝐸8 or 𝐷𝑛 for n even and 𝑛 = 2𝑘 ≥ 4. Let R be a
maximal orthogonal set of positive roots. Then the number M of coplanar quadruples contained in R
does not depend on R. We have 𝑀 =

(𝑘
2
)

if W has type 𝐷2𝑘 , 𝑀 = 7 if W has type 𝐸7, and 𝑀 = 14 if W
has type 𝐸8.

Proof. If W has type 𝐷2𝑘 , then R determines a perfect matching of the set {1, 2, . . . , 2𝑘} with k blocks
by Lemma 3.1, and the coplanar quadruples in R correspond bijectively to pairs of these blocks by
Remark 3.6. It follows that M does not depend on R and equals

(𝑘
2
)
.

In type 𝐸8, the result follows from Lemma 3.18 (i).
If W has type 𝐸7, then as in the proof of Proposition 3.8, we may again identify the root system of W

with the set of roots orthogonal to the the highest root 𝜃 in the root system of type 𝐸8. The set 𝑅 ∪ {𝜃}
is then a maximal orthogonal set of roots in type 𝐸8. The coplanar quadruples of R are in bijection with
the quadruples of 𝑆(3, 4, 8) that exclude a fixed element, and there are 7 such quadruples, so we are
done. �

Proposition 3.20. Let W be a Weyl group of type 𝐸7, 𝐸8 or 𝐷𝑛 for n even. Let R be a maximal orthogonal
subset of positive roots, and suppose 𝑄1 and 𝑄2 are coplanar quadruples of roots contained in R.

(i) The intersection 𝑄1 ∩𝑄2 has size 0, 2 or 4.
(ii) If |𝑄1 ∩𝑄2 | = 2, then there is a root subsystem Ψ ⊆ Φ of type 𝐷6 that contains both 𝑄1 and 𝑄2. In

this case, each of the sets 𝑄1, 𝑄2, 𝑄1 ∩ 𝑄2, and 𝑄1 ∪ 𝑄2 consists of collinear pairs of roots with
respect to Ψ, and the symmetric difference 𝑄1 Δ 𝑄2 is also a coplanar quadruple.

Proof. If W has type 𝐷𝑛, then the assertions follow from Lemma 3.5.
Suppose that W has type 𝐸8. In this case, part (i) follows from Lemma 3.18 (ii). If |𝑄1 ∩ 𝑄2 | = 2,

then |𝑄1 ∪ 𝑄2 | = 6, and there are precisely two elements 𝛼, 𝛽 ∈ 𝑅 that are orthogonal to every root in
𝑄1 ∪ 𝑄2. Let Ψ be the set of roots in Φ that are orthogonal to 𝛼 and 𝛽. Then Ψ forms a root system of
type 𝐷6 by Section 2.3, proving the first assertion of (ii), and the sets 𝑄1, 𝑄2, 𝑄1 ∩𝑄2 and 𝑄1 ∪𝑄2 all
lie in Ψ. The other assertions of (ii) now follow by applying the type 𝐷𝑛 case of the result to Ψ.
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Finally, suppose that W has type 𝐸7. We identify the root system with the set of roots orthogonal to
the the highest root 𝜃 in the root system of type 𝐸8 as usual. Then 𝑅∪{𝜃} is a maximal orthogonal set of
roots in type 𝐸8. The assertions in this case follow by applying the argument of the previous paragraph
with 𝛼 = 𝜃. �

4. Quasiparabolic structure

Let 𝑋 = 𝑋 (𝑊) be the set of all maximal orthogonal sets of positive roots of W, and recall from the
introduction that W acts on X naturally via the action 𝑤({𝛽1, · · · , 𝛽𝑛}) = {|𝑤(𝛽1) |, · · · , |𝑤(𝛽𝑛) |}. In
this section, we recall the notion of a quasiparabolic set as defined by Rains and Vazirani [43], and we
use the concepts of crossings and nestings to endow the W-set X with a quasiparabolic structure.

4.1. Quasiparabolic sets

Quasiparabolic sets were introduced by Rains and Vazirani for a general Coxeter system as follows.

Definition 4.1 [43, Section 2, Section 5]. Let W be a Coxeter group with generating set S and set of
reflections T. A scaled W-set is a pair (X , 𝜆), where X is a W-set and 𝜆 : X → Z is a function satisfying
|𝜆(𝑠𝑥) − 𝜆(𝑥) | ≤ 1 for all 𝑠 ∈ 𝑆. An element 𝑥 ∈ X is W-minimal if 𝜆(𝑠𝑥) ≥ 𝜆(𝑥) and is W-maximal if
𝜆(𝑠𝑥) ≤ 𝜆(𝑥) for all 𝑠 ∈ 𝑆.

A quasiparabolic set for W is a scaled W-set X satisfying the following two properties:

(QP1) for any 𝑟 ∈ 𝑇 and 𝑥 ∈ X , if 𝜆(𝑟𝑥) = 𝜆(𝑥), then 𝑟𝑥 = 𝑥;
(QP2) for any 𝑟 ∈ 𝑇 , 𝑥 ∈ X , and 𝑠 ∈ 𝑆, if 𝜆(𝑟𝑥) > 𝜆(𝑥) and 𝜆(𝑠𝑟𝑥) < 𝜆(𝑠𝑥), then 𝑟𝑥 = 𝑠𝑥.

For a quasiparabolic set X , we define ≤𝑄 to be the weakest partial order such that 𝑥 ≤𝑄 𝑟𝑥 whenever
𝑥 ∈ X , 𝑟 ∈ 𝑇 , and 𝜆(𝑥) ≤ 𝜆(𝑟𝑥).

Rains and Vazirani call 𝜆(𝑥) the height of x, and ≤𝑄 the Bruhat order, but we will refer to them as
the level of x and the quasiparabolic order because of the potential for confusion in the context of this
paper. It follows from [43, Proposition 5.16] that 𝜆 is a rank function with respect to the partial order
≤𝑄, so that every covering relation 𝑥 <𝑄 𝑦 satisfies 𝜆(𝑦) = 𝜆(𝑥) + 1.

We will show that the set 𝑋 = 𝑋 (𝑊) forms a quasiparabolic set for the Weyl group W in type 𝐸7, 𝐸8
or 𝐷𝑛 with n even under a suitable level function defined in terms of coplanar quadruples. We define
the level function and some other useful statistics below.

Definition 4.2. Let W be a Weyl group of type 𝐸7, 𝐸8 or 𝐷𝑛 for n even. Let R be a set of mutually
orthogonal roots of W, and let 𝛽 be a positive n-root of W.

(i) We define the crossing number 𝐶 (𝑅), the nesting number 𝑁 (𝑅) and the alignment number 𝐴(𝑅)
of R to be the numbers of crossings, nestings and alignments contained in 𝑅+, respectively.

(ii) We define the type of R to be the monomial 𝐴𝐴(𝑅)𝐶𝐶 (𝑅)𝑁𝑁 (𝑅) , and define the level 𝜆(𝑅) of R to
be 𝐶 (𝑅) + 2𝑁 (𝑅).

(iii) If R is a maximal orthogonal set of roots, then we say that R is noncrossing, nonnesting and
alignment-free if 𝐶 (𝑅) = 0, 𝑁 (𝑅) = 0 and 𝐴(𝑅) = 0, respectively; we also call R maximally
crossing, maximally nesting or maximally aligned if we have 𝑁 (𝑅) = 𝐴(𝑅) = 0,𝐶 (𝑅) = 𝐴(𝑅) = 0
or 𝐶 (𝑅) = 𝑁 (𝑅) = 0, respectively.

We also apply all the above definitions to 𝛽 by applying them to the set of components of 𝛽. (Note that
the definitions of type in (ii) and in Definition 3.9 are consistent.)

Remark 4.3. By Corollary 3.19, when R is a maximal orthogonal set of positive roots, the sum of the
numbers 𝐶 (𝑅), 𝑁 (𝑅) and 𝐴(𝑅) is a constant depending only on W and not on R; therefore, each of
these numbers achieves the maximal possible value when the other two equal zero. This justifies the
terms ‘maximally crossing’, ‘maximally nesting’ and ‘maximally aligned’ in Definition 4.2.(iii).
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Example 4.4. Suppose that W has type 𝐷6, and that 𝑅 = {𝜀1 ± 𝜀2, 𝜀3 ± 𝜀6, 𝜀4 ± 𝜀5} is the maximal
orthogonal set of positive roots corresponding to the matching {12, 36, 45} (via the natural bijection
of Lemma 3.1 (ii)). In this case, R contains two alignments, corresponding to the pairs {12, 45} and
{12, 36}, and one nesting, corresponding to the pair {36, 45}. The type of R is therefore 𝐴2𝐶0𝑁1 (or
𝐴𝐴𝑁).

We now state the main theorem of this section. Its proof will occupy the next subsection.

Theorem 4.5. Let W be a Weyl group of type 𝐸7, 𝐸8 or 𝐷𝑛 for n even, and let X be the set of maximal
orthogonal sets of positive roots of W, regarded as a W-set under the action

𝑤({𝛽1, · · · , 𝛽𝑛}) = {|𝑤(𝛽1) |, · · · , |𝑤(𝛽𝑛) |}.

Then the set (𝑋, 𝜆) is a quasiparabolic set for W, where 𝜆 : 𝑋 → Z is the level function 𝜆(𝑥) =
𝐶 (𝑥) + 2𝑁 (𝑥).

4.2. Proof of Theorem 4.5

We will prove Theorem 4.5 by showing that the set X is a scaled W-set satisfying the axioms (QP1) and
(QP2) of Definition 4.1. To this end, we first study how the action of a reflection 𝑠𝛼 corresponding to a
root 𝛼 can affect the level of a maximal orthogonal set R of roots. Recall from Remark 3.12 that 𝑠𝛼 must
replace a coplanar quadruple in R with a feature of a different type whenever R does not contain ±𝛼.
We will therefore examine how such feature replacements affect the level function 𝜆. Also recall from
Section 2 that the root system Φ is equipped with a natural partial order ≤ defined by the condition that
𝛼 ≤ 𝛽 if and only if 𝛽 − 𝛼 is a nonnegative linear combination of simple roots. We will frequently use
the order ≤ throughout the proofs.

Example 4.6. Let𝑊 = 𝑊 (𝐷6) and 𝑅 = {𝜀1±𝜀2, 𝜀3±𝜀6, 𝜀4±𝜀5} be as in Example 4.4. Let 𝛼 = 𝜀2−𝜀4,
so that 𝑠𝛼 acts as the transposition (2, 4). In this case, the set 𝑠𝛼 (𝑅) corresponds to the matching
{14, 25, 36} and has type 𝐶𝐶𝐶. The reflection 𝑠𝛼 changes the alignment 𝑄 = {𝜀1 ± 𝜀2, 𝜀4 ± 𝜀5} to the
crossing 𝑄 ′ = 𝑠𝛼 (𝑄) = {𝜀1 ± 𝜀4, 𝜀2 ± 𝜀5}, so 𝛼 moves an A to a C. Note that while 𝑠𝛼 changes the
quadruple Q from an A to a C locally, globally 𝑠𝛼 does not change the type of R from 𝐴𝐴𝑁 to 𝐴𝐶𝑁
but to 𝐶𝐶𝐶. This is because after the application of 𝑠𝛼, each collinear pair of roots in Q becomes a
new collinear pair that forms a new type of coplanar quadruple with the collinear pair of roots 𝜀3 ± 𝜀6
outside Q.

Part (ii) of the next proposition, however, will imply that if 𝛼 is minimal among roots moving an A to
a C, then the global change in the type of R will mirror this local change, so that if R has type 𝐴𝑝𝐶𝑞𝑁𝑟 ,
then 𝑠𝛼 (𝑅) has type 𝐴𝑝−1𝐶𝑞+1𝑁𝑟 . In our example, the root 𝛼′ = 𝜀2 − 𝜀3 satisfies the minimality
condition since it is simple. The reflection 𝑠𝛼′ changes the coplanar quadruple {𝜀1 ± 𝜀2, 𝜀3 ± 𝜀6} of
type A to the coplanar quadruple {𝜀1 ± 𝜀3, 𝜀2 ± 𝜀6} of type C, and changes the set R of type 𝐴𝐴𝑁 to a
maximal orthogonal set of type 𝐴𝐶𝑁 .

Proposition 4.7. Let W be a Weyl group of type 𝐸7, 𝐸8 or 𝐷𝑛 with n even, and let R be a maximal set
of orthogonal positive roots of type 𝐴𝑝𝐶𝑞𝑁𝑟 . Let 𝜆 = 𝐶 + 2𝑁 be the level function from Definition 4.2.

(i) If 𝛼𝑖 is a simple root, then either 𝛼𝑖 ∈ 𝑅, or 𝜆(𝑠𝛼𝑖 (𝑅)) ≠ 𝜆(𝑅). If 𝜆(𝑠𝛼𝑖 (𝑅)) > 𝜆(𝑅), then we have
𝜆(𝑠𝛼𝑖 (𝑅)) = 𝜆(𝑅) + 1, and either (1) 𝑠𝛼𝑖 moves an A to a C and 𝑠𝛼𝑖 (𝑅) has type 𝐴𝑝−1𝐶𝑞+1𝑁𝑟 , or
(2) 𝑠𝛼𝑖 moves a C to an N and 𝑠𝛼𝑖 (𝑅) has type 𝐴𝑝𝐶𝑞−1𝑁𝑟+1.

(ii) If Q is an alignment in R, 𝑄 ′ is the corresponding crossing quadruple, and 𝑅′ = (𝑅 \𝑄) ∪𝑄 ′, then
𝑑 = 𝜆(𝑅′) − 𝜆(𝑅) is a positive odd number. If there is a positive root 𝛼 such that 𝑠𝛼 (𝑄) = 𝑄 ′ but
no positive root 𝛼′ < 𝛼 moves an A in R to a C, then 𝑅′ has type 𝐴𝑝−1𝐶𝑞+1𝑁𝑟 .

(iii) If Q is a crossing in R, 𝑄 ′ is the corresponding nesting quadruple, and 𝑅′ = (𝑅 \ 𝑄) ∪ 𝑄 ′, then
𝐴(𝑅) = 𝐴((𝑅\𝑄) ∪𝑄 ′) and 𝑑 = 𝜆(𝑅′) − 𝜆(𝑅) is a positive odd number. If there is a positive root
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𝛼 such that 𝑠𝛼 (𝑄) = 𝑄 ′ but no positive root 𝛼′ < 𝛼 moves a C in R to an N, then 𝑅′ has type
𝐴𝑝𝐶𝑞−1𝑁𝑟+1.

(iv) If Q is an alignment in R, 𝑄 ′ is the corresponding nesting quadruple, and 𝑅′ = (𝑅 \𝑄) ∪𝑄 ′, then
𝑑 = 𝜆((𝑅\𝑄) ∪𝑄 ′) − 𝜆(𝑅) is a strictly positive even number.

Lemma 4.8. Proposition 4.7 holds if W has type 𝐷6.

Proof of Lemma 4.8. Throughout the proof, we will identify both R and the coplanar quadruples within
R with their corresponding matchings (as in Lemma 3.1 and Remark 3.6). Recall that we will often
write a 2-block {𝑎, 𝑏} in a matching as 𝑎𝑏.

Suppose that 𝛼𝑖 is a simple root, so that the reflection 𝑠𝛼𝑖 acts as the transposition (𝑖, 𝑖 + 1). We will
assume that 𝛼𝑖 ∉ 𝑅, so that we have 𝑅 = {𝑎𝑖, (𝑖 + 1)𝑏, 𝑒 𝑓 } and the coplanar quadruple moved by 𝑠𝛼𝑖 is
𝑄 = {𝑎𝑖, (𝑖 + 1)𝑏}. Let 𝑄 ′ be any other coplanar quadruple in R. Then 𝑄 ′ is of the form {𝑥𝑦, 𝑒 𝑓 } with
𝑥 ∈ {𝑎, 𝑏} and 𝑦 ∈ {𝑖, 𝑖 + 1}, and we have 𝑠𝛼𝑖 (𝑄

′) = {{𝑥, 𝑠𝛼𝑖 (𝑦)}, 𝑒 𝑓 }. Since the numbers i and 𝑖 + 1
are only distance 1 apart, the four elements 𝑥, 𝑠𝛼𝑖 (𝑦), 𝑒, 𝑓 appearing in 𝑄 ′ have the same relative order
as the numbers 𝑥, 𝑦, 𝑒, 𝑓 ; therefore, 𝑄 ′ and 𝑠𝛼𝑖 (𝑄

′) have the same type. It follows that Q is the only
quadruple in R that is changed to a quadruple of another type by 𝑠𝛼𝑖 . Note that Q will be an alignment
if 𝑎 < 𝑖 < 𝑖 + 1 < 𝑏; Q will be a crossing if 𝑎 < 𝑏 < 𝑖 or 𝑖 + 1 < 𝑎 < 𝑏 or 𝑏 < 𝑖 < 𝑖 + 1 < 𝑎; and Q
will be a nesting if 𝑏 < 𝑎 < 𝑖 or 𝑖 + 1 < 𝑏 < 𝑎. We have 𝜆(𝑠𝛼𝑖 (𝑅)) = 𝜆(𝑅) + 1 in the first three of these
six cases and 𝜆(𝑠𝛼𝑖 (𝑅)) = 𝜆(𝑅) − 1 in the last three cases. The first of the six cases corresponds to the
situation in (1), and the second and third cases correspond to the situation in (2). Part (i) follows.

Suppose that Q and 𝑄 ′ are as in the statement of (ii), with Q being the alignment {𝑎1𝑎2, 𝑏1𝑏2} for
some 𝑎1 < 𝑎2 < 𝑏1 < 𝑏2. If 𝑏1 = 𝑎2 + 1, then the simple root 𝑠𝑎2 moves an A to a C by moving Q, and
we have 𝑅′ = 𝑠𝛼2 (𝑅); therefore, 𝑅′ has type 𝐴𝑝−1𝐶𝑞+1𝑁𝑟 by (i). If 𝑏1 > 𝑎2 + 1, then Q must be one of
the following five quadruples:

{12, 56}, {12, 45}, {12, 46}, {23, 56}, and {13, 56}.

Direct computation shows that d equals 5, 1, 3, 1 and 3 in these cases, respectively. It follows that d is a
positive odd number.

To prove the second assertion in (ii), we prove its contrapositive. If 𝑅′ does not have type 𝐴𝑝−1𝐶𝑞+1𝑁𝑟 ,
then Q must be one of five quadruples listed in the last paragraph. We claim that in each case, for every
positive root 𝛼 such that 𝑠𝛼 (𝑄) = 𝑄 ′, there exists a positive root 𝛼′ < 𝛼 that moves another alignment
in R other than Q to a crossing. Specifically, we may always take 𝛼′ to be 𝜀2 − 𝜀3 in the first three cases
and 𝜀4 −𝜀5 in the last two cases. For example, the only possibilities for 𝛼 if 𝑄 = {12, 56} are 𝜀2 ±𝜀5 and
𝜀1 ± 𝜀6, and for all these possibilities the root 𝛼′ = 𝜀2 − 𝜀3 is smaller than 𝛼 and moves an alignment in
R other than Q to a crossing. This completes the proof of the desired contrapositive.

