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The magnetohydrodynamic (MHD) equations, as a collisional fluid model that remains
in local thermodynamic equilibrium (LTE), have long been used to describe turbulence
in myriad space and astrophysical plasmas. Yet, the vast majority of these plasmas,
from the solar wind to the intracluster medium (ICM) of galaxy clusters, are
only weakly collisional at best, meaning that significant deviations from LTE are
not only possible but common. Recent studies have demonstrated that the kinetic
physics inherent to this weakly collisional regime can fundamentally transform the
evolution of such plasmas across a wide range of scales. Here, we explore the
consequences of pressure anisotropy and Larmor-scale instabilities for collisionless,
β � 1, turbulence, focusing on the role of a self-organizational effect known as
‘magneto-immutability’. We describe this self-organization analytically through a high-β,
reduced ordering of the Chew–Goldberger–Low-MHD (CGL-MHD) equations, finding
that it is a robust inertial-range effect that dynamically suppresses magnetic-field-strength
fluctuations, anisotropic-pressure stresses and dissipation due to heat fluxes. As a result,
the turbulent cascade of Alfvénic fluctuations continues below the putative viscous
scale to form a robust, nearly conservative, MHD-like inertial range. These findings
are confirmed numerically via Landau-fluid CGL-MHD turbulence simulations that
employ a collisional closure to mimic the effects of microinstabilities. We find that
microinstabilities occupy a small (∼5 %) volume-filling fraction of the plasma, even
when the pressure anisotropy is driven strongly towards its instability thresholds. We
discuss these results in the context of recent predictions for ion-vs-electron heating in
low-luminosity accretion flows and observations implying suppressed viscosity in ICM
turbulence.
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1. Introduction
1.1. Motivation

Rarely can a problem of astrophysical fluid dynamics be approached without any
consideration for the effects of turbulence. In fact, many descriptions of fundamental
astrophysical phenomena, such as transport in accretion flows and dynamo amplification
of cosmic magnetic fields, are intrinsically reliant upon it. As a result, an abundance
of literature exists analysing the role of turbulence in environments from the solar
wind to the intracluster medium (ICM) of galaxy clusters (e.g. Goldstein, Roberts &
Matthaeus 1995; Schekochihin et al. 2004; Brandenburg & Subramanian 2005). Yet many
of these studies employ theoretical or numerical methods founded upon the assumption
that the plasma that pervades these systems is collisional. X-ray observations of the
hot and dilute ICM in the Perseus and Coma clusters suggest otherwise, with implied
Coulomb-collisional mean free paths typically only ∼0.1–0.01 times that of the large-scale
gradients (e.g. Kunz, Jones & Zhuravleva 2022). Meanwhile, in situ measurements of
the plasma comprising the solar wind have long revealed that ion Coulomb mean free
paths can reach nearly 1 au, allowing significant deviations from local thermodynamic
equilibrium (LTE) (Marsch 2006). These plasmas are frequently modelled as collisional
fluids because relaxation of the LTE assumption introduces myriad complications that
make their theoretical description and simulation quite difficult. This is especially true
in plasmas that possess significant scale separation between their dynamical gradient
length scales and the kinetic length scales such as the ion-Larmor radius (rL,i). Even
in high-β plasmas where magnetic fields are energetically weak (with β

.= 8πp/B2 the
ratio of the isotropic thermal pressure p to the magnetic pressure), the vast length scales
characteristic of astrophysical environments like the ICM mean that there can be as much
as ten orders of magnitude separating the Coulomb mean free path from the Larmor radius.
For fluctuation frequencies that are large compared with the collision frequencies, plasmas
approximately conserve the double-adiabatic invariants, p⊥/ρB and p‖B2/ρ3, where p⊥
and p‖ are the thermal pressures across and along the local magnetic-field direction, ρ is
the mass density, and B is the magnetic-field strength. When the density and magnetic-field
strength change, pressure anisotropy Δ

.= �p/p‖
.= p⊥/p‖ − 1 results, in turn exciting a

plethora of macrophysical and microphysical effects. From kinetic microinstabilities to
plasma self-organization, these pressure-anisotropy-mediated effects are crucial to our
understanding of astrophysical turbulence. For that reason, they are the chief focus of
this work.

1.2. Consequences of pressure anisotropy
Perhaps the simplest yet most consequential way in which pressure anisotropy modifies the
plasma dynamics is through its effect on Alfvén waves. The tension force responsible for
these waves’ propagation in a collisionless plasma is not only a function of B, but also of Δ.
As a result, the propagation speed of an Alfvénic disturbance is the effective Alfvén speed
vA,eff

