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Abstract

In this paper we study the tail and the extremal behaviors of stationary solutions of
threshold autoregressive (TAR) models. It is shown that a regularly varying noise
sequence leads in general to only an O-regularly varying tail of the stationary solution.
Under further conditions on the partition, it is shown however that TAR(S, 1) models
of order 1 with S regimes have regularly varying tails, provided that the noise sequence
is regularly varying. In these cases, the finite-dimensional distribution of the stationary
solution is even multivariate regularly varying and its extremal behavior is studied via
point process convergence. In particular, a TAR model with regularly varying noise can
exhibit extremal clusters. This is in contrast to TAR models with noise in the maximum
domain of attraction of the Gumbel distribution and which is either subexponential or in
L (y) with y > 0. In this case it turns out that the tail of the stationary solution behaves
like a constant times that of the noise sequence, regardless of the order and the specific
partition of the TAR model, and that the process cannot exhibit clusters on high levels.
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1. Introduction

A (self-exciting) threshold autoregressive ((SE)TAR) model of order q with S regimes is a
piecewise AR(g) process with different regimes, where the current regime depends on the size
of the past observations. More precisely, we will consider the following model: let (Z)xen, be

an independent and identically distributed (i.i.d.) noise sequence, let g, p, S, dy,...,dp € N
withd; < -+ < dp,let{J;:i =1,...,5} be a partition of R” into pairwise disjoint Borel
sets,and lete;, i =1,...,S,aswellas B;;, i =1,...,S, j=1,...,q, bereal coefficients.

Then we call a process (X )ken, satisfying

s q
Xi = Z(“i + Zﬂink—j>1{(xk_d1,...,xk_d,,>ef,~} +Zr,  k>max{q,d,}, (1.1

i=1 j=1

Received 17 January 2008; revision received 19 February 2009.

* Postal address: Allianz Investment Management SE, Koniginstrasse 28, 80802 Miinchen, Germany.

** Postal address: Center for Mathematical Sciences, Technische Universitit Miinchen, Boltzmannstrasse 3,
D-85747 Garching, Germany. Email address: fasen@ma.tum.de

Financial support from the Deutsche Forschungsgemeinschaft through a research grant is gratefully acknowledged.
*¥* Postal address: Institute for Mathematical Stochastics, Technische Universitiit Braunschweig, Pockelsstrasse 14,
D-38106 Braunschweig, Germany. Email address: a.lindner@tu-bs.de

428

https://doi.org/10.1239/aap/1246886618 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1246886618

Extremes of autoregressive threshold processes 429

and for which the starting vector (Xo, ..., Xmax{q,dp},l) is independent of (Ziin)heny, a
TARC(S, q) process. The current regime at time k is determined by the vector (X—g,, ...,
Xk-d,) of the past observations, and within each regime, (X) follows an AR(g;) process with
gi :=max{j € {l,...,q}: B;j # 0}. Sometimes we also allow the variance of the noise to
be regime dependent, by replacing Z; in (1.1) by o; Z;, where o; depends on the past in the
same way as «; does, but in this paper we will not consider such a specification. Autoregressive
threshold models were introduced by Tong [28] in 1977 and were systematically presented by
Tong and Lim [30], who used them as a model for the lynx data. Since then they have found
various applications in many areas, such as financial economics, physics, population dynamics,
and neural sciences, to name just a few; see the presentation in [13] for further information
and references. In particular, when used as a model for financial data, it is important to have
information about the tail and the extremal behaviors of these models, since stylized facts of
financial data are heavy tails and clusters on high levels. The present paper will investigate the
tail and the extremal behaviors of TAR models for various classes of driving noise sequences.

A somewhat related paper by Diop and Guegan [10] considered the tail behavior of TAR
stochastic volatility models. Observe, however, that the threshold model under consideration
in [10] is governed by a different regime switching mechanism, where the regime is not
determined by the size of the previous observation, as for the TAR process, but by the sign
of the volatility model.

The paper is organized as follows. In Section 2 we collect some known assumptions under
which the model has a strictly stationary and geometrically ergodic solution. We then prove
that under the given conditions the tail of the stationary solution can be estimated by the tail of
a certain corresponding AR(q) sequence, a lemma which will turn out to be a crucial ingredient
for the determination of the tail behavior.

Next, in Section 3 we derive the tail and the extremal behaviors of a TAR process with
regularly varying noise. It is shown that the tail of the TAR model is O-regularly varying but
not necessarily regularly varying. For this reason, we restrict our attention to the classical
TAR(S, 1) model of order 1 with S regimes, where the partition is a partition into § intervals
and the regime is determined by whether X;_ is in these intervals. In this case we show
that the stationary solution has a regularly varying tail, and even that the finite-dimensional
distributions are multivariate regularly varying. Furthermore, we derive the extremal behavior
by point process convergence. A result is that the classical TAR(S, 1) process models extremal
clusters.

Finally, Section 4 is also on general TAR(S, ¢) models with noise which has at most an
exponentially decreasing tail without being regularly varying. It is then shown that the tail of
the TAR model is in the same class and its extremal behavior is determined. Here, the sequence
of point processes converges to a Poisson random measure, which reflects, in contrast to the
regularly varying case, the absence of extremal clusters. Some of the results presented in this
paper can also be found in the diploma thesis [3] of the first author.

Throughout the paper, we will denote N = {1,2,...}, Ng = NU {0}, Ry = (0, 00),
R = R U {400} U {—00}, and use % to denote weak convergence. For the integer part of a
real number x, we write |x| = sup{n € Z: n < x}. The Dirac measure at a point x will be
denoted by ¢,. For two strictly positive functions g and & and a constant ¢ € [0, 00), we write
g(t) ~ ch(t) ast — oo if the quotient g(¢)/ h(¢) tends to c ast — oo. Forx € R?, we denote
by x| the transpose of x and by ||x|| the maximum norm of x. As usual, the positive part and
the negative part of x € R is denoted by x* = max{x, 0} and x~ = max{0, —x}, respectively.
The tail of a distribution function F will be written as F = 1 — F.
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2. Model assumptions and basic properties

In this paper we restrict our attention to noise sequences (Z;) which are subexponential
(which includes regularly varying noise) or are in the class L£(y) with y > 0, which includes
tails of the form P(Z; > x) ~ KxPe V¥ asx — oo withh € Rand K > 0. When determining
the tail behavior, we will further assume the following classical tail balance condition, which
is also standard for extreme value theory of linear ARMA processes, as presented, in, e.g. [12,
Section A.3.3].

Condition 2.1. (Tail balance (TB).) There are constants pT, p~ € [0, 1]1suchthat p*+p~ =1,
and the tail of Z1 satisfies the TB condition if

P(Zy > x) ~ p+P(|Zl| >x) and P(Z; <—x)~p P(Zi]>x) asx — oo.

For the existence of strictly stationary solutions (X )ken,, we use the following sufficient
condition on the distribution of Z; and the size of the coefficients, which is sufficiently general
for our purposes. That it is not a necessary condition for stationarity can be seen from the
presentation in [6].

