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The propagation of electromagnetic waves in a linearly varying index of refraction is a
fundamental problem in wave physics, being relevant in fusion science for describing
certain wave-based heating and diagnostic schemes. Here, an exact solution is obtained
for a given incoming wavefield specified on the boundary transverse to the direction of
inhomogeneity by performing a spectral, rather than asymptotic, matching. Two case
studies are then presented: a Gaussian beam at oblique incidence and a speckled wavefield
at normal incidence. For the Gaussian beam, it is shown that when the waist W is
sufficiently large, oblique incidence manifests simply as rigid translation and focal shift
of the corresponding diffraction pattern at normal incidence. The destruction of the
hyperbolic umbilic caustic (corresponding to a critically focused beam) as W is reduced
is then demonstrated. The caustic disappears once W � δa

√
L (L being the medium

length scale normalized by the Airy skin depth δa), at which point the wave behaviour
is increasingly described by Airy functions, but experiences less focusing as a result.
To maximize the intensity of a launched Gaussian beam at a turning point, one should
therefore minimize the imaginary part of the launched complex beam parameter while
having the real part satisfy critical focusing. For the speckled wavefield, it is shown that the
transverse speckle pattern only couples to the Airy longitudinal pattern when the coupling
parameter η = √

L/f# is large, with f# being the f-number of the launching aperture. When
η � 1, a reduced description of the total wavefield can be obtained by simply multiplying
the incoming speckle pattern with the Airy swelling.

Key words: fusion plasma, plasma waves

1. Introduction

The description of an electromagnetic wave propagating in a linearly varying medium
is a classic problem in wave physics, sometimes referred to as the linear-layer problem
(Ginzburg 1961). Its relevance to plasma physics and fusion research is predominantly as a
local description near a turning point for wave-based heating and diagnostics applications.
For example, a recently developed scheme to perform fundamental X-mode heating and
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current drive in startup plasmas (Ono, Bertelli & Shevchenko 2022a; Ono et al. 2022b)
involves an obliquely launched X-mode resonating with electrons near the low-density
cut-off; the efficiency of the heating process will therefore depend on the wavefield
intensity behaviour near the cut-off. Similarly, the Doppler backscattering diagnostic
(Hall-Chen, Parra & Hillesheim 2022) relies on the swelling of a wavefield near a turning
point to probe turbulence spectra via nonlinear scattering of the diagnostic beam; the
intensity details near the turning point therefore determine the diagnostic sensitivity and
localization.

Many authors (Ginzburg 1961; Orlov & Tropkin 1980; Maj, Pereverzev & Poli 2009;
Maj, Balakin & Poli 2010; Lopez, Kur & Strozzi 2023) have obtained solutions to the
linear-layer problem in terms of a prescribed field ψ along the boundary z = 0, where
z is the direction of medium inhomogeneity. However, the full field ψ is made up of
both the incoming and reflected components, and often only the incoming component
is known in practice. To remedy this apparent shortcoming in the obtained solutions,
most of the aforementioned authors performed an asymptotic matching to isolate only
the incoming component. This resolves the issue with the boundary condition, but at the
cost of introducing an asymptotic validity criterion into the analysis: the resulting formulas
are not valid when the incoming field is specified too close to the turning point, as might
occur when beams are launched obliquely. A universally valid formula that matches to a
prescribed incoming field would be more desirable for use in applications.

Here we obtain such a formula by performing the matching spectrally instead of
asymptotically. No new asymptotic validity criteria are introduced into the problem, and
it is shown explicitly that the obtained solution exactly reproduces the incoming wavefield
at the boundary, regardless of the distance between the boundary and the turning point.
The solution involves an integral whose kernel contains the standard Airy function,
which is expected to arise in this problem, and also the related Scorer function, which
is less well known. To demonstrate the flexibility of the new solution, two special cases
are considered: an obliquely launched Gaussian beam and a normally incident speckled
wavefield produced by a bilevel random phase plate (RPP). For this first example, it is
shown how the hyperbolic umbilic caustic created at critical focusing gets degraded as the
beam waist becomes smaller for a variety of injection angles, including angles at which
the asymptotic validity criterion for the previous solutions is violated. For the second
example, an explicit coupling parameter is derived and demonstrated that governs whether
the speckles influence the behaviour of the wavefield near the turning point. Both these
examples can serve as starting points to developing reduced models of waves near turning
points with more comprehensive physics content, which would be useful for the fusion
applications mentioned in the first paragraph, among other applications.

