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Influence of porous material on the flow behind a
backward-facing step: experimental study
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We investigate effect of porous insert located upstream of the separation edge of a
backward-facing step (BFS) in early transitional regime as a function of Reynolds
number. This is an example of hydrodynamic system that is a combination of separated
shear flow with large amplification potential and porous materials known for efficient
flow destabilisation. Spectral analysis reveals that dynamics of BFS is dominated by
spectral modes that remain globally coherent along the streamwise direction. We detect
two branches of characteristic frequencies in the flow and with Hilbert transform we
characterise their spatial support. For low Reynolds numbers, the dynamics of the
flow is dominated by lower frequency, whereas for sufficiently large Reynolds numbers
cross-over to higher frequencies is observed. Increasing permeability of the porous
insert results in decrease in Reynolds number value, at which frequency cross-over
occurs. By comparing normalised frequencies on each branch with local stability
analysis, we attribute Kelvin–Helmholtz and Tollmien–Schlichting instabilities to upper
and lower frequency branches, respectively. Finally, our results show that porous inserts
enhance Kelvin–Helmholtz instability and promote transition to oscillator-type dynamics.
Specifically, the amplitude of vortical (BFS) structures associated with higher-frequency
branch follows Landau model prediction for all investigated porous inserts.

Key words: absolute/convective instability, separated flows, porous media

1. Introduction

Backward-facing-step (BFS) flow is a classical case to study separation and has remained
an open problem for more than half of the century. This canonical configuration includes
a localised geometry discontinuity, at which the level of the lower bounding wall suddenly
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drops from the inlet to the outlet by step height h triggering the separation of the
incoming upstream boundary layer. Separated flows are frequently encountered both in
nature (river flow behind the dune bedforms or atmospheric flow over the hills) and
in engineering applications (flow over airfoils, buildings or vehicles; flows in diffusers,
turbines, compressors, inlets and junctions). As an example, the separation of the incoming
boundary layer due to geometric discontinuity in combustion chambers promotes effective
mixing. Understanding the mechanisms behind separated shear flow is crucial for the
optimal design and control of flow devices to assure their high performance. Despite its
simple geometry, the complex dynamics of BFS flow include separation of the incoming
inflow, downstream evolution of separated shear layer, formation of the recirculation
zone behind the step, eventual reattachment of the separated shear layer and subsequent
downstream relaxation of the reattached flow to equilibrium boundary layer (e.g. Bradshaw
& Wong 1972; Chen et al. 2018). In addition, BFS dynamics depend on many parameters,
including Reynolds number, aspect ratio AR (spanwise extent of the model to the height of
the step), expansion ratio ER (aspect between the outlet and inlet height) and inlet velocity
profile at the separation edge.

Turbulent flow behind BFS at high Reynolds number is dominated by robust roll-up
of separated shear layer due Kelvin–Helmholtz instability (e.g. Eaton & Johnston 1981;
Driver, Seegmiller & Marvin 1987; Hudy, Naguib & Humphreys 2007; D’Adamo, Sosa
& Artana 2014) that generates spanwise vortical coherent structures. Troutt, Scheelke &
Norman (1984) and Jovic (1996) showed that their initial downstream evolution shares
similarity with a free-mixing shear layer. However, this analogy fails further downstream
due to the influence of a bottom bounding wall, adverse pressure gradient and reverse
back-flow in the recirculation zone (Roos & Kegelman 1986).

The length of the recirculation zone is a well-studied property of BFS: in laminar flow, it
increases monotonically with Reynolds number, then starts to decrease reaching the global
minimum and, finally, slightly increases to reach an asymptotic value in the turbulent
regime (e.g. Armaly et al. 1983; Durst & Tropea 1983). Downstream the reattachment
of the shear layer, the flow remains far from the equilibrium and significant deviation from
the conventional boundary layer was reported up to 100h (Jovic & Driver 1994). This
illustrates that the large-scale coherent vortices generated behind the step persist much
further downstream than the reattachment.

In early transitional regime, the dynamics of spatially developing flows can be divided
into oscillator and amplifier types (Monkewitz et al. 1990; Huerre 2000; Chomaz 2005):
the former is characterised by well-defined intrinsic oscillations, whereas the later
amplifies extrinsic environmental perturbations. This distinction was initially based on
whether the upstream front of the linearised perturbation wave moves upstream: if yes,
then perturbation grows in time from an initial infinitesimal perturbation; otherwise,
the initial infinitesimal perturbation is flushed away from a specific point in space, as
in boundary- or co-flowing mixing-layer flows. In this situation continuous infinitesimal
forcing is required and downstream growth of the perturbation can be attributed to local
convective instability (e.g. Kaiktsis, Karniadakis & Orszag 1996; Blackburn, Barkley &
Sherwin 2008). A local description of convective instability has been proposed by Dovgal,
Kozlov & Michalke (1994) for streamwise extended recirculation bubbles with length
of the order of 50h. Within this framework, local spatial amplification of a convective
instability at any specific streamwise location can be predicted by linear stability analysis
of the time-averaged streamwise velocity profile at that location, under the additional
assumption of parallel base flow (i.e. homogeneous streamwise direction). This originates
from boundary layer theory, according to which the ratio between wall-normal and
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Influence of porous material on the flow behind a BFS

streamwise velocity components scales with one over the squared root of the Reynolds
number, and for sufficiently high-Reynolds-number wall-normal velocity component can
be neglected. Furthermore, this simplification is valid when the streamwise wavelength of
the disturbance is small compared with the characteristic length scale of the variation of
the base flow along the streamwise direction (Dovgal et al. 1994). According to the local
theory, sufficiently weak streamwise initial perturbation grows exponentially along the
streamwise direction until its amplitude is large enough and nonlinear saturation decreases
effective growth rate (Dovgal et al. 1994).

In the global eigenmode framework (Chomaz 2005; Theofilis 2011), each characteristic
frequency of oscillator corresponds to a single unstable global eigenmode. In contrast,
amplifier dynamics needs to be described by superposition of several non-orthogonal
eigenvectors (Cossu & Chomaz 1997; Sipp et al. 2010); potential for perturbation
amplification depends on the degree of non-normality of the linearised Navier–Stokes
operator that governs the dynamics of infinitesimal perturbation (Schmid & Henningson
2001; Chomaz 2005; Schmid 2007). However, amplifier-type dynamics is best
characterised by the optimal response determined by resolvent analysis, rather than in
basis composed of global eigenmodes (e.g. Marquet et al. 2008; Sipp et al. 2010; Symon
et al. 2018). Empirical orthogonal functions (EOFs) is another basis to optimally represent
spatial variance of vortical structures triggered by stochastic forcing (Dergham, Sipp &
Robinet 2013).

Barkley, Gomes & Henderson (2002) evaluated the linear stability of BFS flow with
ER = 2 and with fully developed Poiseuille flow at the inlet upstream of the separation
edge. They found that the first instability of spanwise uniform base flow occurs at Rem =
Umaxh/ν = 748, with Rem defined based on the step height and centreline velocity. This
bifurcation leads to stationary streamwise vortices concentrated in the recirculation zone
with spanwise wavelength of λz = 6.9h. Lanzerstorfer & Kuhlmann (2012) extended this
analysis for ER ∈ (1.3, 40.0).

Marquet et al. (2009) modified the BFS geometry of Barkley et al. (2002) to prevent
the emergence of a secondary recirculation zone at the top wall. They found similar
bifurcation leading to steady streamwise vortices with rotation axes at approximately half
of the step height h. They also showed that spatial support of direct and adjoint modes is
spatially separated along the streamwise direction due to convective-type non-normality
(see also Chomaz 2005). As a result, the maximal amplitude of global mode (describing
flow response) is located downstream, whereas the maximum of adjoint modes (related
to sensitivity of the flow to perturbation) is located upstream. Finally, they identified the
recirculation zone as an optimal location for both volumetric body force and localised
passive control devices.

Using the same geometry as in Barkley et al. (2002), Blackburn et al. (2008)
characterised optimal initial perturbation and resulting optimal flow response. They
reported that both two-dimensional and quasi-two-dimensional perturbations result in
comparable energy gain that is attained at very similar time horizons and at the same
downstream location. The spatial structure of both resulting waves consists of spanwise
rollers with large coherence along the wall-normal direction and with major axes aligned in
the streamwise and wall-normal directions. For linear perturbations with larger modulation
along the spanwise direction, Marquet et al. (2008) observed an abrupt decrease of energy
gain. This has been partially attributed to the loss of coherence along the spanwise
direction and enhanced energy dissipation.

Dergham et al. (2013) studied the linear response to harmonic forcing in a BFS geometry
with rounded corner using singular value decomposition (SVD) of the resolvent operator in
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frequency domain. They identified the leading branch of shear layer dynamics associated
with the amplification of the perturbation along the recirculation zone. They also evaluated
the linear response of the system subjected to permanent stochastic forcing using EOF
decomposition. The first pair of their EOF modes capture well the spatial structure derived
from optimal harmonic response. Leading values of subsequent EOF modes decay rapidly
indicating that this decomposition provides a robust basis to describe BFS dynamics. They
also showed that spatial support of optimal stochastic forcing is located near the separation
edge and that its energy convergence rate is even faster than for optimal EOFs.

Boujo & Gallaire (2015) observed that maximal energy amplification obtained with
optimal frequency forcing is reached at most downstream locations: forcing with any other
frequency will result in lower energy gain reached further upstream. They compared local
and global stability analyses showing that both methods provide similar values of the most
amplified forcing frequency. Corresponding integrated optimal amplification rates were
comparable for both methods, with local amplification being approximately four times
smaller when compared with the global method. Significant difference has been observed
at higher forcing frequencies: velocity profiles are locally stable for high-frequency
perturbation, whereas in global analysis high frequencies can be amplified through an
Orr mechanism. Finally, they presented linearised sensitivity maps of energy gain for
different flow modifications, including steady base flow modification, volume forcing and
wall suction/blowing. The largest sensitivity of the flow to volume force is observed in the
primary recirculation zone.

BFS flow is typically considered as a selective amplifier with relatively narrow
frequency band for amplification. Within a linearised global framework, optimal initial
perturbations, optimal harmonic forcing and stochastic forcing resulted in similar flow
response (Blackburn et al. 2008; Dergham et al. 2013; Boujo & Gallaire 2015). However, in
contrast to other canonical examples of amplifiers (e.g. mixing layer, boundary layer or free
jet), BFS flow contains a recirculation zone. Dovgal et al. (1994) investigated separation
of the boundary layer in different geometries (backward- and forward-facing steps, humps
with upstream and/or downstream wedges), and for all considered configurations they
demonstrated that the dynamics of the separated shear flow is mostly dominated by
the primary recirculation zone formed immediately downstream of the separation edge.
Moreover, for sufficiently high Reynolds numbers close to a fully turbulent regime,
the recirculation zone seems to support oscillator-type behaviour (Wee et al. 2004;
D’Adamo et al. 2014; Ma, Tang & Jiang 2020). Similar self-sustained global dynamics
in the recirculation zone formed behind a smooth bump were reported by Marquillie &
Ehrenstein (2003) and Passaggia, Leweke & Ehrenstein (2012).

Separation bubbles are another class of separated shear flows that can support
self-sustained oscillations. However, in this case there is no geometrical discontinuity that
could trigger separation. Hammond & Redekopp (1998) analysed expanded Falkner–Skan
velocity profiles with two additional parameters to vary the intensity of the reverse flow
and height of the recirculation region. They proposed that the separation bubble becomes
absolutely unstable when the reverse flow exceeds 30 % of the free-stream velocity.
Recently, Avanci, Rodríguez & Alves (2019) considered the combined effect of the
intensity of the back-flow and height of the recirculation zone. Specifically, they analysed
the family of velocity profiles initially proposed by Dovgal et al. (1994) and reported
that the local velocity profile can become absolutely unstable even for the intensity of
the reversed flow as low as 2.5 % of U0. In addition, Rodríguez, Gennaro & Souza
(2021) showed that weak spanwise modulation of the flow destabilises otherwise stable
two-dimensional eigenmode.
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In the context of early transitional regime, Marquet et al. (2008) suggested that very
large transient amplification of spanwise rollers on the time scale imposed by the length
of the recirculation zone leads to nonlinear modification of the flow, which, in turn,
might allow spanwise-coherent structures to entirely dominate BFS dynamics. Nonlinear
effects were studied by Blackburn et al. (2008) for BFS flow subjected to weak stochastic
perturbation. They showed that linear and nonlinear responses have similar spatial
structure and characteristic frequency. In addition, nonlinear response is characterised by
narrow frequency band with no higher harmonics. A similar narrow frequency band with
distinct central peak was observed in full direct numerical simulation (DNS) by Marquet
& Sipp (2012).

Mantič-Lugo, Arratia & Gallaire (2014) evaluated nonlinearity with an iterative
procedure that transforms the most-unstable mode into the marginal mode with zero
growth rate (see Barkley 2006) through Reynolds stresses. The same Reynolds stresses
modify the base flow into mean flow. This concept relies on the idea that nonlinear
saturation of supercritical instability originating from Hopf bifurcation is a result of the
interaction between base flow and Reynolds stresses induced by the most unstable mode
(Stuart 1958; Zielinska et al. 1997). The same procedure has been also applied to BFS
subjected to harmonic (Mantič-Lugo & Gallaire 2016b) and stochastic (Mantič-Lugo &
Gallaire 2016a) forcing. For harmonic excitation they observed that nonlinearities suppress
linear amplification of the dominant mode, resulting in nonlinear saturation similar to the
supercritical limit cycle for a cylinder wake. However, there is no significant nonlinear
influence on the selection of the most amplified frequency. Once the forcing amplitude
is increased, maximal energy gain of the flow response is reached further upstream.
This results in a reduction of recirculation length, similar to the effect of Reynolds
stresses described by Zielinska et al. (1997) and Barkley (2006) for a cylinder wake.
Regarding BFS response to stochastic forcing, the contribution to Reynolds stresses from a
single optimal frequency was sufficient to obtain good qualitative prediction for nonlinear
saturation.

For round jet flows characterised by convective instability, local stability analysis
around the time-averaged mean flow predicts the perturbation field well (Gudmundsson
& Colonius 2011; Garnaud et al. 2013; Oberleithner, Rukes & Soria 2014). For a cylinder
wake (classical oscillator with one unstable eigenmode), linearisation around the mean
flow provides good prediction for the oscillation frequency, even far from the oscillation
threshold (Pier 2002; Barkley 2006). Mean flow stability analysis can provide a marginal
mode with zero growth rate when higher harmonics of fundamental oscillation are
sufficiently weak (Sipp & Lebedev 2007) or when oscillations are monochromatic (Turton,
Tuckerman & Barkley 2015). In the context of BFS, Mantič-Lugo & Gallaire (2016b)
demonstrated that higher harmonics can indeed be neglected in nonlinear saturation of
growing perturbation even for finite-size amplitude forcing.

Harmonic resolvent analysis with linearisation around the mean flow combined with
Reynolds decomposition is yet another method used to characterise energetically dominant
vortical structures and their characteristic frequencies. In this case, the forcing term
contains not only external environmental noise but also all nonlinear interactions of
velocity fluctuations. Using this method Beneddine et al. (2016) analysed BFS dynamics
at high Reynolds number and without distinguishing between oscillator and amplifier
behaviour. Through a comparison of both resolvent analysis and linearisation around the
mean flow, they concluded that mean flow stability analysis is valid when the dominant
singular value of the resolvent operator at a given forcing frequency is significantly greater
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than the others, provided that turbulent forcing does not display any preferential direction
along any suboptimal resolvent vectors. If this condition is satisfied, then a marginally
stable spectral mode and dominant response of resolvent SVD vector are proportional.
They also showed that this condition holds for flows dominated by convective instability
(e.g. resulting from Kelvin–Helmholtz instability) and for flows with marginally stable
eigenmode. However, as demonstrated by Symon et al. (2018), a mode with growth rate
closest to zero does not have to be strictly marginal, and it is sufficient that it dominates
in the dyadic representation of the resolvent operator. If there is more than one eigenmode
in the vicinity of the least-stable marginal mode, then the assumption of dominant value
does not hold and the resolvent operator has to be described by more than one dominant
response mode.