Condition 2.2. Let (Zy)ken, be ani.i.d. sequence whose marginal distribution has a Lebesgue
density h satisfying infycg h(x) > 0 for every compact set K C R. Furthermore, assume
that E|Z ™00 < oo for some n > 0. Denoting a := maxg—1,...s okl and B; =
max;—1, s |Bij|, assume further that  := Z?:] Bj <L

.....

Define the function f: R/ — R by

S qi
SOty Xp—2, ooy X)) 1= Z(ai + Z :Bijxkj)l{(xkdlwkadp)eji}’
i=1 j=1
where | := max{q, d,}, and define Xy = (Xg, Xg—1,..., Xk,H])T. Then the threshold

model (1.1) has the representation
Xe = f(Xp—1)+ Zy forke{l,l+1,...},

with f(Xk_1) being independent of Z;. Furthermore, we write Z; := (Z,0, ..., O)T and
f&x) = (f&x).x1,....x_1) " forx := (x1,...,x)" € Rl Then (X;)i=/_1 is a Markov
chain, where

Xy = f(Xi—1) +Zy fork >1.

The following lemma assures the existence of a geometrically ergodic, strictly station-
ary solution. Geometric ergodicity has already been proved in [5] (cf. [29, Example A1.2,
p. 464]) and [1, Theorem 3.2 and Example 3.6], under the slightly more restrictive condition
that E|Z1| < oco. However, the proof in [1] can easily be generalized to the case where
only finiteness of E |Z;|™™17} for some n > 0 is assumed: simply replace the test func-
tion (x1,...,xp) = max{|xi|,...,|x,|} appearing in the proof of Theorem 3.2 of [1] by
(x1,...,xp) = (max{|xq],..., |xp|})min{l’”}. Also, note that the proof in [1] carries over to
the more general partitions considered in (1.1) without change. That geometric ergodicity of
the stationary solution then implies strong mixing with geometrically decreasing mixing rate
in the sense that

sup IP(ANB) —P(A)PB)| <Ky, kmeN, (1)
Aeo(Xj: j<m), Beo(X;: j>k+m)

for some 0 < y < 1 and K > 0, then follows from [21, Theorem 16.1.5].

https://doi.org/10.1239/aap/1246886618 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1246886618

Extremes of autoregressive threshold processes 431

Lemma 2.1. Let (Xy)ken, be a TAR process as given in (1.1), and suppose that Condition 2.2
holds. Then (X )ken, is geometrically ergodic and admits a unique strictly stationary solution,
which is strongly mixing with geometrically decreasing mixing rate in the sense of (2.1).

The next lemma is crucial for the analysis of extremes of TAR models. It states that, under
our assumptions, there is a causal AR(q) process whose stationary solution has a tail which is
not smaller than that of the stationary solution of the TAR process.

Lemma 2.2. Suppose that Condition 2.2 holds, and let (X )ken, be the stationary solution of
the TAR moc{el (1.1). Let (Zy)kez be an i.i.d. sequence such that Zy = |Zy| + « for k € Ny.
Denote by (Xy)rez the unique strictly stationary solution of the causal AR(q) process

Xe:=) BiXeoj+Zk, kel 2.2)
j=1

Then (Xy)kez, has the almost-surely convergent moving average representation
o
Xe=) ViZkj, 2.3)
=0

where yo = 1,0 < ¢j < 1for j € N, and () jen, is bounded by a geometrically decreasing
sequence, i.e. ¥; < Ky’ for some 0 < y < 1 and K > 0. Furthermore, for any m € N,

ki,...,ky € No, and x1, ..., x, € R, it holds that
P(I Xk, | > X1 ooy | Xk, | > Xm) < P()”(k1 > X1h.os Xk > Xm). (2.4)
Proof. Since the polynomial ®(z) :=1 — 1 ,BJz’ has no zeros for |z|] < 1 as a con-

sequence of 3 =1 Bj < 1, it follows that process (2.2) is causal. Expanding ®(z)~! =
Z —o ¥z’ in a power series around the origin gives Y9 = 1, Y1 = B1, and the recursions
1//m = ZTimax{O,m—q Bm—j¥j for m > 2. A simple induction argument then shows that
0 < ¢; < lforj > 1 and that (y;,) can be dominated by an exponentially decreasing
sequence. In particular, Y72, ymintln
gives almost-sure convergence of (2.3).

Define the sequence (X7)ken, by X§ == |Xol, .

< o0. Since E | Z; ™11} < o0 by assumption, this

q 1 = |X4-1] and

q
Xp=) BiXi j+Z, k=q.
j=1

Then it follows by induction that

| Xkl < X; forall k € Ny, (2.5)

since

|Xi| < rrllaxsa,—i—z max || X ,|+|Zk|<Zﬂ,Xk i+ 2= X;.

..........

Jj=1 j=1
Observe that (X7 ,, ..., X7 1) converges in distribution as n — o0 to the stationary solution
(X oo e X 1») Of the causal AR(q) process (2.2), and that the topological boundary of the set
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[x1, 00) X -+« X [x,, 0) has P( X, ...%, y“measure 0 as a consequence of the absolute continuity
of the distribution of Z{. Thus, we conclude from (2.5) that

P(Xy >x1,..., Xy, > xp) = nlin;oP(X,1+n > X1, ooy Xipdn > Xm)
. * %
< lim supP(X,l+n > X1, ""Xtm-ﬁ—n > Xpm)
n—>0oo

:P(f(ll >x1,...,)~(,

m

> xm)s

showing (2.4).

3. Regularly varying noise

Recall that a measurable function f: (0, co) — (0, c0) is said to be regularly varying (at
o0) with index —k € R, written as f € R_, if

p few
m =Uu
=00 f(x)

Functions in R are also called slowly varying functions and, for ¥ > 0, it holds that f € R_,
if and only if f(x) = x7*L(x) for all x > 0 with a slowly varying function L. For a random
variable Z with distribution function Fz, we also write Z € R_, to indicate that Z has a
regularly varying tail, i.e. that Fz € R_,. Examples of distributions having regularly varying
tails include Pareto distributions and «-stable distributions with « € (0, 2).

forall u > 0. 3.1

3.1. O-regular variation of TAR models

Unlike for linear models such as ARMA processes, stationary solutions of general TAR mod-
els with regularly varying noise give only O-regularly varying tails. Recall that a measurable
function f: (0, co) — (0, 00) is called O-regularly varying (at 0o) if

0 < timinf 2% < tim sup £

< < oo forallu > 0.
X—>00 X x—oo  f(x)

Clearly, every regularly varying function is O-regularly varying. For TAR processes with
regularly varying noise, we now have the following result.

Lemma 3.1. (O-regular variation.) Suppose that Conditions 2.1 and 2.2 hold, and let (X )ken,
be a stationary version of the TAR process as given in (1.1). Suppose further that |Z1| € R_
for some k > 0. Then

P(X P(X >
52 < liminf 20 =0 o DX >0 ZI/II-(, (3.2)
¥=00 P(IZ1] > x) 7 x—oo P(Z1] > x) T 4= J

where () jeN, is given as in Lemma 2.2. In particular, Fy is O-regularly varying if pt > 0.