This paper is organized as follows. In § 2 the linear-layer problem is introduced. In § 3
a spectral matching is performed to allow the solution to the linear-layer problem to be
expressed only in terms of the incoming field at the boundary. This is the main result of
this paper. In § 4 the special case of an incoming Gaussian beam is studied, with particular
emphasis on its behaviour near critical focusing. In § 5 the special case of an incoming
speckled wavefield is studied, with focus on characterizing the coupling between speckles
and the Airy pattern. Finally, § 6 summarizes the main conclusions. Auxiliary calculations
are presented in appendices.

2. Background

Let us consider an electromagnetic wave propagating in N + 1 spatial dimensions in a
medium whose index of refraction varies as a linear function. We take one dimension,
denoted z, to be aligned with the direction of inhomogeneity, and label the remaining
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Exact boundary-value solution to linear layer problem 3

N dimensions by the vector x. Assuming time-harmonic modes with a single angular
frequency ω, the wavefield amplitude can be shown to satisfy the Helmholtz equation:

∂2
xψ(x, z)+ ∂2

zψ(x, z)+ �− z
δ3

a

ψ(x, z) = 0, (2.1)

where δa is a constant with units of length sometimes called the ‘Airy skin depth’ (Michel
2023). In terms of the angular frequency ω, the medium length scale � and the speed of
light in vacuum c, δa is given as

δa = 3

√
�c2

ω2
. (2.2)

We shall maintain N unspecified in the following analysis, but note that practical
calculations will have either N = 1 or N = 2 for two- or three-dimensional propagation,
respectively. We also only seek solutions that are stable, such that they become evanescent
and decay to zero as z → +∞.

Let us now introduce normalized spatial coordinates

x = δaX , z = δaZ, � = δaL, (2.3a–c)

such that (2.1) becomes

∂2
Xψ(X ,Z)+ ∂2

Zψ(X ,Z)+ (L − Z)ψ(X ,Z) = 0. (2.4)

Let us also adopt the following convention for the Fourier transform (FT):

ψ̃(K x,Kz) =
∫

dX dZ
(2π)N+1

ψ(X ,Z) exp(−iK x · X − iKzZ), (2.5a)

ψ(X ,Z) =
∫

dK x dKz ψ̃(K x,Kz) exp(iK x · X + iKzZ). (2.5b)

Taking the FT of (2.4) then gives

i∂Kzψ̃(K x,Kz) = (
L − |K x|2 − K2

z

)
ψ̃(K x,Kz), (2.6)

with solution given by

ψ̃(K x,Kz) = ψ̃0(K x) exp
[

i
K3

z

3
+ i

(|K x|2 − L
)

Kz

]
. (2.7)

Here, ψ̃0(K x) ≡ ψ̃(0,K x) is an arbitrary function that can eventually be matched to
boundary conditions, as we show in the next section.

The general solution to (2.4) is then obtained by taking an inverse FT of (2.7):

ψ(X ,Z) =
∫

dK x dKz ψ̃0(K x) exp
[

i
K3

z

3
+ i

(|K x|2 + Z − L
)

Kz + iK x · X
]
. (2.8)

Note that the decaying boundary condition has been tacitly imposed through our use of an
FT to obtain the solution (2.8).
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3. Boundary-value solution for prescribed incoming wavefield
3.1. Isolating the incoming contribution

Although (2.8) constitutes the general boundary-value solution for a prescribed ψ̃0(K x),
this boundary-value solution is formulated in the spectral domain, which is not useful for
most applications. Here we instead obtain the boundary-value solution in the coordinate
domain by prescribing an incoming wavefield, since this is often what is known in practice.

To do this, consider the field on the Z = 0 plane, i.e. ψ(X , 0). We can split this into
‘incoming’ and ‘outgoing’ components by using a spectral filter based on the sign of Kz
as follows:

ψin(X ) =
∫

dK x ψ̃0(K x)eiK x·X
∫ ∞

0
dKz exp

[
i
K3

z

3
+ i

(|K x|2 − L
)

Kz

]
, (3.1a)

ψout(X ) =
∫

dK x ψ̃0(K x)eiK x·X
∫ 0

−∞
dKz exp

[
i
K3

z

3
+ i

(|K x|2 − L
)

Kz

]
. (3.1b)

One then has the exact decomposition

ψ(X , 0) = ψin(X )+ ψout(X ). (3.2)