.= vA
√

1 + βΔ/2, with the pressure anisotropy either enhancing or suppressing wave
propagation depending on its sign. In high-β plasmas, only a small amount of anisotropy
is required to have a dramatic effect on Alfvénic motions. A notable example of large β
values enabling Δ to play this elevated role is in the ‘Alfvén wave interruption’ process
of Squire, Quataert & Schekochihin (2016); Squire et al. (2017a); Squire, Schekochihin
& Quataert (2017c). Those authors found that, if the amplitude of a long-wavelength
shear-Alfvén wave is sufficiently large, then the associated magnetic-field perturbation
can adiabatically generate pressure anisotropy satisfying Δ ≤ −2β−1, causing the Alfvén
wave to self-interrupt and cease propagating. This pressure anisotropy also need not come
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from the Alfvén wave itself, but rather could be produced by other long-wavelength
Alfvén waves and/or ion-acoustic waves that interact with the Alfvén wave (Majeski
& Kunz 2024). At Larmor scales, pressure anisotropy plays an additional role as a
trigger of kinetic microinstabilities. At high β, these instabilities are typically the
mirror and firehose, which can be excited when Δ � β−1 and Δ � −2β−1, respectively
(Barnes 1966; Hasegawa 1969; Hellinger & Matsumoto 2000). Both instabilities grow
rapidly on rL,i-scales, causing sharp kinks in the magnetic field and thereby breaking
conservation of the double adiabats. For this reason, their most notable effect on the
large-scale dynamics is their introduction of an effective collisionality, which isotropizes
the thermal pressure back towards marginal instability. This effect has been shown to
cause Braginskii-magnetohydrodynamic-like behaviour in otherwise collisionless sound
waves and suppress the nonlinear saturation of collisionless damping in compressive
non-propagating modes, even when their wavelengths far exceed the Larmor scale (Kunz
et al. 2020; Majeski, Kunz & Squire 2023). It has also been suggested that, in the context
of ICM turbulence, these microinstabilities might cause so much particle scattering that
the effective Reynolds number could be increased to allow an extended turbulent cascade
below the nominal (Coulomb-collisional) viscous scale (Zhuravleva et al. 2019; St-Onge
et al. 2020; Kunz et al. 2022).

On the other hand, a competing effect of pressure anisotropy has also been found to
suppress the viscous stress in ICM-relevant plasmas, while holding consequences for many
other astrophysical environments. This effect, termed ‘magneto-immutability’, involves
the self-organization of Alfvénic turbulence in high-β weakly collisional (Squire et al.
2019) and collisionless (Squire et al. 2023) plasmas to avoid changes in magnetic-field
strength and thus the production of pressure anisotropy. That being said, exactly how this
self-organization occurs and how robust it is remains somewhat mysterious.

1.3. Magneto-immutability
As its name suggests, magneto-immutability involves a tendency for a weakly collisional
or collisionless turbulent plasma to organize in such a way that fluctuations in the
magnetic-field strength become rare (e.g. as compared with fluctuations realized in
collisional magnetohydrodynamic (MHD) turbulence). More specifically, it is defined as
the suppression of field-aligned gradients in u‖ (the field-aligned flow speed) and �p via
self-organization (i.e. not through collisional or collisionless damping, or by choice of
forcing). To understand how this definition connects to the suppression of changes in B,
we briefly review the work of Squire et al. (2019), within which magneto-immutability
was initially discovered. By studying weakly collisional, Braginskii-MHD turbulence,
Squire et al. (2019) found that magneto-immutability occurs when the thermal pressure
can affect the flow anisotropically. In Alfvénically driven turbulence, where the flow
is incompressibly forced perpendicular to the background magnetic field, the primary
source of pressure anisotropy is through changes in B; thus, magneto-immutability
inherently limits the production of pressure anisotropy by reorganizing turbulent motions
to avoid those changes. By studying the incompressible induction equation, dt ln B =
b̂b̂ : ∇u, Squire et al. (2019) related these effects to the suppression of field-aligned
gradients of u‖ and, by association, the suppression of field-aligned gradients of �p.
Squire et al. (2023) expanded the previous Braginskii-MHD investigation to the fully
collisionless regime, finding that magneto-immutability is robust with respect to the
closure employed for the pressure equations. This was accomplished by performing
simulations using the Chew–Goldberger–Low (CGL; Chew, Goldberger & Low 1956)
MHD model of a collisionless fluid (referred to as ‘active-Δ’), and comparing them
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(a)

(b)

FIGURE 1. Dimensionless pressure anisotropy, multiplied by β, in an active-Δ and a passive-Δ
simulation of driven turbulence. These simulations were performed with an initial background
β0 = 10, and forced Alfvénically such that the magnetic perturbation amplitude at the outer scale
satisfies δB⊥ ≈ B0/2. White regions lie beyond the mirror and firehose thresholds, βΔ > 1 and
βΔ < −2, respectively. Approximately half of the simulation domain is beyond these thresholds
in the passive-Δ run, while only a small percentage is unstable in the active-Δ run, illustrating
the effectiveness of magneto-immutability at reducing Δ.

with simulations using isothermal MHD that passively evolves p⊥ and p‖ in response
to the density and magnetic-field fluctuations in the MHD turbulence (referred to as
‘passive-Δ’ in Squire et al. 2023). Prior to these studies of magneto-immutability, it was
thought that the only means for strong turbulence to extend to small scales in a weakly
collisional, high-β plasma was for the parallel viscous scale associated with the Coulomb
collisionality to be significantly reduced via anomalous particle scattering (e.g. by plasma
micro-instabilities). However, with magneto-immutability dynamically regulating the level
of pressure anisotropy, and therefore the viscous stress, weakly collisional turbulence can
form a surprisingly robust, MHD-like, approximately conservative inertial range.

To demonstrate what this looks like qualitatively, we present in figure 1 two snapshots
taken from simulations of Alfvénically driven, high-β turbulence: one using ‘active-Δ’
(1a) and one using ‘passive-Δ’ (1b), the numerical methodology for which is provided
in § 3. These simulations are both performed at β0 = 10, with the driven magnetic
perturbation δB⊥ ≈ B0/2 at the outer scale. Given conservation of the double adiabats,
this combination of forcing amplitude and high-β is more than sufficient to generate
values of pressure anisotropy that are well beyond the aforementioned mirror and firehose
thresholds (the white regions). Yet, only in the ‘passive-Δ’ simulation do such unstable
regions appear to be a regular occurrence. Discerning exactly why this occurs, and in what
regimes we can expect this to hold, are the goals of this paper.