Proof. From Lemma 2.2 and [24, Lemma 4.24], we obtain

P(X P(X >
limsup L0 > 9 i qup LRO> 0 Sy,
oo PUZ1[ > 0) ~ ameo P(Z1>2) T
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On the other hand, since X — Z; is independent of Z, it also holds that

P(X P(Z, > 2
liminf 20> %) S g PEL> 20 oy 7 sy = o
x—o0o P(|Z{] > x) x—oo P(|Z1] > x)

This gives (3.2), implying O-regular variation of the tail of Xg if p* > 0.

The next proposition shows that without specific assumptions on the partition, regular
variation of the stationary distribution cannot be expected, even for a TAR(2, 1) model.

Proposition 3.1. Let (Z)ken, be an i.i.d. sequence such that P(Z; > x) ~x™* asx — o0
for some k > 0 and that Conditions 2.1 and 2.2 hold with p™ > 0. For the partition J, =
Unmen, @™, 4" 2) and J5 := R\ Jy, consider the TAR(2, 1) model

Xi_ Z X J1,
Xk:{ﬂl k-1 +Zp for Xp—1 € 1 keN,

Zy for X1 € Jo,

where O < B1 < 1. Then there are constants 0 < c1 < ¢ < 00 such that the stationary
solution (Xy)ken, of the TAR(2, 1) model with distribution function Fx satisfies

cx ¥ < Fx(x) <cox™,  x>1, (3.3)

but Fx is not regularly varying.
Proof. Equation (3.3) follows immediately from Lemma 3.1. Let L be the function satisfying
Fx(x) =P(Xy > x) = L(x)x ¥, x> 0.

By (3.3), it follows that ¢c; < L(x) < ¢ for x > 1. For k € Ny, define

B1 X, for Xy € Jy,
Wy =
0 for X; € Js.

We will show that the assumption that F x is regularly varying gives an O-regularly varying tail
of Wi_1 which is not regularly varying, and then obtain a contradiction of the tail behavior of
Xy = Wi—1 + Zi, where Wj_; and Zj, are independent.

So we assume that F x is regularly varying. Then it follows that L must be slowly varying.
We will first show that there are constants 0 < d; < dp < oo such that

dix ¥ <P(Wy >x) <dox™, x>1. (3.4)

Here, the right-hand side inequality follows easily from P(W; > x) 52(,31 X > x) and (3.3).
For the left-hand side inequality, observe that the regular variation of F 'y implies that
P(Xy € (x, 2x]) i P(Xy > x) — P(X; > 2x)
im —— = lim
x—o0o P(Xp € (x,4x]) x—oo P(Xy > x) — P(X} > 4x)

_ i [P(Xr > x) — P(Xi > 2x)]/ P(Xk > x)
T D% [P(X; > %) — P(X; > 40)]/P(Xs > %)
1 -2
14+
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For x > 0, denote by m (x) the unique nonnegative integer such that 4"~ < x /g, < 4m™),
Then, given ¢ > 0, it follows that, for large enough x > x(¢),

o0

P(Wi>x) =Y P<Xk > % X € (4’”,4’”+1/2]>

m=0

oo
> ) P(Xx e @, 4"t

m=m(x)
1-27% &
>(l—e)r— ), P(Xie@" 4"
m=m(x)
1-27"
= (1 — S)W P(Xk > 4m(x))

The left-hand side inequality in (3.4) then follows from the corresponding one in (3.3) and
4mX) < 4x/By. Thus, it follows from (3.4) that we can write

P(Wy > x) =r(x)x™", x € R, (3.5)

where di < r(x) < d for x > 1. Now, let (x,,),eN be a sequence of numbers such that
Xm/P1 € [4MT40 4m+5/61 Then Ax,,/B1 € (412 4m+1y for every A € (471/6,41/6) 0
that

AXm Xm

P(W, > Axy) = P(Xk > W X € J1> = P(Xk > E Xi € Jl) =P(Wy > xp),

giving

r(Axm) = Ar(xy) forall i e 471 41/ andm € N. (3.6)
This implies in particular that r is not slowly varying, so that the distribution function of Wj
cannot have a regularly varying tail by (3.5).

Choose 8 > 0 such that 4716 < 1 —8§ < 1 +8 < 4% and let x’ := (1 + §)x and
x" = (1 = 8)x. Write P(Z] > x) = g(x)x ¥, so that limy_, o g (x) = 1. Then, using exactly
the same proof as in [17, p. 278], it follows that, for given ¢ > 0 and large enough x > x(e),
the tail of X; = Wj;_1 + Z; satisfies

(1 =&)(r(x) +q(NE)™ <P(Xgk >x) < A+ (") +q"NE"NH™. 3.7

Choosing x,, as before, the left-hand side inequality of (3.7) together with (3.6) shows that, for
large enough m,

P(Xr > xp)
(r(xm) + q(xm))X;ZK

>(1—-e)(14+8)7"

r(xp)(1+8) +q(x;,)
r(Xm) + q(xXm)
rxm)(L+8) = 1) +q(x,,) — Q(Xm))
r(xm) +q(xXm) ’

=(-e) +5)—K(1 +
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Usingd; <r(x) <dpforx > 1,limy_ 00 g(x) = 1,and lims_,o(1468)* —1 = 0, we conclude
that

. P(Xy > xm)

lim inf

m=>00 (r(xm) + q(xm)) X~

A similar argument holds for the limes superior, so that
L(xm) ~ (r(xm) +q(xm)) asm — oo. (3-8)

Taking for x,, the sequences u,, := 4™+t%/128, and v,, := 4"+10/128, = 41/12,, it follows,
from (3.6) and (3.8), that

Ln) _ rm) +q@n) _ 4%r@n) +qn) - @M = Drun)
L(um)  rum) +qQm) rum) +qum) F(m) + q(um)

asm — 00,

and the latter does not converge to 1 asm — oo, sinced; < r(u,,) < dy andlim,_, oo g(x) = 1.
Hence, L cannot be slowly varying, contradicting the regular variation of Fx.

3.2. Regular variation of TAR(S, 1) models with specific partitions
In this and the next subsection we restrict our attention to stationary TAR(S, 1) models with
representation
S
X = Z(Oéi + ﬁiXk—l)l{Xk_|eJ,-} + Z; fork e N, (3.9)

i=1

where J| = (—o0, r1], Jo = (rp,00) for some ri,rp € R, ry <rp,and {J;:i =3,...,5}
is a measurable partition of (71, r2]. For this model, we are able to compute the tail behavior
explicitly, as we will show in the next lemma.