A similar argument proves (iii). This time, we have 𝑄 = {𝑎1𝑎2, 𝑏1𝑏2} for some 𝑎1 < 𝑏1 < 𝑎2 < 𝑏2.
If we have 𝑏1 = 𝑎1 +1 or 𝑏2 = 𝑎2 +1, then the simple root 𝛼𝑎1 or 𝛼𝑎2 moves Q to a nesting 𝑄 ′, so 𝑅′ has
type 𝐴𝑝𝐶𝑞−1𝑁𝑟+1 by (i). The only remaining possibility for Q is {14, 36}. If 𝛼 is a positive root such
that 𝑠𝛼 (𝑄) = 𝑄 ′, then 𝛼 ∈ {𝜀1 ± 𝜀3, 𝜀4 ± 𝜀6}. Direct computation shows that any simple root 𝛼′ < 𝛼
moves some crossing in R other than Q to a nesting.

Finally, (iv) follows by combining (ii) and (iii) since 𝑅′ can be obtained from by first replacing Q in
R with its corresponding crossing 𝑄 ′′ and then replacing 𝑄 ′′ in the result with 𝑄 ′. �

Proof of Proposition 4.7. If W has type 𝐷4 then there are only three possibilities for R, and all the
assertions follow by direct verification. By Lemma 4.8, we may therefore assume that the rank of W is
at least 7.

For each coplanar quadruple 𝑄 ⊆ 𝑅, we define 𝐻𝑄 to be the set of all 6-subsets H of R such that
there exists a 𝐷6-subsystem of Φ containing both Ψ𝑄 and H, where Ψ𝑄 is the 𝐷4-subsystem associated
with Q. By Proposition 3.20, if 𝑄1 is any coplanar quadruple in R, then either 𝑄1 = 𝑄, or 𝑄1 ∩𝑄 = ∅,
or |𝑄1 ∩𝑄 | = 2 and there is a unique element of 𝐻Ψ that contains both Q and 𝑄1.
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We now prove (iii). By tracking the contributions towards the crossing number made by the three
types of coplanar quadruples 𝑄1 ⊆ 𝑅 just mentioned, we note that

𝐶 (𝑅′) − 𝐶 (𝑅) = −1 +
∑

𝐻 ∈𝐻𝑄

(
𝐶 ((𝐻\𝑄) ∪𝑄 ′) − 𝐶 (𝐻) + 1

)
. (4.1)

Here, the term −1 comes from the case 𝑄1 = 𝑄 since the crossing Q in R is replaced by the non-crossing
feature 𝑄 ′ as we change R to 𝑅′. In the second case where 𝑄1 ∩𝑄 = ∅, the quadruple 𝑄1 lies in both R
and 𝑅′ and thus does not contribute to the difference 𝐶 (𝑅′) −𝐶 (𝑅). Finally, every 𝑄1 with |𝑄1 ∩𝑄 | = 2
appears together with Q in a unique element H of 𝐻𝑄 and contributes a term in the sum over 𝐻𝑄, where
we have added 1 to the difference 𝐶 ((𝐻\𝑄) ∪𝑄 ′) − 𝐶 (𝐻) to account for the fact that the change from
Q to 𝑄 ′ in H has been recorded by the term −1 in the first case.

Similar arguments based on the facts that 𝑁 (𝑄 ′) = 𝑁 (𝑄) + 1 and 𝐴(𝑄 ′) = 𝐴(𝑄) show that

𝑁 (𝑅′) − 𝑁 (𝑅) = 1 +
∑

𝐻 ∈𝐻𝑄

(
𝑁 ((𝐻\𝑄) ∪𝑄 ′) − 𝑁 (𝐻) − 1

)
(4.2)

and

𝐴(𝑅′) − 𝐴(𝑅) =
∑

𝐻 ∈𝐻𝑄

(
𝐴((𝐻\𝑄) ∪𝑄 ′) − 𝐴(𝐻)

)
. (4.3)

Since 𝜆 = 𝐶 + 2𝑁 , it follows from Equations (4.1) and (4.2) that

𝜆(𝑅′) − 𝜆(𝑅) = 1 +
∑

𝐻 ∈𝐻𝑄

(
𝜆((𝐻\𝑄) ∪𝑄 ′) − 𝜆(𝐻) − 1

)
. (4.4)

By Lemma 4.8.(iii), each summand in the sum over 𝐻𝑄 is zero in Equation (4.3) and is a nonnegative
even number in Equation (4.4); therefore, we have 𝐴(𝑅′) = 𝐴(𝑅), and the number 𝑑 = 𝜆(𝑅′) − 𝜆(𝑅) is
a positive odd number.

To prove the last assertion in (ii), suppose that 𝑠𝛼 (𝑄) = 𝑄 ′ for some positive root 𝛼, but no positive
root 𝛼′ < 𝛼 moves a C to an N in R. The same minimality condition then applies if R is replaced by
an element of 𝐻𝑄, so every summand in the sums over 𝐻𝑄 in Equations (4.1) and (4.2) is zero by
Lemma 4.8 (iii). It follows that 𝑅′ has type 𝐴𝑝𝐶𝑞−1𝑁𝑟+1, which proves Proposition 4.7 (iii).

The proof of Proposition 4.7 (ii) follows by a similar but shorter argument, and the proof of Propo-
sition 4.7 (iv) follows by combining parts (ii) and (iii).

Finally, to prove Proposition 4.7 (i), assume that 𝛼𝑖 is a simple root such that 𝛼𝑖 ∉ 𝑅. We have already
proved part (i) if W has type 𝐷4, and this implies that either 𝛼𝑖 moves an A to a C or a C to an N. In the
former case, the conclusions follow from part (ii), and in the latter case, they follow from part (iii), in
each case because the simple root 𝛼𝑖 is minimal in the order ≤. �

Proof of Theorem 4.5. We first prove (i). Proposition 4.7 (i) proves that (𝑋, 𝜆) is a scaled W-set, so it
suffices to show (𝑋, 𝜆) satisfies the axioms (QP1) and (QP2). We do so by induction on n.

If 𝑛 = 4 or 𝑛 = 6, then W has type D, and the axioms (QP1) and (QP2) can be proved by
direct verification or as follows. Suppose 𝑛 = 2𝑘 . By Remark 3.7, it suffices to show that (𝑋, 𝜆) is a
quasiparabolic set for the symmetric group 𝑆𝑛. We may identify the set X with the set 𝑋 ′ of fixed-
point free involutions in 𝑆𝑛 = 𝑊 (𝐴𝑛−1), with each collinear pair {𝜀𝑖 ± 𝜀 𝑗 } in a maximal set 𝑅 ∈ 𝑋
corresponding to a factor (𝑖, 𝑗) in an involution 𝜄 ∈ 𝑋 ′. Under this identification, the actions of 𝑆𝑛 on
𝑋 ′ and X coincide with each other, so it suffices to show that 𝑋 ′ is a quasiparabolic set for 𝑆𝑛 under the
level function 𝜆. Rains and Vazirani [43, Section 4] proved that 𝑋 ′ is a quasiparabolic set for 𝑆𝑛 under
the level function h given by ℎ(𝜄) = (ℓ(𝜄) − 𝑘)/2, where ℓ denotes Coxeter length, so it further suffices to
show that whenever an involution 𝜄 ∈ 𝑆𝑛 corresponds to a maximal set R of positive orthogonal roots, we
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have (ℓ(𝜄) − 𝑘)/2 = 𝜆(𝑅). This can be proved by an exhaustive check or by induction on 𝜆(𝑅) by using
the first three cases in the second paragraph of the proof of Lemma 4.8. For example, the involution

𝜄 = (13) (26) (45) = 𝑠2𝑠1𝑠3𝑠5𝑠4𝑠3𝑠5𝑠4𝑠2 ∈ 𝑆6

corresponds to the set 𝑅 = {13, 26, 45} of type 𝐴𝐶𝑁 . In this case, we have (ℓ(𝜄) − 𝑘)/2 = (9 − 3)/2
and 𝜆(𝑅) = 3, as required.

Now assume 𝑛 ≥ 7. Let 𝑟 = 𝑠𝛼 ∈ 𝑇 be the reflection corresponding to a root 𝛼, and let 𝑥 ∈ 𝑋 . If
𝑟𝑥 ≠ 𝑥, then ±𝛼 are not in x, so r moves an A to a C, or a C to an N, or an A to an N, or vice versa by
Remark 3.12. It follows from Proposition 4.7 (ii), (iii) and (iv) that 𝜆(𝑟𝑥) > 𝜆(𝑥) in all the first three
cases and 𝜆(𝑟𝑥) < 𝜆(𝑥) in the last three cases; therefore, axiom (QP1) holds.

To prove axiom (QP2), assume that we have 𝑟 ∈ 𝑇 , 𝑥 ∈ 𝑋 , 𝑠 ∈ 𝑆, 𝜆(𝑟𝑥) > 𝜆(𝑥) and 𝜆(𝑠𝑟𝑥) < 𝜆(𝑠𝑥).
Then the definition of scaled W-sets forces 𝜆(𝑟𝑥) = 𝜆(𝑠𝑥) = 𝜆(𝑥) + 1, so each of r and s must be an 𝐴𝐶
or𝐶𝑁 move by Proposition 4.7 (ii), (iii) and (iv). Let 𝑄1 and 𝑄2 be the coplanar quadruples of roots in R
moved by r and s, respectively. Then 𝑄1 and 𝑄2 are disjoint, or coincide with each other, or intersect in
two elements by Proposition 3.20. If𝑄1 and𝑄2 were disjoint, we would have𝑄2 ⊆ 𝑟 (𝑅), so that s would
move𝑄2 in 𝑟 (𝑅), and Proposition 4.7 (ii) and (iii) would imply that 𝜆(𝑠𝑟𝑥) = 𝜆(𝑟𝑥)+1 > 𝜆(𝑟𝑥) = 𝜆(𝑠𝑥),
contradicting the assumption that𝜆(𝑠𝑟𝑥) < 𝜆(𝑠𝑥). If𝑄1 = 𝑄2, then the fact that𝜆(𝑟𝑥) = 𝜆(𝑠𝑥) = 𝜆(𝑥)+1
implies that s and r must both be 𝐴𝐶 moves or both be𝐶𝑁 moves, according as 𝑄1 = 𝑄2 is an alignment
or crossing, by Proposition 4.7. It follows from Remark 3.12 that 𝑟𝑥 = 𝑠𝑥. Finally, if |𝑄1 ∩𝑄2 | = 2, then
Proposition 3.20 implies that there is a subsystem Σ of type 𝐷6 containing both 𝑄1 and 𝑄2. Applying
the inductive hypothesis to Σ proves that 𝑟𝑥 = 𝑠𝑥, which completes the proof. �

We end this subsection by recording some useful consequences of Proposition 4.7 concerning sums
of n-roots:

Corollary 4.9. Let W be a Weyl group of type 𝐸7, 𝐸8 or 𝐷𝑛 with n even.

(i) If 𝛽 ≤𝑄 𝛾 are two positive n-roots that are comparable in the quasiparabolic order, then we have
𝜎(𝛽) ≤ 𝜎(𝛾), with equality if and only if we have 𝐴(𝛽) = 𝐴(𝛾).

(ii) If 𝛼𝑖 is a simple root and R is a maximal orthogonal set of positive roots, then we have

𝜎(𝑠𝑖 (𝑅)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜎(𝑅) − 2𝛼𝑖 if 𝛼𝑖 ∈ 𝑅 or 𝛼𝑖 moves a 𝐶 to an 𝐴,

𝜎(𝑅) + 2𝛼𝑖 if 𝛼𝑖 moves an 𝐴 to a 𝐶,

𝜎(𝑅) otherwise.

(iii) If 𝛼𝑖 is a simple root and 𝛽 is a positive n-root of type 𝐴𝑝𝐶𝑞𝑁𝑟 such that 𝜎(𝑠𝛼𝑖 (𝛽)) > 𝜎(𝛽), then
𝑠𝛼𝑖 (𝛽) is a positive n-root of type 𝐴𝑝−1𝐶𝑞+1𝑁𝑟 , and we have 𝜎(𝑠𝛼𝑖 (𝛽)) − 𝜎(𝛽) = 2𝛼𝑖 . If 𝛽 is
nonnesting, then so is 𝑠𝛼𝑖 (𝛽).

Proof. All the claims can be proved by examining the effects of various types of (simple) reflections
on sums and levels of n-roots recorded in Theorem 3.10 and Proposition 4.7. We first prove (i). By the
definition of ≤𝑄, it is enough to consider the case where 𝑟 ∈ 𝑇 is a reflection and 𝛾 = 𝑟 (𝛽) satisfies
𝜆(𝛽) < 𝜆(𝛾). By Proposition 4.7, this implies that r is an 𝐴𝐶, 𝐶𝑁 or 𝐴𝑁 move. The proof of (i) then
follows from Theorem 3.10 (vi).

We now prove (ii). If 𝛼𝑖 ∈ 𝑅, then 𝜎(𝑠𝑖 (𝑅)) = 𝜎(𝑅) − 2𝛼𝑖 because 𝑠𝑖 (𝛼𝑖) = −𝛼𝑖 . If 𝛼𝑖 is a 𝐶𝑁 or
𝑁𝐶 move, Theorem 3.10 (vi) implies that 𝜎(𝑠𝛼𝑖 (𝑅)) = 𝜎(𝑅). It follows from Proposition 4.7 (i) that
the only other possibility is that 𝛼𝑖 moves an A to a C or vice versa. By Theorem 3.10 (vi), this can only
happen if 𝛼𝑖 is the unique simple root in the corresponding nesting (i.e., the root 𝛼2 in the explicitly
constructed sets Ψ+

2 = Ψ+
𝑁 in the proof of that theorem). Explicit computation shows that root sums in

this case differ by 2𝛼𝑖 in the precise manner described in the statement, which completes the proof of (ii).
The first part of (iii) follows immediately from (ii) and Proposition 4.7 (i). The assertion about

nonnesting n-roots follows from the special case 𝑟 = 0. �
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Remark 4.10. Burns and Pfeiffer [9, Theorem 1.2] prove that if T is a maximal order abelian subgroup
of one of the groups W in Theorem 4.5, then T is elementary abelian of order 2𝑛, where n is the rank of
W. They also prove that the set of all such subgroups forms a single conjugacy class [9, Theorem 3.1].
It follows that the stabilizers of the elements 𝑥 ∈ 𝑋 can be defined abstractly from the group structure
of W: they are the normalizers of the maximal order abelian subgroups of W.

4.3. Extremal elements

In this subsection, we identify X with the set Φ+
𝑛 of positive n-roots as usual and discuss an application

of Theorem 4.5 concerning the maximally aligned and maximally nested n-roots, which turn out to be
the unique W-minimal and W-maximal elements of the set X. The uniqueness of the maximally aligned
and maximally nested n-root is not a priori clear, but it will follow conveniently from the general theory
of quasiparabolic sets.

Proposition 4.11. Let W be a Weyl group of rank n of types 𝐸7, 𝐸8 or 𝐷𝑛 for n even, and let M be the
number of coplanar quadruples in a positive n-root.

(i) There is a unique positive n-root, 𝜃𝐴, of type 𝐴𝑀 , and it corresponds to the unique W-minimal
element of the quasiparabolic set X of Theorem 4.5.

(ii) There is a unique positive n-root, 𝜃𝑁 , of type 𝑁𝑀 , and it corresponds to the unique W-maximal
element of the quasiparabolic set X of Theorem 4.5.

Proof. We recall that by Theorem 2.8, Remark 2.9 and Corollary 2.10 of [43], every orbit of a quasi-
parabolic set contains at most one W-minimal and at most one W-maximal element. If such a W-minimal
or W-maximal element exists, then it can be identified as the unique element in the orbit with the mini-
mal or maximal possible level, respectively.

The set X is finite, so it has at least one W-maximal and one W-minimal element. Since X consists
of a single W-orbit by Lemma 3.2, it follows from the paragraph preceding this proposition that X has
a unique W-maximal and a unique W-minimal element, and that they are the unique elements with the
minimal and maximal possible level.

Let R be a maximal orthogonal set of positive roots. If R contains any coplanar quadruple Q that is
a crossing or a nesting, then by Remark 3.12, we can find a reflection 𝑠𝛼 that moves Q to an alignment
or a crossing, respectively, and in both cases, Proposition 4.7 implies that 𝜆(𝑠𝛼 (𝑅)) < 𝜆(𝑅). Iterating
this procedure proves the existence of an n-root of type 𝐴𝑀 , which achieves the lowest possible value
of 𝜆. The uniqueness property of the previous paragraph then completes the proof of (i). Part (ii) can be
proved similarly, by using the fact that any alignment or crossing in R would induce a level-increasing
𝐴𝐶 or 𝐶𝑁 move. �

We will prove shortly, in Proposition 5.2, that W also has a unique maximally crossing element, 𝜃𝐶 .
The element 𝜃𝐶 will be the unique minimal element in a quasiparabolic set of a parabolic subgroup of W.

Remark 4.12. In Theorem 5.7 below, we will introduce another partial order, ≤B, on the positive n-
roots. The argument of [30, Section 6] can be adapted to show that, under suitable identifications, ≤B
refines the monoidal order introduced by Cohen, Gijsbers and Wales [17, Section 3]. The quasiparabolic
order has 𝜃𝑁 and 𝜃𝐴 as its unique maximal and unique minimal elements, whereas the monoidal order
(and ≤B) has 𝜃𝐶 as its unique maximal element and has multiple minimal elements.

5. Feature-avoiding elements

In this section, we develop the properties of n-roots that avoid features of a given type: the alignment-free,
noncrossing and nonnesting elements. We show that the alignment-free elements form a quasiparabolic
set 𝑋𝐼 of a maximal standard parabolic subgroup 𝑊𝐼 of W, and that the unique maximally crossing
n-root 𝜃𝐶 is the unique 𝑊𝐼 -minimal element of 𝑋𝐼 . We also show that the sets of noncrossing elements
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and of nonnesting elements both form bases of the Macdonald representation 𝑗Φ𝑛𝐴1
(sgn) (Definition 1.1).

Moreover, the basis of noncrossing elements may be viewed as a canonical basis and behaves in a way
that is reminiscent of the set of simple roots of a root system (Theorem 5.7). The basis of nonnesting
elements admits an interesting combinatorial characterization: it is a distributive lattice induced by
a suitable Bruhat order (Theorem 5.13). Finally, we introduce the notion of 𝜎-equivalence classes
to tie together the alignment-free, noncrossing and nonnesting elements. These equivalence classes
turn out to be intervals with respect to the quasiparabolic order on X, and the set 𝑋𝐼 of alignment-
free elements form the top class with respect to a natural partial order. Any set of 𝜎-equivalence
class representatives forms a basis of the Macdonald representation, and the change of basis matrices
between any pair of such bases, including the noncrossing and nonnesting bases, are unitriangular
(Theorem 5.16).