1.4. Outline
Squire et al. (2019) and Squire et al. (2023) demonstrated the profound effect that
magneto-immutability can have on turbulence in high-β plasmas. Consequently, it is
important to understand just how robust is this self-organization before we can apply it
more broadly to turbulent astrophysical plasmas. To that end, in this work we present
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a theory, based on a reduced model of the CGL-MHD equations, that improves our
understanding of several key aspects of magneto-immutability and, in doing so, resolves
some limits of their effects on high-β, collisionless turbulence. To prime the reader on
how this is accomplished, the following outline summarizes the methodology and key
topics of our investigation. In § 2.1 we introduce the Landau-fluid CGL-MHD equations,
which are employed both analytically and numerically to describe collisionless plasma
turbulence. The linear wave solutions of Landau-fluid CGL are discussed in § 2.2, with
particular attention paid to the difference in time scales between compressive modes
in collisionless and collisional plasmas. In § 2.3 we introduce an ordering based on
β � 1 and the principle of critical balance, which allows us to simplify the CGL-MHD
equations and obtain the first analytical description of magneto-immutability in § 2.4. This
‘reduced CGL-MHD’ model predicts, for example, that magneto-immutability does not
depend on scale, that the associated self-organization process is unaffected to leading
order in δB⊥/B0 by heat fluxes caused by field-aligned temperature gradients, and
that the pressure anisotropy exhibits a passive-scalar-like k-space spectrum. In § 3 we
verify the assumptions used to develop our high-β ordering and test several predictions
made by the reduced CGL-MHD equations. This is accomplished using a numerical
CGL-MHD solver built into the ATHENA++ framework, described briefly within § 3.1
and in more detail in Appendix A of Squire et al. (2023). We also explore additional
aspects of magneto-immutable turbulence not predicted by the reduced equations, such
as the volume-filling fraction of regions unstable to the firehose and mirror (§ 3.3), how
magneto-immutability occurs through the misalignment of the velocity strain with the
magnetic field (§ 3.6, figure 8) and the ability of micro-instability-induced scattering
to interfere with self-organization (§ 3.8). In § 4, we summarize the main findings of
this work, and discuss the consequences they hold for turbulence in weakly collisional
astrophysical environments such as low-luminosity black-hole accretion flows and the
ICM.

2. Theoretical description
2.1. The dynamical equations

Because we wish to apply our theory to systems in which the ion-Larmor radii are as
much as ten orders of magnitude smaller than the collisional mean free paths, we choose to
employ a collisionless model that neglects finite-Larmor-radius effects, saving micro-scale
considerations like the mirror and firehose instabilities for the numerical analysis of
§ 3. The two most suited models for describing a plasma under these assumptions are
then the drift-kinetic-MHD model of Kulsrud (1983) and the CGL-MHD fluid approach
of Chew et al. (1956). While the drift-kinetic approach is more accurate in that it
self-consistently determines the heat fluxes via moments of the guiding-centre distribution
function, we instead employ the simpler CGL-MHD model. This, of course, places
some limits on which applications of magneto-immutability can be studied using our
simulation technique. For example, if investigating the manner in which cosmic rays are
accelerated or diffused by the turbulent field and flow at large scales, then the CGL-MHD
model may suffice. On the other hand, if one wishes to study the shape of the plasma
distribution function beyond the fluid moments, or probe the microphysics of dissipation
at sub-ion-Larmor scales, then the approach we take here will be insufficient. Additionally,
CGL-MHD model by itself provides no closure for the form of the heat fluxes, and so
for lack of anything markedly better we adopt the ‘Landau-fluid’ closure introduced by
Snyder, Hammett & Dorland (1997), which is designed to capture the effects of linear
Landau damping on the fluid quantities. Fortunately, we find that the turbulence behaves
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in such a way that the exact form of the heat fluxes is relatively unimportant, suggesting
that any errors introduced by applying these approximate heat fluxes are small (indeed, in
§ 3.6 we demonstrate that magneto-immutability occurs in a hybrid-kinetic simulation of
high-β Alfvénic turbulence). With that in mind, the CGL-MHD equations are given by
(Chew et al. 1956)

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1a)

ρ
du
dt

= −∇
(

p⊥ + B2

8π

)
+ ∇ ·

[
b̂b̂
(

p⊥ − p‖+ B2

4π

)]
, (2.1b)

dB
dt

= B · ∇u − B∇ · u, (2.1c)

p⊥
d
dt

ln
p⊥
ρB

= −∇ · (q⊥b̂) − q⊥∇ · b̂, (2.1d)

p‖
d
dt

ln
p‖B2

ρ3
= −∇ · (q‖b̂) + 2q⊥∇ · b̂, (2.1e)

where B is the magnetic field, u is the ion flow velocity and ρ is the mass density. Note
that p⊥ and p‖ are defined with respect to the local magnetic-field direction b̂ = B/B.
Here, d/dt .= ∂/∂t + u · ∇ is the convective time derivative. Equations (2.1d) and (2.1e)
demonstrate how, in the absence of heat fluxes, the quantities p⊥/ρB and p‖B2/ρ3 are
conserved in time along the flow of the plasma. Conservation of p⊥/ρB and p‖B2/ρ3 is
the collective result of individual particles conserving both their magnetic moment μ

.=
mw2

⊥/2B and their parallel action (i.e. bounce invariant) J = ∮
dw‖ mw‖, respectively