To proceed further, one is required to compute the integral

I(ζ ) =
∫ ∞

0
dKz exp

(
i
K3

z

3
+ iζKz

)
≡
∫ ∞

0
dKz cos

(
K3

z

3
+ ζKz

)
+ i

∫ ∞

0
dKz sin

(
K3

z

3
+ ζKz

)
, (3.3)

where ζ is a real-valued parameter. Note that the other relevant integral is∫ 0

−∞
dKz exp

[
i
K3

z

3
+ iζKz

]
= [I(ζ )]∗. (3.4)

Both the integrals involved in the real and imaginary parts of (3.3) can be solved in terms
of Airy-related functions (Olver et al. 2010):∫ ∞

0
dKz cos

(
K3

z

3
+ ζKz

)
= π Ai(ζ ),

∫ ∞

0
dKz sin

(
K3

z

3
+ ζKz

)
= π Gi(ζ ),

(3.5a,b)
where Ai denotes the Airy function and Gi denotes the Scorer function. These functions
are plotted in figure 1 for reference.

One therefore obtains
I(ζ ) = π [Ai (ζ )+ i Gi (ζ )] . (3.6)

This implies that the incoming and outgoing wavefields can be expressed as

ψin,out(X ) = π

∫
dK x ψ̃0(K x)eiK x·X [Ai

(|K x|2 − L
)± i Gi

(|K x|2 − L
)]
, (3.7)

where the top (+) sign corresponds to the incoming wavefield and the bottom (−)
sign corresponds to the outgoing wavefield. Again, we emphasize that these are exact
relationships.
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FIGURE 1. The Airy function Ai(x) and the Scorer function Gi(x) plotted against their
argument. Both functions behave qualitatively similar, exhibiting exponential decay for x > 0
and oscillatory behaviour (with relative phase shift) for x < 0.

3.2. Fourier inversion to obtain general solution
Let us now obtain the desired boundary-value solution (in coordinate space) using (3.7). To
do so, let us perform an FT with respect to only the transverse coordinates X . Analogous
to (2.5), this transverse FT takes the form

ψ̂in(K x) =
∫

dX
(2π)N

ψin(X )e−iK x·X , (3.8a)

ψin(X ) =
∫

dK x ψ̂in(K x)eiK x·X . (3.8b)

Then, we can clearly identify from (3.7) the relationship between the transverse FT and
the standard FT images of ψ :

ψ̂in(K x) = πψ̃0(K x)
[
Ai
(|K x|2 − L

)+ i Gi
(|K x|2 − L

)]
. (3.9)

Since the quantity Ai(|K x|2 − L)+ i Gi(|K x|2 − L) is always non-zero (see Appendix A),
we can then invert the relationship (3.9) to obtain

ψ̃0(K x) = 1
π

ψ̂in(K x)

Ai
(|K x|2 − L

)+ i Gi
(|K x|2 − L

) . (3.10)

The general solution can then be written as

ψ(X ,Z) =
∫

dK x
2 Ai

(|K x|2 + Z − L
)
ψ̂in(K x)

Ai
(|K x|2 − L

)+ i Gi
(|K x|2 − L

)eiK x·X , (3.11)

where ψ̂in(K x) is the spectrum of the incoming beam, related to the prescribed boundary
value via (3.8a). In essence, we have determined the arbitrary function ψ̃0(K x) in (2.8) that
matches a prescribed boundary condition ψin(X ) exactly, without appealing to asymptotic
approximations (Orlov & Tropkin 1980; Maj et al. 2009; Lopez et al. 2023) that necessarily
restrict the validity of the resulting expressions.
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6 N.A. Lopez

As a sanity check, one can confirm that (3.11) reproduces the known result when
ψin(X ) is a constant; in this case, ψ̂in(K x) ∝ δ(K x) such that subsequent integration gives
ψ(X ,Z) ∝ Ai(Z − L) as desired. Also, note that the incoming and outgoing components
to (3.11) at Z = 0 can be identified by performing the rearrangement

2 Ai
(|K x|2 − L

)
Ai
(|K x|2 − L

)+ i Gi
(|K x|2 − L

) = 1 + Ai
(|K x|2 − L

)− i Gi
(|K x|2 − L

)
Ai
(|K x|2 − L

)+ i Gi
(|K x|2 − L

) . (3.12)

The incoming or outgoing component corresponds to the subsequent integration of the
first or second factor, respectively. In particular, one recovers (3.8b) exactly.