Throughout the rest of this section, we assume that we are working with a Weyl group W of rank n
and type 𝐸7, 𝐸8 or 𝐷𝑛 for n even. All results hold independently of the rank and type of W, and we shall
omit the statement of the above assumption except in the main theorems. We define the sum of each
positive n-root 𝛾 to be the sum of the components of 𝛾, and we denote it by 𝜎(𝛾).

5.1. Alignment-free elements

Recall from Proposition 4.11 that W has a unique positive n-root 𝜃𝑁 that avoids both alignments and
crossings. We will use 𝜃𝑁 to help study general alignment-free elements.

Proposition 5.1. Let 𝜃𝑁 be the unique positive n-root of type 𝑁𝑀 .

(i) A noncrossing n-root (i.e., one of type 𝐴𝑝𝑁𝑟 ) has a simple component.
(ii) The n-root 𝜃𝑁 has a unique simple component, 𝛼𝑥 .

(iii) If 𝛼𝑖 is a simple root, then 𝐵(𝜎(𝜃𝑁 ), 𝛼𝑖) ≥ 0, where equality holds if and only if 𝛼𝑖 ≠ 𝛼𝑥 .
(iv) Let 𝑊𝐼 be the parabolic subgroup of W generated by the set 𝑆\{𝛼𝑥}. Then the stabilizer of 𝜎(𝜃𝑁 )

is precisely 𝑊𝐼 , and we have 𝐵(𝜎(𝜃𝑁 ), 𝛼𝑖) ≥ 0 for all simple roots 𝛼𝑖 .

Proof. Let 𝛾 be a noncrossing n-root of type 𝐴𝑝𝑁𝑟 , and let R be the set of components of 𝛾. Assume for
a contradiction that R contains no simple root, and let 𝛽 be a root of minimal height in R. The bilinear
form B has the property that 𝐵(𝛼, 𝛼′) ∈ {−2,−1, 0, 1, 2} for any roots 𝛼, 𝛼′, with 𝐵(𝛼, 𝛼′) = 2 if and
only if 𝛼 = 𝛼′. Furthermore, for any positive root 𝛼, there exists a simple root 𝛼𝑖 such that 𝐵(𝛼, 𝛼𝑖) > 0
[33, Theorem 1.5]. It follows that there exists a simple root 𝛼𝑖 such that 𝐵(𝛽, 𝛼𝑖) = 1.

Since 𝛼𝑖 is not in R, it moves a coplanar quadruple 𝑄 ⊆ 𝑅, and we have 𝛽 ∈ 𝑄 since 𝐵(𝛽, 𝛼𝑖) ≠ 0.
Let Ψ be the 𝐷4-subsystem associated to Q. By hypothesis, Q is either an alignment or a nesting, and 𝛽
is an element of Q of minimal height. It follows from the explicit description of the sets Ψ+

𝐴 = Ψ+
3 and

Ψ+
𝑁 = Ψ+

2 in the proof of Theorem 3.10 that 𝛽 is a root in the induced simple system of Ψ. However,
since 𝛼𝑖 is simple root of W, 𝛼𝑖 is also in this induced simple system. This is a contradiction because
we cannot have 𝐵(𝛾1, 𝛾2) > 0 for two simple roots 𝛾1 and 𝛾2 in a root system. This completes the proof
of (i).

Now suppose further that 𝛾 = 𝜃𝑁 . It follows from (i) that R contains a simple root, so assume for a
contradiction that R contains two simple roots, 𝛼𝑥 and 𝛼𝑦 . Let P be a path from x to y in the Dynkin
diagram Γ, and let 𝛽 be the root

∑
𝑝∈𝑃 𝛼𝑝 . Note that 𝐵(𝛽, 𝛼𝑥) = 𝐵(𝛽, 𝛼𝑦) = 1, so that 𝛼𝑥 and 𝛼𝑦

are both elements of the coplanar quadruple Q consisting of the roots moved by 𝛽. Let Ψ be the 𝐷4-
subsystem associated with Q. Then 𝛼𝑖 , 𝛼 𝑗 are both induced simple roots of Ψ since they are simple
roots of W. However, the type of R is 𝑁𝑀 , so Q is a nesting and thus contains a unique minimal root
by the description of the set Ψ+

𝑁 = Ψ+
2 in the proof of Theorem 3.10. This is a contradiction, and (ii)

follows.
To prove (iii), let 𝛼𝑖 be a simple root. If 𝛼𝑖 = 𝛼𝑥 , then 𝛼𝑥 is a component of 𝜃𝑁 and we have

𝑠𝑖 (𝜎(𝜃𝑁 )) = 𝜎(𝜃𝑁 ) − 2𝛼𝑖 .
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If 𝛼𝑖 ≠ 𝛼𝑥 , then 𝛼𝑖 is not a component of 𝜃𝑁 , and Proposition 4.7 (i) implies that 𝛼𝑖 moves an N to a
C. Corollary 4.9 (ii) then implies that

𝑠𝑖 (𝜎(𝜃𝑁 ) = 𝜎(𝜃𝑁 ).

Equation 2.1 implies that 𝐵(𝛼𝑖 , 𝜎(𝜃𝑁 )) ≥ 0 for all i, with equality holding if and only if 𝛼𝑖 ≠ 𝛼𝑥 .
Part (iv) follows from (iii) by [33, Theorem 1.12 (a)], which says that the stabilizer of 𝜎(𝜃𝑁 ) in W

is generated by the simple reflections it contains. �

Proposition 5.2. Let 𝜃𝑁 be the unique positive n-root of type 𝑁𝑀 , let 𝛼𝑥 be the unique simple component
of 𝜃𝑁 , and let 𝑊𝐼 be the parabolic subgroup of W generated by the set 𝑆\{𝛼𝑥}.

(i) The 𝑊𝐼 -orbit of positive n-roots that contains 𝜃𝑁 is a quasiparabolic set (𝑋𝐼 , 𝜆𝐼 ) for 𝑊𝐼 , where
𝜆𝐼 is the restriction of 𝜆 to 𝑋𝐼 .

(ii) The following are equivalent for a positive n-root 𝛽:
(1) 𝛽 has type 𝐶𝑞𝑁𝑟 for some q and r;
(2) 𝜎(𝛽) = 𝜎(𝜃𝑁 );
(3) 𝛽 is an element of 𝑋𝐼 .
In particular, the elements of the quasiparabolic set 𝑋𝐼 are precisely the alignment-free positive
n-roots.

(iii) There is a unique positive n-root, 𝜃𝐶 , of type 𝐶𝑀 , and it corresponds to the unique W-minimal
element of the quasiparabolic set 𝑋𝐼 .

(iv) If 𝛼 is a root of 𝑊𝐼 and 𝛽 is an n-root in 𝑋𝐼 whose components do not contain ±𝛼, then 𝜆(𝑠𝛼 (𝛽)) =
𝜆(𝛽) + 1 mod 2.

Proof. Part (i) follows from Theorem 4.5 by restriction.
We now prove the implication (1) ⇒ (2) of part (ii). Let 𝛽 be an n-root of type 𝐶𝑞𝑁𝑟 . If 𝑞 = 0, then

𝛽 = 𝜃𝑁 by Proposition 4.11 (ii) and (2) follows immediately, so suppose that 𝑞 > 0. By Remark 3.12
and Proposition 4.7 (iii), there exists a reflection 𝛼 that moves a crossing to a nesting in such a way that
the n-root 𝛽′ = 𝑠𝛼 (𝛽) has type 𝐶𝑞−1𝑁𝑟+1. Corollary 4.9 (ii) proves that 𝜎(𝛽′) = 𝜎(𝛽). It now follows
from induction on q that 𝜎(𝛽) = 𝜎(𝜃𝑁 ), proving (2).

To prove (2) ⇒ (3), assume that 𝜎(𝛽) = 𝜎(𝜃𝑁 ). By Lemma 3.2, there exists 𝑤 ∈ 𝑊 such that
𝑤(𝜃𝑁 ) = 𝛽, so we have

𝑤𝜎(𝜃𝑁 ) = 𝜎(𝑤(𝜃𝑁 )) = 𝜎(𝛽) = 𝜎(𝜃𝑁 ).

It follows that 𝑤 ∈ 𝑊𝐼 and 𝛽 ∈ 𝑋𝐼 , which proves (3).
To prove (3) ⇒ (1), let 𝛽 = 𝑤(𝜃𝑁 ) for some 𝑤 ∈ 𝑊𝐼 and let 𝑤 = 𝑠𝑖1 𝑠𝑖2 · · · 𝑠𝑖𝑘 be a reduced word of

w. Then each simple reflection 𝑠𝑖 𝑗 fixes 𝜎(𝜃𝑁 ), so it follows from Corollary 4.9 (ii) that 𝑠𝑖 𝑗 is a 𝐶𝑁 or
𝑁𝐶 move. It follows from Proposition 4.7 (i) that 𝛽 has type 𝐶𝑞𝑁𝑟 , which implies (1) and completes
the proof of (ii).

To prove (iii), note that the quasiparabolic set 𝑋𝐼 is finite and transitive, so it follows, as in the proof
of Proposition 4.11 (i), that 𝑋𝐼 has a unique minimal element (with respect to the quasiparabolic order)
– namely, the unique element having minimal level in 𝑋𝐼 . The elements of 𝑋𝐼 are all of type 𝐶𝑞𝑁𝑟 by
(ii) where 𝑞 + 𝑟 = 𝑀 and M is as in Corollary 3.19, so we have 𝜆𝐼 (𝛾) ≥ 𝑀 for any element 𝛾 ∈ 𝑋𝐼 ,
with equality holding if and only if 𝛾 has type 𝐶𝑀 . To prove (iii), it now remains to show that such an
element exists.

Let 𝛽 be an n-root in 𝑋𝐼 , and suppose 𝛽 has type 𝐶𝑞𝑁𝑟 where 𝑟 > 0. Then 𝜎(𝛽) = 𝜎(𝜃𝑁 ), and 𝛽
admits an 𝑁𝐶 move by a reflection 𝑠𝛼 corresponding to some root 𝛼. Theorem 3.10 (vi) implies that
𝜎(𝑠𝛼 (𝛽)) = 𝜎(𝛽) = 𝜎(𝜃𝑁 ), so 𝑠𝛼 (𝛽) is in 𝑋𝐼 and has type 𝐶𝑎𝑁𝑏 by (ii). Proposition 4.7 (iii) implies
that 𝑎 > 𝑞 and 𝑏 < 𝑟 , and that 𝑠𝛼 (𝛽) has a lower level than 𝛽. It follows that 𝑋𝐼 has an element of type
𝐶𝑀 , which completes the proof of (iii).
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Suppose that 𝛼 and 𝛽 are as in the statement of (iv). Since neither of ±𝛼 is a component of 𝛽, the
reflection 𝑠𝛼 must move a C to an N or vice versa by Remark 3.12 and (ii). Proposition 4.7 (iii) then
implies that 𝜆(𝛽) and 𝜆(𝑠𝛼 (𝛽)) have opposite parities. �

Remark 5.3. With some work, it can be shown that the positive n-roots in 𝑋𝐼 are also exactly the positive
n-roots 𝛽 with the property that every component 𝛼 of 𝛽 has x-height 1, in the sense that 𝛼 expands
into a linear combination of simple roots where the simple root 𝛼𝑥 appears with coefficient 1. Since the
simple roots of 𝑊𝐼 do not include 𝛼𝑥 , it follows that no root of 𝑊𝐼 divides any n-root in 𝑋𝐼 . In other
words, the ‘if’ condition in Proposition 5.2 (iv) in fact holds for every root 𝛼 of 𝑊𝐼 and every n-root
𝛽 ∈ 𝑋𝐼 . This implies that the sets of all n-roots in 𝑋𝐼 with even levels and of all n-roots in 𝑋𝐼 with odd
levels are interchanged by 𝑠𝛼 for every 𝛼 ∈ 𝑊𝐼 . In particular, these two sets have the same cardinality.

5.2. Two bases

The goal of this subsection is to prove that the noncrossing n-roots and the nonnesting n-roots each form
a basis for the Macdonald representation 𝑗Φ𝑛𝐴1

(sgn). The proof is based on a commutative version of
Bergman’s diamond lemma [5], which is a special case of Newman’s diamond lemma [41]. We define
the crossing order, ≤𝐶 , on the set of positive n-roots by declaring that 𝛽 ≤𝐶 𝛾 if either 𝜎(𝛽) < 𝜎(𝛾), or
both 𝜎(𝛽) = 𝜎(𝛾) and 𝛽 ≥𝑄 𝛾, where ≤𝑄 is the quasiparabolic order. Similarly, we define the nesting
order, ≤𝑁 , on the set of positive n-roots by declaring that 𝛽 ≤𝑁 𝛾 if either 𝜎(𝛽) < 𝜎(𝛾) (with respect
to the order ≤ on roots), or both 𝜎(𝛽) = 𝜎(𝛾) and 𝛽 ≤𝑄 𝛾.

Given any relation of the form 𝛾𝛾𝐶 = 𝛾𝛾𝑁 +𝛾𝛾𝐴 among three n-roots in the setting of Theorem 3.10
(where 𝛾𝐶 , 𝛾𝑁 and 𝛾𝐴 are the crossing, nesting and alignment corresponding to the same type-𝐷4
subsystem of the root system of W, respectively), we have 𝛾𝛾𝐴 <𝐶 𝛾𝛾𝐶 and 𝛾𝛾𝐴 <𝑁 𝛾𝛾𝑁 because
𝜎(𝛾𝐴) < 𝜎(𝛾𝐶 ) = 𝜎(𝛾𝑁 ) by Theorem 3.10 (vi). We also have 𝛾𝐶 <𝑁 𝛾𝑁 and 𝛾𝑁 <𝐶 𝛾𝐶 by
Proposition 4.7 (iii) and the definition of ≤𝑄, because for any component 𝛼 of 𝜃𝐴, the reflection 𝑠𝛼
moves the components of 𝛾𝐶 to those of 𝛾𝑁 by Theorem 3.10 (vi). It also follows that 𝜆(𝛾𝛾𝐶 ) < 𝜆(𝛾𝛾𝑁 )
and 𝛾𝛾𝐶 ≤𝑄 𝛾𝛾𝑁 . We may therefore regard the relations 𝛾𝛾𝐶 = 𝛾𝛾𝑁 +𝛾𝛾𝐴 as directed reduction rules,
each of which operates on a single term 𝜆𝑖𝛽𝑖 in a linear combination

∑
𝑖 𝜆𝑖𝛽𝑖 , where the 𝛽𝑖 are positive

n-roots. Each reduction rule can be used either (a) to express a positive n-root 𝛾𝛾𝐶 containing a crossing
as the sum of two other positive n-roots 𝛾𝛾𝐴, 𝛾𝛾𝑁 that are strictly lower than it in the crossing order, or
(b) to express a positive n-root 𝛾𝛾𝑁 containing a nesting as a linear combination of two other positive
n-roots 𝛾𝛾𝐴, 𝛾𝛾𝐶 that are strictly lower than it in the nesting order.

In order to apply the diamond lemma, we need to know (a) that it is never possible to apply an infinite
sequence of reduction rules to a linear combination of n-roots, and (b) that the reduction rules are
confluent. The latter condition means that if m is a linear combination of n-roots and if 𝑓1 and 𝑓2 are two
different reductions that can be applied to m, then the linear combinations 𝑓1(𝑚) and 𝑓2(𝑚) themselves
have a common reduction, 𝑚′. In other words, it is possible to reduce 𝑓1 (𝑚) to 𝑚′ by applying a
suitable sequence of reductions, and it is possible to reduce 𝑓2(𝑚) to the same 𝑚′ by applying a possibly
different sequence of reductions. If these two conditions hold, the conclusion of the diamond lemma is
that every element of the module may be uniquely expressed as an element to which no reduction rules
may be applied – in other words, a unique linear combination of noncrossing n-roots, or a unique linear
combination of nonnesting n-roots.

Conversely, the diamond lemma guarantees that if each element m can be uniquely expressed as a
linear combination of nonnesting (or noncrossing) n-roots, then the reduction relations are confluent.

Lemma 5.4. There are 2 nonnesting positive 4-roots in type 𝐷4, and 5 nonnesting positive 6-roots in
type 𝐷6. The nonnesting positive n-roots are linearly independent in the Macdonald representation
𝑗Φ𝑛𝐴1

(sgn) in each case.

Proof. In type 𝐷4, the set in question is {(𝜀2
1 − 𝜀2

2) (𝜀
2
3 − 𝜀2

4), (𝜀2
1 − 𝜀2

3) (𝜀
2
2 − 𝜀2

4)}, which is clearly
linearly independent. In type 𝐷6, the nonnesting positive 6-roots correspond to the matchings
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{14, 25, 36}, {13, 25, 46}, {13, 24, 56}, {12, 35, 46}, and {12, 34, 56}.

One can check that this set is linearly independent by comparing coefficients of 𝜀2
1𝜀

2
2𝜀

2
3, 𝜀2

1𝜀
2
2𝜀

2
4, 𝜀2

1𝜀
2
2𝜀

2
5,

𝜀2
1𝜀

2
3𝜀

2
4 and 𝜀2

1𝜀
2
3𝜀

2
5. �

Theorem 5.5. Let W be a Weyl group of type 𝐸7, 𝐸8 or 𝐷𝑛 for n even. Let 𝑗Φ𝑛𝐴1
(sgn) be the Macdonald

representation of W.

(i) The nonnesting positive n-roots form a Q-basis for 𝑗Φ𝑛𝐴1
(sgn).

(ii) The noncrossing positive n-roots form a Q-basis for 𝑗Φ𝑛𝐴1
(sgn).

(iii) The alignment-free positive n-roots span 𝑗Φ𝑛𝐴1
(sgn).

Proof. We first prove (i) by using the reduction rule 𝛾𝛾𝑁 = 𝛾𝛾𝐶 − 𝛾𝛾𝐴 of Theorem 3.10 (vi) to express
an n-root that contains a nesting as a linear combination of n-roots that are strictly lower in the nesting
order. There are no infinite descending chains in the crossing order because there are only finitely many
n-roots. It remains to show that the reductions 𝑓𝑖 are confluent, by induction on the rank n. By Lemma 5.4,
this is already known to be the case in types 𝐷4 and 𝐷6, so we assume from now on that we have 𝑛 > 6.