(where w .= v − u is the particle velocity peculiar to the fluid frame). Because of the
plasma’s strong magnetization, the flows of perpendicular-/parallel-thermal energy, q⊥/‖,
occur exclusively along the local magnetic-field direction. For these quantities we adopt
the ‘3+1 model’ of Snyder et al. (1997)

q⊥ = − vth‖√
π
∣∣k‖
∣∣
[
ρ∇‖

(
p⊥
ρ

)
− p⊥

(
1 − p⊥

p‖

) ∇‖B
B

]
, (2.2a)

q‖ = − 2vth‖√
π
∣∣k‖
∣∣ρ∇‖

(
p‖
ρ

)
, (2.2b)

where vth,‖ = √
2p‖/ρ is the parallel-thermal speed, and ∇‖ = b̂ · ∇ is the field-aligned

gradient. The field-aligned wavenumber |k‖| in the denominators of (2.2) is meant to
be representative of a characteristic parallel scale of the perturbations to ρ, B and
p⊥/‖ (e.g. Sharma et al. 2006). This quantity is a stand in for the magnitude of the
magnetic-field-aligned gradient operator, which is generally difficult to calculate as it
must be evaluated along the exact perturbed fields at each time step. For the majority
of the numerical simulations presented in § 3, we take |k‖| = 4π/L‖ where L‖ is the
field-parallel outer scale; for the remainder of this section, however, the exact value of
|k‖| is unimportant. Because the heat fluxes (2.2) are designed to capture only linear
collisionless damping, it is implicitly assumed that the perturbations being studied are
small enough with respect to the background plasma that nonlinear damping effects can
be ignored. We also assume that the background plasma pressure is isotropic, and that the
electrons are cold. Effects of a background anisotropy on inertial-range kinetic turbulence
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have been considered by Kunz et al. (2015) and could be straightforwardly implemented
within our model, however, they are not necessary for describing magneto-immutability
and assessing its robustness. Similarly, electron pressure is not essential to the conclusions
we will draw; as long as the electrons are sufficiently collisional and isothermal, a
finite electron pressure has no qualitative effect on our results.1 Finally, the CGL-MHD
equations’ inability to resolve rL,i-scales inevitably implies that the growth of the mirror
and firehose instabilities and their interaction with the plasma particles are not properly
captured. In our numerical simulations (§ 3), we model their effect on the plasma through
an anomalous collisionality that isotropizes the pressure to marginally unstable values,
but no effort is made to incorporate the effects of this micro-instability scattering into our
analytic model for magneto-immutability.

2.2. Relevant properties of collisionless hydromagnetic waves
Developing an intuition of the linear modes and their interactions is particularly beneficial
towards understanding the scale-by-scale transfer of energy in a turbulent MHD cascade.
It is therefore important to review the linear modes of the Landau-fluid CGL system, so
that we can make assumptions and formulate our ordering in light of these fundamental
behaviours. Many of these waves are discussed in greater detail within Appendix B of
Majeski et al. (2023); here, we restrict ourselves to aspects of the linear modes that are
relevant to collisionless high-β turbulence.

Our discussion begins with those modes that are least affected by the transition from
collisional to collisionless regimes. In particular, linear collisionless Alfvén waves are
identical to their collisional counterparts when their wavelengths far exceed rL,i, because
neither density nor pressure perturbations are generated as they propagate. Meanwhile, the
mode that experiences the most minor non-zero change is the fast mode, which has a nearly
unchanged phase speed, although it is susceptible to collisionless damping depending on
the propagation angle with respect to the background field, (k‖/k⊥). Consequently, most
of the differences between high-β CGL and collisional MHD turbulence do not originate
from the behaviour of Alfvén or fast waves. The remaining collisionless hydromagnetic
modes are non-propagating modes, ion-acoustic waves and kinetic entropy modes, which
are most easily compared with the slow-magnetosonic and pressure-balanced entropy
modes of collisional MHD.2 Because there is one more dynamical equation in CGL-MHD
than in collisional MHD, there is one additional linear mode solution. However, the kinetic
entropy mode is both static and heavily damped at high β, with no clear collisional
counterpart (see, e.g. Majeski et al. 2023), so it can be excluded from this comparison.

We are then left with the one-to-one comparisons of non-propagating modes with
pressure-balanced entropy modes, and ion-acoustic waves with slow-magnetosonic waves.
Both the non-propagating and pressure-balanced entropy modes have zero phase speed,
with the entropy mode being fully static, and the non-propagating mode decaying due
to transit-time damping at a rate γ ∼ |k‖|vA/

√
β that is small at high β. And while

entropy modes satisfy perfect isotropic-pressure balance (allowing them to remain static),
non-propagating modes exist in a state of approximate pressure balance between p⊥
and B2 when k‖ 	 k⊥ (Majeski et al. 2023). For these reasons, at high β these modes

1Evidence of this can be found already in the numerical simulations of Squire et al. (2023), which showed that
ion-to-electron temperature ratios of order unity had little effect on signatures of magneto-immutability. If the electrons
were to be weakly collisional, however, certain effects caused by electron pressure anisotropy may need to be taken into
account, a point we discuss in § 4.

2The non-propagating mode and kinetic entropy mode are equivalent to the ‘+’ and ‘−’ branches of the high-β
gyrokinetic dispersion relation from Schekochihin et al. (2009, § 6.2.2). In that case, those authors simply refer to
non-propagating modes as ‘magnetic-field-strength fluctuations’.
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are rather similar, with the important feature that they are both approximately static.
The comparison of ion-acoustic and slow waves, on the other hand, yields far fewer
similarities, especially at high β. The most essential difference lies in their dispersion
relations, with the ion-acoustic wave having a frequency ω ∼ k‖vth, while the slow-wave
frequency scales as k‖vA when β � 1 and ω ∼ k‖vth when β 	 1. The ion-acoustic wave
is also Landau damped at a rate γ ∼ |k‖|vth, meaning that at high β all characteristic time
scales of ion-acoustic waves are much shorter than those of slow (and Alfvén) waves.
These disparate time scales are fundamental to how collisionless waves interact with an
Alfvénic cascade. For example, in collisional MHD turbulence, a time scale separation
exists between fast and Alfvén waves because fast waves have a phase speed proportional
to k rather than just k‖ (with k‖ 	 k in the inertial range of Alfvénic turbulence, see
Goldreic & Sridhar 1995). As a result, it is often argued that the rapid propagation of
fast waves decouples them from any Alfvénic dynamics. In the next subsection (§ 2.3), we
will argue that at β � 1, the ion-acoustic wave – the only other compressive (∇ · u 
= 0)
wave – decouples from the Alfvénic dynamics as well because vth � vA.