4. Special case: incident Gaussian beam in two dimensions

Let us now consider the case when the incoming wavefield is a Gaussian beam, which is
of practical importance. We also specialize to only consider two-dimensional propagation
(N = 1), since this will facilitate comparisons with other published formulas in the
literature (Orlov & Tropkin 1980; Maj et al. 2009; Lopez et al. 2023). Specifically, we
take

ψin(X) = E0 exp
(

i
√

L X sin θ − i
X2 cos2 θ

2
√

L qc

)
, (4.1)

where E0 is a constant and qc is the complex beam parameter normalized by the plasma
length scale �, with Im(qc) ≥ 0. Note that we have made use of the relationship

ωδa

c
=

√
L. (4.2)

Note also that one has

− i
qc

= −i
Re(qc)

|qc|2 − Im(qc)

|qc|2 . (4.3)

Hence, one can identify |qc|2/Re(qc) as the radius of curvature and
√

2L−3/2|qc|2/Im(qc)

as the beam waist (both normalized by �). Focusing occurs when Re(qc) > 0. The linear
phase term in (4.1) simply rotates the phase fronts according to the angle of incidence θ
(with θ = 0 being normal incidence), while the additional factor of cos2 θ in the quadratic
phase term in (4.1) accounts for the stretching that occurs for oblique incidence. It is also
worth mentioning that when θ 
= 0, (4.1) corresponds to a well-collimated beam (long
Rayleigh range) such that the variation of qc along the incident boundary z = 0 can be
neglected (Belyaev, Banks & Chapman 2024).

4.1. Exact solution
The transverse spectrum of the incoming wavefield is computed to be

ψ̂in(Kx) = E exp

[
i
2

√
L qc

(Kx − √
L sin θ)2

cos2 θ

]
, (4.4)
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where E .= E0

√√
L qc/2πi cos2 θ is the overall constant. Equation (3.11) therefore takes

the form

ψ(X,Z) = E
∫

dKx
2 Ai

(
K2

x + Z − L
)

Ai
(
K2

x − L
)+ i Gi

(
K2

x − L
)eiKxX

× exp

[
i
2

√
L qc

(Kx − √
L sin θ)2

cos2 θ

]
. (4.5)

Equation (4.5) depends on four free parameters, three that characterize the boundary value
of the incident beam and one that characterizes the medium. They are: (i) L, the medium
length scale normalized by δa defined in (2.2), related to normalization by the vacuum
wavelength via (4.2); (ii) Re(qc), which parametrizes the incident radius of curvature
normalized by the medium length scale; (iii) Im(qc) ≥ 0, which parametrizes the incident
beam waist normalized by the medium length scale; and (iv) θ ∈ [0,π/2), the angle of
incidence with respect to the direction of inhomogeneity Z.

4.2. Oblique injection as rigid translation and focal shift
Although the injection angle is nominally a free parameter, when the complex beam
parameter is purely real, Im(qc) = 0, then the injection angle θ can also be removed by
a coordinate transformation, up to an overall phase and focal length dilation (focal shift).
Indeed, by completing the square, the initial condition (4.1) can be rewritten as

ψin(X) = G
(

X − Lqc
tan θ
cos θ

,L,
qc

cos2 θ

)
exp

(
i
2

L3/2qc tan2 θ

)
, (4.6)

where G is the Gaussian profile of the incoming beam at normal incidence:

G(X; L, qc) = E0 exp
(

−i
X2

2
√

L qc

)
. (4.7)

Clearly, when Im(qc) = 0, (4.6) corresponds to rigid translation Δ in the transverse X
direction and a transformed focal length qc,eff given by

Δ = Lqc
tan θ
cos θ

, qc,eff = qc

cos2 θ
. (4.8a,b)

In particular, it was shown in Lopez et al. (2023) that critical focusing occurs at normal
incidence when qc = 2. Hence, for oblique incidence the critical focusing occurs when

qc,crit = 2 cos2 θ. (4.9)

Note that expressions (4.8a,b) and (4.9) do not contain the additional Goos–Hänchen and
focal shifts contained in the analogous formula from Lopez et al. (2023), since these
phenomena are only present with a finite beam waist (McGuirk & Carniglia 1977). Hence,
one should use these expressions rather than those of Lopez et al. (2023) when the beam
waist is sufficiently large.
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8 N.A. Lopez

4.3. Example: softened critical focusing with finite beam waist
As discussed in Lopez (2023), the peak intensity of a critically focused wave ((4.9)
being satisfied) can exceed the standard Airy intensity peak by orders of magnitude.1
However, this only occurs when the beam waist is formally infinite. At normal incidence,
the characteristic ‘detuning width’ to still achieve critical focusing is Δq = 1/

√
L (Lopez

et al. 2023); if this is entirely accounted for by a finite beam waist (Im(qc) 
= 0), then
(4.8a,b) implies that for critical focusing to occur, one must have