Lemma 3.2. (Regular variation.) Suppose that Conditions 2.1 and 2.2 hold, and let (X )ken,
be a stationary version of the TAR(S, 1) process as given in (3.9). Suppose further that |Z1| €
R_y for some k > 0. Then | Xo| € R_,. More precisely, defining

ﬂi—}- = ﬂi? ﬁi > 07 and /31— = |ﬁi|a ﬂi < O’
0, Bi=0, 0, B =0,

fori = 1,2, it holds that

+ —(R—\K
. P(Xo > x) _ P+ +p (ﬁ_l ) .t (3.10)
=00 P(IZ1] > x) 1= (B)) — (B ) (By)¥
and
P(Xo < —x) P~ +pT(By)" — 5 (.11)

1m =
x>0 P(IZ1] > x) 1 — (B — (By)<(By)*

In particular, Xo € R_, if p* > 0. Furthermore, p™ > pT and p~ > p~.
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Proof. Let x > 0 be fixed, and let (a,),en be a sequence of positive real numbers tending
to oo as n — oo. Then, for any § > 0, we can write

P(X| > xa,) = P(X| > xa,, |Z1| > éa,, | Xo| > da,)
+P(X1 > xan, |Z1] > éan, |Xo| < day)
+ P(X1 > xan, |Zi| < dan, |Xo| < dan)
+P(X| > xay, |Z1| < da,, Xo > day)
+ P(X1 > xay,, |Z1| < éan, Xo < —bay)
=I14+0+10I+1V+V, say. (3.12)

We will study the tail behavior of the five summands of (3.12). Using the independence of Z
and X, we obtain for the first term

P(Z1] > dan) P(1Xol > dan) _

m ——— < 0. (3.13)
n—>00 P(|Z}| > xa,) — n—>o0 P(|Z(| > xan)
For the second term of (3.12), observe that
. P(X| > xay, 1Z1| > dan, | Xo| < day) _ .. P(Z) > (x — Bd)ay — a)
lim sup < lim sup
n—00 P(Z| > xay) n—00 P(Z:| > xay)
LBy
=P /=
On the other hand,
. . . P(X1 > xan, 1Z1] > day, | Xol < dap)
lim inf
=00 P(1Z1| > xay)
.. P(Zy > (x+ Bday +a) —P(Z; > (x + Bd)ay + «a, | Xol > day)
> liminf
n—>00 P(Z1| > xa,)

YCETN
X

for0 < 4§ < x,

and we conclude that
Lo 11 - 11 "
limliminf —— =limlimsup —— = p™. (3.14)
810 n—oo P(|Zi| > xa,) 810 n—soo P(Z1] > xay)

The third term of (3.12) is 0 provided § < x/2. For the investigation of IV and V, we define

_ P(Xo > u) .. P(Xo>u)

A =limsup ———, A =liminf ——,
u—soco P(Z1| > u) u=o0o P(|Z1| > u)

_ P(X - P(X -

B = limsup LA =T g g D0 = W)
u—soco P(Z1] > u) u=oo P(|Z1] > u)

All these terms are finite by Lemma 3.1. Then we obtain

L v o P(az 4 B; Xo > (x — 8)ay)
lim lim sup ——— < lim lim sup
810 n>oo P(Z1] > xa,) — 810 nooo P(Z{| > xay)

=AB*, (3.15)
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and, similarly,

v P(ay + B X +34
imliminf —— > lim lim inf L2 T P2 Xo > ¥ 0)an) o5
840 n—oo P(|Z1| > xa,) ~ 810 n—>o0 P(1Z1| > xay)
= A(B))". (3.16)
The bounds of V are

P(a; — B, Xo > (x — 8)an)

lim lim sup ————— < lim lim su = BB B.17)
510 P BAZI > xay) — 810 P P(Z1| > xay) B" (
and
P(a; — BT X )
limliminf —— > limliminf LA P Xo> (¥ Oan) oo
810 n—>oo P(|Z1| > xa,) ~ 8J0 n—>00 P(1Z1] > xay)
= B(B)". (3.18)
Then (3.12)—(3.18) give
pPrHABDH + BB <A<A<pt+AB) + BB . (3.19)
Since
S
—Xik = Z(—Oli) + Bi (= Xk~ —x,_je—v} — Zks
i=l1
we obtain, by symmetry,
P +BBH+AB)) <B<B<p +BBH +APB)". (3.20)
If 81 = 0 then (3.19) gives
A=A= PRy
1 —(By)
In the case in which 8; < 0 we obtain, by (3.20),
p~+AMB)<B and B <p +A(B))". (3.21)
Inserting (3.21) into (3.19) yields
+ —(BT)K + —(B)¥

1= (B = (B (B ¥ T L= (BN = (BB

which gives the result A = A = p. Inserting this into (3.20) gives B = B = p~ also. That
pt > ptand p~ > p~isclear.

Denote by || - || the maximum norm and by " = {x € R”*+!: |x|| = 1} the unit sphere with
respect to the maximum norm in R”*!. Recall that a random vector Y € R™*! is multivariate
regularly varying with index —x < 0 (sometimes also termed with index « > 0) if there exists
a random vector ® with values in S™ such that, for every x > 0, the measures

PAIY |l > ux, Y/|Y] € )
POIY | > u)
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on B(S™) converge weakly to a measure x “ P(® € -) as u — oo. The distribution of ® is
called the spectral measure of Y (with respect to the maximum norm). Multivariate regular
variation can be defined with respect to any other norm on R”*+!, but since all these definitions
are equivalent (only the form of the spectral measure differs), we have chosen to work with
the maximum norm, which is particularly convenient for our calculations. It is further known

that a random vector Y is regularly varying with index —« if and only if there exists a nonzero

Radon measure o on KmH \ {0} with o (@mﬂ

numbers increasing to oo such that

\Rm+1) = 0 and a sequence (a, ), enN of positive

nPa;'Y €)>o() asn— oo,

—m+1 . . .
where ‘>’ denotes vague convergence on £(Rm+ \ {0}). For further information regarding
multivariate regular variation, we refer the reader to [2] or [23].

Using Lemma 3.2, we will prove that the finite-dimensional distributions

X = (Xo, X1, ..., Xpm) € R"F!

of the stationary TAR(S, 1) process (3.9) are multivariate regularly varying for every m € N.
For this, we need the definition of the following matrices: let

+ -
7 — (1 0) ’ B— </32_ ﬁ:_) E szz,
0 1 By B

and, for m € Ny, define

I 0 0 - 0
1 -1 0 0 0
B 0 0 1 -1 0
c™=|p g 1 . | s™= : :
0 0 0 0 1 -1

B" Bm! ... B I

where C™ g R>m+Dx20m+1) apq §0m) ¢ ROn+Dx20m+D) "and B™ denotes the mth power of
B (with B® = I). Finally, define

cm .= gmcim —. (c('f, Corenns che)e RO#HDXx20n+1)
The vectors c,:“ and c (k = 0,...,m) will be used to describe the spectral measure of
(Xo, ..., X, ". Insight into their structure can be obtained by writing

(m) (m)
B™ — <bl 1 b12

2x2
b;’f’) bé’?) eR form € Ny.

Then bf]'.”) >0 form € Ng,i,j = 1,2, and B™ has at most one nonzero element in every
column. Setting

b = b1 — b and B = b5 — bS5 form € N, (3.22)
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we see that the jth component (cki) j of cki satisfies

€);=0 forj<k,  (¢)=bV"" fork+1<j<m+1,

(c)); =0 forj<k,  (¢)j=b"" fork+1<j<m+1.
It 1s easy to check that (|b(m)|)m€N0 and (|b(m)|)meNo are decreasing sequences, and that
|b | < B™ and |b )| < ™. In particular, it follows that c;t e S" for 0 < k < m. With

these preparations, we can now show that the stationary version of the TAR(S, 1) model (3.9)
is multivariate regularly varying.