If two reductions, 𝑓𝑖 and 𝑓 𝑗 , affect different terms 𝜆𝑖𝛽𝑖 in the linear combination 𝑚 =
∑
𝑖 𝜆𝑖𝛽𝑖 , or if 𝑓𝑖

and 𝑓 𝑗 affect disjoint components of the same term 𝜆𝑖𝛽𝑖 , then 𝑓𝑖 and 𝑓 𝑗 commute. It is then immediate
that 𝑓𝑖 (𝑚) and 𝑓 𝑗 (𝑚) have a common reduction – namely, 𝑓𝑖 𝑓 𝑗 (𝑚) = 𝑓 𝑗 𝑓𝑖 (𝑚). The proof of confluence
now reduces to proving that if 𝑓𝑖 and 𝑓 𝑗 change at least one component in the same n-root 𝛽, then 𝑓𝑖 (𝛽)
and 𝑓 𝑗 (𝛽) have a common reduction. In this case, if 𝑄𝑖 and 𝑄 𝑗 are the sets of components of 𝛽 that are
moved by 𝑓𝑖 and 𝑓 𝑗 respectively, then Proposition 3.20 (i) implies that either 𝑄𝑖 = 𝑄 𝑗 , or |𝑄𝑖 ∩𝑄 𝑗 | = 2.
In the first case, we have 𝑓𝑖 = 𝑓 𝑗 , and there is nothing to prove. In the latter case, Proposition 3.20 (ii)
implies that there is a root subsystem Ψ of type 𝐷6 that contains 𝑄𝑖 and 𝑄 𝑗 as coplanar quadruples.
Confluence now follows by applying the inductive hypothesis to Ψ, which completes the proof of (i).

We now prove (ii) by using the reduction rule 𝛾𝛾𝐶 = 𝛾𝛾𝑁 + 𝛾𝛾𝐴 of Theorem 3.10 (vi) to express
an n-root that contains a crossing as a sum of n-roots that are strictly lower in the crossing order ≤𝐶 .
It follows that the noncrossing positive n-roots form a spanning set. There are 2 noncrossing positive
4-roots in type 𝐷4, corresponding to the matchings {12, 34} and {14, 23}, and 5 noncrossing positive
6-roots in type 𝐷6, corresponding to the matchings

{16, 25, 34}, {16, 23, 45}, {14, 23, 56}, {12, 36, 45}, and {12, 34, 56}.

These spanning sets are bases of 𝑗Φ𝑛𝐴1
(sgn) by (i), and the rest of the argument used to prove (i) now

applies mutatis mutandis.
Part (iii) follows by expressing the reduction rule in the form 𝛾𝛾𝐴 = 𝛾𝛾𝐶 − 𝛾𝛾𝑁 . By Theorem 3.10

(vi), we have 𝜎(𝛾𝛾𝐴) < 𝜎(𝛾𝛾𝑁 ) = 𝜎(𝛾𝛾𝐶 ). This implies that the relation can only be applied finitely
many times before the procedure terminates, and (iii) follows. �

We will refer to the bases of nonnesting and noncrossing positive n-roots as the nonnesting basis and
noncrossing basis of the Macdonald representation.

5.3. Properties of the noncrossing basis

In this subsection, we show that the noncrossing basis behaves in the Macdonald representation in many
ways like a simple system in the reflection representation. In particular, every n-root decomposes into the
noncrossing basis with coefficients of like sign, and the noncrossing n-roots are precisely the minimal
ones that are minimal in the sense that they are not further decomposable. This minimality property
yields an elementary algebraic characterization. We also show that the maximally crossing n-root 𝜃𝐶
has a maximal decomposition into the noncrossing basis in a natural sense, and that simple reflections
act on the noncrossing basis in a way reminiscent of the way they act on a simple system in the reflection
representation. In addition, as we explain in Remark 5.8, the noncrossing basis is a sign-coherence basis
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in the sense of cluster algebras, and it also essentially agrees with an IC basis in the sense of Du [21].
For the above reasons, we may think of the noncrossing basis as the canonical basis of the Macdonald
representation.

Lemma 5.6. If 𝛽 and 𝜆𝛽 are both n-roots for some scalar 𝜆, then we must have 𝜆 = ±1.

Proof. Theorem 5.5 implies that the scalar 𝜆 in (ii) lies inQ. Lemma 3.2 implies that there exists 𝑤 ∈ 𝑊
such that 𝑤(𝛽) = 𝜆𝛽. Because w has finite order, it follows that 𝜆 is a root of unity, and this forces
𝜆 = ±1. �

Theorem 5.7. Let W be a Weyl group of type 𝐸7, 𝐸8 or 𝐷𝑛 for n even, and let B be the set of noncrossing
positive n-roots.

(i) Every n-root is a Z-linear combination of elements of B, with coefficients of like sign. This sign is
positive if the n-root is positive, and is negative if the n-root is negative.

(ii) A positive n-root is noncrossing if and only if it is not a positive linear combination of other positive
n-roots.

(iii) Define 𝛾 ≤B 𝛾′ for positive n-roots 𝛾 =
∑
𝛽∈B 𝑐𝛽𝛽 and 𝛾′ =

∑
𝛽∈B 𝑐′𝛽𝛽 whenever 𝑐𝛽 ≤ 𝑑𝛽 for all

𝛽 ∈ B. Then ≤B is a partial order on the set X of positive n-roots. The maximally crossing element
𝜃𝐶 is the unique maximal element of X with respect to ≤B.

(iv) If 𝛾 ∈ B and 𝛼𝑖 is a simple root, then we have

𝑠𝛼𝑖 (𝛾) =

{
−𝛾 if 𝛼𝑖 |𝛾;
𝛾 + 𝛾′ otherwise, for some 𝛾′ ∈ B such that 𝛼𝑖 |𝛾′.

Proof. Let 𝛽 be a positive n-root. By the proof of Theorem 5.5, the result of applying reductions of the
form 𝛾𝛾𝐶 = 𝛾𝛾𝑁 + 𝛾𝛾𝐴 to 𝛽 until this is no longer possible has the effect of expressing 𝛽 as a positive
integer linear combination of noncrossing n-roots, and this procedure will always terminate after finitely
many steps. This proves (i) for positive n-roots, and the statement for negative n-roots follows because
n-roots occur in positive-negative pairs.

If 𝛽 is a positive n-root that contains a crossing, then 𝛽 is a positive linear combination of other
positive n-roots by applying the reduction rule in the first paragraph. Conversely, suppose that 𝛽 is a
noncrossing n-root and that 𝛽 =

∑
𝑖 𝜆𝑖𝛽𝑖 , where 𝜆𝑖 > 0 and 𝛽𝑖 is a positive n-root that is different from

𝛽 for each i. Part (i) implies that each of the 𝛽𝑖 is a positive linear combination of noncrossing n-roots.
Because no cancellation can occur in the sum, Theorem 5.5 (ii) implies that this is only possible if each
𝛽𝑖 is a multiple of 𝛽. Collecting terms, we then have 𝛽 = 𝜆𝛽𝑖 . Lemma 5.6 and the assumption that 𝛽𝑖 is
positive then imply that 𝜆 = 1 and 𝛽 = 𝛽𝑖 , which is a contradiction.

The relation ≤B in (iii) is clearly a partial order on X. Since X is finite, it contains at least one
maximal positive n-root with respect to ≤. To prove (iii), it then suffices to show that for every n-root
𝛾 ∈ 𝑋 not equal to 𝜃𝐶 , there is an element 𝛾′ ∈ 𝑋 such that 𝛾 <B 𝛾′. Let 𝛾 ∈ 𝑋 be an n-root not equal
to 𝜃𝐶 , so that we can factorize 𝛾 as 𝛾1𝛾

′, where 𝛾′ is either an alignment or a nesting. In either case,
Theorem 3.10 (vi) implies that there exists a reflection 𝑠𝛼 such that 𝑠𝛼 (𝛾′) is a crossing, and that we
have 𝑠𝛼 (𝛾

′) = 𝛾′ + 𝛾′′, where 𝛾′′ is a nesting if 𝛾′ is an alignment, or vice versa. We then have

𝑠𝛼 (𝛾) = 𝛾 + 𝛾1𝛾
′′,

where 𝛾1𝛾
′′ is also a positive n-root. If we write the n-root 𝑠𝛼 (𝛾) as 𝑠𝛼 (𝛾) =

∑
𝛽∈B 𝑒𝛽𝛽, then it follows

from (i) that 𝑐𝛽 ≤ 𝑒𝛽 for all 𝛽 ∈ B. It follows that 𝛾 <B 𝑠𝛼 (𝛾), proving (iii).
In the situation of (iv), it is immediate that if 𝛼𝑖 is a component of 𝛾, then 𝑠𝑖 (𝛾) = −𝛾. Suppose

from now on that this is not the case, and let 𝐴𝑝𝑁𝑟 be the type of 𝛾. Let R be the set of components
of 𝛾, let 𝑄 ⊆ 𝑅 be the coplanar quadruple moved by 𝛼𝑖 , and let Ψ be the 𝐷4-subsystem of Q. Then the
sets 𝑄,𝑄 ′ = 𝑠𝑖 (𝑄) and 𝑄 ′′ = Ψ+ \ (𝑄 ∪𝑄 ′) are the three distinct coplanar quadruples partitioning the
induced positive system by Proposition 3.8 (ii) and Theorem 3.10. Let Ψ+

𝐴,Ψ
+
𝐶 and Ψ+

𝑁 be the alignment,
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crossing and nesting in Ψ+, respectively. Then since 𝛼𝑖 is a simple root, Proposition 4.7 (i) implies that
we must have one of the following two situations:

(1) 𝑄 = Ψ+
𝐴, 𝑄 ′ = Ψ+

𝐶 , 𝑠𝑖 (𝛾) has type 𝐴𝑝−1𝐶𝑁𝑟 , and 𝑄 ′′ = Ψ+
𝑁 ;

(2) 𝑄 = Ψ+
𝑁 , 𝑄 ′ = Ψ+

𝐶 , 𝑠𝑖 (𝛾) has type 𝐴𝑝𝐶𝑁𝑟−1, and 𝑄 ′′ = Ψ+
𝐴.

Let 𝛾𝑥 =
∏

𝛽∈𝑥 𝛽 for all 𝑥 ∈ {𝑄,𝑄 ′, 𝑄 ′′}, and write 𝛾 = 𝛾1𝛾𝑄. Then we have 𝛾𝑄′ = 𝛾𝑄 + 𝛾𝑄′′ , and thus,

𝑠𝑖 (𝛾) = 𝛾1𝛾𝑄′ = 𝛾 + 𝛾1𝛾𝑄′′

in both of the above cases. We have 𝛼𝑖 ∈ Ψ by Proposition 3.8 (ii), and 𝛼𝑖 must lie in the induced simple
system of Ψ since it is simple. Theorem 3.10 (v) then implies that 𝛼 ∉ 𝑄 ′, and we have 𝛼𝑖 ∉ 𝑄 by
assumption, so we have 𝛼 ∈ 𝑄 ′′. It follows that 𝛼 divides the n-root 𝛾′′ = 𝛾1𝛾𝑄′′ .

It remains to prove that 𝛾′′ is noncrossing. We treat case (1) first. If 𝛼 is any root that is minimal
in Q, then 𝛼 moves the crossing 𝑄 ′ to the nesting 𝑄 ′′ by Theorem 3.10 (vi), so that 𝛾′′ = 𝑠𝛼 (𝑠𝑖 (𝛾)).
Since 𝑠𝑖 (𝛾) has type 𝐴𝑝−1𝐶𝑁𝑟 , 𝑄 ′ is the unique crossing in 𝑠𝑖 (𝛾); therefore, any root that moves a
C in 𝑠𝑖 (𝛾) to an N must move 𝑄 ′, and it must move 𝑄 ′ to 𝑄 ′′ by Proposition 3.8 (ii). Together with
Theorem 3.10 (vi), this further implies that any root moving 𝑄 ′ to 𝑄 ′′ must come from Q, so it follows
that 𝛼 is minimal among roots moving a C in 𝑠𝑖 (𝛾) to an N. It follows from Proposition 4.7 (iii) that
𝛾′′ = 𝑠𝛼 (𝑠𝑖 (𝛾)) has type 𝐴𝑝−1𝑁𝑟+1; therefore, 𝛾′′ is noncrossing. A similar argument shows that 𝛾′′

has type 𝐴𝑝+1𝑁𝑟−1 in case (2), so 𝛾′′ is noncrossing in both cases. �

Remark 5.8.

(i) Since the Weyl group W acts transitively on n-roots in types 𝐸7, 𝐸8 and 𝐷𝑛 for n even, the
first assertion of Theorem 5.7 (i) is equivalent to the assertion that the noncrossing basis B is
a sign-coherent basis of the Macdonald representation 𝑗Φ𝑛𝐴1

(sgn) in the sense of cluster alge-
bras ([10, Definition 2.2 (i)], [25, Definition 6.12]); that is, with respect to B, every element
of W acts on 𝑗Φ𝑛𝐴1

(sgn) by a matrix where the entries in each column all have the same sign.
It would be interesting to know whether these entries (i.e., the coefficients appearing in the ex-
pansion of arbitrary n-roots into the noncrossing elements) have any interpretation in terms of
categorification.

(ii) There are other constructions of the basis of noncrossing n-roots. For example, one can modify the
monomial bases of [23] by specializing the parameter to 1 and twisting by the sign representation,
where the monomial basis in turn agrees with a suitable IC basis in the sense of Du [21] by a
result of the first named author and Losonczy [29, Theorem 3.6]. However, the n-root approach
has the significant advantage that it is relatively easy, given an arbitrary group element w and an
arbitrary n-root 𝛼, to express 𝑤(𝛼) as a linear combination of basis elements. The bases in type
𝐷𝑛 may be constructed diagrammatically in terms of perfect matchings, as we explain at the end
of Section 6.1. There is also a diagrammatic construction in types 𝐸7 and 𝐸8, as described in [56]
and [27], but we do not pursue this here because it is not easy to recover the components of a basis
n-root by inspection of the corresponding diagram.

(iii) With some more work, it can be shown that every component of a noncrossing n-root has odd height
and, conversely, that every root of odd height occurs as a component of some noncrossing n-root.

5.4. Properties of the nonnesting basis

In this subsection, we show that the nonnesting basis is naturally indexed by a distributive lattice whose
unique maximal and minimal elements are given by the maximally crossing and aligned n-roots 𝜃𝐶 and
𝜃𝐴, respectively. This lattice is induced by the left weak Bruhat order ≤𝐿 of W and is isomorphic to a
lattice consisting of certain fully commutative elements. We recall that ≤𝐿 is defined by the condition
that 𝑣 ≤𝐿 𝑤 if 𝑤 = 𝑢𝑣 for some 𝑢 ∈ 𝑊 such that ℓ(𝑤) = ℓ(𝑢) + ℓ(𝑣) or, equivalently, by the condition
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that ℓ(𝑤𝑣−1) + ℓ(𝑣) = ℓ(𝑤). An element w in a simply laced Weyl group is fully commutative precisely
when no reduced word for w contains a factor of the form 𝑠𝑖𝑠 𝑗 𝑠𝑖 [54].

Definition 5.9. Let 𝜃, 𝜃 ′ be two nonnesting positive n-roots. A nonnesting sequence from 𝜃 to 𝜃 ′ is a
(possibly trivial) sequence (𝜃𝑖) = (𝜃0 = 𝜃, 𝜃1, . . . , 𝜃𝑟 = 𝜃 ′) of positive nonnesting n-roots such that for
all 1 ≤ 𝑗 ≤ 𝑟 , there exists a simple root 𝛼𝑖 𝑗 such that

𝑠𝑖 𝑗 (𝜃 𝑗−1) = 𝜃 𝑗 and 𝜎(𝜃 𝑗 ) > 𝜎(𝜃 𝑗−1). (5.1)

If 𝑠𝑖1 , 𝑠𝑖2 , · · · , 𝑠𝑖𝑟 are simple reflections satisfying the condition in (5.1), we say that w = 𝑠𝑖1 𝑠𝑖2 · · · 𝑠𝑖𝑟 is
a (𝜃, 𝜃 ′)-word, and we call the element w expressed by w a (𝜃, 𝜃 ′)-element. Note that we have 𝑤(𝜃 ′) = 𝜃.

Remark 5.10. Let 𝜃 be a nonnesting positive n-root of type 𝐴𝑝𝐶𝑞 and let 𝛼𝑖 be a simple root. The
condition that 𝜎(𝑠𝑖 (𝜃)) > 𝜎(𝜃) is equivalent to the condition that 𝐵(𝜎(𝜃), 𝛼𝑖) < 0 by Equation
(2.1) because 𝜎(𝑠𝑖 (𝜃)) = 𝑠𝑖 (𝜎(𝜃)). In addition, by Corollary 4.9 (ii) and (iii), the condition that
𝜎(𝑠𝑖 (𝜃)) > 𝜎(𝜃) is also equivalent to the condition that 𝜎(𝑠𝑖 (𝜃)) = 𝜎(𝜃) + 2𝛼𝑖 , or the condition that 𝑠𝑖
moves 𝜃 to an n-root of type 𝐴𝑝−1𝐶𝑞+1. It follows that if (𝜃0, 𝜃1, · · · , 𝜃𝑟 ) is a nonnesting sequence, then
we have 𝜆(𝜃 𝑗 ) = 𝜆(𝜃 𝑗−1) + 1 for all 1 ≤ 𝑗 ≤ 𝑟 . In particular, every nonnesting sequence is a saturated
chain with respect to the quasiparabolic order ≤𝑄.

Remark 5.11. Let 𝜃 and 𝜃 ′ be two positive n-roots with 𝜆(𝜃 ′) > 𝜆(𝜃), and let 𝑤 ∈ 𝑊 be an element such
that 𝑤(𝜃 ′) = 𝜃. Let w = 𝑠𝑖1 · · · 𝑠𝑖𝑟 be an arbitrary word for w. By the definition of quasiparabolic sets,
applying a simple reflection decreases the level by at most 1, so any element taking 𝜃 ′ to 𝜃 has length
at least 𝜆(𝜃 ′) − 𝜆(𝜃). It follows that 𝑟 ≥ 𝜆(𝜃 ′) − 𝜆(𝜃). It also follows that if 𝑟 = 𝜆(𝜃 ′) − 𝜆(𝜃), then w
is reduced and successively applying the simple reflections 𝑠𝑖𝑟 , · · · , 𝑠𝑖2 , 𝑠𝑖1 starting from 𝜃 ′ must reduce
the level by 1 at each step. In particular, if 𝑟 = 𝜆(𝜃 ′) − 𝜆(𝜃) and 𝜃 ′ is nonnesting, then it follows from
Proposition 4.7 (i) that each of these simple reflections is a 𝐶𝐴 move, so that conversely the sequence
𝜃w := (𝜃0, · · · , 𝜃𝑟 ) defined by 𝜃0 = 𝜃, 𝜃 𝑗 = 𝑠𝑖 𝑗 (𝜃 𝑗−1) for 1 ≤ 𝑗 ≤ 𝑟 must be a nonnesting sequence by
Remark 5.10.

Proposition 5.12. Let 𝑊𝐼 ⊂ 𝑊 be the parabolic subgroup of Proposition 5.2 (i), and let 𝜃 be a
nonnesting positive n-root of type 𝐴𝑝𝐶𝑞 .