2.3. An asymptotic ordering for high-β collisionless turbulence
Equations (2.1) are too complicated with which to work analytically, therefore we seek
an asymptotic ordering that distils the physics responsible for magneto-immutability.
Before doing so, however, it is instructive first to consider the asymptotic ordering used
in the collisional reduced MHD (RMHD) employed by Zank & Matthaeus (1992) and
Schekochihin et al. (2009, § 2), from which our ordering borrows heavily

u⊥
vA

∼ u‖
vA

∼ δB⊥
B0

∼ δB‖
B0

∼ δρ

ρ0
∼ δp

p0
∼ k‖

k⊥

.= ε 	 1 ∼ β, ∂t ∼ k‖vA. (2.3)

Here, all of the perturbations belong to a given k⊥/‖ ‘cone’ and interactions are taken to be
local in k-space, meaning that, as perturbations become smaller through the cascade, so
does the ratio k‖/k⊥. Arguably the most essential aspect of this ordering is that it enforces
‘critical balance’ of the Alfvénic fluctuations, viz. k⊥u⊥ ∼ k‖vA. This is a statement that
the nonlinear time scale associated with eddy deformation by the Reynolds stress (k⊥u⊥)−1

is comparable to the linear propagation time scale of Alfvén waves (k‖vA)
−1, as is expected

for strong turbulence (Goldreic & Sridhar 1995). As a result, the evolutionary time scale
at each wavenumber is expected to be roughly ∂t ∼ k‖vA, since linear and nonlinear time
scales are equivalent. This is also true of MHD slow modes, given that they propagate
at vA or slower, allowing for the formation of a similarly strong compressive cascade. As
mentioned in § 2.2, however, the enhanced propagation speed of fast modes prevents them
from being effectively coupled to the Alfvénic motions, and as such they are ordered out
of RMHD. Our ordering shares most of these assumptions, yet differs in a few key ways.

First, we incorporate the largeness of the background β directly into the ordering, so that
β ∼ ε−1. This may seem odd because β, being a background quantity, is constant across
all scales even though ε becomes smaller as the fluctuations cascade anisotropically to
larger k. However, we are concerned with plasmas in which perturbations near the outer
scale often exceed β−1 in relative amplitude. As a result, it would be incorrect to eliminate
terms of order (u⊥/vA)

2 but keep those of order u⊥/βvA. Ordering β ∼ ε−1 allows us
to retain both terms. We also assume that the Alfvénic component of our turbulence is
critically balanced, as in collisional RMHD. This is not necessarily a given, however,
there is evidence from the work of Squire et al. (2023) that immutability does not interfere
with critical balance, a feature that we reproduce through simulations of our own in § 3.
Next, we assume that, as a result of the plasma being collisionless, δp is replaced in
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the ordering by δp⊥ and δp‖, with similar amplitudes to (2.3). This is a straightforward
assumption, yet its implications are more nuanced. Doing so replaces slow-magnetosonic
waves with ion-acoustic waves, and because we include β in the overall ordering, this
implies that nonlinear mixing of ion-acoustic waves by Alfvén waves is weak when local
in k-space, since k‖vth � k⊥u⊥. We will therefore assume that ion-acoustic waves, like fast
waves, decouple from the Alfvénic turbulence. This assumption is supported by analytical
calculations and simulations of the interaction of Alfvén and ion-acoustic waves in high β
plasmas, using the same CGL-MHD code employed in this work (Majeski & Kunz 2024).
Ordering out ion-acoustic waves therefore enables us to continue with the assertion that,
for all variables, time derivatives are of order ∂t ∼ k‖vA.

Our final major assumption, which follows from those before, is that density fluctuations
can be neglected in determining the leading-order dynamics (i.e. δρ/ρ0 ∼ ε2 at most).
In Alfvénic turbulence, high values of β naturally inhibit the magnitude of density
fluctuations by reducing the sonic Mach number (u/vth) of the forcing. Furthermore, any
forcing must be associated with time scales that are sonic or faster if it is to produce
substantial compressive fluctuations, a rather rare occurrence in the systems with which
we are concerned. As a result, density fluctuations are expected to be small in amplitude at
the outer scale. We are able to apply this assumption throughout the inertial range because
the only linearly compressive waves – ion-acoustic and fast modes – have been ordered
out of the dynamics. This assumption of small δρ allows us to consider only perturbations
to the temperatures δT⊥/‖| rather than the pressures δp⊥/‖.

The collisionless, high-β ordering that results from the above considerations and
assumptions is

u⊥
vA

∼ u‖
vA

∼ δB⊥
B0

∼ δB‖
B0

∼ δT⊥
T0

∼ δT‖
T0

∼ 1
β

∼ k‖
k⊥

.= ε, ∂t ∼ k‖vA. (2.4)

Note that the choice δT⊥/‖/T0 ∼ β−1 means that βΔ ∼ 1, or in other words, the
anisotropic-pressure stress is present at the same order as the flow inertia.3 This is
important, because, in order to demonstrate that magneto-immutability avoids significant
�p stress, �p must first be made large enough to disrupt the turbulence in the absence of
immutability.4 Some of the assumptions that yield (2.4), such as δρ/ρ0 being negligible,
are only justified qualitatively, therefore we test them against numerical simulations in § 3
to establish confidence in the relevance of the ordering. We are now prepared to apply the
ordering to (2.1) and obtain the high-β reduced CGL-MHD equations.