BFS has been also used to evaluate optimal control strategies of the separated shear
layer to reduce the separation length or to maximise mixing efficiency. Passive flow
control can be achieved by various devices, e.g. surface modifications with roughness,
longitudinal groove, splitter plate or small secondary control cylinder (e.g. Choi, Jeon &
Kim 2008). Another possibility is to use a porous material at the fluid–solid interface.
As specified by Rosti, Cortelezzi & Quadrio (2015), porous materials have a wide range
of applications, including filtration processes, extraction of oil or transpiration cooling
to enhance heat exchange. Flows through sedimentary rocks, seabeds or riverbeds are
examples encountered in nature. Porous material are also abundant in biological fluid,
e.g. at the walls of blood vessels, lungs and kidneys.

Permeability at the fluid–porous interface can have a strong destabilising effect on both
laminar and turbulent flows (e.g. Jiménez et al. 2001; Suga et al. 2010; Rosti et al. 2015;
Wedin, Cherubini & Bottaro 2015; Ghosh et al. 2019). For laminar channel flow Tilton &
Cortelezzi (2008) showed that wall permeability can dramatically decrease linear stability
with respect to the solid impermeable case and that the most pronounced destabilisation
is observed at low values of permeability. Similarly, Tilton & Cortelezzi (2015) reported
that a small amount of wall permeability can destabilise asymptotic suction boundary layer
flow and cause a substantial broadening of the region of unstable frequencies. For the same
shear flow, Wedin et al. (2015) demonstrated that both the linear instability threshold and
threshold for nonlinear travelling waves drop by more than 90 % when a porous substrate
is included at the bottom bounding wall.

For turbulent flows, Jiménez et al. (2001) observed a significant increase of skin
friction for flow over a permeable wall and attributed this increase to vortical spanwise
rolls originating from Kelvin–Helmholtz-type instability. Similar organisation of spanwise
structures induced by a porous medium at the bounding walls was also detected both
experimentally (Suga et al. 2018) and in numerical simulations (Breugem, Boersma &
Uittenbogaard 2006; Nishiyama, Kuwata & Suga 2020). Using internally heated turbulent
shear flow configuration with porous bounding walls, Motoki et al. (2022) recently
reported about the ultimate state, in which heat and momentum transfer are significantly
enhanced due to the Kelvin–Helmholtz wave that is roughly uniform along the spanwise
direction.

However, boundary conditions at the fluid–porous interface are important. Hahn, Je
& Choi (2002) observed significant skin-friction reduction for turbulent flow when a
streamwise slip condition without wall-normal component on the fluid–porous interface
was assumed. When wall suction at the bounding wall is imposed without wall-normal
velocity fluctuations at the interface, any non-trivial non-laminar dynamics is delayed and
observed at larger values of Reynolds numbers (Wedin et al. 2015). Linear stability of
the flow is also over-predicted in such a case when compared with experimental results

998 A31-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

63
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.639


Influence of porous material on the flow behind a BFS

(Fransson & Alfredsson 2003). This indicates that the wall-normal velocity component
and its temporal fluctuations at the fluid–porous interface have an important effect on the
dynamics of the shear flow subjected to porous materials.

BFS at low Reynolds numbers is typically considered as an amplifier without intrinsic
dynamics. Despite the absence of an unstable oscillating eigenmode in the linearised
Navier–Stokes operator, BFS flow possesses an intrinsic response frequency captured by
linear resolvent analysis that persists when nonlinear effects are included. Dominance of
the intrinsic frequency and consistent spatial structure of the flow response indicates a
possibility for global behaviour in BFS. BFS flow also satisfies known conditions for the
marginal mode to exist, i.e. low level of higher harmonics and monochromatic frequency
evolution. In addition, porous materials are known to destabilise the flow, i.e. increasing
skin friction in fully turbulent flows and decreasing critical Reynolds number for linear
instability. The porous insert can induce spanwise-coherent vortical structures (rollers),
which makes it a good candidate for passive destabiliser of the BFS flow. We study BFS
with an expansion ratio close to unity at low Reynolds numbers to carefully characterise
dynamics of the BFS flow in the early transitional regime. Our aim is to characterise the
combination of strong destabilisation of the least-stable mode by a porous insert with
large potential for amplification observed in BFS flow. The paper is divided as follows:
the experimental set-up and results are presented in § 2 and § 3, respectively. Spectral
analysis of measured velocity fields is described in § 4, including the determination of
characteristic Strouhal numbers, bifurcation diagrams, spatial support of envelopes for
each frequency range and description of the dominating characteristic frequencies in
terms of canonical instabilities. In § 5 we present measurements of cross-stream velocity
components. Measurements in other auxiliary planes are presented in § 6. In § 7 and
§ 8 we characterise the incoming boundary layer upstream of the separation edge and
time-averaged fields in the primary recirculation zone. Finally, in § 9 and § 10 we discuss
and conclude our results.

2. Experimental set-up

The experimental configuration is presented in figure 1. The incoming boundary layer
at the separation edge (blue profile) is characterised by the free-stream velocity (U0),
displacement (δ0) and momentum (θ0) thickness. We denote the streamwise (direction
of the free-stream), wall-normal (vertical) and spanwise (transverse) directions as x, y, z,
respectively. The origin of the coordinate system is placed in the x–y symmetry plane
at the lower corner between the BFS and the floor–wall. An interchangeable insert with
streamwise extent of Lp � 5 cm marked as a red cuboid is located directly upstream of
the separation edge (−Lp ≤ x ≤ 0) and extends below the level of the inlet floor channel
(0 ≤ y ≤ h). To evaluate the effect of a porous material upstream of the separation edge,
we consider four different insert configurations: solid impermeable insert as the reference
case and three inserts made of rectified foams with 10, 20 and 45 PPI (pores per inches)
corresponding to 2.54, 1.27 and 0.56 mm of average linear pore size, respectively.

Step height for each insert configuration was determined using a laser sheet and camera
with a spatial resolution of 0.14 mm per pixel. The laser sheet illuminated the level of
the lower bounding wall upstream and downstream of the separation edge (y = h at the
inlet and y = 0 at the outlet, respectively). The resulting value of h = 5.77 ± 0.14 mm is
a compromise between ensuring the largest possible spanwise aspect ratio (AR ≈ 26) and
having a sufficient spatial resolution for the particle image velocimetry (PIV) method.
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x
y

z
Porous insert

Lz

LyW

δ0, θ0

h
Lp

Free-stream velocity U0

Figure 1. Schematic representation of an experimental set-up of BFS with h as the step height. Blue profile
indicates boundary layer at the separation edge characterised by the free-stream velocity U0, as well as
displacement (δ0) and momentum (θ0) thickness. The red volume indicates the location of the replaceable
insert with length Lp. The black coordinate system defines the streamwise (x), wall-normal ( y) and spanwise
(z) directions, respectively. Thin green lines mark the system that delivers dye into the recirculation zone for
flow visualisations: solid and dashed lines correspond to the narrow slit and inner chamber inside the inlet floor
for flow visualisations, respectively. Channel height above the porous insert upstream of the separation edge is
marked as W.

The cross-section of the outlet test section downstream of the separation edge is equal to
Ly × Lz = 10 cm × 15 cm. This results in an expansion ratio of ER = Ly/W = 1.06
(equivalent to a step-to-outlet ratio Γ = h/Ly = 0.058). The small height of the step
allows us to measure a large area up to x ≤ 50h downstream of the separation edge.
Here W denotes the height of the inlet channel above the porous substrate upstream of
the separation edge (x < 0).

Permeability is the primary parameter associated with the hydrodynamics within a
porous medium and describes a relationship between pressure drop across the medium
and Darcy’s drift velocity in the bulk of the porous medium. Typically, its value depends
on the details of the geometry, such as porosity and pore diameter (Edouard et al. 2008). It
also characterises the influence of the porous material on the shear flow above the porous
substrate in the fluid–porous interface (Breugem et al. 2006; Suga et al. 2010), even at the
limit of low permeability (Rosti et al. 2015). Specifically, among permeability, porosity
and thickness of the porous material, the permeability was shown to be the main parameter
describing the response of the shear flow to the permeable wall (Rosti et al. 2015). Finally,
permeability also quantifies the effect of the porous substrate on the linear stability of the
shear flow above at a given value of Reynolds number (Tilton & Cortelezzi 2015; Wedin
et al. 2015). The measured permeabilities of porous inserts are k1 = 11.0 × 10−8 (m2) for
10 PPI, k1 = 8.9 × 10−8 (m2) for 20 PPI and k1 = 4.6 × 10−8 (m2) for 45 PPI, respectively
(see Appendix A). The effective permeability pore diameter (

√
k1) varies from 0.21 mm

(45 PPI) to 0.33 mm (10 PPI) and defines the most relevant characteristic microscale within
the bulk of the porous medium (Beavers & Joseph 1967; James & Davis 2001; Breugem,
Boersma & Uittenbogaard 2005; Breugem et al. 2006), as well as in the fluid–porous
interface (Ochoa-Tapia & Whitaker 1995; James & Davis 2001).

Relative permeability normalised with channel height above the porous insert (k1/W2)
is the most suitable macroscale hydrodynamical parameter of the porous medium in
our geometrical configuration with low expansion ratio. Low relative permeability is
equivalent to a large ratio between the hydraulic resistance of the porous insert and the
hydraulic resistance of the shear flow above the porous substrate. Increasing channel
height W decreases relative permeability and results in a relative increase of the shear flow
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volume flux when compared with flux through the porous insert, in analogy to a parallel
network of electrical resistors. In addition, when the effective permeability pore size (

√
k1)

is much lower than the height of the channel above the porous substrate (W), then the bulk
of the porous insert becomes effectively impermeable and leads to a significant reduction
of the slip velocity at the fluid–porous interface (Breugem et al. 2005).

An expansion ratio close to unity (ER � 1) results in the low relative permeability
of our inserts: k1/W2 = 12.4 × 10−6 for 10 PPI, k1/W2 = 10.0 × 10−6 for 20 PPI and
k1/W2 = 5.2 × 10−6 for 45 PPI, respectively. The largest value for 10 PPI is approximately
one order of magnitude lower than the maximal relative permeability considered by Gupte
& Advani (1997, kmax/W2 = 5.2 × 10−4), Breugem et al. (2006, kmax/W2 = 1.9 × 10−4),
Suga & Nishio (2009, kmax/W2 = 8.9 × 10−4), Suga et al. (2010, kmax/W2 = 9.7 × 10−5)
and Kuwata & Suga (2016, kmax/W2 = 1.7 × 10−4) to list a few. Therefore, we expect that
the influence of the porous substrate will be manifested at the fluid–porous interface, rather
than in the bulk of the porous inserts.

The flow visualisation system used to deliver fluorescein dye into the recirculation zone
consists of an inner chamber (green dashed lines in figure 1) and narrow slit (green solid
lines in figure 1) extending upstream of the replaceable insert (x ≤ −Lp). The slit forms a
narrow gap (0 ≤ y < 0.5 mm) above the level of the outlet floor that is connected with the
inner chamber by spanwise-aligned row of small vertical holes (φhole < 0.4 mm) shifted
by 2.5 mm along the z direction. As a result, dye is gently injected from the inner chamber
perpendicularly downwards towards the floor, and then distributed to the recirculation zone
through the narrow slit.

The main campaign of measurements consists of two realisations for each of the four
different insert configurations under consideration. These two different realisations will
be distinguished by grey and black marker edges on the plots presented in the following.
Each realisation consists of series of measurements, during which the free-stream velocity
U0 (and, thus, Reynolds number) is changed. Velocity fields were measured with a
two-dimensional PIV system that consists of a Litron Nano L200-15 laser (double-headed,
532 nm light, 1200 mJ energy per pulse), Imager sCMOS camera (16-bit, 2560 × 2160
pix) and Davis 8.1 Lavision software. We acquire single-frame image sequences and
cross-correlate five consecutive images with temporal Gaussian weighting using 48 × 16
pixel interrogation windows with 4 : 1 elliptical Gaussian weighting along the streamwise
direction and with 50 % overlap. A rectangular interrogation window was achieved
by stretching acquired images three times in the wall-normal direction using cubic
interpolation. This provides us with spatial resolution of 0.59h and 0.19h along the
streamwise and wall-normal direction, respectively. For each measurement we adjust
acquisition frequency from 10 to 30 Hz (depending on U0) to retain the time correlation
between two consecutive snapshots. Resulting time shift between two snapshots equals
approximately 0.7 advective time units (tadv = h/U0). For comparison, a typical time
scale of Kelvin–Helmholtz instability in our experiment was measured as ≈ 16 advective
time units. Unless otherwise stated, for all PIV measurements presented in this paper, the
1.5-mm-thick laser sheet is aligned with the z = 0 plane.

Unless otherwise stated, all quantities are normalised using the step height (h) and
free-stream velocity of the incoming boundary layer at the separation edge (U0). We
investigate the dynamics of BFS varying the Reynolds number, which is the main control
parameter in our study defined as ReH = U0h/ν, with ν as the kinematic viscosity of water
at room temperature.
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Experiments were performed in a closed-loop water channel at Warsaw University of
Technology, with the working fluid at room temperature. The experimental set-up has
been already described elsewhere (Klotz, Gumowski & Wesfreid 2019). The experiment
described therein has been slightly modified by inserting a 5-cm-thick block of rectified
foam (10 PPI) upstream of the honeycombs screens. This allows us to keep background
velocity fluctuations measured in the central part of free-stream below 1.7 % up to U0 ≈
15 cm s−1. The bulk free-stream velocity is evaluated with calibrated PIV measurements
and controlled by a large needle valve with an absolute setting precision of approximately
�ReH = ±5.

The principal source of Reynolds number errors originates from the uncertainty of the
determination of the free-stream velocity (<1.7 %), which adds stochastic variation on the
control parameter within each series of measurements. The second error source is related
to the inaccuracy of the step height determination (<2.5 %), which is independent of the
Reynolds number and remains fixed for a given insert configuration. Therefore, it does not
affect trend lines observed when the control parameter is changed other than the rescaling
of abscissas of all data points in a series of measurements by a fixed constant. The third
source of error originates from the limited control precision of the valve, which is less than
the actual accuracy for the determination of the control parameter value. It reflects that it is
substantially easier to measure the current Reynolds number than to set one specific value
during the experiment. For this reason, for each series of experiments we systematically
varied the Reynolds number to cover the full range of interest in our study (see e.g. Klotz
et al. 2014, 2019). In addition, we performed two independent series of measurements for
each insert configuration. Finally, we verified that for a given flow regime, the BFS flow
does not change substantially with a small variation of the control parameter.

3. Experimental results

We first present flow visualisations (streaklines) to illustrate qualitatively flow dynamics
behind BFS in the early transitional regime. Fluorescein dye was excited by a point
source of visible white light and released into the recirculation zone through a narrow
slit at the bottom corner edge of the step geometry (see the green thin solid line for
x < −Lp and y > 0 in figure 1). Instantaneous qualitative pictures of structures formed
downstream of the separation edge are shown in figure 2 (top view) and figure 3
(side view). Flow visualisations are presented for a solid insert with impermeable walls
(reference case, panels a,b) along with 10 PPI porous insert configuration (panels c,d).
To enhance the contrast, for each presented picture we subtract the light intensity of
the background acquired for the BFS flow with no injection of the dye. The images
are captured with a single Nikon D610 camera (6016 × 4016 pix matrix) and a mirror
inclined at 45◦ to the horizontal plane. At low Reynolds number (ReH = 290) both
porous and solid configurations exhibit streamwise-elongated filaments of dye. This will
be discussed further in § 5. Once Reynolds number is further increased to ReH = 510,
spanwise-coherent roller-like structures can be observed that dominate the temporal
dynamics of the BFS flow. In the presence of a porous insert, these structures are shed
more regularly and more frequently when compared with the reference case with solid
impermeable walls. In the following part of § 3 and § 4, we characterise the unsteady
dynamics of these spanwise-coherent structures formed downstream of the separation edge
of BFS flow.