(i) If 𝜃 is the maximally crossing element 𝜃𝐶 , then we have 𝐵(𝜎(𝜃), 𝛼𝑖) ≥ 0 for every simple root 𝛼𝑖 .
Otherwise, there exists a simple root 𝛼𝑖 such that 𝐵(𝜎(𝜃), 𝛼𝑖) < 0.

(ii) There exists a nonnesting sequence from 𝜃 to 𝜃𝐶 , and we have ht(𝜎(𝜃)) = ht(𝜎(𝜃𝐶 )) − 2𝑝.
(iii) Every (𝜃, 𝜃𝐶 )-word is reduced. Every (𝜃, 𝜃𝐶 )-element is fully commutative and has length p. Every

shortest element taking 𝜃𝐶 to 𝜃 has length p.
(iv) There is a unique (𝜃, 𝜃𝐶 )-element w. It is the unique shortest element in the coset 𝑤𝑊𝐼 and is also

the unique shortest element in W taking 𝜃𝐶 to 𝜃.
(v) There exists a nonnesting sequence from the maximally aligned element 𝜃𝐴 to 𝜃𝐶 that includes 𝜃.

Proof. The first assertion of (i) follows from Proposition 5.1 (iii) and the fact that 𝜎(𝜃𝐶 ) = 𝜎(𝜃𝑁 ) by
Proposition 5.2. Let V be the reflection representation of W and let

𝐷 = {𝑣 ∈ 𝑉 : 𝐵(𝑣, 𝛼𝑖) ≥ 0 for all simple roots 𝛼𝑖}.

The set D is a fundamental domain for the action of W on V by [33, Theorem 1.12 (a)], and we have
𝜃𝐶 ∈ 𝐷. If 𝜃 is a nonnesting n-root different from 𝜃𝐶 , then 𝜃 and 𝜃𝐶 are conjugate under the action
of W by Lemma 3.2, and therefore so are 𝜎(𝜃) and 𝜎(𝜃𝐶 ). It follows that 𝜃 ∉ 𝐷; therefore, we have
𝐵(𝜎(𝜃), 𝛼𝑖) < 0 for some simple root 𝛼𝑖 .

We prove (ii) by induction on p. If 𝑝 = 0, then 𝜃 = 𝜃𝐶 by Proposition 5.2 (iii) and the conclusion of
(ii) holds trivially. If 𝑝 > 0, then 𝜃 ≠ 𝜃𝐶 and there exists a simple root 𝛼𝑖 with 𝐵(𝜎(𝜃), 𝛼𝑖) < 0 by (i).
The simple reflection 𝑠𝑖 satisfies the condition (5.1), adds 2 to the height of the sum, and sends 𝜃 to an
n-root of type 𝐴𝑝−1𝐶𝑞+1 by Remark 5.10, so (ii) follows by induction.
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Let w = 𝑠𝑖1 · · · 𝑠𝑖𝑟 be a (𝜃, 𝜃𝐶 )-word expressing a (𝜃, 𝜃𝐶 ) element w. Then w takes 𝜃𝐶 to 𝜃, and we
have 𝑟 = 𝜆(𝜃𝐶 ) − 𝜆(𝜃) = 𝑝 by by Remark 5.10. Remark 5.11 then implies that w is reduced. It follows
that ℓ(𝑤) = 𝑟 = 𝑝. Since an element taking 𝜃𝐶 to 𝜃 has length at least 𝜆(𝜃𝐶 ) −𝜆(𝜃) = 𝑝 by Remark 5.11
and w is such a shortest element, it also follows that every shortest element taking 𝜃𝐶 to 𝜃 has length p.

To prove (iii), it remains to show that w cannot contain a factor of the form 𝑠𝛼𝑖 𝑠𝛼𝑗 𝑠𝛼𝑖 . By Remark 5.10
and direct computation, such a factor would imply the existence of a subsequence (𝜃𝑎, 𝜃𝑎+1, 𝜃𝑎+2, 𝜃𝑎+3)
such that

𝑠𝛼𝑖 (𝜃𝑎+2) = 𝑠𝛼𝑖 (𝜃𝑎 + 2𝛼𝑖 + 2𝛼 𝑗 ) = 𝜃𝑎 + 2𝛼𝑖 + 2𝛼 𝑗 = 𝜃𝑎+2.

This contradicts the fact that 𝑠𝛼𝑖 (𝜃𝑎+2) = 𝜃𝑎+3, which completes the proof of (iii).
Let w be a shortest element taking 𝜃𝐶 to 𝜃. Then w has length 𝑝 = 𝜆(𝜃𝐶 ) − 𝜆(𝜃) by (iii). Let

w = 𝑠𝑖1 . . . 𝑠𝑖𝑝 be a reduced word for w. Remark 5.11 implies that if we start from 𝜃𝐶 and apply
𝑠𝑖𝑝 , · · · , 𝑠𝑖2 , 𝑠𝑖1 successively, each simple reflection must be a 𝐶𝐴 move. In particular, 𝑠𝑖𝑝 must perform
a 𝐶𝐴 move on 𝜃𝐶 , so we have

𝑠𝑖𝑝 (𝜎(𝜃𝐶 )) = 𝜎(𝑠𝑖𝑝 (𝜃𝐶 )) = 𝜎(𝜃𝐶 ) − 2𝛼𝑖𝑝

by Corollary 4.9 (ii). This implies that 𝐵(𝜎(𝜃𝑁 ), 𝛼𝑖𝑝 ) = 𝐵(𝜎(𝜃𝐶 ), 𝛼𝑖𝑝 ) > 0, so it follows from
Proposition 5.1 (iii) that 𝛼𝑖𝑝 = 𝛼𝑥 where 𝛼𝑥 is the unique Coxeter generator of W not in I. In other
words, every reduced word for w ends in 𝑠𝛼𝑥 . It follows from [33, Proposition 1.10 (c)] that w is the
unique shortest element in 𝑤𝑊𝐼 .

If 𝑤′ is another shortest element taking 𝜃𝐶 to 𝜃, then 𝑤′𝑤−1 (𝜃𝐶 ) = 𝜃𝐶 , so 𝑤′𝑤−1 ∈ 𝑊𝐼 by
Proposition 5.1 (iv). It follows that the cosets 𝑤𝑊𝐼 and 𝑤′𝑊𝐼 are equal; therefore, we have 𝑤 = 𝑤′

because w and 𝑤′ are both the unique shortest element in the common coset 𝑤𝑊𝐼 = 𝑤′𝑊𝐼 by the last
paragraph. This proves the uniqueness of the shortest element taking 𝜃𝐶 to 𝜃. Part (iii) says that each
(𝜃, 𝜃𝐶 )-element is such a shortest element, and (iv) now follows.

Finally, to prove (v), we recall from Proposition 4.11 (i) that 𝜃𝐴 is the unique minimal element of
the set X. It follows from [43, Theorem 2.8] that there exists an element 𝑢 ∈ 𝑊 such that 𝑢(𝜃𝐴) = 𝜃
and ℓ(𝑢) = 𝜆(𝜃) − 𝜆(𝜃𝐴) = 𝑞. Let v be the unique (𝜃, 𝜃𝐶 )-element, let 𝑠𝑖1 · · · 𝑠𝑖𝑝 be a reduced word
for v, and let 𝑠′𝑖1 · · · 𝑠

′
𝑖𝑞

be a reduced word for 𝑢−1. Then 𝑢−1𝑣 takes 𝜃𝐶 to 𝜃𝐴 and has length at most
𝑝 + 𝑞 = 𝑀 = 𝜆(𝜃𝐶) −𝜆(𝜃𝐴), so 𝑢−1𝑣 must be the unique (𝜃𝐴, 𝜃𝐶 )-element by (ii) and (iii), and the word
w = 𝑠′𝑖1 · · · 𝑠

′
𝑖𝑞
𝑠𝑖1 · · · 𝑠𝑖𝑝 must be a reduced word for 𝑢−1𝑣. Remark 5.11 now implies that starting from

𝜃𝐴 and applying 𝑠′𝑖1 , · · · , 𝑠
′
𝑖𝑞
, 𝑠𝑖1 , · · · , 𝑠𝑖𝑝 successively yields a nonnesting sequence 𝜃w from 𝜃𝐴 to 𝜃𝐶

that reaches 𝜃 = 𝑣𝜃𝐶 after the first q steps, and (v) follows. �

Theorem 5.13. Let W be a Weyl group of rank n of types 𝐸7, 𝐸8 or 𝐷𝑛 for n even. Let M be the
number of coplanar quadruples in a maximal orthogonal set, and let 𝑊𝐼 be the parabolic subgroup of
Proposition 5.2 (i).

(i) There is a unique element 𝑤𝑁 ∈ 𝑊 of minimal length such that 𝑤𝑁 (𝜃𝐶 ) = 𝜃𝐴. The element 𝑤𝑁 is
fully commutative and has length ℓ(𝑤𝑁 ) = 𝑀 , and is the unique element of minimal length in the
coset 𝑤𝑁𝑊𝐼 .

(ii) The set

𝐿 = {𝑣(𝜃𝐶 ) : 𝑣 ≤𝐿 𝑤𝑁 }

is a complete, irredundantly described set of nonnesting positive n-roots. The set L has the structure
of a distributive lattice, induced by the weak Bruhat order ≤𝐿 .

(iii) If 𝛾1 and 𝛾2 are positive n-roots satisfying ht(𝜎(𝛾1)) − ht(𝜎(𝛾2)) = 2𝑀 , and w is an element
expressed by a word w of length M satisfying 𝑤(𝛾1) = ±𝛾2, then w is reduced, and we must have
𝛾1 = 𝜃𝐶 , 𝛾2 = 𝜃𝐴, 𝑤 = 𝑤𝑁 and 𝑤(𝛾1) = 𝛾2.
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Proof. Part (i) follows from Proposition 5.12 in the case where 𝜃0 = 𝜃𝐴.
Let 𝑤𝑁 ∈ 𝑊 be as in (i) and let 𝑣 ≤𝐿 𝑤𝑁 . We may complete a reduced word v for v to a reduced

word of the form w = u · v for 𝑤𝑁 . Remark 5.11 implies that w gives rise to a nonnesting sequence 𝜃w
from 𝜃𝐴 to 𝜃𝐶 that passes 𝑣(𝑤𝑁 ). It follows that the elements of L are indeed all nonnesting positive
n-roots. Conversely, for every nonnesting positive root 𝜃, it follows from Proposition 5.12 (v) and its
proof that 𝜃 = 𝑣(𝜃𝐶 ) for some element 𝑣 ≤𝐿 𝑤𝑁 , so the list L is complete. Finally, if 𝑣 ≤𝐿 𝑤𝑁 and
𝑣′ ≤𝐿 𝑤𝑁 are elements such that 𝑣(𝜃𝐶 ) = 𝑣′(𝜃𝐶 ), then 𝑣′𝑣−1 stabilizes 𝜃𝐶 and hence 𝜎(𝜃𝐶 ), so we
have 𝑣′𝑣 ∈ 𝑊𝐼 and 𝑣′𝑊𝐼 = 𝑣𝑊𝐼 . Since 𝑤𝑁 is the shortest element in 𝑤𝑁𝑊𝐼 , the elements 𝑣′ and v must
be the shortest elements in 𝑣𝑊𝐼 and 𝑣′𝑊𝐼 as well, which implies that 𝑣 = 𝑣′ as well. It follows that the
list L irredundantly describes the positive nonnesting n-roots, proving the first statement of (ii).

By [54, Theorem 3.2], the fact that 𝑤𝑁 is fully commutative implies that the poset {𝑥 : 𝑥 ≤𝐿 𝑤} is a
distributive lattice. This completes the proof of (ii).

Suppose that the conditions of (iii) hold, and let 𝑠𝑖1 𝑠𝑖2 · · · 𝑠𝑖𝑀 be a reduced expression for w. Since
ht(𝜎(𝛾1)) − ht(𝜎(𝛾2)) = 2𝑀 , as we start from 𝜃𝐶 and successively apply the simple reflection
𝑠𝑖𝑀 , . . . , 𝑠𝑖2 , 𝑠𝑖1 , the application of each simple reflection 𝑠𝑖 𝑗 must subtract 2 from the height of the
sum and change a C to an A by Corollary 4.9 (ii). It is therefore not possible at any stage for a simple
reflection to negate a component of an n-root, which implies that we have 𝑤(𝛾1) = 𝛾2. Each simple
reflection 𝑠𝑖 𝑗 also causes no change in the number of nestings by Proposition 4.7 (i), so the fact that
ht(𝜎(𝛾1)) − ht(𝜎(𝛾2)) = 2𝑀 implies that 𝛾1 and 𝛾2 have types 𝐶𝑀 and 𝐴𝑀 , respectively, so we have
𝛾1 = 𝜃𝐶 and 𝛾2 = 𝜃𝐴. We then have 𝑤 = 𝑤𝑁 by (i), which completes the proof of (iii). �

Definition 5.14. We call the element 𝑤𝑁 from Theorem 5.13 (i.e., the unique element of minimal length
that sends 𝜃𝐶 to 𝜃𝐴) the nonnesting element of W.

In Section 6, we will compute the nonnesting element explicitly with the help of Theorem 5.13 (iii).

5.5. Sum equivalence

We say that two positive n-roots 𝛽 and 𝛾 of W are sum equivalent, or 𝜎-equivalent, if 𝜎(𝛽) = 𝜎(𝛾). If C
and𝐶 ′ are two 𝜎-equivalence classes, then we write𝐶 ≤𝜎 𝐶 ′ if 𝜎(𝛽) ≤ 𝜎(𝛾) for any 𝛽 ∈ 𝐶 and 𝛾 ∈ 𝐶 ′

in the usual order ≤ on roots (Section 2.2). The goal of this subsection is to show that the 𝜎-equivalence
classes of X are highly compatible with the quasiparabolic order ≤𝑄 and the feature-avoiding n-roots.
Proposition 5.15. Let B be the set of nonnesting positive n-roots of W.
(i) If 𝛽, 𝛽′ ∈ B are nonnesting positive n-roots with 𝜎(𝛽) = 𝜎(𝛽′), then we have 𝛽 = 𝛽′.

(ii) Each positive n-root 𝛾 is 𝜎-equivalent to a unique nonnesting n-root 𝑓 (𝛾) and a unique noncrossing
n-root 𝑔(𝛾). We have 𝑓 (𝛾) ≤𝑄 𝛾, and

𝛾 = 𝑓 (𝛾) +
∑

𝛽∈B:𝜎 (𝛽)<𝜎 (𝛾)

𝜆𝛽,𝛾𝛽

for suitable integers 𝜆𝛽,𝛾 .
(iii) Every 𝜎-equivalence class contains a unique nonnesting n-root, 𝛽1, and a unique noncrossing

n-root, 𝛽2. The 𝜎-equivalence class containing 𝛽1 and 𝛽2 is equal to the interval

[𝛽1, 𝛽2]𝑄 = {𝛾 ∈ 𝑋 : 𝛽1 ≤𝑄 𝛾 ≤𝑄 𝛽2}

in the quasiparabolic set X.
(iv) The set of alignment-free positive n-roots is a 𝜎-equivalence class and is equal to the interval

[𝜃𝐶 , 𝜃𝑁 ]𝑄 in the quasiparabolic set X. It is the unique maximal 𝜎-equivalence class with respect
to the partial order ≤𝜎 .

Proof. Suppose that 𝛽 and 𝛽′ are nonnesting positive n-roots with 𝜎(𝛽′) = 𝜎(𝛽). It follows from
Proposition 5.12 (ii) that 𝛽 and 𝛽′ have the same number of alignments – namely, the number 𝑝 =
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(ht(𝜎(𝜃𝐶 )) − ht(𝜎(𝛽)))/2. If 𝑝 = 0, then we have 𝛽 = 𝜃𝐶 = 𝛽′ by Proposition 5.2 (iii). If 𝑝 > 0, then
neither 𝛽 nor 𝛽′ equals 𝜃𝐶 , so there is a simple root 𝛼𝑖 satisfying 𝐵(𝜎(𝛽), 𝛼𝑖) = 𝐵(𝜎(𝛽′), 𝛼𝑖) < 0 by
Proposition 5.12 (i). By Remark 5.10, both 𝑠𝑖 (𝛽) and 𝑠𝑖 (𝛽

′) are nonnesting positive n-roots with 𝑝 − 1
alignments, and we have

𝜎(𝑠𝑖 (𝛽)) = 𝑠𝑖 (𝜎(𝛽)) = 𝜎(𝛽) + 2𝛼𝑖 = 𝜎(𝛽′) + 2𝛼𝑖 = 𝑠𝑖 (𝜎(𝛽′)) = 𝜎(𝑠𝑖 (𝛽
′)),

so (i) follows by induction on p.
Let 𝛾 be a positive n-root, and let ≤𝑁 be the nesting order defined in Section 5.2. If 𝛾 contains no

nesting, we can simply take 𝑓 (𝛾) = 𝛾. Otherwise, we can factorize 𝛾 = 𝛾′𝛾𝑁 where 𝛾𝑁 is a nesting.
By the second paragraph of Section 5.2, we can write 𝛾 = 𝛾′𝛾𝐶 − 𝛾′𝛾𝐴 where we have (a) 𝛾′𝛾𝐶 ≤𝑁 𝛾,
because 𝜎(𝛾′𝛾𝐶 ) = 𝜎(𝛾) and 𝛾′𝛾𝐶 <𝑄 𝛾, and (b) 𝛾′𝛾𝐴 ≤𝑁 𝛾, because 𝜎(𝛾′𝛾𝐴) < 𝜎(𝛾). Taking
𝑓 (𝛾) = 𝑓 (𝛾′𝛾𝐶 ) proves the existence of 𝑓 (𝛾) and the required expression for 𝛾 by induction on the
order ≤𝑁 . The uniqueness of 𝑓 (𝛾) follows from (i). We can use a similar induction using the crossing
order ≤𝐶 to show that 𝛾 is 𝜎-equivalent to a noncrossing n-root 𝑔(𝛾) such that 𝛾 ≤𝑄 𝑔(𝛾), and this
completes the proof of (ii).

It follows from (ii) that every 𝜎-equivalence class contains a unique nonnesting n-root, and that the
number of 𝜎-equivalence classes equals the number of nonnesting n-roots. The latter number is the
dimension of the Macdonald representation and also the number of noncrossing roots by Theorem 5.5
(i) and (ii). Since each 𝜎-equivalence class contains at least one noncrossing n-root by (ii), it follows
that each 𝜎-equivalence class must contain exactly one nonnesting element and exactly one noncrossing
element. This proves the first sentence of (iii).