Theorem 3.1. (Multivariate regular variation.) Suppose that Conditions 2.1 and 2.2 hold, and
let (X1 )ken, be a stationary version of the TAR(S, 1) process as givenin (3.9). Suppose further
that |Z1| € R_i for some k > 0. Then X™ = (Xo,..., X" is multivariate regularly
varying with index —«, and its spectral measure with respect to the maximum norm is given by

1 m
(m) - 5T 5 + -
PO™ ¢ ) = p~++ﬁ_+m(p Ltey+ D l{coe}—}-;(p Lty +p 1{cj€.})>,

(3.23)
where pT and p~ are defined as in Lemma 3.2, and cf (j =0,...,m) is defined as above.

Proof. We define Z™ = (XJ, Xy, Z{ . Z7,....Z}, Z,)" € R*™D for m € Ny,
which, by Lemma 3.2, is multivariate regularly varying of index —« with spectral measure

- 1 N L " _
P(g(m) €)= pt + p— +m <p+1{€1€‘} + P lieey + § :(p+1{92j+l€'} +p 1{92j+2€'}))’
pr+p =

where ¢; € Rz(’”H),j =1,...,2(m + 1), is the unit vector with 1 in the jth component and
Os elsewhere.
Furthermore, we define (Yi)ren, by Yo := Xo and

Yie = BoYi1lyy,_ >0y + B1Ye—1lyy,_ <0y + Zk = 'B2Yk+—1 — ﬁlY]:—l + Zy, ke N.

Let
W:=C"™Z™ = Wy, ..., W) ', Y= .... ",
Wi=C™ZMm = (W, Wy, ..., Wi W), Y=Y, )T

Since W is obtained from Z") by a linear transformation, it is easy to see that W is again
multivariate regularly varying with spectral measure @™ as given in (3.23); see, e.g. [2,
Proposition A.1] and [14, Lemma 2.1]. We will show that Y is regularly varying with the same
spectral measure as W. Furthermore, observe that, by the definition of the matrix C ™, it holds
that

Wo =Xy, Wo = Xo» Wl =BW +B W, +Z,
and W, =B W +B W, +Z . fork=0,....m—1.
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Let (a,)nen be a sequence of positive numbers increasing to oo such that lim, .o n P(|Z1| >

ay) =1,andlet0 < 6 < 1. Then

P(|W — Y| > 28a,) < P(|W — Y|| > 8a,)

m
< Y IPAWE = Y| > 8an) + P(W — Y| > Sap)].

k=1
Let A,jf = Wki — YkjE for k € Ny. First, we will show that
P(|AT| > 8a,) = o(P(|Z1| > a,)) asn — o0
for any § > 0, and, hence, by symmetry, the same arguments lead to
P(|A| | > édan) = o(P(1Z1] > a,)) asn — oo0.
Then we use induction to prove that, for any 6 > 0,

P(IAT| > 8ay) = o(P(1Z1| > an)) asn — oo, k € N,

(3.24)

(3.25)

(3.26)

Since the result is trivial if 8 = 0, i.e. 81 = B> = 0, we will assume that 8 % 0 from now on.

In order to study (3.25), let 0 < 88> < §1 < &. Then

P(IAT| > 8ay) <P(IAT| > 8an, Z1 > S1an, Yol < 82a,)
+P(AT| > 8an, Z1 < —81an, |Yo| < 82a,)
+P(AT| > 8an, |1Z1] < 81an, Yo > 82an)
+P(AT| > San, |Z1] < S1an, Yo < —82an)
+P(AT| > 8an, |1 Z1] < 81an, Yol < 82a,)
+P(Z1| > 81an, Yol > 82an)

= I+0+1+1V+V+VI say.

The summand I can be estimated by
I <P(BIYol > éan, Z1 > S1an, |Yo| < b2an) =0,
since B8, < §. Similarly, we obtain
I < P(B|Yol > dan, |Yo| < d2an) = 0.
That Il = 0 also can be seen from

HI < P(IAT| > ban, |Z1] < 81an, |B2|Y0 > S1an)
+PUAT| > San, 1Z1] < S1an, 82lB2lan < |B2]Yo < S1an)
=040
=0
if B2 # 0, and from Wl+ = Yl+ if B2 = 0 and Yy > 0. By symmetry, we also have

1V =0.
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Provided that 8§ and 8, are small, we further have

V=0, (3.32)
and, finally, we estimate
VI =P(|Z]| > b1a,) P(|Yo| > b2a,) = o(P(|Z1| > a,)) asn — oo. (3.33)
Hence, (3.27)-(3.33) give
P(IAT| > 8ay) = o(P(1Z1| > ay)) asn — oo. (3.34)

Next, we assume that (3.26) holds for some k € N and every § > 0. Define W,:rl =
BYY + B Y, +Z, fork € Ny, and let 83 € (8, 1). Then

n da, San, —+
P(|Ak+1| > day) <P |A | < — |A | < Ta |Wk+1 k+1| > (1 — d3)dan
I San __day n —+
+P |Ak|§77 ALl < 77 |Wk+1_Wk+1| > 838an

da da
+P(|Ak+ 2">+P(|Ak_|> 2")

=:VII+ VIl +XI + X, say. (3.35)

With exactly the same reasoning that led to (3.34), we obtain

VII < P(|W,:r+l - Y,:CH| > (1 —83)da,) = o(P(|Z1] > a,)) asn — oo. (3.36)
On the other hand,
L, _ bay _, _ban . 4 -
VIl = P<|Ak | < - Ay < — 1B Ay + By AL > 838an> =0. (3.37)
Furthermore,
XI=0P(Z(]| > a,)) and X =o0P(Z1| > a,)) asn — oo, (3.38)

by the induction hypothesis. Equations (3.35)—(3.38) then give (3.26). Using (3.24) and (3.26),
we hence obtain

P(|W = Y| > 28a,) <P(|W = Y|| > 8a,) = o(P(|Z| > a,)) asn — oo.

Since & can be arbitrarily small, ¥ is multivariate regularly varying with the same spectral
measure as W. Finally, || X" — Y| < Zk 1((2,3)’< max{|r|, |r2|} +« Z 6(28)7), which
follows again by induction, shows that X ") is multivariate regularly varying with the same
spectral measure as Y and, hence, as W.

3.3. Extremal behavior of the TAR(S, 1) model with specific partitions

For a locally compact Hausdorff space E, we denote by Mp(E) the space of all point
measures on E. A point process is then a random element with values in M p (E), and a Poisson
point process (which is a Poisson random measure) with mean measure ¢ will be denoted
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by PRM(#). In extreme value theory, the space E is often @\ {0}, R, [0, c0) x (K\ {0},
or [0, 00) x R, and the extremal behavior of a stationary sequence (§;)ren is described by
the weak limit of the point process Z,fil €4 (Eu—bn) in Mp(R \ {0}) or Mp(R) as n — oo
(depending on the tail behavior of &), or still more informatively by the weak limit of the point
process ZI?O=1 &k /may (E—bn)) in Mp ([0, 00) x (R\ {0})) or Mp ([0, o0) x R), respectively, as
n — oo. Here, a, > 0 and b,, € R are the norming constants of an associated i.i.d. sequence
(ék)keN with distribution 51 = &1 (where 2 denotes equality in distribution), such that

exp(— nlingonP(él > apx + bn)) = nlggoP(an‘ (\/ & — bn) < x) =Gx) (339
k=1

for x in the support of G, where G is an extreme value distribution, i.e. either a Fréchet
distribution, a Gumbel distribution, or a Weibull distribution. For further information about
extreme value theory and point processes, we refer the reader to [23] and [25]. Observe in
particular that (3.39) holds for G being the Fréchet distribution ®, (x) = exp(—x~)1(0,00)(x)
with ¥ > 0 if and only if &; is in R_,, in which case the norming constants b,, can be chosen
to be 0 and a,, can be chosen subject to lim,, . n P(§] > a,) = 1.