2.4. The high-β reduced CGL-MHD equations
In this section we formulate equations that describe the leading-order evolution for each
of the fields present in the ordering (2.4). Doing so involves expanding these quantities in
(fractional) orders of ε, for example with T‖

T‖ = T0 + δT (1)

‖ + δT (3/2)

‖ + δT (2)

‖ + · · · , (2.5)

where the parenthetical superscript represents the order of each term in powers of ε. Note
that, beyond the leading-order perturbation, which is of order ε, half-integer orders must

3A separate, strictly Alfvénic ordering could be considered in which (u⊥/vA)2 ∼ Δ, as one might expect from a pure
shear-Alfvén eigenmode. With β−1 ∼ u⊥/vA, this would be relatively uninteresting as, with or without immutability, the
�p-stress would be too weak to affect the Alfvénic turbulence to leading order. Instead, it would be necessary to choose
β−1 ∼ (u⊥/vA)2. However, this would introduce ambiguity into ordering u‖ and δB‖, which in our turbulence and that
of Squire et al. (2023) appear to be comparable to their perpendicular counterparts.

4This is akin to assuming that the Reynolds number Re ≡ ρuL/μvisc in hydrodynamic turbulence (with μvisc the
fluid viscosity) satisfies Re ∼ 1, which prohibits the continuation of a turbulent cascade.
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be used for all higher-order perturbations. This is required by the heat fluxes, which are
proportional to vth ∼ vA/

√
ε.

Keeping in mind the expectation that density fluctuations are O(ε2) at most and thus
do not affect the leading-order dynamics, the continuity equation (2.1a) simplifies to
∇ · u = 0. If ordered according to (2.4), this becomes

∇ · u = ∇⊥ · u⊥ + ∇‖u‖ ≈ ∇⊥ · u(1)

⊥ = 0. (2.6)

The divergence-free condition for B similarly yields ∇⊥ · δB(1)

⊥ = 0 to leading order.
These conditions on u(1)

⊥ and δB(1)

⊥ assert that the perpendicular flow and magnetic-field
perturbations are dominated by Alfvén waves, which are naturally incompressible. Given
that large-scale collisionless Alfvén waves are linearly identical to those of collisional
plasmas, it is no surprise that this aspect of the reduced equations is unchanged from
standard RMHD. Continuing with the induction equation (2.1c), the leading-order parallel
and perpendicular components become

dδB(1)

‖
dt(0)

= B0b̂(0) · ∇u(1)

‖ , (2.7a)

dδB(1)

⊥
dt(0)

= B0b̂(0) · ∇u(1)

⊥ , (2.7b)

where

d
dt(0)

.= ∂

∂t
+ u(1)

⊥ · ∇⊥ and b̂(0) .= ẑ + δB(1)

⊥
B0

, (2.8a,b)

with ẑ being the direction of the background magnetic field B0. Once again, these
equations are equivalent to those obtained for the evolution of the magnetic field in
standard RMHD. Equation (2.7a) states that leading-order changes to the magnetic-field
strength are generated through field-aligned shear in u‖, which we will see is reduced in
magneto-immutable turbulence. That this has not been ordered out directly by (2.4) hints
that magneto-immutability must be achieved through self-organization.

Next, we address the momentum equation. Beginning with the perpendicular direction,
the first two orders are trivially

∇⊥δT (1)

⊥ = 0 and ∇⊥δT (3/2)

⊥ = 0, (2.9a,b)

as a result of β being large. Given that k‖ 	 k⊥ at all scales, these perturbations can
have no parallel gradients either, thus δT (1)

⊥ = δT (3/2)

⊥ = 0. The next two orders give
perpendicular pressure balance

δT (2)

⊥
T0

+ δρ(2)

ρ0
= − 2

β

δB(1)

‖
B0

and
δT (5/2)

⊥
T0

+ δρ(5/2)

ρ0
= − 2

β

δB(3/2)

‖
B0

, (2.10a,b)

analogous to that of RMHD and observed within the simulations of Squire et al. (2023).
Note that, although these equations involve the higher-order density perturbations, δρ(2,5/2)

need not be determined independently as we will show that the perpendicular temperature
perturbations δT (2,5/2)

⊥ do not enter into the leading-order equations. The subsequent order
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of the momentum equation dictates the evolution of u⊥

ρ0
du(1)

⊥
dt(0)

= −∇⊥P(3)

total +
B0

4π

∂δB(1)

⊥
∂z

+ 1
4π

δB(1)

⊥ · ∇⊥δB(1)

⊥

− β

8π
B0

∂

∂z

(
δB(1)

⊥
δT (1)

‖
T0

)
− β

8π
δB(1)

⊥ · ∇⊥

(
δB(1)

⊥
δT (1)

‖
T0

)
. (2.11)

Here, P(3)

total represents the combined thermal and magnetic pressures evaluated at
third order, which can be determined as a whole by enforcing ∇⊥ · u⊥ = 0. Because
of perpendicular pressure balance (2.9a,b), the leading-order pressure anisotropy is
dominated by the contribution from δT (1)

‖ /T0. The top line of (2.11) contains those
terms that are already present in RMHD, while the bottom line incorporates feedback
from the pressure anisotropy onto the perpendicular momentum. The contribution from
pressure anisotropy remains because our ordering assumes βΔ ∼ 1, although this holds
different meanings at different scales. Near the outer scale, the anisotropy is dominated by
fluctuations of amplitude Δ ∼ β−1. As the cascade continues to smaller scales, however,
fluctuations in Δ become smaller in amplitude and no longer compete with the magnetic
tension, thus dropping out of the leading order of (2.11). As a result, the pressure
anisotropy that shows up in (2.11) is really only that of the largest scales, which the high-k
Alfvén modes feel as a nearly constant modified background vA,eff.