Dovgal et al. (1994) analysed the local linear stability of the local streamwise velocity
profiles in streamwise-inhomogeneous BFS flow and referred to the observed structures
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Influence of porous material on the flow behind a BFS
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Figure 2. Top view of flow visualisations for solid impermeable insert (a,b) and permeable 10 PPI porous

insert (c,d). Two Reynolds numbers are shown: ReH = 290 (a,c) and ReH = 510 (b,d).
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Figure 3. Same as figure 3 but for a side view: (a) solid, ReH = 290; (b) solid, ReH = 510;
(c) 10 PPI, ReH = 290; (d) 10 PPI, ReH = 510. The recirculation bubble downstream of the separation
line can be observed qualitatively on each panel.

as (local) instability waves. In the global mode framework, Marquet et al. (2008)
characterised wave packet in the form of vortical structures with an alternating sign of
spanwise vorticity in the vicinity of the locus of inflectional points, which are amplified
and grow in space while travelling along the recirculation zone. Cantwell & Barkley (2010)
and Marais et al. (2011) investigated the wake behind a cylinder, which is another example
of streamwise-inhomogeneous flow configuration. They observed that the wave packet
amplified within the recirculation zone in the subcritical regime consists of the street of
vortices with a similar spatial structure to Bénard–von Kármán street in the supercritical
regime, i.e. above the critical threshold of sustained oscillations. Finally, we also note that
any measurable finite-amplitude instability wave with non-zero oscillation frequency must
alter the underlying base flow inducing some surplus vorticity fluctuations ω′

z, which, in
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turn, manifest as vortical structures. For this reason, we refer to finite-amplitude instability
waves and vortical structures interchangeably as BFS structures in the following.

Next, we evaluate quantitatively BFS flow dynamics for ReH ∈ (230, 850) using a
PIV method with measurement region covering x/h ∈ (0, 50h) and y/h ∈ (0, 3.0h). Each
measurement series consists of a sequence of 2500 snapshots covering approximately
1750 advective time units. We investigate three porous inserts made of 10 PPI, 20 PPI
and 45 PPI rectified foams, along with a solid Plexiglas insert as the reference case. For
each configuration, two independent realisations are taken to assess the robustness of the
analysis and to evaluate possible sensitivity to external noise in the installation. Flow
visualisations in figures 2 and 3 and PIV measurements presented in the following were
acquired in different runs.

The instantaneous spatial distribution of streamwise (u/U0) and wall-normal (v/U0)
velocity components measured with the PIV technique are presented in figures 4 and 5,
respectively. The spatial distribution of instantaneous vorticity fluctuations (the difference
between instantaneous and time-averaged vorticity fields denoted as ω′

z) is illustrated in
figure 6. Each column corresponds to a single Reynolds number, ReH ∈ (290, 410, 510)

from left to right. Each of the presented fields is extracted from a different series of
measurements and variations between the actual Reynolds numbers resulting from an
absolute setting precision of the controlling valve is approximately �ReH = ±5. Rows
represent solid Plexiglas, 45 PPI and 10 PPI porous insert configurations, from top to
bottom. In addition, on each panel we superpose time-averaged recirculation zones (dashed
magenta curve) and the locus of inflectional points of time-averaged streamwise velocity
profiles (dashed magenta curve). Specifically, the regions of reversed flow downstream and
below the separation edge are observed for all insert configurations.

Laminar featureless flow at low Reynolds number is presented in the left columns
of figures 4–6. The central columns illustrate the flow at sufficiently high ReH , above
which a spatially periodic pattern of BFS structures can be observed. The right columns
represent the flow at a further increased Reynolds number, at which distinct spatially
periodic patterns are preserved. These BFS structures manifest by waviness of the
streamwise velocity component (figure 4), street of coherent regions of vertical velocity
with alternating signs (figure 5) and street of alternating vorticity fluctuations along the
streamwise direction (figure 6). A comparison between left and central columns indicates
a bifurcation leading to the formation of the finite-amplitude structures downstream of the
separation edge for sufficiently large Reynolds numbers. The quantitative analysis of this
bifurcation, which includes the determination of the thresholds using the Landau model,
are presented in § 4.

Our observation that spatial periodic structure is most pronounced on the vertical
component v/U0 agrees with former numerical results (see e.g. Blackburn et al. 2008;
Marquet & Sipp 2012; Boujo & Gallaire 2015). In addition, the structure of the
perturbation consists of elliptical shapes with major axes aligned with the vertical and
horizontal directions, in agreement with Blackburn et al. (2008). Moreover, Cantwell
& Barkley (2010) and Marais et al. (2011) demonstrated that cross-flow (wall-normal)
velocity component is a good representation of vortical structures observed both below
and above the critical threshold of the Bénard–von Kármán street in the wake behind a
cylinder. For these reasons in the rest of the paper we concentrate our analysis on v/U0,
in analogy with the analysis of a cylinder wake (Marais et al. 2011) or jet in a cross-flow
(Megerian et al. 2007; Klotz et al. 2019).
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Influence of porous material on the flow behind a BFS
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Figure 4. Instantaneous streamwise velocity component (u/U0) measured with a two-dimensional PIV
technique for solid (a–c), 45 PPI (d–f ) and 10 PPI (g–i) insert configurations, from top to bottom. The first
(a,d,g), second (b,e,h) and third (c, f,i) columns correspond to ReH = 290, ReH = 410 and ReH = 510, from
left to right. In each panel, the locus of the inflectional point in the shear-layer profiles (magenta dashed line)
and recirculation zone (magenta dotted line) are superposed.

y/h

–0.15

0.15

v/
U

0

y/h

10 20 30 40

x/h

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

y/h

10 20 30 40

x/h
10 20 30 40

10 20 30 40 10 20 30 40 10 20 30 40

10 20 30 40 10 20 30 40 10 20 30 40

x/h

(g)

(a) (b)

(e) ( f )

(c)

(d )

(h) (i)

Figure 5. Same as in figure 4 but for instantaneous wall-normal velocity component (v/U0): for solid (a–c),
45 PPI (d–f ) and 10 PPI (g–i) insert configurations, from top to bottom. The first (a,d,g), second (b,e,h) and
third (c, f,i) columns correspond to ReH = 290, ReH = 410 and ReH = 510, from left to right.
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Figure 6. Same as in figure 4 but for instantaneous spanwise vorticity fluctuations (ω′
zh/U0) defined as the

difference between instantaneous and time-averaged spanwise vorticity fields: for solid (a–c), 45 PPI (d–f ) and
10 PPI (g–i) insert configurations, from top to bottom. The first (a,d,g), second (b,e,h) and third (c,f,i) columns
correspond to ReH = 290, ReH = 410 and ReH = 510, from left to right.
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4. Spectral analysis

For each spatial location (x, y) we perform temporal fast Fourier transform (FFT)
analysis of the v(t)/U0 signal. The long sequence of measurements is divided into nine
subsequences without overlap and with duration of ≈200 advective time units each.
This covers more than 12 full periods of Kelvin–Helmholtz instability. All subsequences
are ensemble-averaged to obtain the final spatial distribution of amplitude AFFT/U0 for
each frequency in the spectrum. First, we extract spatio-spectral diagrams at wall-normal
locations, at which standard deviation in time of v/U0 reaches the maximum. Dependence
of the Strouhal number (StH = ( fh)/(U0)) on streamwise location is shown in figure 7.
Vertical lines can be distinguished on these diagrams, which demonstrates the existence
of global coherent spectral modes with well-defined characteristic Strouhal number that
prevails along the streamwise direction in the separated shear layer formed behind the
BFS. Their spectral amplitudes reach the maximal value at some finite distance from
the separation edge (15h − 25h, depending on ReH and porous insert configuration) and
subsequently decay. This is in analogy with the global mode evolution observed in the
wake of a cylinder (Goujon-Durand, Jenffer & Wesfreid 1994; Wesfreid, Goujon-Durand
& Zielinska 1996), three-dimensional bluff bodies (Ormières & Provansal 1999; Klotz
et al. 2014), jet in a cross-flow (Klotz et al. 2019; Chauvat et al. 2020) or hot free
jet (Coenen et al. 2017). Our observations are also in agreement with Blackburn et al.
(2008) who reported that non-trivial dynamics of the separated shear flow extends further
downstream of the step, and is not solely determined by the initial roll-up of the shear layer
at the separation edge.

Next, we average spatio-spectral diagrams over the streamwise direction x. Selected
results for solid, 45 PPI, 20 PPI and 10 PPI insert configurations are shown in figure 8(a–d),
from left to right. For the solid configuration, two characteristic Strouhal numbers can
be distinguished: at low Reynolds numbers (ReH = 325 and ReH = 365), no peak at
≈ 0.055 can be distinguished and only a peak at StH ≈ 0.035 is present. For ReH = 460,
a new weak peak emerges at StH ≈ 0.055 and eventually it becomes the main peak
in the spectrum for sufficiently large Reynolds number (ReH = 675). For the 45 PPI
insert configuration, we observe analogical spectral shift but at lower Reynolds number
when compared with solid insert configuration. For 20 PPI, a weak signature of lower
characteristic Strouhal number can be distinguished only at the lowest ReH , and for the
10 PPI configuration, a dominant peak occurs at ≈ 0.055 for the entire range of Reynolds
numbers under consideration.

4.1. Characteristic Strouhal numbers and frequency cross-over
For each insert configuration, Reynolds number and realisation, we determine a global
dominant spectral peak (with positive frequency) and associated global peak of FFT
amplitude (AFFT ) within the entire area of measurements. In contrast to results shown
in figure 8, the data in figure 9 do not include averaging along the streamwise direction. In
figure 9 we present the dependence of dominant StH on ReH for four insert configurations:
solid insert (orange triangles), 45 PPI insert (violet squares), 20 PPI insert (green reversed
triangles) and 10 PPI insert (blue circles). For each insert configuration different edge
colours of the markers are used to distinguish between two independent series of
measurements.

All measurement points can be grouped into two distinct spectral regions marked by
dark-red (0.048 < StH2 < 0.070) and light-blue (0.020 < StH1 < 0.042) shaded areas.
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Figure 7. Spatio-spectral diagrams with normalised frequency (StH) on the horizontal and streamwise
coordinate (x/h) on the vertical axis for different ReH : (a–f ) solid, (g–l) 45 PPI and (m–r) 10 PPI porous
configurations, from top to bottom; (a) ReH = 295; (b) ReH = 365; (c) ReH = 405; (d) ReH = 515;
(e) ReH = 575; ( f ) ReH = 675; (g) ReH = 285; (h) ReH = 365; (i) ReH = 410; ( j) ReH = 505; (k) ReH = 580;
(l) ReH = 685; (m) ReH = 290; (n) ReH = 365; (o) ReH = 405; ( p) ReH = 510; (q) ReH = 570;
(r) ReH = 700.

We ensemble-averaged all data points within each of these two spectral regions to obtain
two characteristic central frequencies, which results in StH1 = 0.033 and StH2 = 0.058.
In the following, we refer to these characteristic frequencies and corresponding spectral
amplitudes as spectral mode 1 and 2, respectively. Once the Reynolds number is increased,
a cross-over between dominant Strouhal numbers and corresponding spectral modes can
be observed. Estimated Reynolds numbers, at which this cross-over occurs, are marked
by thick solid vertical lines in the same colours as the corresponding markers. Increasing
permeability of the insert promotes frequency cross-over to occur at lower values of ReH .
Apart from the switch of dominating frequency, the characteristic Strouhal numbers do not
depend on Reynolds number: despite some intrinsic scatter of the measured frequencies,
the results fall on one of two horizontal trend lines for each realisation. In fact, some scatter
is expected due to large potential for perturbation amplification in BFS (e.g. Blackburn
et al. 2008; Marquet et al. 2008; Sipp et al. 2010; Dergham et al. 2013; Boujo & Gallaire
2015).

4.2. Bifurcation diagram of spectral amplitudes
In figure 10 we show a bifurcation diagram illustrating a dependence of squared amplitude
of dominant FFT mode (E = A2

FFT/U2
0 for the mode with positive frequency) on Reynolds
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Figure 9. Dominant normalised frequencies StH = fh/U0 for each realisation and each configuration as a
function of the control parameter ReH . Light blue and dark red semi-transparent areas indicate two main
spectral regions, in which data points are grouped. Orange triangles, violet squares, reversed green triangles
and blue circles correspond to solid, 45 PPI, 20 PPI and 10 PPI insert configurations, respectively. Black and
grey edges of the markers indicate two different series of measurements for each porous insert configuration.
Solid vertical lines in corresponding colours mark the frequency cross-over from lower to higher frequencies.

number ReH . All markers, colours and solid vertical lines are the same as in figure 9. Each
subsequent configuration is shifted upwards by 0.0012 to increase readability of the plot
and zero reference levels are marked by horizontal dotted lines in corresponding colours.
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Influence of porous material on the flow behind a BFS
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Figure 10. Dependence of the dominant spectral mode amplitude on control parameter ReH for a solid insert
(orange triangles), 45 PPI (violet squares), 20 PPI (reversed green triangles) and 10 PPI (blue circles) porous
inserts. Solid vertical lines indicate the frequency cross-over from spectral mode 1 to spectral mode 2. Linear
increase of the squared amplitude of the dominant spectral mode is marked by a black dashed line for all three
porous inserts. Horizontal dashed lines in corresponding colours indicate energy saturation of the dominant
mode for higher Reynolds numbers. Series of measurements for each subsequent configuration is shifted
upwards by 0.0012 to increase readability of the plot and zero reference levels are marked by horizontal dotted
lines in corresponding colours.

For all four insert configurations, the squared amplitude of the dominant mode reaches
fully saturated value at sufficiently large Reynolds number. This is marked by horizontal
dashed lines in corresponding colours. Similar saturation of the dominant frequency has
been observed for wake behind a cylinder (Zielinska et al. 1997; Mantič-Lugo et al. 2014).

However, the dependence of E(ReH) prior to the fully saturated regime is different
for a solid insert when compared with the three porous configurations. Specifically, for
10 PPI, 20 PPI and 45 PPI inserts, E is close to zero at low enough Reynolds numbers
(blue circles, green triangles and violet squares in figure 10). Once the Reynolds number
exceeds some critical value Rec, the squared amplitude of dominant mode (E) starts to
grow proportionally to the distance from the threshold, as indicated by black dashed
lines. This behaviour of the order parameter agrees with the Landau model and indicates
the occurrence of Hopf bifurcation at Rec. We determined threshold values for each
porous insert by interpolating linear growth of E(ReH) to zero. This results in Rec ≈ 350
for 10 PPI, Rec ≈ 420 for 20 PPI and Rec ≈ 450 for 45 PPI. In contrast, for the solid
insert (orange triangles in figure 10), the squared amplitude of the dominant mode grows
gradually with no visible change of growth trend once the Reynolds number is increased.

Furthermore, for all porous insert configurations the frequency cross-over (blue, green
and violet solid vertical lines in figure 10) occurs prior to the threshold Rec associated with
Hopf bifurcation. This demonstrates that entire growth of E presented on this bifurcation
diagram can be attributed to the dominating spectral mode 2. In contrast, for a solid insert
the frequency cross-over is observed only when E reaches approximately half of its final
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saturated value showing that both spectral modes 1 and 2 contribute to the growth of E
presented in figure 10.

According to the Landau model, the amplitude of the oscillations is zero below
the critical threshold and starts to grow when the control parameter exceeds the
critical Reynolds number, with its squared value proportional to the distance from the
critical threshold (i.e. (AFFT)2 ∼ (Re − ReC)). This transition is due to Hopf bifurcation
associated with a linear instability of the base flow with non-zero frequency at the
critical threshold. The exponential growth of instability for finite values of Re − ReC is
reduced to zero through a nonlinear cubic term in the Landau equation, which results in
finite-amplitude oscillations (i.e. limit cycle). In our experiment, the amplitude AFFT of
dominating spectral mode 2 follows the prediction of the Landau model for all porous
inserts. In contrast, our experimental data do not clearly support the existence of a
supercritical limit cycle for the solid insert configuration. Our observations thus support
the suggestion of Marquet et al. (2009) who postulated that the recirculation zone behind
the step can be an optimal location for a passive control device.