Let E be a 𝜎-equivalence class with unique nonnesting element 𝛽1 and unique noncrossing element
𝛽2. Then we have [𝛽1, 𝛽2]𝑄 ⊆ 𝐸 by Corollary 4.9 (i). Conversely, if 𝛾 is an n-root in E, then (ii) and its
proof imply that we may find a nonnesting n-root 𝑓 (𝛾) ∈ 𝐸 and a noncrossing n-root 𝑔(𝛾) ∈ 𝐸 such
that 𝑓 (𝛾) ≤𝑄 𝛾 ≤𝑄 𝑔(𝛾). We must have 𝑓 (𝛾) = 𝛽1 and 𝑔(𝛾2) = 𝛽2 by the uniqueness of the nonnesting
and noncrossing elements in E; therefore, we have 𝛾 ∈ [𝛽1, 𝛽2]𝑄. It follows that 𝐸 = [𝛽1, 𝛽2]𝑄.

For every nonnesting root 𝛽 not equal to 𝜃𝐶 , there is a nontrivial nonnesting sequence from 𝛽 to 𝜃𝐶
by by Proposition 5.12 (ii), so 𝜎(𝛽) < 𝜎(𝜃𝐶 ) by Definition 5.9. Part (iv) now follows from (iii) and
Proposition 5.2 (ii)–(iii). �

Theorem 5.16. Let W be a Weyl group of type 𝐸7, 𝐸8 or 𝐷𝑛 for n even. If B is any set of 𝜎-equivalence
class representatives, then B is a basis for the Macdonald representation 𝑗Φ𝑛𝐴1

(sgn). Furthermore, if we
order each such basis B = {𝛽1, · · · , 𝛽𝑘 } in a way compatible with the order ≤𝜎 (i.e., in such a way that
𝑖 < 𝑗 whenever 𝛽𝑖 <𝜎 𝛽 𝑗 ), then the change of basis matrix between any two such bases is unitriangular
with integer entries. In particular, this is true for the change of basis matrix between the nonnesting
basis and the noncrossing basis.

Proof. By Proposition 5.15 (ii), each element 𝛾 ∈ B is the sum of the nonnesting element 𝛾′ that is
𝜎-equivalent to 𝛾 and a Z-linear combination of nonnesting elements with strictly lower sums. The
nonnesting elements form a basis for 𝑗Φ𝑛𝐴1

(sgn) by Theorem 5.5 (i), from which it follows that the set B
is also a basis, and that the change of basis from B to the nonnesting basis is unitriangular with integer
entries. If B1 and B2 are two such bases, then the change of basis matrix from B1 to B2 is unitriangular
with integer entries because it is the product of the matrix changing B1 to B′ with the inverse of the
matrix changing B2 to B′, both of which are unitriangular with integer entries. Finally, the last assertion
follows because Proposition 5.15 (iii) implies that both the nonnesting and noncrossing bases are sets
of 𝜎-equivalence class representatives. �

Remark 5.17. Recall that the Möbius function, 𝜇, of a partially ordered set P is defined to satisfy
𝜇(𝑥, 𝑥) = 1, 𝜇(𝑥, 𝑦) = 0 if 𝑥 � 𝑦, and ∑

𝑧:𝑥≤𝑧≤𝑦
𝜇(𝑥, 𝑧) = 0
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if 𝑥 < 𝑦. A poset is Eulerian if we have 𝜇(𝑥, 𝑦) = (−1)𝜆(𝑦)−𝜆(𝑥) whenever 𝑥 ≤ 𝑦. It can be shown that if
𝑥, 𝑦 ∈ 𝑋 correspond to a nonnesting and noncrossing element, respectively, then the interval 𝐼 = [𝑥, 𝑦]
corresponds to a 𝜎-equivalence class if and only if I is Eulerian.
Remark 5.18. Reading [44] defines a poset congruence to be an equivalence relation on a poset X such
that

(i) each equivalence class is an interval;
(ii) the projection mapping 𝑥 ∈ 𝑋 to the maximal element in its equivalence class is order preserving;

and
(iii) the projection mapping 𝑥 ∈ 𝑋 to the minimal element in its equivalence class is order preserving.
It can be shown using [58, Proposition 42] that, in type 𝐷𝑛, the equivalence relation induced on X by 𝜎
is a poset congruence. It can also be shown (by direct computational verification, for example) that the
same is true in types 𝐸7 and 𝐸8.

6. Examples

In this section, we give type-specific details about the n-roots in types 𝐷𝑛 for n even, 𝐸7, and 𝐸8. In
all types, we explicitly describe the maximally aligned, crossing and nesting n-roots 𝜃𝐴, 𝜃𝐶 and 𝜃𝑁 .
We find the nonnesting element 𝑤𝑁 (Definition 5.14), and we use 𝑤𝑁 and Theorem 5.13 (ii) to deduce
the dimension of the Macdonald representation 𝑗Φ𝑛𝐴1

(sgn). We also discuss type-specific properties of
the set 𝑋𝐼 of alignment-free positive n-roots for all types. In addition, we explain precise connections
between the Macdonald representation 𝑗Φ𝑛𝐴1

(sgn) of type 𝐷2𝑘 and a Specht module of the symmetric
group 𝑆2𝑘 (Proposition 6.2),

We note that by Lemma 3.1 and Remark 3.11, the noncrossing and nonnesting positive n-roots of
type 𝐷2𝑘 can be easily recovered from the well-studied noncrossing and nonnesting perfect matchings
of [2𝑘]. More generally, in all types, the nonnesting positive n-roots can be computed efficiently via the
elements the elements 𝜃𝐶 and 𝑤𝑁 by Theorem 5.13 (ii), and it is possible to construct the noncrossing
n-roots using Fan’s construction of monomial cells in [23]. In the notation of [23], the maximally aligned
n-root 𝜃𝐴 can be identified with the element 𝑏1𝑏3 · · · 𝑏2𝑘−1 in type 𝐷2𝑘 , with 𝑏2𝑏4𝑏6𝑏7 in type 𝐸7 (with
the labelling of Figure 1 (d)), and with 𝑏2𝑏3𝑏5𝑏7 in type 𝐸8 (with the labelling of Figure 1 (e)). In types
𝐸7 and 𝐸8, it is also possible to use a computer program to find all noncrossing and nonnesting n-roots
by generating all the (finitely many) positive n-roots and then removing all n-roots where a crossing or
nesting can be found. For these reasons, and to save space, we have chosen not to list the noncrossing and
nonnesting bases in type 𝐸7 or 𝐸8 in this paper (although the complete lists are available upon request).

6.1. Type 𝐷2𝑘

If W has type 𝐷𝑛 for an even integer 𝑛 = 2𝑘 , then the positive n-roots can be naturally identified
with the perfect matchings of [𝑛], as explained in Lemma 3.1 (ii). Under this identification, the actions
of W on the n-roots and on the matching agree, and the alignments, crossings and nestings in the n-
roots correspond to the alignments, crossings and nestings in the matchings in the obvious way by
Remark 3.11. We also recall from Section 2.3 and Remark 3.7 that the reflection 𝑟 = 𝑠𝛼 ∈ 𝑊 acts as
the transposition (𝑖 𝑗) on the n-roots for each root 𝛼 = 𝜀𝑖 ± 𝜀 𝑗 of W, so that the action of W factors
through the homomorphism 𝜙 : 𝑊 → 𝑆2𝑘 of Equation (2.2) to induce an action of 𝑆2𝑘 = 𝑊 (𝐴2𝑘−1)
on the n-roots, giving the Macdonald representation 𝑗Φ𝑛𝐴1

(sgn) the structure of an 𝑆2𝑘 -module (where
the elements of 𝑆2𝑘 permute the indices of the terms 𝜀2

𝑖 ). The above facts will allow us to connect the
theory of n-roots in type 𝐷𝑛 to some widely studied type-A objects and results.

Recall that the number of coplanar quadruples in each positive n-root is 𝑀 =
(𝑘
2
)
, the number of

pairs of 2-blocks, by Corollary 3.19.
Let 𝜈𝐴, 𝜈𝐶 and 𝜈𝑁 be the positive n-roots corresponding to the matchings {12, 34, · · · , (𝑛 −

1)𝑛}, {1(𝑘 + 1), 2(𝑘 + 2), · · · , 𝑘 (2𝑘)} and {1𝑛, 2(𝑛 − 1), · · · , 𝑘 (𝑘 + 1)}, respectively. Every pair of
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Figure 2. The heaps of the nonnesting elements of types 𝐷8, 𝐸7, and 𝐸8.

2-blocks in the first matching forms an alignment, so the matching contains
(𝑘
2
)
= 𝑀 alignments. It

then follows from Proposition 4.11 (i) that 𝜈𝐴 is the unique maximally aligned n-root 𝜃𝐴 in the set X.
Similar arguments show that 𝜈𝐶 = 𝜃𝐶 and 𝜈𝑁 = 𝜃𝑁 by Proposition 5.2 (iii) and Proposition 4.11 (ii),
respectively. Note that we have 𝜎(𝜃𝑁 ) = 2

∑𝑘
𝑖=1 𝜀𝑖 .

Let w be the element expressed by the word

w = w2,𝑘−2w3,𝑘−3 · · ·w𝑘,0,

where w𝑖, 𝑗 := 𝑠𝑖𝑠𝑖+2𝑠𝑖+4 · · · 𝑠𝑖+2 𝑗 . For example, in type 𝐷8, we have 𝑤 = (𝑠2𝑠4𝑠6) (𝑠3𝑠5) (𝑠4), and the
heap of w is shown in Figure 2 (a). The word w has M letters, and it is straightforward to verify that
𝑤(𝜃𝐶 ) = 𝜃𝐴, so it follows from Theorem 5.13 (i) that w is the fully commutative nonnesting element
𝑤𝑁 and w is a reduced word for it.

Since 𝑤𝑁 = 𝑤 is fully commutative, the elements in the set {𝑣 ∈ 𝑊 : 𝑣 ≤𝐿 𝑤𝑁 } are in bijection
with the order filters of the heap poset of 𝑤𝑁 . (See [54, Section 2.2] for the definition of the heap poset;
an order filter of a poset P is a subset of P such that 𝑦 ∈ 𝐼 whenever the conditions 𝑦 ∈ 𝑃, 𝑥 ∈ 𝐼, and
𝑥 ≤ 𝑦 hold.) These filters are in canonical correspondence with Dyck paths of order k, (i.e. staircase
walks from (0, 0) to (𝑘, 𝑘) that lie strictly below (but may touch) the diagonal 𝑦 = 𝑥). It is well known
[53, Theorem 1.5.1 (vi)] that the number of such paths is the k-th Catalan number, 𝐶𝑘 = 1

𝑘+1
(2𝑘
𝑘

)
.

Theorem 5.13 (ii) and Theorem 5.5 imply that the number of nonnesting positive n-roots of W is given by
𝐶𝑘 , as are the number of noncrossing positive n-roots and the dimension of the Macdonald representation
𝑗Φ𝑛𝐴1

(sgn).
The level function 𝜆 in type 𝐷2𝑘 has a combinatorial interpretation that is natural in the context of

combinatorial game theory [36]. The matching corresponding to an n-root 𝛽 can be identified with a
Steiner system 𝑆(1, 2, 2𝑘) (i.e., a collection of 2-blocks of [2𝑘] with the property that any singleton lies
in a unique 2-block). The level 𝜆(𝛽) then counts the number of 2-element subsets E of [2𝑘] with the
property that the matching corresponding to 𝛽 contains no 2-blocks of the form (𝐸 \ { 𝑗}) ∪ {𝑖} where
𝑖 ≤ 𝑗 and 𝑗 ∈ 𝐸 (in particular, the matching cannot contain E). With some more work, it can be shown
that each crossing gives rise to one such subset E, and each nesting gives rise to two such subsets.
This gives a combinatorial interpretation of the formula 𝜆(𝑥) = 𝐶 (𝑥) + 2𝑁 (𝑥), and also explains the
appearance of the product of odd quantum integers in [36, Equation (4.2)]. In addition, the quantity
𝐶 (𝑚) + 2𝑁 (𝑚) associated to each matching m appears as ‘𝐶 (𝑚) + 2𝑈 (𝑚)’ in the context of octabasis
Laguerre polynomials in [52, Sections 4 and 5], as the weight ‘𝜔(𝑚)’ in the context of Gaussian
q-distributions in [20, Theorem 4], and as ‘cov(𝑚) − cro(𝑚)’ in the context of q-Bessel numbers in
[15, Section 4].

The poset structure on the set 𝑋𝐼 in type 𝐷2𝑘 coincides with a familiar one.
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Proposition 6.1. Suppose W has type 𝐷2𝑘 . Then as a poset, the interval 𝑋𝐼 = [𝜃𝐶 , 𝜃𝑁 ] in the quasi-
parabolic set X is canonically isomorphic to the symmetric group 𝑆𝑘 under the (strong) Bruhat order
via the map 𝜑 : 𝑆𝑘 → 𝑋𝐼 sending each element 𝜏 ∈ 𝑆𝑛 to the n-root

𝜑(𝜏) =
𝑘∏
𝑖=1

(𝜀2
𝑖 − 𝜀2

𝜏 (𝑖)+𝑘 ). (6.1)

Under this bijection, we have

𝜆(𝜑(𝜏)) = 𝑀 + ℓ(𝜏)

for every 𝜏 ∈ 𝑆𝑘 , where M is the number of coplanar quadruples in each n-root and ℓ denotes Coxeter
length.

Proof. By Proposition 5.2 (ii), the set 𝑋𝐼 is the 𝜎-equivalence class of the n-root 𝜃𝑁 . We noted earlier
that 𝜎(𝜃𝑁 ) = 2

∑𝑘
𝑖=1 𝜀𝑖 , which implies that n-roots in 𝑋𝐼 are precisely the positive n-roots whose

components are all of the form 𝜀𝑖 ± 𝜀 𝑗 , where 1 ≤ 𝑖 ≤ 𝑘 < 𝑗 ≤ 2𝑘 . These are precisely the n-roots
listed in the theorem, so the map 𝜑 is surjective. It is clear that 𝜑 is also injective, so 𝜑 is a bijection.

The Bruhat order on 𝑆𝑘 is generated by relations of the form 𝜏 < 𝑟𝜏 where we have 𝜏 ∈ 𝑆𝑘 and r is
a reflection 𝑟 = (𝜏(𝑖), 𝜏( 𝑗)) ∈ 𝑆𝑘 for some 𝑖 < 𝑗 such that 𝜏(𝑖) < 𝜏( 𝑗) [33, Section 5.9, Example 2].
In this case, the quadruple {𝜀𝑖 ± 𝜀𝜏 (𝑖)+𝑘 , 𝜀 𝑗 ± 𝜀𝜏 ( 𝑗)+𝑘 } contained in 𝜑(𝜏) is a crossing and is moved to
the nesting {𝜀𝑖 ± 𝜀𝜏 ( 𝑗)+𝑘 , 𝜀 𝑗 ± 𝜀𝜏 (𝑖)+𝑘 }, so we have 𝜆(𝜑(𝜏)) < 𝜆(𝑟𝜑(𝜏)) in 𝑋𝐼 by Proposition 4.7 (iii).
Conversely, if we have 𝜆(𝜑(𝜏)) < 𝜆(𝑟𝜑(𝜏)) in 𝑋𝐼 for some 𝜏 ∈ 𝑆𝑘 and some reflection 𝑟 ∈ 𝑊 , then
since 𝜑(𝜏) has no alignments, r must move a crossing in 𝜑(𝜏) to a nesting by Proposition 4.7 (iii). The
crossing moved must be of the form {𝜀𝑖 ± 𝜀𝜏 (𝑖)+𝑘 , 𝜀 𝑗 ± 𝜀𝜏 ( 𝑗)+𝑘 } for some 𝑖, 𝑗 ∈ [𝑘] such that 𝑖 < 𝑗 and
𝜏(𝑖) < 𝜏( 𝑗), and the only possibilities for r are (𝑖 𝑗) and (𝜏(𝑖) + 𝑘, 𝜏( 𝑗) + 𝑘). In either case, we have
𝑟𝜑(𝜏) = 𝜑(𝑟 ′𝜏) for the reflection 𝑟 ′ = (𝜏(𝑖), 𝜏( 𝑗)) ∈ 𝑆𝑘 , so that we have

𝜑−1(𝜑(𝜏)) = 𝜏 < 𝑟 ′𝜏 = 𝜑−1(𝑟𝜑(𝜏)),

where < denotes the Bruhat order in 𝑆𝑘 . It now follows that 𝜑 is a poset isomorphism.
To prove the last assertion, we note that each inversion of a permutation 𝜏 ∈ 𝑆𝑘 corresponds to a

nesting in the corresponding alignment-free n-root 𝛾 = 𝜑(𝜏), and we recall that ℓ(𝜏) equals the number
of inversions in 𝜏. It follows that 𝑁 (𝛾) = ℓ(𝜏); therefore, we have

𝜆(𝛾) = 𝐶 (𝛾) + 2𝑁 (𝛾) = (𝐶 (𝛾) + 𝑁 (𝛾)) + 𝑁 (𝛾) = 𝑀 + 𝑁 (𝛾) = 𝑀 + ℓ(𝜏). �

We now discuss the structure of the space 𝑗𝐷𝑛

𝑛𝐴1
(sgn) underlying the Macdonald representation as an

𝑆2𝑘 -module. As a vector space, 𝑗𝐷𝑛

𝑛𝐴1
(sgn) is isomorphic to the free vector space on the noncrossing per-

fect matchings of [𝑛] = [2𝑘], which is denoted by𝑉 (𝑛, 𝑘, 0) in the work of Rhoades [47]. Furthermore,
given a simple reflection 𝑠𝑖 = (𝑖, 𝑖 + 1) ∈ 𝑆𝑛 and a noncrossing perfect matching m corresponding to an
n-root 𝛾, the reflection 𝑠𝑖 acts on m in one of the following ways:

(1) if 𝑖(𝑖 + 1) is a 2-block in m, then the n-root 𝛾 contains 𝜀2
𝑖 − 𝜀2

𝑖+1 as a factor, so 𝑠𝑖 (𝑚) = −𝑚;
(2) if 𝑖(𝑖 + 1) if not a 2-block in m, then m contains two blocks 𝑖𝑎 and (𝑖 + 1)𝑏 which either form an

alignment (if 𝑎 < 𝑖 < 𝑖 + 1 < 𝑏) or a nesting (if 𝑏 < 𝑎 < 𝑖 or 𝑖 + 1 < 𝑏 < 𝑎). In all cases, we have
𝑠𝑖 (𝑚) = 𝑚′′ where 𝑚′′ is the matching (𝑚 \ {𝑖𝑎, (𝑖 +1)𝑏}) ∪ {(𝑖 +1)𝑎, 𝑖𝑏}. Here, the blocks (𝑖 +1)𝑎
and 𝑖𝑏 form a crossing, and the Ptolemy relation 𝛾𝐶 = 𝛾𝑁 +𝛾𝐴 from Theorem 3.10 (vi) implies that

𝑠𝑖 (𝑚) = 𝑚′′ = 𝑚 + 𝑚′, (6.2)

where 𝑚′ is the perfect matching 𝑚′ = (𝑚 \ {𝑖𝑎, (𝑖 + 1)𝑏}) ∪ {𝑖(𝑖 + 1), 𝑎𝑏}. Here, the blocks 𝑖(𝑖 + 1)
and 𝑎𝑏 form the nesting in the Ptolemy relation if {𝑖𝑎, (𝑖 + 1)𝑏} is an alignment and form the

https://doi.org/10.1017/fms.2025.10065 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10065


34 R. M. Green and T. Xu

alignment in the Ptolemy relation if {𝑖𝑎, (𝑖 + 1)𝑏} is a nesting. The matching 𝑚′ is noncrossing by
Theorem 5.7 (iv).