Im(qc) � cos2 θ√
L
. (4.10)

If one further assumes that L � 1, which is equivalent to assuming that qc,crit � Im(qc)

with qc,crit given by (4.9) and Im(qc) given by (4.10), then one can use the relationship
between the beam waist W and qc introduced following (4.3), namely

W = δaL1/4

√
2|qc|2
Im(qc)

≈ δaL1/4

√
2q2

c,crit

Im(qc)
, (4.11)

to obtain a more intuitive condition for maintaining critical focusing compared with (4.10):

W
δa

�
√

L cos θ. (4.12)

Figures 2–4 demonstrate how the hyperbolic umbilic diffraction pattern corresponding
to critical focusing gets destroyed by a finite beam waist at various values of θ , confirming
the prediction of (4.12). (Note that they also confirm the formulas (4.8a,b) and (4.9)
relating oblique injection with translations and focal shifts for infinitely wide beams.)
Also shown are cases when the beam waist is minimized at fixed Re(qc) (which occurs
for Im(qc) = Re(qc)), and when Im(qc) � Re(qc). By softening the hyperbolic umbilic
caustic, the peak intensity decreases with increasing Im(qc); this has clear consequences
for applications that require strong focusing near the turning point (such as those discussed
in the introduction) and suggests that one should minimize Im(qc) as much as possible.

4.4. Comparison with existing asymptotic formulas
For comparison purposes, let us also list the existing asymptotic formulas provided by
Orlov & Tropkin (1980), Maj et al. (2009) and Lopez et al. (2023), which we refer to
respectively as the O80, the M09 and the L23 formulas. (We reiterate that to the best
of our knowledge, only asymptotic solutions to the linear-layer problem with prescribed
boundary value have appeared in the literature.) These formulas are given for the initial
condition (4.1) as2

ψO80(X,Z) = E
∫

dKx
2 Ai

(
K2

x + Z − L
)

Ai
(
K2

x − L
)− i Ai′

(
K2

x − L
)
/
√

L − K2
x

eiKxX

× exp

[
i
2

√
L qc

(Kx − √
L sin θ)2

cos2 θ

]
, (4.13)

1The ratio of the two intensities formally diverges in the short-wavelength asymptotic limit.
2Note that we have corrected an error in Maj et al. (2009); their equation (17) is missing an extra factor of ω�/c in

the exponent.
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Exact boundary-value solution to linear layer problem 9

(a) (b) (c) (d)

FIGURE 2. Morphology of the hyperbolic umbilic caustic that occurs at critical focusing (4.9)
as Im(qc) is increased from zero at normal incidence (θ = 0) with L = 10. The plots are obtained
from numerically integrating the exact solution (4.5). From left to right, the panels show the
diffraction pattern at critical focusing, at the expected detuning value of Im(qc) (4.10), at the
Im(qc) that minimizes the beam waist and at Im(qc) � Re(qc). Note that the colourbar axis
changes for each plot.

(a) (b) (c) (d)

FIGURE 3. Same as figure 2 but for θ = 30◦.

ψM09(X,Z) = E 2π√
πi

∫ √
L

−√
L

dKx
(
L − K2

x

)1/4
Ai
(
K2

x + Z − L
)

eiKxX

× exp

[
i
2

√
L qc

(Kx − √
L sin θ)2

cos2 θ
+ i

2
3

(
L − K2

x

)3/2

]
, (4.14)

ψL23(X,Z) = EL

∫
dKx Ai

(
K2

x + Z − L
)

eiKxX

× exp

[
i
2

√
L

qc − 2 cos 2θ cos θ
cos2 θ

(
Kx −

√
L sin θ

qc + sin 2θ sin θ
qc − 2 cos 2θ cos θ

)2
]
,

(4.15)

where we have introduced

EL = E2π

√√
L cos θ
πi

exp
(

i
6

L3/2 cos3 θ
4qc − 7 cos θ − cos 3θ

qc − cos θ − cos 3θ

)
. (4.16)
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10 N.A. Lopez

(a) (b) (c) (d)

FIGURE 4. Same as figure 2 but for θ = 60◦.

As discussed in Appendix B, each of the formulas (4.13)–(4.15) are asymptotically
equivalent to the exact solution (4.5) when L is much greater than all wavevectors
contained within the incoming spectrum. The region of validity for this condition is
plotted in figure 5. That said, for finite L − K2

x , each of the listed formulas have some
shortcomings: (4.13) contains a singularity at L = K2

x that is clearly unphysical; (4.14)
truncates the integral for K2

x ≥ L and thereby neglects evanescent contributions to the
total field; and (4.15) performs a subsidiary Taylor expansion in K2

x to highlight the caustic
structure, with additional loss of accuracy expected as a result. This includes the incorrect
predictions for the transverse shift Δ and the focal shift for a wide beam at oblique
incidence discussed in the previous section.