4.3. Spatial support for spectral modes: Hilbert transform
In figures 11 and 12, we illustrate the spatial distribution of envelope amplitudes associated
with spectral modes 1 and 2, respectively. The envelopes are calculated using Hilbert
transform for spectral ranges marked by light-blue and dark-red semi-transparent areas
in figure 9. Difference between the spatial distribution of envelopes 2 and 1 is illustrated
in figure 13: blue and red colours represent the regions dominated by spectral modes 1 and
mode 2, respectively. Columns in figures 11–13 correspond to ReH ∈ (290, 410, 510) with
�ReH = ±5, from left to right. Rows are associated with solid, 45 PPI and 10 PPI porous
insert configurations, from top to bottom.

For the solid insert configuration, the average spatial intensity of envelope 1 is larger
than envelope 2, in agreement with figures 9 and 10. The first row in figures 11 and
13 indicate that this dominance is mostly pronounced downstream the reattachment of
the separated shear layer, with maximal value located slightly above the separation edge
(y > h). However, envelope 2 can locally dominate in the vicinity of the recirculation zone
marked as dotted magenta curves.

Spatial envelopes for 45 PPI are shown in the second row of figures 11–13. Below the
threshold of limit cycle oscillations (ReH < Rec ≈ 450 for 45 PPI), spatial distribution of
the envelope difference is similar to the solid insert configuration with the dominance of
envelope 1 downstream of the reattachment line, as illustrated in figure 13(d,e) (compare
with figure 13(a–c) for the solid insert configuration). However, for ReH = 510, envelope
2 starts dominating downstream of the reattachment (figure 13f ). Similar transition
of the spatial envelope structure with increasing ReH is also observed for 10 PPI in
the third row of figure 13. Below the critical threshold (ReH < Rec ≈ 350 for 10 PPI),
envelope 1 is dominating downstream (figure 13g), whereas above this threshold the
intensity of envelope 2 overtakes in the entire region of measurements with a maximal
value slightly above the locus of inflectional points marked by a dashed magenta curve
(figure 13h,i).

To further characterise the streamwise dependence of both envelopes, we calculate their
mean value along the wall-normal direction for each streamwise location x/h. The results
are presented in figure 14: solid, 45 PPI, 20 PPI and 10 PPI porous insert configurations
are shown in the rows from top to bottom; left and right columns represent envelopes
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Influence of porous material on the flow behind a BFS
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Figure 11. Time-averaged spatial envelope reconstructed using Hilbert transform on the spectral range
corresponding to mode 1. Solid insert, 45 PPI and 10 PPI porous insert configurations are presented in (a–c),
(d–f ) and (g–i), from top to bottom. Panels (a,d,g), (b,e,h) and (c, f,i) correspond to ReH ∈ (290, 410, 510),
from left to right. On each field, magenta dotted and dashed curves are superposed to mark the time-averaged
recirculation zone and locus of inflection points of time-averaged streamwise velocity profiles. Compare with
figures 4–6.
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Figure 12. Same as figure 11 but for spectral range corresponding to mode 2: solid insert, 45 PPI and 10 PPI
porous insert configurations are presented in rows (a–c), (d–f ) and (g–i), from top to bottom. Columns (a,d,g),
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Figure 13. Difference between spatial support of spectral mode 2 and spectral mode 1 envelopes: solid insert,
45 PPI and 10 PPI porous insert configurations are presented in rows (a–c), (d–f ) and (g–i), from top to bottom.
Columns (a,d,g), (b,e,h) and (c, f,i) correspond to ReH ∈ (290, 410, 510), from left to right.
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1 and 2, respectively. On each panel, we present the streamwise envelope intensity
for several selected values of ReH , the values of which are listed in legends on the
right.

For solid insert configuration, both envelopes reach a global maximum at x/h ≈ 20
and their dependence along the streamwise direction is similar (figure 14a,b). In addition,
the spatial peak of envelope 1 is larger than that of envelope 2 up to ReH = 675 (blue
circles in figure 14a,b), in agreement with the frequency cross-over shown in figure 9.
After initial streamwise growth, the amplitude of envelope 1 tends to reach a constant
equilibrium value further downstream. In addition, the global peak of envelope 1 for
porous inserts (figure 14c,e,g) does not change significantly when compared with the solid
insert configuration (figure 14a).

In contrast, porous inserts heavily influence BFS structures characterised by the spectral
range of mode 2. Envelope 2 for all porous inserts is characterised by non-monotonic
streamwise evolution, reaching their maximal value at some finite distance from the step
and subsequently decaying further downstream. In addition, the streamwise location of
the global peak shifts upstream with increasing ReH , in analogy with Mantič-Lugo &
Gallaire (2016a). This streamwise evolution of envelope 2 for porous inserts is similar to
the spectral mode evolution shown in figure 7.

The different streamwise evolutions of envelopes 1 and 2, combined with their different
spatial support observed for porous inserts, indicate that the dynamics characterised
by spectral range 2 is associated with the mixing-layer region in the vicinity of
the recirculation zone. In contrast, envelope 1 corresponds to the dynamics of the
boundary-layer region downstream of the reattachment of the separated shear layer.

4.4. Origin of dominant spectral modes
Characteristic frequencies of mode 1 and mode 2 are nearly commensurate. We note that
for solid insert configuration at low ReH only mode 1 can be observed (see red curve for
ReH = 325 in figure 8a). Significant peak corresponding to mode 2 can be detected in
the spectrum only at larger values of ReH (e.g. green curve for ReH = 460 in figure 8a).
This shows that mode 1 is not a subharmonic of mode 2. Therefore, BFS dynamics is
different from subharmonic resonance in free mixing layers, for which first subharmonic
was least-stable secondary instability to the equilibrated train of primary vortices related
to fundamental frequency.

Similarly, for 10 PPI insert configuration, mode 2 fully dominates the spectrum and
very weak/no spectral signature of mode 1 can be distinguished (figure 8d). Moreover,
mode 2 grows faster along the streamwise direction and reaches maximum closer to the
separation edge when compared to mode 1 (figures 13 and 14), which indicates that mode
2 is not a higher harmonic of mode 1. This demonstrates that modes 1 and mode 2 are
two separate spectral modes with two different characteristic frequencies. In this context,
Boujo & Gallaire (2015) observed a transition of linear harmonic BFS response from
one to two dominant frequencies once the expansion ratio is decreased from ER = 2 to
ER = 1.4. Our value of ER = 1.06 is below the estimated transition range reported by
Boujo & Gallaire (2015) and thus a two-peak response can be expected.

To better assess characteristic frequencies for each mode, we acquired few additional
series of measurements for solid and 10 PPI porous inserts. We compute the spectra using
a similar method as described in the first paragraph of § 4 but with 50 % longer time
series for each sub-sequence. Then, we ensemble-averaged the results for all three long
series of measurements. This allowed us to increase spectral resolution by 50 % when
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Influence of porous material on the flow behind a BFS
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Figure 14. Streamwise dependence of amplitudes of envelope 1 (a,c,e,g) and envelope 2 (b,d, f,h). Panels
(a,b), (c,d), (e, f ) and (g,h) correspond to solid, 45 PPI, 20 PPI and 10 PPI porous inserts, from top to bottom.
The ReH values for each insert configuration are indicated in legends. Each point at a given x/h results from
averaging envelopes shown in figures 11 and 12 in time and along wall-normal direction. All presented curves
are smoothed along the x direction between three neighbouring points.
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Figure 15. Spectra averaged along the streamwise direction for solid (a) and 10 PPI porous inserts (b). Each
spectrum is ensemble-averaged over three different long series of measurements. This results in 50 % better
resolution in frequency when compared with figure 8 and with higher signal-to-noise ratio at lower frequencies.
Red solid and black dashed vertical lines illustrate the characteristic frequency of spectral mode 1 and its higher
harmonic, respectively.

compared to the data presented in figure 8. Resulting spectra are presented in figure 15
with Reynolds numbers listed in the legends. This extended analysis confirms that at low
ReH BFS dynamics with solid insert is dominated by low-frequency mode 1 (red stars
in figure 15a). As ReH is increased the amplitude of mode 2 increases and eventually
becomes dominant. Characteristic frequency of mode 1 remains constant as illustrated by
red vertical solid line, with additional red dashed lines indicating the spectral resolution of
FFT transform. Spectral range allowed for the first higher harmonic of mode 1 is marked
in figure 15(a) as black vertical dashed line with black dotted vertical lines indicating the
spectral accuracy for higher harmonic (twice the spectral resolution). Peaks of mode 2
(black crosses in figure 15a) lie outside the spectral range of the higher harmonic of mode
1 for all measured spectra, which confirms that mode 2 is not a higher harmonic of mode
1. Furthermore, on both panels in figure 15, the spectral range associated with near-zero
frequency modes is relatively flat with no significant and robust peaks in the vicinity of
zero frequency for investigated ReH range and for our spectral resolution.

One can distinguish at least two more characteristic length scales in BFS flow different
from step height h, such as momentum thickness (θ0) of incoming boundary layer at the
separation edge or displacement thickness (δr) close to the streamwise location where
separated shear layer re-attaches. Momentum thickness is conventionally used in the
context of free mixing shear layers (e.g. Ho & Huerre 1984), whereas displacement
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Influence of porous material on the flow behind a BFS
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Figure 16. Strouhal numbers computed using different characteristic length scales: (a) momentum thickness
at the separation edge, θ0; (b) displacement thickness downstream of the reattachment, 〈δr〉. Compared with
figure 9 where step height h is used as the length scale. Horizontal red lines in (a) correspond to the most
amplified frequency calculated using spatial local linear theory for the mixing layer (solid, Michalke 1965;
Freymuth 1966; dashed, Ho & Huerre 1984). Horizontal non-red solid lines in (a) represent reported values
for roll-up of the shear layer for BFS (Eaton & Johnston 1982; Chun & Sung 1996; Dovgal & Sorokin 2004).
Dashed curves in (b) correspond to the most amplified frequency of the Falkner–Skan family of boundary layers
with Hartree parameter β = −0.198 (Obremski et al. 1969 in red; Wazzan, Taghavi & Pafford 1986 in cyan)
and β = −0.140 (Obremski et al. 1969 in green). Correlation proposed by Xu et al. (2019) is also superposed
as magenta curve.

thickness is more frequently applied in boundary layer flow (e.g. Obremski et al. 1969;
Ehrenstein & Gallaire 2005; Alizard, Cherubini & Robinet 2009; Monokrousos et al. 2010;
Wedin et al. 2015). In figure 16(a,b) we present characteristic frequencies of both spectral
modes normalised with θ0 and 〈δr〉, respectively. 〈δr〉 is calculated from streamwise
velocity profile averaged along the streamwise direction starting from re-attachment (xr)
and spanning 2h downstream (x′

r = xr + 2h). Variation of both Stθ (ReH) and Stδ(ReH)

illustrated in figure 16(a,b) is more pronounced than the variation of Sth(ReH) presented
in figure 9. This shows that for a given value of ER, step height h is the most appropriate
length scale for BFS flow. However, independently of the selected characteristic length
scale, all measured points group onto two distinct branches associated either with mode
1 (lower branch at the bottom of figures 9 and 16) or mode 2 (upper branch at the top of
figures 9 and 16).

Local spatial stability analysis (Michalke 1965) along with experimental measurements
in free mixing layer (Freymuth 1966) indicated that Stθ = 0.017 is the most unstable
frequency amplified through inviscid Kelvin–Helmholtz instability due to inflectional
point in the time-averaged streamwise velocity profile. Ho & Huerre (1984) reported about
similar value of Stθ = 0.016 (note that here we transform their results using free-stream
velocity U0 as the velocity scale). Both values are marked as red horizontal lines in
figure 16(a). The largest Stθ were measured at the frequency cross-over from mode 1
to mode 2, with maximal values of approximately 0.016, 0.015, and 0.014 for 10 PPI,
20 PPI, and 45 PPI, respectively. These values are in good agreement with linear stability
prediction for free mixing shear layer, demonstrating that the maximal allowed value of
Stθ on the upper branch is bounded from above by the most unstable frequency of the
shear layer at the separation edge. In addition, Stθ on the upper branch decreases once
the Reynolds number ReH is increased, in analogy to the trend reported by Michalke
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Figure 17. Time-averaged streamwise velocity profiles measured: (a) immediately downstream of the
separation edge; (b) at re-attachment of separated boundary layer, x = xr; (c) 2h downstream of the
re-attachment, at x = x′

r = xr + 2h; (d) streamwise-averaged for x ∈ (xr, x′
r). Wall-normal coordinate y is

normalised with momentum (a) and displacement (b–d) thickness computed separately for each presented
location. Magenta curve in (a) represents free mixing shear layer solution (u( y) = 0.5 + 0.5 tanh( ys/2θ0)).
Dashed curves in (b–d) represent velocity profiles of Falkner–Skan boundary layer flow with Hartree parameter:
β = −0.198 (at the re-attachment of boundary layer; in red), β = −0.140 (2h downstream the re-attachment;
in green). In (b–d) velocity profiles with ReH below the threshold of frequency cross-over are shown.

& Hermann (1982) for free jet. Our results on Stθ for the largest Reynolds number
under investigation (ReH ≈ 900) compare well with the values reported by Eaton &
Johnston (1982), Chun & Sung (1996) and Dovgal & Sorokin (2004) marked as horizontal
non-red solid lines on the right of figure 16(a). Overall agreement between measured
frequencies on upper branch frequencies and results reported for free mixing shear layer
and BFS demonstrates that the upper branch associated with mode 2 corresponds to
Kelvin–Helmholtz instability.

This is further demonstrated in figure 17(a), on which we plot time-averaged velocity
profiles measured for all Reynolds numbers and all considered inserts (approximately
300 independent series of measurements). As already mentioned in the introduction,
the dynamics of the perturbation at the separation edge in BFS shares similarity with
the free-mixing shear layer. Therefore, the wall-normal coordinate is normalised with
the momentum thickness of the boundary layer at the separation edge θ0. In addition,
for each measured velocity profile the wall-normal locations were shifted by �y, such
that u( ys) = 0.5U0 for ys = y − �y = 0. We also superpose classical hyperbolic-tangent
mixing layer velocity profile (0.5(1 + tanh( ys/2θ0)) illustrated by a thick dashed magenta
curve. All the measured streamwise velocity profiles collapse to a single curve that
compares well with a hyperbolic tangent. This demonstrates that immediately downstream
of the separation edge, BFS dynamics can be considered as analogical to the free-mixing
shear layer and dominated by Kelvin–Helmholtz instability, as already mentioned in the
introduction.

In figure 16(b) we present characteristic frequency normalised with displacement
thickness in the vicinity of the re-attachment of separated shear layer as a function of ReH .
The lower branch associated with mode 1 covers the spectral range of Stδ ∈ (0.02 − 0.06).
We compare lower branch frequencies to the results derived from local linear stability
analysis of Falkner–Skan family of boundary layer profiles, with Hartree parameter β
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Influence of porous material on the flow behind a BFS

that quantifies the intensity of the adverse pressure gradient. Specifically, we consider
β = −0.198 and β = −0.140.

First, we demonstrate the universal character of the streamwise velocity profiles in
the vicinity of the reattachment of the separated shear layer. In figure 17(b–d) we select
velocity profiles with ReH below the threshold of frequency cross-over for which mode 1 is
dominating. On each panel, we overlap all selected velocity profiles without distinguishing
insert configuration, Reynolds number or realisation. Specifically, we consider streamwise
location, at which separated shear layer reattaches (xr in figure 17b), streamwise location
located two steps heights downstream of the reattachment (x′

r = xr + 2h in figure 17c)
and velocity profile averaged along the streamwise direction for x ∈ (xr, x′

r) (figure 17d).
For reference, we also superpose Falkner–Skan velocity profiles for β = −0.198 and
β = −0.140 that represent local velocity profile at the reattachment (red dashed curve) and
2h downstream of the separation line (green dashed curve), respectively. The wall-normal
coordinate y is normalised by displacement thickness at the reattachment (δr in figure 17b),
displacement thickness 2h downstream of the reattachment (δr′ in figure 17c), and
displacement thickness of the velocity profile averaged along the streamwise direction
x ∈ (xr, x′

r) (〈δr〉 in figure 17d). One can observe that the measured velocity profiles
at xr and x′

r compare well with Falkner–Skan velocity profiles with β = −0.198 and
β = −0.140, respectively.