It follows from the above analysis that the action of 𝑆2𝑘 on 𝑗𝐷𝑛

𝑛𝐴1
(sgn) agrees with the action of 𝑆2𝑘 on

the space 𝑉 (𝑛, 𝑘, 0) defined by Rhoades. The precise formula in Equation (6.2) appears in the work of
Kim [38, Equation (1.3)]. By [47, Proposition 5.2], as an 𝑆2𝑘 module 𝑉 (𝑛, 𝑘, 0) is isomorphic to the
Specht module 𝑆 (𝑘,𝑘) corresponding to the 2-row partition (𝑘, 𝑘), so we may summarize our discussion
as follows:
Proposition 6.2. If W has type 𝐷𝑛 for 𝑛 = 2𝑘 even, then the W-action on the Macdonald representation
𝑗𝐷𝑛

𝑛𝐴1
(sgn) factors through the map 𝜙 defined by Equation (2.2) to induce an 𝑆𝑛-module structure

on 𝑗𝐷𝑛

𝑛𝐴1
(sgn). The resulting 𝑆𝑛-module is isomorphic to the Specht module 𝑆 (𝑘,𝑘) � 𝑉 (𝑛, 𝑘, 0). In

particular, it is irreducible.
Remark 6.3. The nonnesting and noncrossing bases for the 𝑆𝑛-module 𝑗𝐷𝑛

𝑛𝐴1
(sgn) � 𝑆 (𝑘,𝑘) are also

studied extensively in the works of Russell–Tymoczko [48], Im–Zhu [35], Hwang–Jang–Oh [34] and
Heard–Kujawa [32]. In these papers, the noncrossing basis is called the web basis, and the nonnesting
basis can be naturally identified with the standard basis (or the polytabloid or Specht basis) as explained
in [35, Lemma 3.1] and [34, Section 1]. Under this identification, the isomorphism of [48, Theorem
2.2] associates each nonnesting perfect matching with the unique noncrossing matching in the same 𝜎-
equivalence class, and Theorem 5.5 of [48] follows from Theorem 5.16 as a special case. The restriction
of the quasiparabolic order to the noncrossing basis gives rise to the web graph of [48, Section 2.3], which
therefore has the structure of a distributive lattice by Theorem 5.13 (ii). Our definition of the nesting
number (Definition 4.2 (i)) agrees with the nesting number of [48] when restricted to noncrossing n-roots,
and is inspired by [48]. It also follows from [34, Corollary 4.2] that if W has type 𝐷2𝑘 and we expand the
maximally crossing n-root 𝜃𝐶 as a linear combination of the noncrossing basis, 𝜃𝐶 =

∑
𝜆𝛽𝛽, then the

sum
∑
𝜆𝛽 of the nonnegative integers 𝜆𝛽 is given by the number 𝐸𝑘+1 in the family (1,1,1,2,5,16,272,

. . . ) of Euler numbers, which are characterized by the equation

sec(𝑥) + tan(𝑥) =
∞∑
𝑖=0

𝐸𝑖
𝑥𝑖

𝑖!
.

Coefficients in the expansion of the maximally crossing 2𝑘-root 𝜃𝐶 into the noncrossing basis have a
combinatorial interpretation in terms of the so-called web permutations in 𝑆𝑘 by [34, Theorem 1.2].

6.2. Type 𝐸7

Suppose W has type 𝐸7. We define 𝜈𝐴 to be the positive 7-root with the following components:

𝛼2, 𝛼4, 𝛼6, 𝛼7, 𝛼2 + 2𝛼3 + 𝛼4 + 𝛼7,

𝛼2 + 2𝛼3 + 2𝛼4 + 2𝛼5 + 𝛼6 + 𝛼7, 2𝛼1 + 3𝛼2 + 4𝛼3 + 3𝛼4 + 2𝛼5 + 𝛼6 + 2𝛼7.

We define 𝜈𝐶 to be the positive 7-root with the following components:

𝛼2 + 𝛼3 + 𝛼4 + 𝛼5 + 𝛼7, 𝛼2 + 2𝛼3 + 𝛼4 + 𝛼7, 𝛼3 + 𝛼4 + 𝛼5 + 𝛼6 + 𝛼7, 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛼7

𝛼1 + 𝛼2 + 2𝛼3 + 𝛼4 + 𝛼5 + 𝛼7, 𝛼1 + 2𝛼2 + 2𝛼3 + 𝛼4 + 𝛼5 + 𝛼6 + 𝛼7, 𝛼1 + 2𝛼2 + 3𝛼3 + 3𝛼4 + 2𝛼5 + 𝛼6 + 𝛼7.

We define 𝜈𝑁 to be the positive 7-root with the following components:

𝛼7, 𝛼2 + 2𝛼3 + 𝛼4 + 𝛼7, 𝛼1 + 𝛼2 + 2𝛼3 + 𝛼4 + 𝛼5 + 𝛼7, 𝛼1 + 𝛼2 + 2𝛼3 + 2𝛼4 + 𝛼5 + 𝛼6 + 𝛼7,

𝛼1 + 2𝛼2 + 2𝛼3 + 𝛼4 + 𝛼5 + 𝛼6 + 𝛼7, 𝛼1 + 2𝛼2 + 2𝛼3 + 2𝛼4 + 𝛼5 + 𝛼7, 𝛼2 + 2𝛼3 + 2𝛼4 + 2𝛼5 + 𝛼6 + 𝛼7.
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Figure 3. The inequivalent labellings of the Fano plane corresponding to 𝜃𝐶 and 𝜃𝑁 .

Finally, we define the element 𝑤 ∈ 𝑊 to be the element expressed by the word

w = (𝑠1𝑠3𝑠5) (𝑠2𝑠4) (𝑠3) (𝑠7).

The heap of w is shown in Figure 2 (b).

Proposition 6.4. If W has type 𝐸7, then the 7-roots 𝜈𝐴, 𝜈𝐶 and 𝜈𝑁 given above are respectively the
maximally aligned, maximally crossing and maximally nesting 7-roots of W. The element w is the
nonnesting element 𝑤𝑁 , and w a reduced word for it. The Macdonald representation 𝑗𝐸7

7𝐴1
(sgn) has

dimension 15.

Proof. Recall from Corollary 3.19 that the number of coplanar quadruples in any 7-root is 𝑀 = 7.
Direct verification shows that ht(𝜎(𝜈𝐶 )) − ht(𝜎(𝜈𝐴)) = 49 − 35 = 2𝑀 and that 𝑤(𝜈𝐶 ) = 𝜈𝐴, which
implies the assertions about 𝜈𝐴, 𝜈𝐶 , w and w by Theorem 5.13 (iii). The dimension of the Macdonald
representation 𝑗𝐸7

7𝐴1
(sgn) equals the cardinality of the set {𝑣 ∈ 𝑊 : 𝑣 ≤𝐿 𝑤} by Theorem 5.5 (i) and

Theorem 5.13 (ii). As explained in Section 6.1, this set is in bijection with the order filters of the heap of
the fully commutative 𝑤𝑁 , and direct computation shows that this heap has 15 filters, so the dimension
of 𝑗𝐸7

7𝐴1
(sgn) is 15.

It remains to show that 𝜈𝑁 is the maximally aligned n-root 𝜃𝐴. By inspection, the heights of the
components of 𝜈𝑁 are 1, 5, 7, 9, 9, 9, 9 when listed in increasing order. The sum of the first three terms
of this sequence is bigger than the largest term, so 𝜈𝑁 cannot contain any alignments by Proposition
3.13 (ii). If 𝜈𝑁 contains a crossing, it follows from Proposition 3.13 (iv) that the crossing cannot contain
any component of height 1, and that the crossing can contain at most one component of height 9. It then
follows from the listed heights that 𝜈𝑁 contains no crossing either. It follows that all the M coplanar
quadruples in 𝜈𝑁 are nestings, so that 𝜈𝑁 = 𝜃𝑁 by Proposition 4.11 (ii). �

The set 𝑋𝐼 of alignment-free positive 7-roots in type 𝐸7 is intimately related to the combinatorics
of the Fano plane (Figure 3), the finite projective plane of order 2 over the field F2 with two elements.
We recall that any two points in the Fano share a unique line that contains them both, so that the vertex
labellings of the Fano points using the labels 1, 2, .., 7 correspond precisely to the Steiner triple systems
𝑆(2, 3, 7) via the bijection that associates each line in the Fano plane with the triple of labels for the
vertices in that line. For example, the labellings shown in Figure 3 (a) and (b) correspond respectively
to the Steiner systems 𝐿𝐶 and 𝐿𝑁 from Proposition 6.5. It is well known that the automorphism group
of the Fano plane is the simple group 𝐺𝐿(3, 2) of order 168, so that the number of inequivalent vertex
labellings is 7!/168 = 30.

Proposition 6.5. If W has type 𝐸7, then every component of every 7-root 𝛾 ∈ 𝑋𝐼 has the form

𝜂𝑎𝑏𝑐 =

( 7∑
𝑖=0

𝜀𝑖

)
− 2(𝜀0 + 𝜀𝑎 + 𝜀𝑏 + 𝜀𝑐)

https://doi.org/10.1017/fms.2025.10065 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10065


36 R. M. Green and T. Xu

for a 3-element subset 𝑎𝑏𝑐 := {𝑎, 𝑏, 𝑐} of the set [7], and the map 𝜑 sending each 7-root 𝛾 ∈ 𝑋𝐼 to the set

𝐿𝛾 = {𝑎𝑏𝑐 : 𝜂𝑎𝑏𝑐 | 𝛾}

gives a canonical bijection from 𝑋𝐼 to the 30 inequivalent labellings of the Fano plane. Under this
bijection, the minimal element 𝜃𝐶 of 𝑋𝐼 corresponds to the labelling

𝐿𝐶 = 𝐿 𝜃𝐶 = {136, 145, 127, 235, 246, 347, 567},

and the maximal element 𝜃𝑁 corresponds to the labelling

𝐿𝑁 = 𝐿 𝜃𝑁 = {123, 145, 246, 257, 347, 356, 167}.

Proof. In the Fano coordinates, the components of the maximally crossing and maximally nesting n-
roots 𝜃𝐶 and 𝜃𝑁 are given by the rows of the following matrices 𝑀𝐶 and 𝑀𝑁 , respectively, where each
‘+’ stands for 1 and each ‘−’ stands for −1 for brevity.

𝑀𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

– – + – + + – +
– – + + – – + +
– – – + + + + –
– + – – + – + +
– + – + – + – +
– + + – – + + –
– + + + + – – –

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑀𝑁 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

– – – – + + + +
– – + + – – + +
– + – + – + – +
– + – + + – + –
– + + – – + + –
– + + – + – – +
– – + + + + – –

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.3)

By inspection, the components of 𝜃𝐶 have the properties (a) each of them is a root of the form 𝜂𝑎𝑏𝑐 for
some triple 𝑎𝑏𝑐 ⊆ [7], and (b) the triples corresponding to components form a Steiner triple system.

By Proposition 6.4, the rightmost generator appearing in 𝑤𝑁 is 𝑠7, which implies that 𝐼 = 𝑆\{𝑠7}.
It follows from Section 2.3 that 𝑊𝐼 is a Weyl group of type 𝐴6, isomorphic to 𝑆7, and that 𝑊𝐼 acts on
𝑋𝐼 by permuting the Fano coordinates. Since all elements of 𝑋𝐼 are conjugate to 𝜃𝐶 under the action
of 𝑊𝐼 by Proposition 5.2 (ii) and (iii), it now follows from the previous paragraph that for every 7-root
𝛾 ∈ 𝑋𝐼 , the components of 𝛾 satisfy the properties (a) and (b) satisfied by the components of 𝜃𝐶 . This
implies that the map 𝜑 takes each element to a Steiner triple system (and thus one of the 30 inequivalent
labellings of the Fano plane). The map 𝜑 is clearly injective, and it is surjective because all Steiner triple
systems are isomorphic via the permutation action of 𝑆7 by Remark 3.16. This proves the first sentence
of the proposition. The second sentence holds by inspection of the matrices 𝑀𝐶 and 𝑀𝑁 . �

Remark 6.6. The labellings canonically corresponding to 𝑋𝐼 have the following additional properties.

(i) The triples 𝑖 𝑗 𝑘 in the labelling 𝐿𝐶 corresponding to the 7-root 𝜃𝐶 appear in [55, Section IV] as the
triples indexing the ‘globally invariant linear forms’ ±𝑥𝑖 ± 𝑥 𝑗 ± 𝑥𝑘 of type 𝐸7.

(ii) The labelling 𝐿𝑁 corresponding to 𝜃𝑁 is the unique labelling with the property that if the digits are
written in binary, then the third digit of each triple is the bitwise exclusive or (XOR) of the other two.

(iii) Recall from Remark 5.3 that 𝑋𝐼 naturally splits into two equal-sized components that are inter-
changed by the action of a reflection in 𝑊𝐼 . As discussed in [50], any two distinct labellings in the
same component have precisely one triple in common.

(iv) The level 𝜆(𝛾) of each 7-root 𝛾 in 𝑋𝐼 equals (14−𝑑), where d is the number of 3-element subsets E
of the set [7] with the property that the labelling 𝐿𝛾 contains no blocks of the form (𝐸 \ { 𝑗}) ∪ {𝑖}
where 𝑖 ≤ 𝑗 and 𝑗 ∈ 𝐸 . This fact can be verified computationally, and is similar to the interpretation
of the level function in type 𝐷2𝑘 via Steiner systems 𝑆(1, 2, 2𝑘) given in Section 6.1.

Remark 6.7. The noncrossing basis in type 𝐸7 is illustrated by the diagram labelled 𝔐6 in [14,
Appendix], where each rectangle can be identified with a noncrossing basis element 𝛽. A label of i on
a rectangle indicates that 𝛼𝑖 |𝛽, i.e., that 𝛼𝑖 is a component of 𝛽. The edges connecting rectangles refer
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to star operations in the sense of [37], which can be interpreted directly in terms of n-roots as follows.
If i and j are adjacent vertices of the Dynkin diagram, then two noncrossing basis elements 𝛽 and 𝛽′

such that 𝛼𝑖 |𝛽 and 𝛼 𝑗 |𝛽
′ are joined by an edge if we have 𝑠𝑖𝑠 𝑗 (𝛽) = 𝛽′ or, equivalently, 𝑠 𝑗 𝑠𝑖 (𝛽′) = 𝛽.

(A similar construction appears in [30, Lemma 2.8].) Note that the Dynkin diagram of type 𝐸7 in [14]
differs from the Dynkin diagram of type 𝐸7 shown in Figure 1 (d) in the labelling of vertices, but it can
be obtained by removing the vertex ‘8’ and its incident edge from the Dynkin diagram of type 𝐸8 shown
in Figure 1 (e).

Remark 6.8. Ren–Sam–Schrader–Sturmfels [46, Theorem 4.1] give an ‘utterly explicit’ basis for the
15-dimensional Macdonald representation in type 𝐸7 that is natural in the context of the Göpel variety
in algebraic geometry. The elements of the nonnesting basis and the noncrossing basis in type 𝐸7 all
factorize into linear factors in Sym(𝑉∗) by construction, but not all the basis elements of [46, Theorem
4.1] do, even after extending scalars to C. It follows that the basis of [46] is not the same as either the
noncrossing basis or the nonnesting basis, even after applying a change of basis of 𝑉∗.

6.3. Type 𝐸8

Suppose W has type 𝐸8. We define 𝜈𝐴 to be the positive 8-root with the following components:

𝛼2, 𝛼3, 𝛼5, 𝛼7, 𝛼2 + 𝛼3 + 2𝛼4 + 𝛼5,

𝛼2 + 𝛼3 + 2𝛼4 + 2𝛼5 + 2𝛼6 + 𝛼7, 2𝛼1 + 2𝛼2 + 3𝛼3 + 4𝛼4 + 3𝛼5 + 2𝛼6 + 𝛼7,

2𝛼1 + 3𝛼2 + 4𝛼3 + 6𝛼4 + 5𝛼5 + 4𝛼6 + 3𝛼7 + 2𝛼8.

We define 𝜈𝐶 to be the positive 8-root with the following components:

𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛼5 + 𝛼6 + 𝛼7 + 𝛼8, 𝛼1 + 𝛼2 + 𝛼3 + 2𝛼4 + 𝛼5 + 𝛼6 + 𝛼7,

𝛼1 + 𝛼2 + 𝛼3 + 2𝛼4 + 2𝛼5 + 𝛼6, 𝛼1 + 𝛼2 + 2𝛼3 + 2𝛼4 + 𝛼5 + 𝛼6,

𝛼1 + 𝛼2 + 2𝛼3 + 2𝛼4 + 2𝛼5 + 𝛼6 + 𝛼7, 𝛼1 + 𝛼2 + 2𝛼3 + 3𝛼4 + 2𝛼5 + 𝛼6 + 𝛼7 + 𝛼8,

𝛼1 + 𝛼2 + 2𝛼3 + 3𝛼4 + 3𝛼5 + 3𝛼6 + 2𝛼7 + 𝛼8, 𝛼1 + 3𝛼2 + 3𝛼3 + 5𝛼4 + 4𝛼5 + 3𝛼6 + 2𝛼7 + 𝛼8.

We define 𝜈𝑁 to be the positive 8-root with the following components:

𝛼1, 𝛼1 + 𝛼2 + 2𝛼3 + 2𝛼4 + 𝛼5, 𝛼1 + 𝛼2 + 2𝛼3 + 2𝛼4 + 2𝛼5 + 2𝛼6 + 𝛼7,

𝛼1 + 𝛼2 + 2𝛼3 + 3𝛼4 + 2𝛼5 + 2𝛼6 + 𝛼7 + 𝛼8, 𝛼1 + 𝛼2 + 2𝛼3 + 3𝛼4 + 3𝛼5 + 2𝛼6 + 2𝛼7 + 𝛼8,

𝛼1 + 2𝛼2 + 2𝛼3 + 3𝛼4 + 2𝛼5 + 2𝛼6 + 2𝛼7 + 𝛼8, 𝛼1 + 2𝛼2 + 2𝛼3 + 3𝛼4 + 3𝛼5 + 2𝛼6 + 𝛼7 + 𝛼8,

𝛼1 + 2𝛼2 + 2𝛼3 + 4𝛼4 + 3𝛼5 + 2𝛼6 + 𝛼7.