It is tempting to identify the pressure-anisotropy-related terms in (2.11) with
magneto-immutability, however, (2.7a) suggests that magneto-immutability will primarily
be mediated by u‖. Therefore, the parallel component of (2.1b) must be examined, for
which the leading two orders are simply

b̂(0) · ∇δT (1)

‖ =
(

b̂ · ∇δT‖
)(1)

= 0, (2.12)

and

b̂(0) · ∇δT (3/2)

‖ + δB(3/2)

⊥
B0

· ∇⊥δT (1)

‖ =
(

b̂ · ∇δT‖
)(3/2)

= 0. (2.13)

These equations result directly from ordering out ion-acoustic waves. If the ordering
were such that ∂tu‖ ∼ εk‖v2

th, then the inertial term would be of the same order as the
field-aligned temperature gradient (2.12), which would then be non-zero. Linearization
of the resultant reduced equations would yield an ion-acoustic-like eigenfrequency
proportional to k‖vth, however, in our reduced equations no such eigenfrequency can be
obtained. This is analogous to pressure balance in the perpendicular equations, which
orders out fast modes by virtue of the assumption that the time derivative of u⊥ is
not proportional to kvth. Unlike (2.9a,b), (2.12) and (2.13) involve both parallel and
perpendicular gradients and alignment with δB⊥. Hence, it is not necessarily true that
δT (1)

‖ = δT (3/2)

‖ = 0 as is the case for δT (1)

⊥ and δT (3/2)

⊥ , but only that the field-aligned
gradients of δT‖ are negligible. Also of note is that we have yet to make any mention
of the heat fluxes, implying that this minimal variation of δT‖ along field lines is dynamic,
rather than diffusive.5

5Being dynamic, the suppression of b̂ · ∇u‖ is independent of the manner in which �p is generated. It is
possible then that this approach might also apply to the weakly collisional model of Braginskii-MHD, in which
magneto-immutability was initially discovered by Squire et al. (2019). We investigate this possibility and some
consequences of it within Appendix B.
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12 S. Majeski, M.W. Kunz and J. Squire

For our purposes, there is no need to obtain the higher-order contributions to the parallel
momentum equation, and so we continue applying our ordering by examining the evolution
equations for the double adiabats. The first step in doing so is to consider the heat fluxes
(2.2) in light of (2.9a,b), (2.12) and (2.13), which can be rewritten in the following more
transparent manner:

q⊥ = − vth‖ρ√
π
∣∣k‖
∣∣
(

b̂ · ∇T⊥ + β⊥Δ

2
B · ∇B

4πρ

)
, (2.14a)

q‖ = − 2vth‖ρ√
π
∣∣k‖
∣∣
(

b̂ · ∇T‖
)

. (2.14b)

Here, β⊥
.= 8πp⊥/B2 and β⊥Δ ∼ 1, so the right-most term in (2.14a) is smaller than

p⊥dt ln(T⊥/B) by roughly ε3/2, and can therefore be neglected. What remains are heat
fluxes proportional to the field-aligned temperature gradients b̂ · ∇T⊥/‖. However, these
gradients are zero not just to leading order, but also to next order thanks to (2.9a,b), (2.12)
and (2.13). As a result, q⊥/‖ can be neglected entirely to the leading two orders at which
they would contribute to (2.1d) and (2.1e). Thus, the surprisingly simple outcome is that

dδB(1)

‖
dt(0)

= dδT (1)

‖
dt(0)

= 0. (2.15)

This result is essentially the namesake of magneto-immutability. In order to satisfy both
μ conservation and perpendicular pressure balance in a high-β plasma, the flow must
self-organize to enforce (b̂b̂ : ∇u)(1) = 0, so that (2.7a) and (2.15) are in agreement.
As a result, the magnetic field only experiences convective changes in its strength to
leading order.6 In describing magneto-immutability qualitatively, Squire et al. (2023)
also drew several comparisons with incompressibility in collisional MHD turbulence,
and here we may draw another more direct comparison. In a collisional high-β plasma,
pressure balance requires the isotropic pressure perturbation δp be reduced in order to
match the pressure of the magnetic perturbation δB‖. With conservation of the single
adiabat dt( p/ργ ) = 0, the smallness of δp then requires that dtρ

−γ = dtδρ = 0. Thus both
magneto-immutability and incompressibility in high-β magnetized turbulence result from
a combination of pressure balance and adiabatic invariance, only here the involvement of
B in the collisionless invariants necessitates magneto-immutability.

Provided proper initial and boundary conditions, we have successfully closed the system
of equations. Collecting the full high-β, reduced CGL-MHD equations (and dropping the
orders), we have

∇⊥ · u⊥ = ∇⊥ · δB⊥ = 0, (2.16a)

dδB⊥
dt

= B0b̂ · ∇u⊥, (2.16b)

ρ0
du⊥
dt

= −∇⊥Ptotal +
(

1 + β

2
�p
p0

)(
B0ẑ + δB⊥

4π

)
· ∇δB⊥, (2.16c)

6Although the adoption of the ordering (2.4) may be viewed as restrictive, the combination of perpendicular pressure
balance and μ conservation at high β alone is sufficient to produce a magneto-immutable state. Such circumstances may
come about naturally through other means, such as in the excitation of non-propagating modes. In such cases, the other
components of (2.4) need not be satisfied to obtain dtδB‖ ≈ 0.
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d�p
dt