The local intensity of the adverse streamwise pressure gradient associated with specific
Hartree parameter β is a value that is required at a given streamwise location to preserve
self-similarity of the Falkner–Skan solution along the streamwise direction. If, at any
location, this value is lower than required, then the local velocity profile will relax
further downstream towards a solution that is closer to the zero-pressure equilibrated
boundary layer (i.e. towards a solution with β closer to zero). As already mentioned in the
introduction, BFS flow is not self-similar along the streamwise direction and it represents
spatial relaxation of free-mixing layer flow into an equilibrated boundary layer profile
further downstream. This implies that the local intensity of the adverse pressure gradient
is lower than required by the Falkner–Skan solution to preserve streamwise self-similarity.
Furthermore, the agreement between one specific self-similar Falkner–Skan solution and
measured velocity profiles occurs only locally at one specific streamwise location.

In figure 17(b–d) we established that velocity profiles in the vicinity of re-attachment
can be locally spanned between Falkner–Skan solutions for β = −0.198 and β = −0.140.
Now we compare the measured spectral range of the lower branch with the most amplified
frequencies of these two Falkner–Skan boundary layers. Obremski et al. (1969) studied
local linear stability of the Falkner–Skan solution and presented in their figure 10(m,n)
the dependency of the most amplified frequency of the Tollmien–Schlichting wave on
the Reynolds number based on displacement thickness. However, they did not state
fTS(Reδ) dependency explicitly. The cups of iso-contours shown in figure 10(m,n) from
Obremski et al. (1969) fall on the straight line on a log–log scale. Therefore, we infer the
coordinates of these cusps and fit a power-law dependence to estimate the missing fTS(Reδ)

dependency. Finally, we substitute the dependence of local values of Reδ(ReH) measured
in our experiments and compare with our spectral results.

The resulting spectral range for the most amplified frequencies of Tollmien–Schlichting
waves is marked in figure 16(b) and spans from β = −0.198 (red dotted curve) to
β = −0.140 (green dotted curve). We also superposed results reported by Wazzan et al.
(1986, cyan curve) and Xu et al. (2019, magenta curve). Measured Strouhal numbers of
the lower branch (mode 1) are contained within the spectral range bounded above by
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the curves associated with β = −0.198 (Obremski et al. 1969; Wazzan et al. 1986), and
bounded below by the curve related to β = −0.140 (Obremski et al. 1969) and correlation
reported by Xu et al. (2019). Moreover, the largest measured values of Stδ on a lower branch
are in relatively good agreement with the most amplified frequency for β = −0.198. The
streamwise velocity profile at this location is expected to be the least stable among all
velocity profiles within the Falkner–Skan family of boundary layers (Obremski et al.
1969). This indicates that the mode 1 lower branch is related to the Tollmien–Schlichting
instability.

We note that in contrast to the well-defined reattachment location xr, the downstream
limit x′

r for streamwise averaging has been selected arbitrarily. For any location selected
further downstream than x′

r, the intensity of adverse pressure gradient would decrease (i.e.
β closer to zero) and lower bound limit for Stδ (green dotted curve in figure 16b) would
shift closer to abscissa.

Regarding the relation between local and global stability analysis, Boujo & Gallaire
(2015) investigated BFS flow with solid impermeable walls and ER = 2.0. They reported
that the most amplified frequency response of BFS structures calculated using global
stability analysis (i.e. incorporate streamwise eigendirection directly into eigenfunctions)
agrees well with the most amplified frequency derived by integration along the streamwise
direction of local amplification rates calculated independently for each streamwise
location using local stability analysis (i.e. under the additional assumption of streamwise
homogeneity at each streamwise location). This indicates that local stability analysis
can provide meaningful criteria for the prediction of the most amplified perturbation
frequency.

5. Measurements in cross-stream planes

Flow visualisations presented in figure 2(a,c) reveal weak streamwise-elongated structures,
with spanwise wavelength that differs from the value reported by Barkley et al. (2002) and
Lanzerstorfer & Kuhlmann (2012). To quantify their intensity, we performed additional
PIV measurements with a laser sheet parallel to the y–z plane at three different streamwise
locations downstream of the separation edge. We used a 5-mm-thick laser sheet and
50 % larger ratio between acquisition frequency and free-stream velocity when compared
with the measurements described in § 2–§ 4. Each series of measurements consists of
1000 images captured using a low-height and wide mirror inclined at 45◦ to the lower
bounding wall and located 55h downstream from the separation edge. Acquired images
are cross-correlated using 64 × 64 pix with 75 % overlap integration window, and with
Gaussian time-averaging of ±8 images. Area of measurement covers y/h ∈ (0.0, 2.0) and
z/h ∈ (−11.1, 11.1) with spatial resolution of 0.22h in both wall-normal and spanwise
directions.

In figures 18 and 19 we present time-averaged fields for ReH = 280 and ReH = 380.
Each panel consists of two images showing the streamwise vorticity (ωxh/U0, top)
and wall-normal velocity fields (v/U0, bottom). Solid and 10 PPI configurations are
presented in the left and right columns, respectively. Each row corresponds to one specific
downstream location of the laser sheet: x/h = 10, x/h = 20 and x/h = 30 downstream of
the separation edge, from top to bottom. For our aspect ratio of AR ≈ 26 approximately
one-third of the total spanwise extent of the test section in the centre remains free of
the side-wall effects, which is marked by magenta dashed vertical lines. Time-averaged
fields do not reveal any significant intensity of stationary streamwise vortices other than
structures induced close to the side walls.
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Figure 18. Streamwise vorticity (ωxh/U0, (part (i) in panels a–f ) and time-averaged wall-normal velocity
(v/U0, (part (ii) in panels a–f ) fields measured for ReH = 280 with laser plane perpendicular to the streamwise
direction: (a,c,e) and (b,d, f ) solid and 10 PPI porous inserts, from left to right; (a,b), (c,d) and (e, f ) different
streamwise locations at which the laser plane is located, x/h = 10, 20, 30 from top to bottom.
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Figure 20. Spatial FFT spectra along the spanwise direction averaged in time and along the wall-normal
direction. Results for ReH = 280 (a) and ReH = 380 (b) are shown. Stars and circles represent solid and 10 PPI
porous inserts on both panels. Dark blue, red and violet colours indicate three different streamwise locations of
cross-stream measurements: x/h = 10, x/h = 20 and x/h = 30, respectively.

In the next step, we analyse instantaneous vortical structures in the centre of the test
section, z/h ∈ (−4.5, 4.5). From series of instantaneous wall-normal velocity snapshots
we subtract time-averaged fields, (v(t, y, z) − 〈v( y, z)〉T)/U0. Then, for each t and y
we calculate instantaneous spatial FFT transform along the spanwise direction z, and
we average the results in time and along the wall-normal direction. In figure 20 we
present the resulting spatial spectra for spanwise wavenumber kz. Left and right columns
correspond to ReH = 280 and ReH = 380, respectively. Stars and circles represent solid
and 10 PPI porous insert configurations. Colour of the markers indicates three different
streamwise locations of the laser plane: x/h = 10 (blue), x/h = 20 (red) and x/h = 30
(violet). Spanwise organisation of the BFS structure in the central part of the test section
is dominated by zero mode with uniform distribution along the z direction (kz = 0). In
addition, some weak modes with non-zero spanwise wavelength (kz /= 0) are present in the
spectrum, with slightly more enhanced amplitude for 10 PPI porous insert configuration.
This indicates that instantaneous vortical structures with spatial modulation along the
spanwise (z) direction are present in the BFS flow. However, their amplitude is typically
one order of magnitude lower than the zero mode (kz = 0), which illustrates that dynamics
of the BFS flow is dominated by quasi-two-dimensional roller structures.

6. Offset-side-plane and top-plane measurements

To further characterise the BFS flow, we performed two auxiliary campaigns of PIV
measurements. The first campaign consists of side-view measurements in x–y plane at
four different z locations. The acquisition details of this auxiliary campaign are the same
as that already described in § 2. We present the velocity fields measured for ReH = 400
in solid (figure 21) and 10 PPI porous (figure 22) configurations. The first two rows
illustrate streamwise and wall-normal velocity components, with each panel composed
of two subpanels representing time-averaged and instantaneous velocity fields. The third
row demonstrates the spatial envelope of mode 1 (subpanels on the left) and mode 2
(subpanels on the right), in analogy with already-presented results in figures 11–13. Each
column corresponds to one z location, with z/h ∈ (−3.8, −1.2, 1.4, 4.0) from left to right.
Similarly to figures 4–6, we also superposed time-averaged recirculation zones and locus
of inflectional points by magenta dotted and magenta dashed curves, respectively. We can
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Figure 21. PIV measurements in x–y planes at different z locations with solid impermeable configuration for
ReH = 400; at four different spanwise locations: z = −3.8 h (panels a,e,i); z = −1.2 h (panels b, f, j); z = 1.4 h
(panels c,g,k); z = 4.0 h (panels d,h,l). Panels (a–d) and (e–h) illustrate streamwise and wall-normal velocity
components, respectively. Each panel in (a–d) and (e–h) consists of parts (i) and (ii) showing time-averaged
and instantaneous velocity fields. Panels (i–l) correspond to spatial distribution of modes 1 and 2 presented in
part (i) and (ii), respectively (compare also with figures 11–13). Time-averaged recirculation zones and locus
of inflectional points are marked by magenta dotted and magenta dashed curves, respectively.

see that the structure of BFS flow does not change significantly with z, in agreement with
the cross-stream measurements already discussed in § 5.

The second auxiliary campaign includes top view measurements in the x–z plane
at y/h = 0.7. This wall-normal location is close to the centre of the streamwise
vortices reported by Barkley et al. (2002) for BFS with ER = 2 and near the location
discussed in detail by Giannopoulos (2021). A total 2500 images were acquired and
cross-correlated using 64 × 64 pix with 50 % overlap integration window, and with
Gaussian time-averaging of ±1 images. Measuring area spans over x/h ∈ (0.0, 30.0)

and z/h ∈ (−11.1, 11.1) with spatial resolution of 0.29h in both streamwise and
spanwise directions. In figure 23 we illustrate the spatial distribution of spanwise and
streamwise velocity components measured for ReH = 400. The first and third columns
correspond to instantaneous velocity fields, whereas the second and fourth columns show
time-averaged data. The top and bottom rows represent solid and 10 PPI porous insert
configurations, respectively. In addition, dashed vertical lines indicate four spanwise
locations corresponding to x–y side planes presented in figures 21 and 22.

The central part of the test section near the symmetry plane z = 0 is free of side-wall
effects for solid impermeable configuration (figure 23a,c). This agrees with cross-stream
measurements already presented in § 5. Specifically, in the central region no spanwise
modulation of streamwise velocity components has been detected, in agreement with
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Figure 22. Same as in figure 21 but for 10 PPI porous insert configuration: at four different spanwise
locations: z = −3.8 h (panels a,e,i); z = −1.2 h (panels b, f, j); z = 1.4 h (panels c,g,k); z = 4.0 h
(panels d,h,l).
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Figure 23. Spanwise and streamwise velocity components measured on the x–z plane at y = 0.7h for
ReH = 400. Top and bottom rows represent solid and 10 PPI configurations, respectively. Instantaneous and
time-averaged velocity fields are presented in panels (a,c,e,g) and (b,d, f,h), respectively. Vertical magenta lines
mark z/h ∈ (−3.8, −1.2, 1.4, 4.0) locations.
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Figure 24. Time-averaged velocity components and velocity fluctuations as a function of spanwise location
z. Presented profiles result from averaging the PIV measurements on the x–z plane at y/h = 0.7 over x/h ∈
(0, 30). Right and left columns correspond to solid and 10 PPI porous inserts, respectively. Streamwise and
spanwise velocity components, as well as streamwise and spanwise velocity fluctuations, are presented from
top to bottom.

Giannopoulos (2021) who proposed ReH = 670 as the lower bound of the threshold for
streak instability.

For 10 PPI configuration we observe a clear spanwise-periodic structuring of spanwise
velocity component with λz ≈ 4h (central region of figure 23e). The spanwise modulation
is absent in the vicinity of the separation edge and its amplitude starts growing from
x/h � 15. However, in figure 22(e–h) we distinguish the signature of a two-dimensional
roller structure forming directly downstream of the separation edge. This picture of
three-dimensionality that develops further downstream is similar to mode A instability
developing on top of the Bénard–von Kármán street behind the cylinder wake (Henderson
& Barkley 1996; Williamson 1996) or to three-dimensional von Kármán instability
observed in low-Reynolds-number flow around an airfoil (Nastro et al. 2023). We note that
we did not observe such a spanwise modulation in the central region of the test section for
solid impermeable configuration.

Next, we averaged over the streamwise direction the time-averaged and fluctuating part
of streamwise and spanwise velocity components measured in the top view. The resulting
profiles and their dependence on z are presented in figure 24, with ReH values specified in
the legend. Solid and 10 PPI porous configurations are presented in left and right columns,
respectively. Time-averaged profiles of streamwise and spanwise velocity components are
presented in figure 24(a–d). Corresponding profiles of temporal fluctuations are shown in
figure 24(e–h).
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For the lowest Reynolds numbers (ReH = 205 and ReH = 295) spanwise profiles for
all four considered quantities reach comparable intensity levels for both solid and 10 PPI
porous configurations. Starting from ReH = 365 the intensity of velocity fluctuations is
typically higher for 10 PPI when compared with solid reference case. Furthermore, the
periodic variability along the spanwise direction is more pronounced for 10 PPI. Moreover,
for solid configuration, the intensity levels of these quantities typically peak in the vicinity
of the side walls and then gradually decrease in damped-oscillation fashion toward the
minimum at the centre of the test section. In contrast, for a 10 PPI insert, spanwise
oscillation occurs around a constant value that does not change significantly along the
central part of the test section (−5 < z/h < 5).

We note that no spanwise modulation of time-averaged streamwise velocity component
has been measured for the solid reference case at ReH = 295. In contrast, for 10 PPI porous
insert at the same Reynolds number we did observe very weak spanwise modulation of
time-averaged streamwise velocity component with the amplitude of oscillations below
0.7 % of U0. This amplitude increases up to approximately 2.3 % of U0 for ReH = 400
and 10 PPI, as can be seen in figure 24(b).

7. Characterisation of the boundary layer upstream of the separation edge

In this section, we characterise the incoming boundary layer upstream of the separation
edge. All PIV parameters are the same as in the main measuring campaign described in
§ 2–§ 4, with the only exception of using a smaller interrogation window (32 × 11 pix with
75 % overlap) to enhance the spatial resolution into x/h = 0.20 and y/h = 0.06.

In figure 25 we show velocity fluctuations of both measured velocity components
at the separation edge (x = 0) averaged along the wall-normal direction to estimate
environmental noise in the experimental facility. Velocity fluctuations are computed using
standard deviation and resulting values are lower than 2 % for all realisations and for
all insert configurations. Fluctuations remain approximately constant for the entire range
of Reynolds numbers under consideration, with a single exception for the wall-normal
velocity component for 10 PPI configuration (blue circles in figure 25a). For this specific
case, the intensity of the fluctuations is constant up to ReH ≤ 400 and starts to grow
gradually with the Reynolds number for ReH > 400. The noise level of the wall-normal
velocity component, as well as its dependence on the Reynolds number, are the same for
both solid and 45 PPI inserts.

Next, displacement (δ0) and momentum (θ0) thickness at the separation edge (x = 0)
are calculated using trapezoidal integration of streamwise velocity profile u( y), with
their dependence on Reynolds number presented in figure 26. The green error bar is a
sum of errors associated with the determination of the free-stream velocity, detection of
the position of the lower bounding wall and half of the value of trapezoidal integration
between the first valid measurement point closest to the wall and linearly interpolated
location, at which streamwise velocity reaches zero. The difference between solid and
45 PPI configurations in figure 26 is barely perceptible. For 10 and 20 PPI, both δ0 and θ0
are slightly smaller when compared with the solid reference case.