5. Special case: speckled plane wave at normal incidence

Let us now consider an incoming field obtained via paraxial propagation from a lens
aperture with focal length d in two dimensions. If the field is evaluated at best focus
(i.e. following a propagation distance d), then the (far-field) Fraunhofer diffraction formula
gives the solution to be3

ψin(X) = E0

∫
dY ψ0(Y) exp

(
−i

√
L

D
XY

)
, (5.1)

where D = d/δa and ψ0 is the field profile that illuminates the lens aperture. Let us choose
ψ0 to be a uniformly illuminated RPP array that consists of M identical elements of width
W/M (so the total width is W, normalized by δa as usual):

ψ0(Y) =
(M−1)/2∑

m=−((M−1)/2)

eiφm rect
(

M
W

Y − m
)
, (5.2)

where φm is the corresponding phase shift, set to be either 0 or π (Dixit et al. 1993).
We take M to be odd for simplicity. Also, rect(x) is the unit rectangular function that is
non-zero only within the interval −1/2 ≤ x ≤ 1/2. One then has

ψ̂in(Kx) = E0
D√

L

M∑
m=1

eiφm rect
(

M
η

Kx + m
)
, (5.3)

3See, for example, the general discussion in Lopez (2022), and specifically the cascaded system given by the matrix
product of their equations (3.137) and (3.146).
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

FIGURE 5. Validity boundary for the asymptotic solutions (4.13)–(4.14) as determined by (B1),
either as a function of qc and θ for specified L (top row) or as a function of qc and L for specified
θ (bottom row). Within the red hatched region, only the exact solution (4.5) remains valid. No
valid asymptotic region exists for L ≤ 1 and for θ = π/2. The white vertical rectangles in the
panels for θ = 0◦, θ = 30◦ and θ = 60◦ correspond to the range of special cases considered in
figures 2–4 respectively.

where we have introduced the coupling coefficient η as

η =
√

L
f#
, f#

.= D
W
. (5.4a,b)

Note that f# is the f-number of the launching aperture. Consequently, (3.11) reads

ψ(X,Z) = E0
D√

L

M∑
m=1

exp
(

iφm + iηX
m
M

)

×
∫ η/2M

−(η/2M)
dKx

2 Ai
[(

Kx + η
m
M

)2
+ Z − L

]
Ai
[(

Kx + η
m
M

)2
− L

]
+ i Gi

[(
Kx + η

m
M

)2
− L

]eiKxX.

(5.5)

Equation (5.5) is the exact solution for the incoming speckled wavefield given in (5.1).
A complete statistical study of this solution is beyond the scope of the present paper, but
one property can be seen immediately. Let us take the number of RPP elements to be
sufficiently large, M � η, such that the integral in (5.5) can be approximated by its central
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(a) (b) (c)

(d) (e) ( f )

FIGURE 6. Exact solution (5.5) for an incoming speckled wavefield at various values of the
coupling coefficient η and L = 10 and M = 100 RPP elements. The transverse direction is
normalized by the nominal speckle width (Michel 2023), which in the normalized coordinates
is given by xs ∼ 2π/η. For each pair of panels, the top panel shows the beam profile over the
nominal envelope width Mxs, while the bottom panel shows the region within the white dashed
lines of the top panel.

value. This yields

ψ(X,Z) ≈ E0
D√

L

M∑
m=1

exp
(

iφm + iηX
m
M

) 2 Ai
[(
η

m
M

)2
+ Z − L

]
Ai
[(
η

m
M

)2
− L

]
+ i Gi

[(
η

m
M

)2
− L

] .
(5.6)

Hence when the coupling is small,
η � 1, (5.7)

the transverse speckle pattern and the longitudinal Airy pattern are decoupled from each
other. In this limit one needs to simply multiply a given incoming speckle pattern with a
single Airy profile along Z to obtain the full solution.

As shown by the definition of η in (5.4a,b), decoupling occurs when a large f-number
beam is launched into a plasma with relatively short length scale. Conversely, a small
f-number beam launched into a plasma with shallow gradient will exhibit a significantly
more complicated longitudinal profile. This is demonstrated in figures 6 and 7, which
compare the solution (5.5) for a larger and smaller coupling coefficient. The decoupled
speckles exhibit a regular periodicity along the propagation direction, while the coupled
speckles exhibit a considerably more complicated interference pattern. The longitudinal
swelling of the coupled speckles also differs significantly from the standard Airy swelling,
with the maximum intensity no longer necessarily occurring near the turning point.