Finally, we define the element 𝑤 ∈ 𝑊 to be the element expressed by the word

w = (𝑠1𝑠4𝑠6𝑠8) (𝑠3𝑠5𝑠7) (𝑠4𝑠6) (𝑠2𝑠5) (𝑠4) (𝑠3) (𝑠1).

The heap of w is shown in Figure 2 (c).
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Proposition 6.9. If W has type 𝐸8, then the 8-roots 𝜈𝐴, 𝜈𝐶 and 𝜈𝑁 given above are respectively the
maximally aligned, maximally crossing and maximally nesting 8-roots of W. The element w is the
nonnesting element 𝑤𝑁 , and w a reduced word for it. The Macdonald representation 𝑗𝐸8

8𝐴1
(sgn) has

dimension 50.

Proof. The statements can be proved using the same strategy used in the proof of Proposition 6.4
except for the following changes in numerical details. The number M of coplanar quadruples in an
n-root is now 14, and the number of order filters in the heap of the nonnesting element 𝑤𝑁 is 50. The
components of 𝜈𝑁 have heights 1, 7, 11, 13, 15, 15, 15 and 15, which implies that 𝜈𝑁 has no alignments
by Proposition 3.13 (ii). Furthermore, if 𝜈𝑁 had a crossing, then Proposition 3.13 (iv) implies that the
only possibility would be for the crossing to contain roots of heights 7, 11, 13, and 15, but this is not
possible either because 11 + 13 > 7 + 15. �

Remark 6.10.

(i) Schmidt [51, Lemma 3.4] gives an explicit partition of the 120 positive-negative pairs of roots in
type 𝐸8 into 15 sets of size 8. The components of 𝜃𝐴, 𝜃𝑁 and 𝜃𝐶 appear in Schmidt’s list as 𝑉1,
𝑉14 and 𝑉15, respectively.

(ii) In standard coordinates, the components of the maximally crossing and maximally nesting 8-roots
𝜃𝐶 = 𝜈𝐶 and 𝜃𝑁 = 𝜈𝑁 are given by the rows of the following matrices 𝑀 ′

𝐶 and 𝑀 ′
𝑁 , respectively,

where each ‘+’ stands for 1 and each ‘−’ stands for −1 for brevity.

𝑀 ′
𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ + – – – – + +
+ – + – – + – +
+ – – + + – – +
– + + – + – – +
– + – + – + – +
– – + + – – + +
– – – – + + + +
+ + + + + + + +

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑀 ′

𝑁 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ – – – – – – +
– + + + – – – +
– + – – + + – +
– – + – + – + +
– – – + – + + +
+ + + – – + + +
+ + – + + – + +
+ – + + + + – +

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
All rows in 𝑀 ′

𝐶 other than the bottom row contain four ‘+’ and four ‘−’, and the 14 quadruples
recording the column numbers of the positive and negative entries in these rows form a Steiner
quadruple system. Furthermore, these 14 quadruples are precisely the ones indexing the ‘globally
invariant linear forms’ of type 𝐸8 in [55, Section V].

(iii) The matrix 𝑀 ′
𝐶 above is a Hadamard matrix, meaning a matrix with entries in {+1,−1} that has

orthogonal rows (and, therefore, orthogonal columns). By rearranging the rows, the matrix can be
expressed more simply as the Kronecker product 𝐻 ⊗ 𝐻 ⊗ 𝐻, where

𝐻 =

[
+1 +1
–1 +1

]
.

Remark 6.11. The noncrossing basis in type 𝐸8 is illustrated by the diagram labelled 𝔐50 in [13,
Appendix].

The set 𝑋𝐼 of alignment-free positive 8-roots in type 𝐸8 can be used to give a convenient realization
of the graph Γ̄1 studied by Schmidt in [51]. The graph Γ̄1, which is the complement of another graph
Γ1, has the property that it is quantum isomorphic (in the sense of [3]) but not isomorphic to the
orthogonality graph 𝐺𝐸8 of the roots of type 𝐸8. The vertices of 𝐺𝐸8 are the 120 positive roots of type
𝐸8, and two roots are adjacent in 𝐺𝐸8 if and only if they are orthogonal.

To realize the graph Γ̄1 via 𝑋𝐼 , recall from Remark 5.3 that 𝑋𝐼 naturally splits into two equal-sized
components, 𝑋𝑒

𝐼 and 𝑋𝑜
𝐼 , which consist of all the elements in 𝑋𝐼 with even levels and odd levels,

respectively. The components each have 240/2 = 120 elements since |𝑋𝐼 | = 240 by Proposition 7.1 (ii).
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Definition 6.12. We define Γ to be the following graph: the vertex set is 𝑋𝑒
𝐼 , the set of all alignment-

free positive 8-roots of even parabolic level, and two vertices are adjacent if and only if they have no
common components.

The next four paragraphs recall Schmidt’s construction of the graph Γ1 and explain why Γ is
isomorphic to Γ̄1. (The isomorphism will also hold if we replace 𝑋𝑒

𝐼 with 𝑋𝑜
𝐼 in Definition 6.12.)

Start with the folded halved 8-cube, where the vertices are the 64 pairs of the form {𝑥, 1 + 𝑥} for all
length-8 binary strings 𝑥 ∈ F8

2 with an even number of 1s (where 1 is the string with all entries equal
to 1). We can naturally identify these vertices with the 64 positive roots of the form 𝛼 = (

∑7
𝑖=1 ±𝜀𝑖) +𝜀8,

via the bijection sending 𝛼 to the pair {𝑥𝛼, 1 + 𝑥𝛼} where 𝑥𝛼 is the string (𝑥𝑖)
8
𝑖=1 such that 𝑥𝑖 = 1 if and

only if 𝜀𝑖 appears with coefficient−1 in 𝛼 for all 𝑖 ∈ [8]. The 64 positive roots of the form (
∑7
𝑖=1 ±𝜀𝑖)+𝜀8

are precisely the positive roots of x-height 1 in the sense of Remark 5.3, so they are also precisely the
roots that can appear as a component of an 8-root in 𝑋𝐼 by Remark 5.3.

By definition, two vertices {𝑥, 1 + 𝑥} and {𝑦, 1 + 𝑦} in the folded halved cube are adjacent if and
only if x and y differ in 2 or 6 entries. It follows that in the complement of the folded halved cube, two
distinct vertices {𝑥, 1 + 𝑥} and {𝑦, 1 + 𝑦} are adjacent if and only if x and y differ in 4 positions. This
complement is denoted 𝑉𝑂+

6 (2). The condition that x and y differ in 4 entries holds if and only if the
positive roots corresponding to {𝑥, 1 + 𝑥} and {𝑦, 1 + 𝑦} are orthogonal; therefore, each clique of size 8
in 𝑉𝑂+

6 (2) corresponds to an 8-root in 𝑋𝐼 .
Schmidt defines the vertex set of Γ1 to be any orbit of cliques of size 8 under the group Z6

2 � 𝐴8 in
𝑉𝑂+

6 (2), where 𝐴8 is the alternating subgroup of 𝑆8. There are two such orbits, both of size 120, and
the choice of the orbit does not matter, so we may assume that the orbit contains a clique corresponding
to an 8-root with even level, that is, to a vertex, 𝛽, of Γ. The vertices of Γ1 then match precisely the
vertices of Γ for the reasons sketched below. We have 𝐼 = 𝑆 \ {𝑠1} by Proposition 6.9; therefore,
we have 𝑊𝐼 � 𝑊 (𝐷7). The action of 𝑊𝐼 = 𝑊 (𝐷7) on 𝑋𝐼 can be extended to an action of a larger
subgroup 𝐺 ≤ 𝑊 (𝐸8), generated by𝑊𝐼 together with the reflection 𝑠𝜃 corresponding to the highest root
𝜃 = 2(𝜀7 + 𝜀8). We have 𝐺 � 𝑊 (𝐷8) � 𝑁 � 𝑆8, where 𝑁 � Z7

2 is the elementary abelian group of order
27. By considerations involving x-heights (in the sense of Remark 5.3), each reflection in G changes
every 8-root in 𝑋𝐼 , and when it does so, it changes the parabolic level by an odd number because it
moves a C to an N or vice versa. It follows that the commutator subgroup 𝐺 ′ � Z7

2 � 𝐴8 of G acts on 𝑋𝐼
with 𝑋𝑒

𝐼 and 𝑋𝑜
𝐼 as its orbits. This action induces a transitive action of 𝐺 ′/𝑍 (𝐺) � Z6

2 � 𝐴8 on Γ that
matches the action of Z6

2 � 𝐴8 on Γ1.
Two vertices in Γ1 are defined to be adjacent if and only if they are cliques that intersect in exactly

two elements from𝑉𝑂+
6 (2). This occurs if and only if their corresponding 8-roots have two components

in common. With some more work, or using computation, one can show that two distinct 8-roots whose
levels have the same parity either have disjoint components or have exactly two components in common.
It follows that Γ is isomorphic to Γ̄1. To summarize, we have the following result.

Remark 6.13. The graph Γ from Definition 6.12 (i.e., the graph whose vertices are the alignment-free
positive 8-roots of even parabolic level and where two vertices are adjacent if and only if they have
no common component) is isomorphic to the graph Γ̄1 from [51]. As a consequence, the graph Γ is
quantum isomorphic but not isomorphic to the orthogonality graph 𝐺𝐸8 of the 𝐸8 root system.

The graphs Γ𝐸8 and Γ̄1 are known to be strongly regular graphs with parameters (120, 63, 30, 36). It
follows that Γ is also such a graph. Mathon and Street [40, Table 2.2] mention that the graphs Γ𝐸8 and
Γ̄1 each have 2025 8-cliques. The 8-cliques of Γ𝐸8 are the positive 8-roots of 𝐸8, and the 8-cliques of
Γ � Γ̄1 are classified by Fitz in [24, Theorem 7.6]. Finally, we note that, as [51] points out, there are
other constructions of Γ1 in the literature [8, 40]. However, the construction in terms of 8-roots has the
advantages of being concise, and being clearly related to the 𝐸8 root system.

Remark 6.14. The group Aut(Γ1) acts as a permutation group of rank 4 on Γ1 [8]. It follows that if two
n-roots 𝑥, 𝑦 ∈ 𝑋𝐼 both have even or odd levels, then x and y can be in one of four relative positions.
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These can be shown to be the following (where N is the elementary abelian group of order 27 mentioned
above):

(i) 𝑥 = 𝑦;
(ii) x and y have precisely two common components;

(iii) x and y have disjoint components, and 𝑦 = 𝑛.𝑥 for some 𝑛 ∈ 𝑁;
(iv) x and y have disjoint components, and 𝑦 ≠ 𝑛.𝑥 for any 𝑛 ∈ 𝑁 .

The situations in (iii) and (iv) correspond to the edges in the graph Γ, and they show that the edges of Γ
naturally split into two types. This is not the case for the graph 𝐺𝐸8 : the automorphism group of 𝐺𝐸8 has
rank 3, and two vertices can only be in three relative positions: equality, adjacency and non-adjacency.

7. Concluding remarks

7.1. Poincaré polynomials

Rains and Vazirani [43, Section 8] define the Poincaré series of a quasiparabolic set X to be 𝑃𝑆(𝑞) =∑
𝑥∈X 𝑞𝜆(𝑥) . They point out that in many cases, the Poincaré series factorizes in a very simple way, and

the factors are often quantum integers

[𝑑]𝑞 :=
𝑞𝑑 − 1
𝑞 − 1

= 1 + 𝑞 + 𝑞2 + · · · + 𝑞𝑑−1.

These quantum integers often behave as if they were the degrees of polynomial invariants of a Coxeter
group, and in some cases, the integers can be interpreted in terms of degrees of invariants in characteristic
2 (see [43, Section 8, Example 9.4]).

Proposition 7.1. Let W be a Weyl group of type 𝐸7, 𝐸8 or 𝐷𝑛 for n even.

(i) For the quasiparabolic set X for W consisting of all positive n-roots of W, equipped with the level
function such that 𝜆(𝜃𝐴) = 0, we have

𝑃𝑆𝑋 (𝑞) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏𝑘

𝑖=2 [2𝑖 − 1]𝑞 if 𝑊 is of type 𝐷2𝑘 ,

[3]𝑞 [5]𝑞 [9]𝑞 if 𝑊 is of type 𝐸7,

[3]𝑞 [5]𝑞 [9]𝑞 [15]𝑞 if 𝑊 is of type 𝐸8.

(ii) For the quasiparabolic set 𝑋𝐼 ⊆ 𝑋 for 𝑊𝐼 consisting of the alignment-free positive n-roots of W
(with its level function inherited from X), we have

𝑃𝑆𝑋𝐼 (𝑞) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞𝑀

∏𝑘
𝑖=2 [𝑖]𝑞 if 𝑊 is of type 𝐷2𝑘 ,

𝑞𝑀 [2]𝑞 [3]𝑞 [5]𝑞 if 𝑊 is of type 𝐸7,

𝑞𝑀 [2]𝑞 [3]𝑞 [5]𝑞 [8]𝑞 if 𝑊 is of type 𝐸8,

where M is the level 𝜆(𝜃𝐶 ) of the minimal element of 𝑋𝐼 (which is also the number of coplanar
quadruples in each n-root). In particular, each of the factors [𝑖]𝑞 of 𝑃𝑆𝑋𝐼 (𝑞) corresponds to a
factor [2𝑖 − 1]𝑞 of 𝑃𝑆𝑋 (𝑞) in (i).

Proof. We have verified both (i) and (ii) in types 𝐸7 and 𝐸8 computationally. (We do not have conceptual
proofs at the moment.) For type 𝐷𝑛, part (i) follows from [52, Equation (5.4)], or [20, Theorem 4] or
[15, Corollary 3.3], after we identify X with the perfect matchings of the set [𝑛] as usual. Finally, part
(ii) for type 𝐷𝑛 follows from Proposition 6.1 and the well-known form

∏𝑘
𝑖=2 [𝑖]𝑞 for the Poincaré series∑

𝜏∈𝑆𝑘 𝑞
ℓ (𝜏) of the symmetric group 𝑆𝑘 . �

Remark 7.2. The exponents 3, 5, 9 and 3, 5, 9, 15 that respectively appear in the Poincaré series 𝑃𝑆𝑋 (𝑞)
of types 𝐸7 and 𝐸8 show up as the degrees of generators in the cohomology modulo 2 of compact
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exceptional Lie groups [2], and as the codimensions of generators of Chow rings associated to linear
algebraic groups in characteristic 2 [42, Section 4].

Remark 7.3. Recall from Proposition 5.15 that the set 𝑋𝐼 is the top 𝜎-equivalence class with respect to
the order≤𝜎 . It turns out that for every𝜎-equivalence class C in X, the polynomial𝑃𝑆𝐶 (𝑞) =

∑
𝑥∈𝐶 𝑞𝜆(𝑥)

has the form

𝑃𝑆𝐶 (𝑞) =
∏
𝑑∈𝐷

𝑞𝑑−1 [𝑑]𝑞 (7.1)

for some set of nonnegative integers D. This is particularly remarkable because in general, there is no
obvious way to turn a 𝜎-equivalence class into a W-set for a suitable Weyl group W. In type 𝐷𝑛, the
integers from D have an interpretation in terms of rook placements [58, Theorem 1]. Summing over
all 𝜎-equivalence classes gives rise to the expression for 𝑃𝑆𝑋 (𝑞) that appears in the abstract of [6]. In
types 𝐸7 and 𝐸8, we verified Equation (7.1) by computation.

7.2. Coxeter elements

Let 𝑑1, 𝑑2, . . . , 𝑑𝑟 be the numbers that appear in the factorization
∏𝑟

𝑖=1 [𝑑𝑖]𝑞 of the Poincare series
𝑃𝑆𝑋 (𝑞) in Proposition 7.1 (i). It follows easily from the definitions that

∏𝑟
𝑖=1 𝑑𝑖 is the number of

positive n-roots, and that
∑𝑟
𝑖=1(𝑑𝑖 − 1) = 2𝑀 , where M is the number of coplanar quadruples in an

n-root. It also turns out that the largest integer 𝑑𝑟 in each case (which is 𝑛 − 1 in type 𝐷𝑛, is 9 in type
𝐸7, and is 15 in type 𝐸8) is equal to ℎ/2, where h is the Coxeter number.

We recall that, by definition, a Coxeter element is a product of all the simple reflections in some
order, and the Coxeter number is the order of any Coxeter element c. All such elements are conjugate
and therefore have the same order. It turns out that 𝑐ℎ/2 acts as −1 in the reflection representation, and
therefore acts trivially on the set X. If C is the cyclic group of order ℎ/2 generated by the action of c
on the positive n-roots, then it can be shown that the nonidentity elements of C act without fixed points
on the positive n-roots. The factor of [ℎ/2]𝑞 in 𝑃𝑆𝑋 (𝑞) then implies that the triple (𝑋, 𝑃𝑆𝑋 (𝑞), 𝐶)
satisfies the cyclic sieving phenomenon of Reiner, Stanton and White [45]: the number of fixed points
of 𝑐𝑑 is equal to 𝑃𝑆𝑋 (𝑒

2𝜋𝑖𝑑/𝑚), where 𝑚 = ℎ/2.
It is possible, by choosing a suitable Coxeter element c and n-root 𝛽, to find an orbit of n-roots

𝑂 = {𝑐𝑑 (𝛽) : 0 ≤ 𝑑 < ℎ/2}

that contains every positive root exactly once as one of its components. This can be achieved in type 𝐷𝑛

by taking 𝛽 = 𝜃𝑁 and 𝑐 = 𝑠1𝑠2 · · · 𝑠𝑛−1𝑠𝑛. We also verified that such an orbit can also be found in types
𝐸7 and 𝐸8, although it is necessary to make a different choice of 𝛽. The existence of such an orbit O in
type 𝐸8 is related to the Kochen–Specker theorem in quantum mechanics [57].

7.3. Feature-avoidance via quasiparabolic structure

It can be shown that each of the three types of feature-avoiding n-roots in the set X can be character-
ized using only the quasiparabolic structure of X, without reference to the combinatorics of n-roots.
Specifically, the following holds for all n-roots 𝑥 ∈ 𝑋:

(i) x is alignment-free if and only if there does not exist a reflection r such that 𝜆(𝑟 (𝑥)) − 𝜆(𝑥) is a
strictly positive even number;

(ii) x is noncrossing if and only if there is a sequence

𝑥 <𝑄 𝑟1 (𝑥) <𝑄 𝑟2𝑟1 (𝑥) <𝑄 · · · <𝑄 𝑥1,

where 𝑥1 is the unique maximal element of X and the level increases by 2 at each step;
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(iii) x is nonnesting if and only if there does not exist a reflection r such that 𝜆(𝑟 (𝑥)) − 𝜆(𝑥) is a strictly
negative even number.

In addition, Remark 5.17 shows that the 𝜎-equivalence classes can be characterized as the Eulerian inter-
vals between nonnesting and noncrossing elements. It may be interesting to use these characterizations to
extend the notions of feature-avoiding elements and 𝜎-equivalence to more general quasiparabolic sets.
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