Time-averaged streamwise velocity profiles in the lower boundary layer upstream of
the separation edge are characterised in figure 27 for x/h = 0.0, −2.5, −5.0, from left to
right. Plotted velocity profiles are selected such that ReH < 600 for 10 PPI, ReH < 700 for
20 PPI, ReH < 790 for 45 PPI and ReH < 900 for a solid insert. They mutually overlap
and compare well with zero-streamwise-pressure-gradient equilibrated Blasius boundary
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Figure 25. Velocity fluctuations of wall-normal (a) and streamwise (b) velocity component at the separation
edge (x = 0) as a function of ReH .
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Figure 26. Momentum (a) and displacement (b) thickness of inlet lower boundary layer profiles at the
separation edge (x = 0).

layer (cyan dashed curve) for all insert configurations. The shape factor of the presented
velocity profiles equals H = δ(x)/θ(x) = 2.5 ± 0.2.

Finally, in figure 28 we present the downstream dependence of the velocity fluctuations
within the incoming lower boundary layer for ReH ∈ (290, 410, 510) and for all insert
configurations. Specifically, we show streamwise (top row) and wall-normal (bottom row)
velocity fluctuations that are averaged along the wall-normal direction within the range
yu ∈ (0.3 − 2.0), where yu = 0 corresponds to the level of the inlet floor upstream of the
separation edge. The intensity of streamwise velocity fluctuations remains constant up
to the separation edge at x/h = 0. Higher intensity of wall-normal velocity fluctuations
remains confined near the separation edge for x/h � −2.5.

As already specified in § 2, the maximal relative permeability k1/W2 ≤ 12.4 × 10−6 in
our experiments is an order of magnitude lower than the typically considered values (Gupte
& Advani 1997; Breugem et al. 2006; Suga & Nishio 2009; Suga et al. 2010; Kuwata &
Suga 2016) due to expansion ratio close to unity. As reported by Breugem et al. (2005),
low relative permeability reduces slip velocity at the fluid–porous interface. In our case, the
slip velocity can be estimated as Us ≈ 1.2 %U0, with a value of the order of 10−3 (m s−1)

998 A31-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

63
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.639


L. Klotz, K. Bukowski and K. Gumowski

yu/δ (x)yu/δ (x)yu/δ (x)

0 2 4 60 2 4 60 2 4 6

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0
u/

U
0

10 PPI

20 PPI

45 PPI

Solid

(b)(a) (c)

Figure 27. Time-averaged streamwise velocity profiles u( yu) of the lower boundary layer formed above the
inserts measured upstream of the separation at x/h = 0.0, x/h = −2.5 and x/h = −5.0, from left to right. The
wall-normal coordinate yu = y − h is normalised by local displacement thickness δ(x). Velocity profiles for
all insert configurations and all Reynolds numbers are presented in each panel. Independently of the insert
configuration, all measured profiles compare well with laminar equilibrated Blasius boundary layer with zero
pressure gradient (marked as a cyan dashed curve).
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Figure 28. Streamwise (std(u)/U0) and wall-normal (std(v)/U0) velocity fluctuations in the incoming
boundary layer upstream of the separation (x/h < 0): (a,d) ReH = 290, (b,e) ReH = 410 and (c, f ) ReH = 510.
Velocity fluctuations are spatially averaged along the wall-normal direction for yu/h ∈ (0.3 − 2.0), where
yu/h = 0 is the level of the inlet floor upstream of the separation edge (x < 0).

(figure 27). The pore Reynolds number based on the slip velocity Us and permeability
microscale

√
k1 is an order of magnitude lower than unity (Repore = Us

√
k1/ν = 0.2 for

45 PPI and Repore = 0.3 for 10 PPI). Furthermore, the permeability k1 is more than two
orders of magnitude lower than the squared step height h2, which is a macroscale in
our geometrical configuration. Low pore Reynolds number and scale separation between
permeability and squared macroscale allows us to use the Brinkman model to approximate
the flow within the fluid–porous interface upstream of the separation edge, in agreement
with the analysis of Breugem et al. (2005) for spatially evolving laminar boundary layer
over a porous substrate.

This interface is defined as the region at the fluid–porous boundary, in which
the time-averaged streamwise velocity profile relaxes from the slip velocity at the
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Influence of porous material on the flow behind a BFS

top of the interface to Darcy’s drift velocity at the bottom. Using volume-averaged
Navier–Stokes equations Breugem et al. (2006) demonstrated that the time-averaged
streamwise velocity penetrates within the fluid–porous interface and decays exponentially
to zero with increasing penetration depth, in agreement with analytical predictions for
the Brinkman boundary layer within a porous substrate (Breugem et al. 2005). This
spatial exponential decay in a porous medium has a positive second derivative of
the streamwise velocity profile (d2u/dy2 > 0), whereas Blasius boundary layer shear
flow above a porous insert is characterised by d2u/dy2 < 0. The continuity of the
second derivative implies an inflectional point in a fluid–porous interface, the presence
of which has been further verified using microscale-resolved direct simulations of
the Navier–Stokes equation using the Lattice–Boltzmann method by Suga & Nishio
(2009) and Kuwata & Suga (2016). Jiménez et al. (2001) observed that a porous wall
induces large-scale spanwise rolls originating from Kelvin–Helmholtz-type instability.
Breugem et al. (2006) observed similar spanwise-coherent vortical structures that were
manifested by enhanced amplitude of cross-stream velocity fluctuations. Suga et al. (2010)
experimentally confirmed a significant increase in wall-normal velocity fluctuations due
to porous substrate permeability.

To summarise, figure 27 demonstrates that the incoming lower boundary layer is well
approximated by an equilibrated Blasius boundary layer with no streamwise pressure
gradient, independently of porous insert configurations. In addition, the low relative
permeability of the porous inserts reduces the slip velocity at the fluid–porous interface.
This allows us to approximate the flow within the interface by the Brinkman boundary
layer (Breugem et al. 2005), which, in turn, justifies the presence of an inflectional point in
time-averaged streamwise velocity profile within the fluid–porous interface (compare with,
e.g. Breugem et al. 2006). In figure 28 we can observe that 10 PPI and 20 PPI porous inserts
locally induce weak wall-normal velocity fluctuations in the vicinity of the separation edge
(x/h � −2.5) that does not exceed 2 % of U0. This is in full agreement with numerical
(Breugem et al. 2006) and experimental (Suga et al. 2010) results, according to which
permeability of the porous substrate results in the enhancement of the wall-normal velocity
fluctuations.

8. Influence of porous inserts on time-averaged velocity and pressure fields

As mentioned in the introduction, BFS dynamics can be estimated based on the
linearisation around the time-averaged fields. In this section, we evaluate whether the
porous inserts modify the time-averaged velocity and pressure gradient fields. We present
the spatial distribution of time-averaged velocity fields in figure 29. Columns correspond
to ReH = 290, ReH = 410 and ReH = 510, from left to right. Each column is composed of
two groups of panels illustrating the streamwise and wall-normal velocity components
(figures 29a–i and 29j–r, respectively). Each panel group is composed of three rows
representing solid, 45 PPI and 10 PPI porous inserts, from top to bottom. For all insert
configurations, the incoming boundary layer separates from the top corner edge of the
BFS inlet inducing a recirculation zone at the outlet, as marked by magenta dotted curves.
In addition, dashed magenta curves mark the locus of inflectional points of time-averaged
streamwise velocity profiles downstream of the separation edge. In figure 30 we present
time-averaged streamwise velocity profiles u( y) measured downstream of the separation
edge and within the recirculation zone. Three different streamwise locations are grouped
in columns, x/h ∈ (1.7, 6.4, 11.1), from left to right. Rows from top to bottom correspond
to ReH ∈ (290, 410, 510). On each panel, we superpose the measured velocity profiles for
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Figure 29. Spatial distribution of time-averaged streamwise (a–i) and wall-normal ( j–r) velocity components
for ReH ∈ (290, 410, 510), in columns from left to right. Velocity fields for three different configurations are
presented: solid (a,b,c, j,k,l), 45 PPI (d,e, f,m,n,o) and 10 PPI (g,h,i,p,q,r). Compare with figures 4 and 5.

all realisations and all insert configurations. The time-averaged velocity profiles within
the recirculation zone are not altered in any significant way by porous inserts. The lack
of influence of porous inserts on time-averaged velocity fields is a result of an expansion
ratio close to unity and low relative permeability.

In addition, Zielinska et al. (1997) and Mantič-Lugo et al. (2014) reported that the
time-averaged flow can be considered as the base flow modified through nonlinear
Reynolds stresses induced by the finite-size amplitude of the velocity fluctuations. The
same spatial distribution of time-averaged velocity fields in the recirculation zone for all
insert configurations demonstrates that the influence of the permeability is sufficiently
weak to not alter the mean-flow modification of the solid insert reference case.

As shown in figures 16 and 17 the dominant frequency of mode 1 can be approximated
by the most amplified frequencies of the Falkner–Skan family of boundary layer flows.
These velocity profiles are parametrised using the Hartree parameter β associated with
the time-averaged streamwise pressure gradient. To compare these theoretical values with
our experimental results shown in figure 29, we calculate the streamwise and wall-normal
pressure gradients from PIV measurements assuming that BFS flow is two-dimensional.
For this, we transform Navier–Stokes equation into

〈∂p/∂x〉T = −ρ〈∂u/∂t + u∂u/∂x + v∂u/∂y〉T − 〈μ�(u)〉T , (8.1)

〈∂p/∂y〉T = −ρ〈∂v/∂t + u∂v/∂x + v∂v/∂y〉T − 〈μ�(v)〉T , (8.2)

where ρ and μ refer to the density and dynamic viscosity of water.
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Figure 30. Time-averaged streamwise velocity profiles measured at different streamwise locations downstream
of the separation edge (x/h > 0). Wall-normal location is normalised with step height h. Eight different series
(two series for each of four insert configurations) are shown on each panel: columns correspond to x/h =
1.7, 6.4, 11.1, from left to right; rows represent ReH = 290, 410, 510, from top to bottom.

In figure 31 we present the spatial distribution of time-averaged pressure gradients along
the streamwise (〈∂p/∂x〉T ) and wall-normal (〈∂p/∂y〉T ) directions. The global maximum
intensity of the streamwise pressure gradient is more than twice as large when compared
with the pressure gradient along the wall-normal direction. Local influence of the porous
insert on the pressure gradients can be observed only downstream of the recirculation zone
and only for the largest values of permeability (10 PPI) and Reynolds number (ReH = 510).

In figure 32 we present a dependence of global spatial maximum of 〈∂p/∂x〉T on
Reynolds number. For sufficiently low ReH the global spatial maximum of 〈∂p/∂x〉T
remains constant and does not depend either on ReH or the insert configuration. In
addition, all critical thresholds of Hopf bifurcation marked in figure 10 fall within the
Reynolds number range, for which streamwise pressure gradient is constant (〈∂p/∂x〉T =
0.04 ± 0.01). This indicates that Hopf bifurcation induced by porous inserts is not
influenced by the streamwise pressure gradient. We also observe that 〈∂p/∂x〉T starts to
increase at Reynolds number close to the value, at which nonlinear saturation of dominant
mode 2 occurs.

Constant value of 〈∂p/∂x〉T = 0.04(±0.01) is marked by a red dashed horizontal
line and corresponds to Falkner–Skan solution for β = −0.045(±0.007). This implies
that the intensity of adverse pressure gradient in BFS geometry at the reattachment
is lower than the prediction of the Falkner–Skan solution for β = −0.198. However,
Tollmien–Schlichting instability is shear-driven with characteristics that depend on
the shape of the velocity profile. Moreover, the Falkner–Skan flow family represents
self-similar velocity profiles and β defines the required intensity of local streamwise
pressure gradient to maintain self-similarity along the downstream direction. If the local
adverse streamwise pressure gradient is lower than the required value, then the streamwise
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Figure 31. Same as in figure 29 but for time-averaged pressure gradient along streamwise (a–i) and
wall-normal ( j–r) directions. Pressure gradients are normalised with double the free-stream dynamic pressure
(ρU2

0) and step height (h). Pressure gradients for three different configurations are presented: solid (a,b,c, j,k,l),
45 PPI (d,e,f,m,n,o) and 10 PPI (g,h,i,p,q,r).

200 300 400 500 600 700 800 900

Re

0

0.05

0.10

0.15

0.20

0.25
10 PPI

10 PPI

20 PPI

20 PPI

45 PPI

45 PPI

Solid

Solid

β = –0.045〈∂p
/∂

x〉
T 

.  
h/

(U
2 0
ρ

)

Figure 32. Global spatial maximum of time-averaged streamwise pressure gradient 〈∂p/∂x〉T as a function of
ReH for all insert configurations. For sufficiently low Reynolds numbers, the time-averaged streamwise pressure
gradient 〈∂p/∂x〉T is independent of Reynolds number and porous configuration.

velocity profile will relax further downstream to the solution closer to the Blasius boundary
layer. Such equilibration has been indeed reported for BFS flow by Bradshaw & Wong
(1972) and Jovic & Driver (1994).

Finally, we present profiles of streamwise (〈∂p/∂x〉T in figure 33a–c) and wall-normal
pressure gradients (〈∂p/∂y〉T in figure 33d–f ) in the very vicinity of the separation
edge (x/h = 0.7) and for all porous inserts under investigation. Columns correspond to
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Figure 33. Pressure gradient profiles along the wall-normal direction y downstream of the separation edge
at x = 0.7h, with ReH = 290, 410, 510 in (a,d), (b,e) and (c, f ), from left to right. Panels (a–c) and (d–f )
represent streamwise and wall-normal pressure gradients, respectively. Both realisations for each of four insert
configurations are shown.

ReH ∈ (290, 410, 510), from left to right. Similar spatial distribution of both pressure
gradients for all insert configurations indicates that there is no significant communication
between the back and top wall of the porous insert in the vicinity of the separation edge.
Furthermore, the pressure gradient along the wall-normal direction is not reduced by
the porous insert permeability due to the low expansion ratio and resulting low relative
permeability of porous inserts in our study.

9. Discussion

We have presented detailed experimental investigation of separated shear flow formed
behind the BFS. To ensure the largest possible aspect ratio (AR ≈ 26) and to reduce
possible influence of side walls, we select a step with low height (h = 5.77 mm). We
investigate the effect of porous inserts located upstream of the separation edge and
compare our results with solid insert configuration considered as a reference case.

The dynamics of BFS flow is characterised by two nearly commensurate frequencies
that can be grouped onto two distinct branches. We determine characteristic spectral
range for each branch and we reconstruct their spatial support using Hilbert transform.
Specifically, BFS structures associated with the upper branch (i.e. with higher frequencies)
attain their local maximal amplitude in the vicinity of the locus of inflectional points.
Global maximum of these spatial envelopes is reached close to the end of recirculation
zone, where the separated shear layer reattaches. Downstream of the reattachment these
envelopes subsequently decay along the streamwise direction. In contrast, low-frequency
structures associated with lower branch attain their maximal value further downstream of
the reattachment, in the region where the shear flow transforms from mixing-layer-type
to boundary-layer-type flow. Porous inserts affect the upper branch and corresponding
high-frequency structures. Specifically, their maximal amplitude is increased up to five
times for 10 PPI when compared with the reference case with solid insert configuration
(see figure 10).

At low Reynolds numbers, the dynamics of BFS flow is dominated by the low-frequency
branch (spectral mode 1). Once the Reynolds number is increased, frequency cross-over
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occurs leading to the dynamics dominated by a higher-frequency branch (spectral mode
2). The value of the Reynolds number for the frequency cross-over occurrence decreases
with increasing permeability of porous inserts. Similar existence of two modes has been
already observed for planar free jet (Sato 1960; Deo, Mi & Nathan 2008), cavity flow
(Bengana et al. 2019), free hot circular jet (Monkewitz et al. 1990), separation bubble
(Rist & Maucher 2002), separated flow over a smooth bump (Marquillie & Ehrenstein
2003), BFS geometry (Heenan & Morrison 1998a,b; Dovgal & Sorokin 2004) and airfoil
at non-zero angle of attack (Symon, Sipp & McKeon 2019). Even a linear system subjected
to harmonic perturbation exhibits a double-peak response curve for a sufficiently low
expansion ratio (ER = 1.4, see Boujo & Gallaire 2015), which indicates a potential for
linear amplification of two different frequencies.