Now we describe the extremal behavior of the stationary TAR(S, 1) model (3.9) via point
processes. Observe that the constants a,, defined in (3.40), below, are the norming constants of
an i.i.d. sequence with the same distribution as | X¢|, rather than that of Xj.

Theorem 3.2. (Point process behavior.) Suppose that Conditions 2.1 and 2.2 hold, and let
(Xk)ken, be a stationary version of the TAR(S, 1) process as given in (3.9). Suppose further
that |Z1| € R—, for some k > 0. Let 0 < a, 1 00 be a sequence of constants such that

lim nP(|Xo| > ap) = 1. (3.40)
n—oo

Then, as n — 00,

oo oo
w . —
> Ek/mar' Xp) > > Elob? b poy 11 Mp ([0, 00) x (R\{O})).
k=1 k=1 j=0

where b and b are given by (3.22), 2| £(s,.p,) is PRM(®) in Mp([0, 00) x (R \ {0}))
with
P(dr x dx) = dr x Ke(p+x_’(_ll(0,oo) (x) + p_(—x)_’(_ll(_oo,o)(x)) dx

and
o . o . —1
0= <p+2|b§”|“ +pZ|b§-”|“> =t +p) 7 e .11,
j=0 j=0

Here, p™ and p~ are given by (3.10) and (3.11), respectively.

Proof. We apply the results of [7, Theorem 2.7]. By Lemma 2.1, (X )ken, is geometrically
strongly mixing. Hence, the mixing condition #4(ay) of [7, p. 882] is satisfied, meaning that
there exists a sequence of positive integers (vy ), N such thatlim,_, o v, = 00, lim, 00 Vp /1 =

0, and
n X, Un X [n/vn]
lim E - L)) -(E — = =0
s pon(- 2 7(52)) - (en(- 2 (3)))
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holds for all step functions f on R \ {0} with bounded support which is bounded away from 0.
Furthermore, for x > 0,

P( VXl > xan, | Xl >xan)

m=<k=<vy,

< Y PUXil > xay, [Xol > xay)

m<k<vy
k—1 k
< > P(ﬂk|Xo| +a )y B+ BNZ)l > xan. 1Xol > xan>
m=<k<v, j=0 j=1

m=<k<v, 1- ﬁ

o0
o .
< > P(ﬁk|xo|+—+2ﬂf|zj|>xan, |Xo|>mn>. (3.41)
Jj=0

Let$ € (0, x). Then (3.41) and the independence of X and (Zy)ken, result in

P( \/ Xkl > xan, |Xo >xan)

m<k<vy

<y P(ﬁklxol+ﬁ>8an>

m<k<vy

+ > P Zﬁf|z‘,~|>(x—8>an>P(|Xo|>xan>

m=<k=<uv, j:O

= Ji(n) + Ja(n),  say.

Since | Xg| € R_, by Lemma 3.2, and since the limit in (3.1) is uniform for u € [ug, co) for
every up > 0 (see, e.g. [23, Proposition 0.5]), it follows using dominated convergence that

. . Ji(n) . BN _ 8\ K
1 1 <1 E <1 - E 9 =0.
imsup lim im sup m( < < lim sup o B°)

m—oo 1= P(|Xo| > xa,) = m—oo m—00 om

We can estimate J,(n) by

o0

. . J2(n) . . ;
1 lim ———————— <limsup lim v, P E NZil > (x =38 =0,
lmm_)sglopneoo P(|Xo| > xa,) — m—>c>op”_>°o ! j=0ﬂ = o

since lim;,_, o0 v /7 = 0 and since
P(|Xo| > x) ~ (p* + p)P(Z1| > x)
o0
~ (5T (L - ﬂK)P<Zﬁ~’IZj| > x) as x — 0.
j=0

Hence, we conclude that

lim lim P( \/ |Xi| > xan

m—00 n— 00
m=k=<vy

| Xo| > xan> =0, x>0,
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which is Equation (2.8) of [7]. Since X @"*1D jg multlvarlate regularly varying with index —«
and spectral measure described by the vector o — (@ ) j=0,...2m as givenin Theorem 3.1,

.....

we obtain
1 - o
B0 = == (p+|b§’”)|K+p b5 +p+2|b<“ +p” Zw(’) )

Using further that (|b§m) Dm=>0 and ( |b§m) |)m>0 are nonincreasing sequences, we obtain

2m 2m
2 2
B(V 10—V 1)
k=m k=m+1
1

_ ~t b(m);(_ b(m+1)f( ~— b(m)l(_ b(m+1)K
—ﬁ++ﬁ+2m[p(|l| by 7 15) + p (b 1" = 1by )

m—1
+p+ Z(V’Y)V( _ |b(J+l)| )+p Z('b(l) _ |b§'/+l)|K):|

— ~ 1 ~_ 1
el el 2 S e L2 el M 0 20 o S il Lo S 0

pr+p~+2m
Then
2 2
i BV 971 = Vit 1971 1 _
oo Bl P b1+ pm 5% 1651

where 6 € (1 — g, 1], since [b}"], 165" < g/, and |p\”| = b = 1
Similarly, defining the probability measures R,, on Mp (R \ {0}) by
2 (2 ) (2 )
BV, 1071 = Vi, 1 197" 11 Zzlo*?@(z,n)e.})
j

Rm() = 2 2
E(\/iﬁm ( " \/k =m+1 |®( ")

it follows that R,, converges weakly as m — oo to the distribution of the point process
Z;o:() eg; € Mp(R\ {0}), where

oo oo oo
ZSQ_, =X Z‘Ebﬁf’ +d = x1) Zsbéj)
j=0 j=0 Jj=0

with P(x; = 1) = p* and P(x; = 0) =p. Hence, the a_ssumptions of [7, Theorem 2.7] are
all satisfied. Let Z,fil €GBy be PRM(#) on [0, co) x (R \ {0}) with

F(dr x dx) = df x k8x Mg 00y (x) dx,

and let (Z '—0 €0 )keN be an i.i.d. sequence with Z 0 €0 = ZJ 0 €0, independent of
Yooy €G,.5,)- Then Theorem 2.7, Corollary 2.4, and Remark 2.3 of [7] imply that

Z'E(k/n,a;'xk) ZZ €G0up0 0 Mp(0, o0) x (R\ {0})) asn — oo
k=1 k=1 j=0
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(see also Lemma 4.1.2 of [18] for the connection between the convergence of the process
D ket B jmar x, @nd that of 372 & -1y asn — o0). Since

o0 o0 o o0

DD E6 0 = D D b0
€5 0 Po) = S(Sk’bgj)PkJr_‘_b;])P]:)’

k=1 j=0

j k=1 j=0

the result follows, apart from the representation § = (57 + p~)~!. To see the latter, suppose,
for example, that §; < 0 and B; > 0. Then
__prApT =B o ] _1=B + (=B

S+ —
pr+p T A =B

On the other hand,
; ; X 0 j j—1 .
o =pf. jeNo. B =-1, b =(pnp jeN

so that

00 00
j - j 1 =B+ (=B
p+§ |b§J)|K +p § |b§J)|K=p+ +p 2 1 :p++p .
j=0 j=0

1 -5 1—p5
The other cases follow similarly.