6. Conclusion

In this work, the classic problem of an electromagnetic wave propagating in a linearly
varying index of refraction (the ‘linear-layer problem’) is revisited. Specifically, we
consider when the wavefield throughout the domain is given by a prescribed incoming
field at the boundary transverse to the direction of inhomogeneity. Previous studies have
only obtained asymptotic solutions to this problem set-up; here we obtain the exact result
by using a spectral matching scheme. The resulting solution (3.11) is expressed as an
integral involving the FT of the prescribed incoming boundary field multiplied by a kernel
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 7. Lineouts along Z (top) of the exact solution presented in figure 6 at the location of
the brightest speckle, along with the solution averaged over the entire X range (bottom). Also
shown are Airy function fits obtained by matching the first peak value and location for each
respective plot.

involving the familiar Airy function and also the related Scorer function. The kernel is
never singular and therefore is uniformly valid regardless the relative sizes of the launched
wavelength and the medium length scale.

An incident Gaussian beam is then studied as a test case, with corresponding exact
solution given by (4.5). It is shown that when the beam is sufficiently wide (i.e. a
Gaussian-focused plane wave), oblique angle of incidence results in a simple shift of
the focal length and a rigid translation of the diffraction pattern. Explicit expressions
are provided by (4.8a,b) and (4.9), which modify the analogous expressions presented in
Lopez et al. (2023) by removing the Goos–Hänchen shifts that cannot arise without a finite
beam waist. That said, the general prediction of Lopez et al. (2023) that the hyperbolic
umbilic caustic is structurally stable with respect to angle of incidence still holds true.

It is then demonstrated how the hyperbolic umbilic caustic corresponding to critical
focusing of a wide beam gets softened and ultimately disappears as the beam waist is
reduced. This softening of the caustic is accompanied by a reduction in the peak intensity
obtained by the Gaussian beam at the turning point, which suggests that for applications
reliant on the intensity of a wavefield near a turning point, one should make the imaginary
part of the complex beam parameter for the launched beam as small as possible. More
quantitatively, the hyperbolic umbilic caustic deteriorates once the beam waist W becomes
smaller than W/δa �

√
L, where δa is the Airy skin depth (2.2) and L is the medium length

scale normalized by δa. This means that beam-tracing solutions (Maj et al. 2009, 2010) are
fundamentally incapable of describing the hyperbolic umbilic caustic, since the validity
of beam tracing requires W/δa ∼ 4

√
L (with L also being large). Advanced ray-tracing

methods (Lopez & Dodin 2020, 2021, 2022; Lopez, Højlund & Senstius 2024; Højlund
Marholt, Senstius & Nielsen 2024) may be able to describe it, however, as they have no
such restriction on the beam waist. Conversely, this analysis suggests that any anomalous
focusing observed in beam-tracing solutions is not due to the hyperbolic umbilic caustic,
but instead due to the relatively simpler Airy (fold) caustic.

Finally, an incident speckled wavefield is also studied. It had been observed previously
in numerical parameter scans that large f-number beams in steep gradients experience
decoupled speckle and Airy behaviour (Lopez et al. 2021), but no concise coupling
parameter had been identified. Here we derive the coupling parameter to be η = √

L/f#,
and show that speckles only influence the longitudinal profile of the total wavefield when
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η � 1, or equivalently, when � � λf 3
# /2π. This suggests that a reduced model of laser

beams near turning points is obtained in the low-coupling regime by simply multiplying
the transverse speckle pattern with the Airy swelling factor. In the strong-coupling regime,
however, the interference patterns are seen to be considerably more complicated, and more
work remains to develop reduced models in this limit. To put this finding in context, in
terms of the NIF laser (Spaeth et al. 2016) the transition to strong coupling occurs for
a 351 nm f/22 beam when the plasma length scale exceeds 3.7 mm, or when it exceeds
0.2 mm for an f/8 quad beam.
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Appendix A. Interlacing of Airy and Scorer zeros

It is important to note that
Ai(x)± i Gi(x) 
= 0 (A1)

because the zeros of Ai and Gi never overlap. Since this fact of Gi is difficult to find in the
literature,4 we present a simple argument here for completeness.