Canonical instability mechanisms are attributed to both branches based on a comparison
of measured streamwise velocity profiles with local stability analysis. When the dominant
frequency of the upper branch (i.e. spectral mode 2) is normalised with momentum
thickness at the separation edge (θ0), then the upper branch frequencies compare well
with results reported for the free mixing layer (e.g. Michalke 1965; Freymuth 1966;
Ho & Huerre 1984) and BFS (e.g. Eaton & Johnston 1982; Chun & Sung 1996;
Dovgal & Sorokin 2004). Generation of vortical structures in these flows is a result
of Kelvin–Helmholtz instability. This is fully supported by figure 17(a), on which
all measured velocity profiles immediately downstream of the separation edge can be
collapsed to a single curve that is similar to a hyperbolic tangent representing a free-mixing
layer. The maximal measured value of Stθ on the upper branch in our experiment
compares well with the most unstable frequency retrieved from the local stability
analysis of the free mixing layer (e.g. Michalke 1965; Freymuth 1966). Once Reynolds
number ReH is increased further, Stθ decreases in analogy with the trend reported by
Michalke & Hermann (1982) for the free jet. Therefore, upper-branch vortices result from
Kelvin–Helmholtz instability.

Using streamwise autocorrelation of the streamwise velocity fluctuations, Breugem
et al. (2006) observed λKH/W = 2.5 as a characteristic streamwise wavelength of
Kelvin–Helmholtz instability (W refers to the height of the channel above the porous
substrate). Kuwata & Suga (2016) reported λ+KH ≈ 700 (equivalently λKH/W ≈ 3.2) as
a characteristic wavelength of the most energetic proper orthogonal decomposition (POD)
mode of spanwise-coherent pressure fluctuations induced by wall permeability. Finally,
Chu et al. (2021) observed a weak signature of large-scale coherence in premultiplied
spectra of streamwise turbulent kinetic energy with λx ≥ 2W and without directly
attributing these modes to Kelvin–Helmholtz instability. All these wavelengths can be
transformed into characteristic frequencies by taking half of the free-stream velocity
as their approximate phase velocity, which is a typical value for the most-amplified
Kelvin–Helmholtz-type instability in a free-mixing shear layer. The resulting normalised
frequencies are Stθ ≈ 0.019 for Breugem et al. (2006), Stθ ≈ 0.013 for Kuwata & Suga
(2016) and Stθ ≤ 0.019 for Chu et al. (2021). These values reported for higher Reynolds
numbers are similar to the prediction for Kelvin–Helmholtz instability of mixing shear
layer (Michalke 1965; Freymuth 1966), as well as with our upper branch frequencies.

Our measurements fully agree with these results: first, porous inserts enhance the
amplitude of upper-branch BFS structures associated with Kelvin–Helmholtz instability
and promote frequency cross-over. We also measured a higher intensity of wall-normal
velocity fluctuations immediately upstream of the separation edge that increases with the
permeability of the porous insert, as presented in the bottom row of figure 28(d–f ). Finally,
our characteristic frequencies of upper branch (figure 16a) compare well with results for
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Influence of porous material on the flow behind a BFS

the turbulent shear flow above porous substrate, as well as with theoretical predictions for
Kelvin–Helmholtz instability of inflectional mixing shear layer.

Breugem et al. (2006) reported that the structure and dynamics of turbulence in the
shear flow above the porous substrate is altered for sufficiently high permeability of porous
media. They used two different Reynolds numbers to distinguish between the effect of
permeability (ReK) and roughness (ReR). Permeability Reynolds number is defined as
the ratio between the effective pore diameter and viscous length scale (ReK = Uτ

√
k1/ν)

and the roughness Reynolds number is defined on the typical height of the roughness
elements, which in our case is half of the averaged linear size of foam cell (ReR =
0.5 · dPPIUτ /ν). Roughness can be neglected for ReR < 5. Regarding the permeability
effect, for ReK = 0.31 they observed that the porous medium is effectively impermeable
for the flow. For ReK = 1.06 permeability influences the shear flow above the porous
substrate through the fluid–porous interface, where the time-averaged streamwise velocity
profile becomes inflectional. However, the bulk permeability is still too low to allow for any
significant Darcy’s drift flow within the homogeneous porous medium below the interface.
Non-negligible Darcy’s drift flow across the bulk of the porous medium has been observed
for ReK = 9.35. Based on measured values of permeability k1 and momentum thickness
θ0, as well as using the known relation of slip velocity for the Blasius boundary layer, we
determined that in our experiment ReK ∈ (0.7, 1.1) and ReR < 4 at the threshold of Hopf
bifurcation observed in figure 10. This demonstrates that Hopf bifurcation is induced by
the effect of permeability at the fluid–porous interface of the insert.

The low expansion ratio and resulting low relative permeability reduce the estimated
Darcy’s drift velocity through the back wall to zero as presented in figure 29(a–i) and in
the left column of figure 30. This indicates that both the BFS back-wall and the bulk of the
porous insert are effectively impermeable. As a result, the hydrodynamical influence of the
porous inserts is limited to a fluid–porous interface. Our experimental configuration can be
considered as an analogy to simplified stability analysis of the shear flows above the porous
substrate, in which the effect of the porous medium is modelled as the boundary condition
at the interface. The total streamwise extent of porous insert normalised with permeability
microscale varies between approximately Lp/

√
k1 ≈ 230 for 45 PPI and Lp/

√
k1 ≈ 150

for 10 PPI, which further justifies the analogy with stability analysis.
Heenan & Morrison (1998a,b) investigated the effect of permeable boundary conditions

on BFS flow in slightly different geometrical configuration. They created the plenum
chamber below the level of the outlet lower bounding wall (y < 0) and downstream of the
separation edge (x > 0), which they then covered with a perforated plate at y = 0 level and
with a varying total area of holes. For impermeable solid wall configuration (i.e. no holes),
they observed two different frequencies, with the higher frequency being attributed to large
vortices generated within the separated shear layer and the lower frequency associated with
flapping, i.e. global dynamics of recirculation bubble. No details regarding the momentum
or displacement thickness were provided, therefore it is not possible to compare their
frequencies with the two branches found in our study. They observed that the amplitude
of lower-frequency oscillations decreased when the total area of holes was increased. For
a sufficiently long plenum chamber spanning up to the reattachment region, they even
observed a complete suppression of the lower-frequency oscillations. They explained that
this stabilisation was due to shifting the reverse flow from the recirculation zone to the
plenum chamber below, which inhibited the upstream propagation of the perturbations
generated at the reattachment.

Bradshaw & Wong (1972) postulated that BFS flow can be divided into two subregions.
Directly behind the step and below the separated shear layer, there is a reverse
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flow/recirculation zone that results in time-averaged streamwise velocity profiles with
inflectional point. Downstream the reattachment, shear flow changes the character to
boundary-layer-type flow that eventually re-equilibrates to typical boundary layer profile.
We observe that the spatial envelope of spectral mode 1 associated with a lower-frequency
branch dominates in the region downstream of the reattachment. Therefore, we compare
frequencies of the lower branch to local linear stability analysis of Tollmien–Schlichting
instability for the Falkner–Skan family of velocity profiles (Obremski et al. 1969;
Wazzan et al. 1986; Xu et al. 2019). First, we show that streamwise velocity profiles
u( y)/U0 measured at the reattachment can be collapsed to a universal curve for
all insert configurations, provided that wall-normal coordinate y is normalised with
displacement thickness and ReH is below the threshold of frequency cross-over. Then
we demonstrate that streamwise velocity profiles measured at the reattachment (xr) and
2h downstream (x′

r = xr + 2h) match the Falkner–Skan profiles for β = −0.198 and
β = −0.140, respectively. Finally, we show that the largest measured frequency of the
lower branch compares well with the most amplified frequency of the Falkner–Skan
velocity profile at the reattachment (β = −0.198). This leads us to the conclusion that
lower-branch BFS structures are associated with Tollmien–Schlichting instability.

Iñigo, Sipp & Schmid (2014) pointed out that it is not possible to discriminate between
noise-driven amplification of convective instability and self-sustained oscillator behaviour
based only on spectral analysis of the experimental results. To identify the proper physical
mechanism lying behind BFS dynamics with different inserts, we first note that the level
of environmental noise within the facility does not change significantly between different
measuring campaigns (figure 25). Moreover, despite intrinsic scatter, both realisations for
each insert configuration follow similar behaviour (figure 10). This demonstrates that the
qualitative difference between solid and porous inserts is repeatable and results from the
intrinsic influence of the porous material.

For all porous inserts (10 PPI, 20 PPI and 45 PPI), the oscillation amplitude of dominant
BFS structures follows the Landau equation, in analogy with other oscillator-like flow
such as cylinder wake (e.g. Provansal, Mathis & Boyer 1987; Mantič-Lugo et al. 2014),
three-dimensional bluff bodies (e.g. Ormières & Provansal 1999; Gumowski et al. 2008;
Bobinski, Goujon-Durand & Wesfreid 2014; Klotz et al. 2014), jet in a cross-flow (e.g. Ilak
et al. 2012; Klotz et al. 2019; Chauvat et al. 2020) or hot free jet (e.g. Monkewitz et al.
1990). This demonstrates that the dominant dynamics of BFS flow with porous inserts can
be described by a limit cycle originating from supercritical Hopf bifurcation. Furthermore,
the critical Reynolds number retrieved from the Landau equation is lower (10 PPI, 20 PPI)
or close to (45 PPI) the threshold of frequency cross-over. Oscillations for all porous inserts
can thus be attributed to the upper branch associated with spectral mode 2.

In contrast, our data do not support a similar conclusion for solid insert configuration.
Specifically, frequency cross-over occurs when the value of E is at a non-negligible
level, implying that both upper and lower branches are involved in the dynamics of BFS
with solid insert. Moreover, measured values of E do not grow linearly with ReH . In
the context of solid impermeable walls, Marquillie & Ehrenstein (2003) identified two
independent global instabilities in the separation of the boundary layer at the rear of the
two-dimensional bump using global stability analysis. These instabilities are characterised
by two distinct incommensurable frequencies: that with a higher frequency has been
localised within the recirculation zone as a result of Kelvin–Helmholtz instability. The
dynamics of low-frequency instability are determined by the mutual interaction of a
large number of marginally absolutely unstable Tollmien–Schlichting modes with spatial
support around the reattachment point. Finally, they also reported that low-frequency
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instability is the first to occur when the Reynolds number is increased. All these
observations are in full agreement with our measurements for BFS geometry with solid
walls.

Beneddine et al. (2016) reported that if convective instability is strong and coherent
along sufficiently long streamwise extent, then energetic structures observed in the flow
are described by the dominating response mode of the resolvent operator and that this
resolvent operator has one dominant singular value. They also argued that the same
condition of dominant singular value has to be satisfied if any spectral mode is marginal.
Finally, they concluded that when dominant singular value condition is satisfied, then
optimal resolvent response mode and spectral mode are proportional (i.e. with the
same spatial structure). This provides a connection between amplifier and oscillator
dynamics.

Using local analysis, Dovgal et al. (1994) demonstrated that for slowly diverging flows
with solid boundary conditions, instability can be characterised by local linear analysis
under the assumption of shear flow being homogeneous along the streamwise direction.
Specifically, they reported that the streamwise amplification rate for a long separation
bubble of ∼ 50h is similar for Reθ = 300 and infinite Reynolds number showing that
for Reθ = 300 flow dynamics already reached the inviscid regime. However, Betchov &
Szewczyk (1963) and Villermaux (1998) demonstrated that even for the simplest case of
mixing layer at Reθ = 20, viscous effects significantly reduce the streamwise amplification
rate of the perturbation. Similarly, Ducimetière, Boujo & Gallaire (2022) recently reported
that the global response of the BFS flow to external perturbation depends on the Reynolds
number. Our experimental results cover the intermediate range of Reθ ∈ (80, 160), and
provide the link between a viscous regime depending on the Reynolds number and a
regime dominated by inviscid instability. Our main control parameter is the Reynolds
number that has been varied in the vicinity of bifurcation and covers approximately one
decade both in absolute value range and normalised distance from the threshold. This is in
contrast to classical analysis of BFS (e.g. Dovgal et al. 1994), where the Reynolds number
was not systematically varied as a control parameter and bifurcation from laminar steady
base flow to unsteady flow was not studied.

Recirculation bubbles with shorter streamwise extent (� 25h) were studied by Dovgal
& Sorokin (2004). Their BFS flow configuration has comparable step height, momentum
and displacement thickness of the boundary layer as in our experiment. However, they
did not study the dependence of BFS dynamics on the Reynolds number. Specifically,
they measured two flow realisations with Reynolds number ReH ≈ 1700, which is above
the range of interest in our experiment. Similar to our case, they observed two distinct
frequency peaks, with a higher frequency attributed to the shear layer in the vicinity of
the separation edge and a lower frequency further downstream close to the reattachment.
High-frequency peaks were attributed to Kelvin–Helmholtz instability in the separated
shear layer. Interestingly, their characteristic frequency of Kelvin–Helmholtz shear layer
was Stθ = 0.012, which is in good agreement with our results in figure 16(a). No
information regarding displacement thickness at the reattachment was provided, therefore
we cannot compare these results with a lower branch of Tollmien–Schlichting waves.
Furthermore, they also observed that the high-frequency oscillations of mode 2 are
insensitive to the low-frequency oscillations of mode 1.

Gallaire, Marquillie & Ehrenstein (2007) numerically investigated the smooth bump
geometry of Marquillie & Ehrenstein (2003) and Ehrenstein & Gallaire (2008) and
reported about stationary streamwise vortices with spanwise wavelength of λz ≈ 12.5h
as the most unstable global mode. They also estimated that a positive growth rate of
streamwise vortices can be observed for λz � 5.5h. Passaggia et al. (2012) performed
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experiments for similar geometry and found a sequence of three distinct regimes of the
flow once Reynolds number is increased: (a) steady two-dimensional base flow; (b) steady
three-dimensional base flow with streamwise vortices inducing spanwise modulation
of the flow with λz ≈ 12.5h; (c) self-sustained shedding of quasi-two-dimensional
vortices characterised by low-frequency oscillations resulting from Hopf bifurcation. Our
measurements presented in figures 18 and 19 do not reveal any significant stationary
streamwise vortices other than vortices induced by the corners at the side walls. However,
on kz spectra in figure 20(b) we do observe some weak signature of instantaneous
streamwise vortices. These weak streamwise vortices can induce spanwise streak-like
modulation of the flow through a lift-up mechanism (Schmid & Henningson 2001; Schmid
2007), which has been observed experimentally by Beaudoin et al. (2004) for BFS and by
Passaggia et al. (2012) for smooth bump.

Lanzerstorfer & Kuhlmann (2012) studied the influence of expansion ratio ER on the
critical threshold for stationary streamwise vortices and their characteristic spanwise
wavelength in BFS geometry. The critical Reynolds number for these structures to
appear increases from Rem ≈ 710 for ER = 2 to Rem ≈ 2460 for ER = 1.3. The spanwise
wavelength increases from λz ≈ 7h for ER = 2 to λz ≈ 10h for both ER = 1.3 and 1.4.
This implies that for a constant value of Reynolds number intensity of streamwise vortices
will decrease with decreasing ER up to a point, at which Reynolds number will be lower
than the critical threshold. Our results fully support this scenario, since we do not observe
any significant signs of stationary three-dimensionality apart from the vortices near the
side walls in our cross-stream measurements.

Giannopoulos (2021) investigated solid impermeable BFS flow with ER = 1.15 in
several x–z planes spanning over y/h ∈ (0.2, 1.6) with the main focus on the y = 0.6h
plane. They observed streaks (i.e. spanwise modulation of the time-averaged streamwise
velocity component) with a spanwise wavelength of 2h for ReH < 1500 and proposed
the range of ReH ∈ (670, 1200) as the threshold for their formation. They attributed
this spanwise modulation to streamwise vortices that resulted from centrifugal instability
due to the local curvature of streamlines in the recirculation zone. Similar vortices
were reported by Beaudoin et al. (2004) who observed mushroom-like counter-rotating
longitudinal vortices using the laser-induced fluorescence (LIF) visualisation technique.
Similarly, in our measurements for solid impermeable configuration, we did not observe
any significant modulation of time-averaged streamwise velocity in the central region of
the test section up to ReH = 590. For 10 PPI porous configuration we observed spanwise
modulation of the flow fields at y/h = 0.7 that develops further downstream from the
separation edge (x/h � 15). The observed wavelength λz ≈ 4h is of a similar order of
magnitude to the modulation reported by Giannopoulos (2021).