Having the point process convergence in Theorem 3.2, it is standard to derive many results
about the asymptotic behavior of the stationary sequence (Xy)ken,, such as convergence
of the maxima to extremal processes, the asymptotic distribution of the order statistics or
of exceedances over high thresholds, or the determination of the extremal index. We will
concentrate here on the latter. Recall that a stationary sequence (§x)reN has extremal index
p € (0, 1] if there exist norming constants @, > 0 and b,, € R, and a nondegenerate distribution
function G such that (3.39) holds for an associated i.i.d. sequence (ék)keN with § 1 = &1, and

n
nlin;oP(anl (\/ £ — bn> < x) = G(x)? forallx € R.
k=1

Under weak mixing conditions (which are satisfied in our case), it is known that the reciprocal
p~! of the extremal index can be interpreted as the mean cluster size of exceedances over high
thresholds. In particular, an extremal index of size 1 says that high exceedances of a stationary
sequence behave asymptotically like that of an i.i.d. sequence with the same marginals, while
an extremal index which is less than 1 shows that clusters occur. We refer the reader to [12]
and [20] for further information regarding the extremal index.

The following result gives the asymptotic behavior of the maxima of the stationary TAR(S, 1)
model and its extremal index.

Corollary 3.1. Let the assumptions of Theorem 3.2 hold with (a,)nen as defined in (3.40), and
define M, = maxy—1... ., Xk forn € N. Then, for x > 0,

e p‘(ﬂf)"x_K)
Pt +p- ’

with p* and p~ as defined in (3.10) and (3.11). In particular, if p* > 0 then (Xp)ken, has
extremal index p = 1 — (BF)* — (B (By) .

Tim P(a, ' M, < x) = exp(=0(p" + p~(B))x ) = exp(
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Proof. Applying the continuous mapping theorem for the functional

o0

Ti: Mp([0,00) x R\{OD) > R, Y s j = suplji: % < 1},
k=1

it follows from Theorem 3.2 that
a;'M, Sy
= sup{b\ P+ b P sk < 1, j e N} (n — 00)
= sup{Pk+, By Py sk < 1}
=Ti(N),
where N := Y 72, &Py T (s B PO Here, we used the facts that sup{0, bgj): jeNg} =1
and sup{0, béj ). J € No} = B, . Since N is PRM(9) with mean measure
B(dt x dx) = dt x k0(pT + p~(B7))x T 1(0,00) (x) dx,
we conclude that, for fixed x > 0,
lim_ P(a,'M, < x) =P(Y < x)
=P(N((0, 1] x (x, 00)) = 0)
= exp(=0(p" + p~(B))xT).
The extremal index p of (Xy)ken, is then given by

p_p++p‘(ﬁf)K/ Pt
i |

=1— (B — B (B,
which is the claim.

We can also compute the asymptotic cluster probabilities P(¢1 = j) of exceedances Xy >
apx of length j € N for fixed x > 0 explicitly, considering the limit behavior of the rescaled
times k/n for which X > a,x. This is done using the same arguments as in [8, Section 3.D].
We omit the proof.

Corollary 3.2. Let the assumptions of Theorem 3.2 hold with (a,)nen as defined in (3.40), and
suppose that pt > 0, i.e. p* + p~ (B > 0. Let (Si)ken be the jump times of a Poisson
process with intensity 0(p* + P (B))x™ , x > 0, fixed. Let ({x)keN be an N-valued i.i.d.
sequence, independent of (5x)keN, with distribution

PHGT = B + p (Y = )
pT+p (B

where 1 = 155(3) > 551) > ... is the order statistic of the sequence (max{0, bij)})jeNo and
B, = b;o) > bg) > ... is the order statistic of the sequence (max{0, béj)})jeNO. Then

P(c1=)) =

for j € N,

o0 o0

w .
Zs(k/n,a;lxk)(' X (x,00)) — sz‘%k in Mp([0,00) asn — oo.
k=1 k=1
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Remarks3.1. ) If gy =B =---=ps =B e (—1,)anda; = --- = ag = 0, then
process (3.9) is a causal AR(1) process Xy = BXk—1 + Zi, which can be written as an infinite
moving average process Xy = Z?O:O BIZ_ j- It is then easy to see that the results obtained
in this paper are in line with those of [8] for infinite moving average processes with regularly
varying noise.

(ii) Provided that p™ > 0, the extremal index p of Corollary 3.1 is strictly less than 1 if and
only if B> > 0 or B162 > 0. In these cases, the TAR(S, 1) model can model clusters.

(iii) The value 6 is the extremal index of (| Xx|)ken,-

4. Noise with at most an exponentially decreasing tail

In this section we are interested in noise sequences which are lighter tailed than regularly
varying functions, but whose tail is still not too light. Since distributions which are not regularly
varying and do not have a finite right endpoint can only be in the maximum domain of attraction
of the Gumbel distribution if they are in the maximum domain of attraction of some extreme
value distribution at all, we will concentrate on specific i.i.d. noise sequences (Zy)ken, for
which (3.39) holds with G(x) = A(x) = exp(—e™) and & = Z;, which we denote by
Z1 € MDA(A). Besides the TB condition on Zi, we will look at distributions which are
either subexponential or have a tail which is close to that of an exponential distribution. More
precisely, we will look at distribution functions F in the class L(y) with y € [0, 00), i.e.
distribution functions which satisfy F(x) < 1 for all x € R and for which

F(x+y) _ -

lim e 7 4.1

X—00 f( X)
holds locally uniformlyin y € R. For y > 0, this means that F’ has a tail which is close to that of
an exponential distribution. For y = 0, we need a further assumption: a distribution function
F (defined on R) is called subexponential if F € L£(0) and limy_, o F * F(x) /f(x) = 2.
The class of subexponential distributions will be denoted by 8. For a random variable Z
with distribution function F, we simply write X € § or Z € L(y) if F has the corresponding
property. Subexponential distributions and those which are in £(y) for y > 0 are handy classes
of (semi-)heavy-tailed distributions, and the extremal and the tail behaviors of infinite moving
average processes associated with such noise sequences have been studied in [9] and [26],
respectively. Examples of distributions in MDA(A) N 4§ include tails of the form F(x) ~
exp(—x/(logx)%), a > 0, or F(x) ~ Kxb exp(—x?), where p € (0,1), K > 0,and b € R
(x — 00), or the lognormal distribution. The class of subexponential distributions also includes
those which have regularly varying tails, but these are not in MDA (A). Examples in £ (y) with
y > 0 include distribution functions with tails of the form F(x) ~ KxPe™"* (x — 00)
with K > 0 and b € R, or certain generalized inverse Gaussian distributions. Observe that
L(y) Cc MDA(A) for y > 0 since, by (4.1), (3.39) holds with a, = y‘l and b, = f(_(l/n).
Also, observe that whether a distribution function is in § N MDA(A) or in L(y) with y > 0,
respectively, is completely determined by its tail behavior. More precisely, if G (x) ~ cF(x)
(x = 00) for some ¢ € (0, 00) then F € § N MDA(A) or F € L(y) implies the same for G;
see [22, Lemma 2.4] for the subexponential case (the case L(y) follows from the definition of
L(¥))-