By definition, one has (Olver et al. 2010)

Gi(x) = Bi(x)
∫ ∞

x
Ai(z) dz + Ai(x)

∫ x

0
Bi(z) dz. (A2)

If one evaluates Gi at a zero of Ai, denoted x0 (and one notes that x0 < 0), one obtains

Gi(x0) = Bi(x0)

∫ ∞

x0

Ai(z) dz. (A3)

Since the zeros of Ai and Bi are interlaced, one has Bi(x0) 
= 0. Also, numerical
investigation (figure 8) shows that ∫ ∞

x
Ai(z) dz > 0, (A4)

for all values of x. Hence Gi(x0) 
= 0.

Appendix B. Asymptotic equivalence of the exact solution with other published
expressions

Here we show that the exact solution (4.5) is asymptotically equivalent to the other
expressions listed in (4.13)–(4.15) in the large L → ∞ limit. Specifically, we take L to be

4For example, Gil, Segura & Temme (2003) only compares the zeros of Gi and Bi, not Gi and Ai as we require here.
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FIGURE 8. Evaluating the integral
∫∞

x Ai(z) dz for different values of the lower limit x. Note
that since Ai(ζ ) > 0 for ζ > 0, the integral is manifestly positive for x > 0 and asymptotes to
zero as x → +∞.

much larger than all K2
x that appear in the incoming spectrum, requiring

L

[
1 −

(
sin θ + cos θ

L3/4
√|qc|

)2
]

� 1. (B1)

Note that to derive (B1), we have estimated the mean wavevector to be
√

L sin θ and
the spectral width to be cos θ/|qc|1/2L1/4, per (4.4). When (B1) is satisfied, we can
take ζ .= L − K2

x to be sufficiently large, i.e. ζ � 1, such that the following asymptotic
approximations hold:

Ai(−ζ ) ∼
cos

(
2
3
ζ 3/2 − π

4

)
√

πζ 1/4
, (B2a)

Ai′(−ζ ) ∼ ζ 1/4
sin
(

2
3
ζ 3/2 − π

4

)
√

π
, (B2b)

Gi(−ζ ) ∼ −
sin
(

2
3
ζ 3/2 − π

4

)
√

πζ 1/4
. (B2c)

B.1. Asymptotic equivalence with O80 formula
The exact solution (4.5) and the O80 formula (4.13) differ only via the denominator in the
integrand: (4.5) has Ai(−ζ )+ i Gi(−ζ ) while (4.13) has Ai(−ζ )− i Ai′(−ζ )/√ζ . When
ζ � 1, the asymptotic relations (B2) then give

Ai(−ζ )+ i Gi(−ζ ) ∼
exp

(
−i

2
3
ζ 3/2 + i

π

4

)
√

πζ 1/4
, (B3a)
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Ai(−ζ )− i
Ai′(−ζ )√

ζ
∼

exp
(

−i
2
3
ζ 3/2 + i

π

4

)
√

πζ 1/4
. (B3b)

The integrands to both formulas have the same asymptotic limit when ζ � 1; hence the
two formulas should agree when (B1) is satisfied. That said, it is clear that the integrand
of (4.13) has a singularity at ζ = 0, so it will not hold uniformly in ζ .

B.2. Asymptotic equivalence with M09 formula
Let us again assume that ζ � 1. Applying the asymptotic formula (B3a) to (4.5) then
gives the integrand of (4.14). However, (4.14) also restricts the integration bounds from
the entire real line to the interval Kx ∈ [−√

L,
√

L]. This ensures that ζ remains positive
over the integration, but neglects evanescent modes (with long decay lengths) that may
contribute to the exact solution. These modes should be absent when (B1) is well satisfied,
but may be present when it is only marginally true.

B.3. Asymptotic equivalence with L23 formula
Again, let us take ζ � 1 and apply (B3a) to (4.5) to obtain the integrand of (4.14). We then
perform a subsidiary expansion in the limit of small spectral width Δk

.= Kx − K0 about
the mean wavevector K0 = √

L sin θ . This condition reads L cos2 θ � |(Δk + 2K0)Δk|,
which is equivalent to (B1) when the same estimate for Δk is used. The lowest-order
approximation for the amplitude gives

ζ 1/4 = L1/4
√

cos θ + O(Δk), (B4)

while a higher-order approximation for the phase gives

2
3
ζ 3/2 = 2

3
L3/2 cos3 θ − εL sin 2θ − ε2

√
L

cos 2θ
cos θ

+ O(Δ3
k). (B5)

Following some algebra, it can then be shown that inserting (B4) and (B5) into (4.5)
recovers (4.15). Therefore, (4.5) and (4.15) are asymptotically equivalent when (B1) is
well satisfied.
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