Linear stability analysis of BFS with solid walls and with parabolic velocity profile
imposed in the inlet channel revealed no unstable eigenmode with characteristic
frequency greater than zero (Barkley et al. 2002; Lanzerstorfer & Kuhlmann 2012).
However, permeability at solid–fluid boundary can destabilise an otherwise (least-)stable
global eigenmode (Tilton & Cortelezzi 2008; Rosti et al. 2015; Wedin et al. 2015).
This, in turn, leads to finite-amplitude, equilibrated oscillations described by Landau
equation. In addition, our experimental measurements of wall-normal velocity fluctuations
(figure 28d–f ) are in full agreement with results for fully turbulent flow, for which
porous material at the bounding wall induced spanwise rollers due to Kelvin–Helmholtz
instability (Jiménez et al. 2001; Breugem et al. 2006; Suga et al. 2018; Nishiyama et al.
2020) that significantly enhanced momentum and heat transfer (Motoki et al. 2022).
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10. Conclusions

We have experimentally studied the influence of a porous insert located directly upstream
of the separation edge in BFS flow. This is an example of a hydrodynamic system that
is a combination of: (a) separated shear flow with a large potential for perturbation
amplification; and (b) a porous medium known for efficient flow destabilisation. We
have distinguished between two characteristic frequencies in the flow for the investigated
range of Reynolds numbers and observed that the dominating flow response switches
from lower to higher frequency once the control parameter (Reynolds number) is
increased. Furthermore, the Reynolds number for this frequency cross-over occurrence
monotonically decreases when the permeability of the porous insert increases. When
dominating frequencies are normalised with step height (h) and free-stream velocity
(U0), then their values collapse onto one of two spectral ranges centred around two
characteristic Strouhal numbers (StH) that remain constant when ReH is changed. In
addition, using the Hilbert transform on the corresponding characteristic spectral ranges,
we have reconstructed spatial envelopes for each characteristic StH . Higher dominant
frequency reaches the maximum in the vicinity of the locus of inflectional points in
time-averaged streamwise velocity profiles within the recirculation zone. Spatial support
for lower dominant frequency is located downstream of the reattachment of the separated
shear layer and sightly above step height. We have distinguished between two frequency
branches using momentum thickness at the separation edge (higher-frequency branch) and
displacement thickness in the vicinity of the reattachment line (lower-frequency branch) as
alternative characteristic length scales. Comparing normalised frequencies at each branch
with reported results allows us to attribute Kelvin–Helmholtz and Tollmien–Schlichting
instabilities to upper and lower branches, respectively. Porous inserts significantly increase
the amplitude of Kelvin–Helmholtz spectral mode enhancing more efficient mixing.
Squared FFT amplitude of dominating frequency for Kelvin–Helmholtz spectral mode
follows the prediction of the Landau model. This demonstrates that BFS structures
associated with higher frequency originate from supercritical Hopf bifurcation and their
oscillations are described by a limit cycle. Frequency cross-over occurs prior (10 PPI and
20 PPI) or in the vicinity (45 PPI) of critical Reynolds number derived from the Landau
model, indicating the dominating role of Kelvin–Helmholtz structures for all porous
inserts. Finally, our results indicate that porous inserts promote transition to oscillator-type
dynamics.
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Funding. This research was funded by National Science Center (Poland) within the OPUS-21 project
(2021/41/B/ST8/03142).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
L. Klotz https://orcid.org/0000-0003-1740-7635;
K. Bukowski https://orcid.org/0009-0000-5681-700X;
K. Gumowski https://orcid.org/0000-0002-1751-0926.

Author contributions. L.K. performed hydrodynamical experiments, analysed the data, reached
conclusions and wrote the paper. K.B. helped with flow visualisations and characterised the permeability and
porosity of porous materials. K.G. built both experimental set-ups used to obtain experimental results reported
in the paper.

998 A31-45

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

63
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-1740-7635
https://orcid.org/0000-0003-1740-7635
https://orcid.org/0009-0000-5681-700X
https://orcid.org/0009-0000-5681-700X
https://orcid.org/0000-0002-1751-0926
https://orcid.org/0000-0002-1751-0926
https://doi.org/10.1017/jfm.2024.639


L. Klotz, K. Bukowski and K. Gumowski

0

8h

8h

x/
h

8h

z/h
0 8h

z/h
0 8h

z/h

8h
(b)(a) (c)

Figure 34. Top view of porous inserts made of open-cell rectified foam: (a) 10 PPI; (b) 20 PPI; (c) 45 PPI.

Appendix A. Permeability, thickness of the fluid–porous interface and porosity of
porous inserts

Here we determine permeability and porosity of the porous inserts made of open-cell
rectified foams, the top views of which are presented in figure 34. Permeability is inversely
proportional to hydrodynamical resistance exerted on the working fluid once it passes
through the porous medium. We use the Darcy–Forchheimer relation (see e.g. Straatman
et al. 2006; Incera Garrido et al. 2008; Suga et al. 2010; Regulski et al. 2015) to express
the dependence of permeability on flow velocity and pressure drop across porous material:

�p
�L

= μ

k1
UD + Cf ρ√

k1
U2

D, (A1)

where �p is the pressure drop across the medium, �L is the length of the medium along
the downstream direction, ρ and μ are the density and dynamic viscosity of the working
fluid, k1 and Cf are the permeability of the medium and Forchheimer coefficient and UD
is Darcy’s drift velocity.

Permeability of the rectified foam was characterised using an independent experimental
set-up described in Regulski et al. (2015). The experimental facility described therein
has been additionally modified by adding: (i) a 3-D-printed smooth contraction section to
reduce the wall-normal dimension from 50 to 5.9 mm; (ii) Kobold NAD needle valve to
control the volume flux; (iii) Kobold MIM flow meter with integrated thermocouple. We
prepared three thin porous inserts (Lx × Ly × Lz = 50 mm ×5.9 mm ×44.7 mm) made
of three different porous materials with 10, 20 and 45 pores per linear inch (PPI).
This corresponds to a typical size of the pore of 2.54, 1.27 and 0.56 mm, respectively.
Flow through a porous cube was induced by a pump and measured with a flow meter.
Pressure drop along the downstream direction through a porous medium was measured
using a differential pressure transducer. Dependence of measured pressure drop �p along
the streamwise extent of �L on Darcy’s drift velocity UD is presented in figure 35.
The data were additionally divided by dynamic viscosity μ to compensate for any
possible temperature variation. We determine linear and quadratic coefficients in the
Darcy–Forchheimer relation by fitting a polynomial in the form of �p/�L/μ = aUD +
b(UD)2 to the measured data points. Red dashed curves in figure 35 illustrate the best
fit. The resulting values of permeability (k1) and Forchheimer coefficient (Cf ) of the
porous medium are presented in the second and fifth columns in table 1. Permeability k1
monotonically decreases with increasing PPI due to decreasing pore size and increasing
hydraulic resistance.
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Figure 35. Pressure drop along the streamwise distance L divided by dynamic viscosity (�p/�L/μ) across the
thin porous insert as a function of Darcy’s drift velocity UD. Three different porous materials were investigated:
(a) 10 PPI, (b) 20 PPI and (c) 45 PPI. Red dashed curves illustrate the Darcy–Forchheimer relation used to
determine permeability.

PPI k1 (m2)
√

k1 (m) k1/W2 (1) Cf (1) ε (1) d2
PPI/h2 (1)

10 11.0 × 10−8 3.3 × 10−4 12.4 × 10−6 0.05 �98 % � 1.9 × 10−1

20 8.9 × 10−8 3.0 × 10−4 10.0 × 10−6 0.05 �98 % � 0.5 × 10−1

45 4.6 × 10−8 2.1 × 10−4 5.2 × 10−6 0.04 �98 % � 0.1 × 10−1

Table 1. Values of permeability (k1), effective permeability pore size (
√

k1), relative permeability (k1/W2),
Forchheimer coefficient (Cf ) and porosity (ε) for 10 PPI, 20 PPI and 45 PPI porous rectified foams. The last
column illustrates spatial scale separation between squared geometrical size of pore (d2

PPI) and the squared
macroscale (step height h2), in agreement with Whitaker (1996).

Effective permeability pore diameter (
√

k1) is typically considered as the most relevant
characteristic microscale in the bulk of porous medium (Beavers & Joseph 1967; James &
Davis 2001; Breugem et al. 2005, 2006) and in the fluid-porous interface (Ochoa-Tapia
& Whitaker 1995; James & Davis 2001). Specific values vary from 0.21 mm (45 PPI)
to 0.33 mm (10 PPI) as presented in the third column of table 1. In addition,

√
k1 is

significantly lower than the height of the channel above the porous insert (W), which
results in low relative permeability (k1/W2 ≤ 12.4 × 10−6, see the fourth column in
table 1) and reduces the slip velocity Us at the interface (Breugem et al. 2005).

As specified in § 7 the magnitude of slip velocity Us is of the order of 10−3 (m s−1), the
pore Reynolds number Repore = Us

√
k1/ν is of the order of 10−1 and k1 is more than two

orders of magnitude lower than the squared step height. This allows us to use an estimation
of the interface thickness of the Brinkman boundary layer within the porous medium
for spatially evolving laminar boundary layer flow over a porous substrate proposed by
Breugem et al. (2005). Based on their formulae, we estimate that the interface thickness
of the fluid–porous interface varies between 1.0 mm (45 PPI) and 1.5 mm (10 PPI) and
does not depend on the streamwise direction. The estimated thickness is approximately
half of the size of geometrical pore for 10 PPI. Similar conclusions have been reported by
Suga & Nishio (2009) and Kuwata & Suga (2016) who simulated hydrodynamics of the
fluid–porous interface for an order of magnitude larger values of relative permeability than

998 A31-47

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

63
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.639


L. Klotz, K. Bukowski and K. Gumowski

in our case (max(k1)/W2 = 8.9 × 10−4 and max(k1)/W2 = 1.7 × 10−4, respectively).
They observed that the relaxation of the slip velocity at the interface to Darcy velocity in
the bulk of porous medium occurs in less than one layer of geometrical cells. Furthermore,
Kuwata & Suga (2016) also observed that boundary conditions imposed at the very bottom
of the porous medium (the solid–porous interface) do not influence the hydrodynamics in
the fluid–porous interface.

James & Davis (2001) investigated theoretically a Stokes flow passing through a sparse
regular array of cylinders as a model for porous medium with high porosity. They reported
that the bulk permeability of an array with 5 and 19 geometrical vertical layers is the
same and that the interface region spans at most within one outermost layer. However, the
ratio of the slip velocity at the interface to the free-stream centreline velocity of the shear
flow above the porous insert decreases as the expansion ratio and relative permeability are
decreased, in agreement with Breugem et al. (2005).

Suga & Nishio (2009) proposed two spatially homogeneous geometrical models to
approximate the random distribution of geometrical pores: body-centred-cubic (BCC) and
unit cube (UC). Our 45 PPI, 20 PPI and 10 PPI porous inserts allow for approximately
19/8/3 geometrical pores along the wall-normal direction for BCC organisation and
10/5/2 geometrical pores for UC organisation, respectively. We also assess spatial
scale separation required for continuous porous medium approximation and for spatially
averaged momentum equation to be applied. Whitaker (1996) reported that the continuous
medium approach is justified when the squared macroscale (h2 in our case) is at least an
order of magnitude larger than the squared characteristic length scale of a unit cell r2

0 (with
r0 as the kernel for spatial averaging). Choosing geometrical pore size dPPI as the length
scale of a geometrical unit cell (r0 = dPPI) allows us to satisfy this condition, as illustrated
in the last column of table 1. This is further supported by the spatial distribution of velocity
fields downstream the separation edge, which is the same for all insert configurations (see
figures 29 and 30). This demonstrates that a 10 PPI porous insert with approximately three
geometrical cells along the wall-normal direction behaves as a continuous porous medium
in our specific geometrical configuration with low relative permeability.

Porosity ε is another parameter describing porous material. It is defined by the
volumetric fraction of the voids to the total volume of the porous medium. To estimate its
value, we first determine the total volume of the porous cube (Vtotal). Then, we calculate
the volume of the solid material within a porous cube (Vsolid) using the mass and the
density of the foam (ρsolid = 1.13 ± 0.13 (g cm−3)). Finally, we compute the porosity as
ε = Vvoid/Vtotal = 1 − Vsolid/Vtotal. The resulting values of ε are presented in the sixth
column in table 1. Porosity for each rectified foam is almost the same and close to unity.
In this context, Rosti et al. (2015) demonstrated that an influence of porosity on dynamics
at the fluid–porous interface is less significant when compared with the permeability.

Appendix B. Spatial growth of the perturbation

To compare our results with local convective instability theory, we present the streamwise
and wall-normal velocity fluctuations (figure 36a,b) for ReH = 510 and for all insert
configurations. Global maximum of std(v)/U0 is typically larger and occurs closer to
the separation edge when compared to the global maximum of std(u)/U0. In addition,
the initial spatial growth rate near the separation edge is greater for std(v)/U0 when
compared with std(u)/U0. This demonstrates that the wall-normal velocity component
is more suitable to describe BFS structures formed within the recirculation zone, whereas
streamwise velocity fluctuations can be used to describe the boundary layer downstream
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Figure 36. Streamwise (a) and wall-normal (b) velocity fluctuations as a function of the downstream distance
from the separation edge for all insert configurations and ReH = 510. In panel (c), logarithmic scale on vertical
axis is used to present local exponential growth of std(u/U0). Resulting local spatial exponential amplification
rate is presented in panel (d). For reference, global maximum of local spatial amplification along the streamwise
direction obtained numerically by Boujo & Gallaire (2015) for ER = 2 and for a solid insert is also superposed
as horizontal dashed magenta line.

of the reattachment. Downstream dependence of std(u)/U0 is presented in both lin–lin
(figure 36a) and log–lin (figure 36c) scales. For each streamwise location, we compute
the local slope of std(u)/U0 on a log–lin plot, which provides us with the local
streamwise spatial amplification rate α. The resulting amplification rate is normalised with
momentum thickness at the separation edge θ0 and presented in figure 36(d). The results
for each subsequent porous insert are shifted upwards by 0.05 to increase readability,
with zero level for each insert configuration indicated by horizontal dashed lines in
the corresponding colour. In addition, for each insert we superpose ensemble-averaged
evolution of αθ0 for the solid reference case (orange dotted curves).

Interestingly, in contrast to the predictions of local convective instability theory, the
streamwise amplification is not uniform along the streamwise direction. Specifically, we
observe a local decrease in amplification rate αθ0 for each insert configuration. Similar
non-monotonic dependence with local minimum has been already reported by Boujo &
Gallaire (2015) for ReH = 500, ER = 2.0 and solid impermeable boundary conditions.
This illustrates the non-trivial dynamics of the flow due to the lack of homogeneity of the
flow along the streamwise direction. In addition, our maximal local streamwise growth rate
measured for solid insert compares well with the maximal value obtained numerically by
Boujo & Gallaire (2015) marked by the magenta dashed horizontal line in figure 36(d).
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Similar spatial amplification rate for two different expansion ratios (ER = 1.06 in our
case and ER = 2.0 in Boujo & Gallaire 2015) indicates that ER does not significantly
affect local convective growth of the combined frequency spectrum of streamwise velocity
fluctuations in the free shear mixing layer once the incoming boundary layer separates.
Finally, in figures 29 and 30 we presented that porous inserts do not alter in any significant
way time-averaged velocity profiles within the recirculation zone. Despite similar velocity
profiles, we observe an enhancement of streamwise amplification from αθ0 � 0.02 (solid
reference case, orange triangles in figure 36d) up to αθ0 � 0.05 (for 10 PPI, blue circles in
figure 36d).
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