Asin Section 3, we will first present the tail behavior of the TAR model if Z has the described
noise. However, unlike there we do not have to restrict to specific TAR(S, 1) models to remain
in the same noise class, we can handle the general TAR(S, ¢g) model.
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Proposition 4.1. (Tail behavior.) Suppose that Conditions 2.1 and 2.2 hold with p™ > 0, and
let (X1 )ken, be a stationary version of the TAR(S, q) process as given in (1.1). Suppose further
that Z1 € L(y) with y > 0, or that Z1 € 8§ N MDA(A), in which case we set y := 0. Then
Eexp(y (X1 — Z1)) is finite and

P(X;) > x) ~Eexp(y(X1 — Z1)P(Z; > x) asx — oo. “4.2)

In particular, if Z1 € L(y) or Z1 € 8 N MDA(A), respectively, then so is X.

Proof. Similarly to and with the same notation as in Lemma 2.2 we obtain

o0
P(IXk — Zk| > x) <P( X +a— Zi| > x) = P(Z ViZj+o> x), 43)
j=1
so that
. P(Xk — Zi| > x) _ 1 P2 Vi Zj+ o> x)
lim sup < — limsup = 4.4)
X—>00 P(Z) > x) P+ X—>00 P(Z| > x)

by Condition 2.1. Since 0 < v; < 1for j € Nand since the (¥;) are exponentially decreasing,
it follows from Proposition 1.3 of [9] that the right-hand side of (4.4)is 0if Z; € § "MDA(A)
and Condition 2.1 is valid, and, hence, that (4.2) holds in the case Z; € $§ "MDA(A) (y = 0)
by [11, Proposition 1] (for subexponentials on R, see also [22, Lemma 5.1]).

Now, suppose that y > 0 and that Z; € L(y). Together with Condition 2.1, this implies
that ¥ Z| € L(y/¥) for0 < ¢ < 1, so thatEexp((SZl) < oo for0 < 3§ < y. Observe
that 0 < ¢; < 1 for j € N and that Z —1¥j < oo. Choosing 0 < & < y such that
(y+e)'(y—e > max jen{y;}, it follows from (4.3) and Jensen’s inequality, that

0
Eexp((y + &)|X1 — Z1]) < 7 ** [T Eexp((y + &)¥, Z))
j=1
o
< e(rte l_[(E exp((y — 8)2/))()/-%8)%/(1/—8)
j=1
< OQ.

But, since Z1 € £L(y)ifand only ifexp(Z1) € R_,, and since Eexp(| X1 — Z1|(y +¢)) < o0,
it follows from Breiman’s [4] result on the products of regularly varying distributions that

P(exp(X1) > x) = P(exp(Zy) exp(X1 — Z1) > x)
~ EBEexp(y (X1 — Z1))P(exp(Z1) > x) asx — oo,

which is (4.2) (the latter equation can also be derived from [9, Proposition 1.1] and [22,
Lemma 2.1]).

Similarly to the regularly varying TAR(S, 1) model, the tail of the TAR process is equivalent
to the tail of the noise. Next, analogously to the regularly varying case, we show the convergence
of a sequence of point processes. In contrast to Theorem 3.2 we obtain the convergence to a
Poisson random measure. Thus, this model cannot exhibit extremal clusters.
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Theorem 4.1. (Point process behavior.) Suppose that Conditions 2.1 and 2.2 hold with p™ > 0,
and let (Xy)reN, be a stationary version of the TAR(S, q) process as given in (1.1). Suppose
further that Z1 € L(y) withy > 0, or that Z1 € § N MDA(A). Let a, > 0 and b, € R be
sequences of constants such that

lim nP(Xg > ayx +b,) =e* forx e R.
n— oo

Then, as n — o0,

o0 o0

W .
D e Koty > D Eibo i Mp(10,00) X R),
P k=1

where Y 32| €(s..p,) is a PRM(df x e ¥ dx).

Proof. First, we investigate the case in which Z; € L(y) with y > 0. Letu,, = a,x + b,
n € N. Since (Xy)keN, is geometrically strongly mixing by Lemma 2.1, the mixing condition
D, (u,) of [20, Theorem 5.5.1] holds for (X )xen,. It remains to show the anti-cluster condition

D' (uy), i.e.
[n/k]
lim lim n P(X; > uu, X1 >u,)=0.
k— oo n—00
j=2
By Lemma 2.2 we have
ln/k] ln/ky 5
n Z P(X; > uy, X1 >uy) <n Z P(X; > uy, X1 > uy).
j=2 j=2

Furthermore, P()~(1 > u,) ~ CP(X1 > u,) asn — oo and some constant C > 0 by
Proposition 4.1. Analogously to the proof of Theorem 7.4 of [26] (cf. [16, proof of Lemma 2]),
the moving average process ()N( ©keN, satisfies the D’ (u,) condition, and, hence, (Xj)xen, also
satisfies the D’ (u,,) condition. The conclusion then follows by [20, Theorem 5.5.1].

In the remaining case, Z1 € § N1 MDA(A), the conclusion follows from [15, Proposition 9]
and (4.3)—(4.4), which converges to 0 as x — o0.

We can now obtain the behavior of the running maxima of the stationary sequence and,
hence, identify the extremal index to be equal to 1, which implies that the model cannot exhibit
clusters on high levels in this case. We omit the proof, which follows the lines of the proof of
Corollary 3.1.

Corollary 4.1. Let the assumptions of Theorem 4.1 hold, and let M,, = maxg=1 ., X for
n € N. Then

lim P(a;](Mn —by) <x) =exp(—e™*) forx eR.

n—>oo

In particular, the extremal index of (Xy)ken, is equal to 1.

5. Conclusion

We have shown that stationary TAR models with noise in § "MDA(A) or L(y) withy > 0
are tail equivalent to their noise sequence, and that they have extremal index equal to 1; hence,
they cannot cluster. On the other hand, if the noise sequence is regularly varying then the tail
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is in general only O-regularly varying, but for TAR(S, 1) models with intervals as partitions, it
is tail equivalent to its noise (in particular, it is regularly varying). Moreover, in this case the
extremal index is less than 1 in many cases depending on the coefficients of the TAR model.
In these cases the TAR(S, 1) model can exhibit cluster behavior.

It would be interesting to obtain similar results for noise sequences which are superexpo-
nential, such as distribution functions F with tails like F (x) = K x? exp(—xP?) for p € (1, o0).
However, already the analysis for infinite moving average processes with such noise sequences
is very involved and has been carried out by Rootzén [26], [27]. See also [19] for such moving
average processes. But, for the TAR model, owing to the nonlinear regime switch, it seems an
open problem how to determine the precise tail behavior of the stationary TAR model even for
Gaussian noise, apart from simple situations such as symmetric TAR models.
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