= dδB‖
dt

= b̂ · ∇u‖ = b̂ · ∇�p = 0. (2.16d)

In (2.16d) and (2.16c), we have replaced δT‖/T0 with −�p/p0 without consequence,
because �p/p0 = δp‖/p0 up to order ε3/2. A homogeneous background pressure
anisotropy �p0 can be straightforwardly included in these equations by appending it to the
fluctuating �p in (2.16c). As in collisional RMHD, the divergence of u⊥ can be employed
to determine Ptotal, and the convective derivative and field-parallel gradient become

d
dt

= ∂

∂t
+ u⊥ · ∇⊥ and b̂ = ẑ + δB⊥

B0
, (2.17a,b)

respectively. Note that the reduced order of ∇‖δT‖ compared with δT‖ itself allowed
the anisotropic pressure to be pulled outside of the gradient operator in (2.16c) (since
∇‖�p becomes next order as well). In this sense, the pressure anisotropy is felt only as a
modification to the effective Alfvén speed, thereby hindering its ability to interfere with
the Alfvénic cascade as an anisotropic-pressure stress that could cause turbulent motions
to damp into thermal energy. This is a central characteristic of magneto-immutability, and
one of significant consequence. Without it, the turbulent cascade would cease long before
reaching kinetic scales, dramatically modifying the transport properties of the plasma.

2.5. Features of the reduced system
We now discuss some properties of the reduced system (2.16), beginning with the
quantities that its turbulent cascade conserves. In the same manner as Kunz et al. (2015),
this analysis is made easier by defining Elsässer variables that incorporate the modification
to the Alfvén speed by the pressure anisotropy (Elsässer 1950)

z± = u⊥ ± vA,eff
δB⊥
B0

. (2.18)

However, unlike in Kunz et al. (2015), here, vA,eff is understood to be a function of both
position and time. It is a straightforward process to show that the reduced system (2.16)
requires the cascades of Elsässer energies to obey

∂W±
AW

∂t
.= ∂

∂t

∫
d3x

1
2
|z±|2 = ∓

∫
d3x

Ptotal

ρ0

∂vA,eff

∂z
. (2.19)

This is notably distinct from the Elsässer cascades of Alfvénic energy in collisional
MHD and reduced kinetic-MHD (RKMHD), which satisfy ∂tW±

AW = 0 individually
(Schekochihin et al. 2009; Kunz et al. 2015). Here, only the total Alfvénic fluctuation
energy W+

AW + W−
AW is conserved. Meanwhile, the cross-helicity W+

AW − W−
AW, which

measures the imbalance in forward-propagating and backward-propagating Alfvén waves,
is not conserved. The fact that W+

AW + W−
AW is conserved proves that the pressure

anisotropy, having reduced-order parallel gradients, cannot effectively thermalize the
energy contained within Alfvénic fluctuations (Squire et al. 2023, also see figure 7 here).
That being said, the non-conservation of cross-helicity means that �p is still able to
redistribute energy between forward- and backward-propagating waves (Majeski & Kunz
2024). The other conserved quantities of the magneto-immutable cascade are rather trivial
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to detect from (2.16)

∂

∂t

∫
d3x

B0δB‖
4π

= 0 and
∂

∂t

∫
d3x δp‖ = 0, (2.20a,b)

where we have chosen to configure the constancy of δB‖ in units of energy for consistency
with the other conserved quantities. Equations (2.20a,b) represent, respectively, cascades
of non-propagating modes and kinetic entropy modes. The reason for the respective
associations of each conserved quantity comes down to the eigenvectors of each mode.
Non-propagating modes, being in a state of near-perpendicular pressure balance, have
δB‖/B0 � δp⊥/p0 at high β. However, they also exhibit δp⊥ < δp‖, which is inconsistent
with the fact that δp‖ � δp⊥ in magneto-immutable turbulence. Thus, the passive cascade
of δp‖ can most easily be attributed to kinetic entropy modes, which vanish due to
collisional damping in the MHD limit (Majeski et al. 2023). To leading order, there is
no conserved quantity for compressive fluctuations (namely those associated with u‖),
because ion-acoustic and fast waves have been ordered out of the dynamics.

To further highlight the features that make magneto-immutable turbulence unique, we
can compare the reduced (2.16) with the standard RMHD system, which is obtained
by applying (2.3) to the collisional MHD equations. The dynamics of the Alfvénic
fluctuations δB⊥ and u⊥ is almost entirely unchanged from (2.16a)–(2.16c), with the only
difference being that �p = 0 in collisional MHD (Zank & Matthaeus 1992; Schekochihin
et al. 2009). This suggests that the differences between the two models originate in the
compressive cascade, a component of the turbulence that plays a passive role in collisional
RMHD. The equations of δB‖ and u‖ in RMHD turbulence are (Schekochihin & Cowley
2007)

d
dt

δB‖
B0

= 1
1 + 2/(γβ)

b̂ · ∇u‖ ≈ b̂ · ∇u‖ (β � 1), (2.21a)

d
dt

u‖
vA

= vAb̂ · ∇ δB‖
B0

, (2.21b)

where γ = 5/3 is the single-adiabatic index for a monatomic gas. These equations
describe slow-magnetosonic waves, which are well known to comprise the passively
advected compressive cascade in MHD turbulence, something that is clearly not present
in (2.16). As discussed in the context of conserved quantities, the non-Alfvénic cascades
can be attributed to non-propagating and kinetic entropy modes, with no truly compressive
(∇ · u 
= 0) cascade of any kind present to leading order.

When constructing the ordering (2.4) under the assumption δB‖/B0 ∼ β−1, we
essentially guaranteed that realistic turbulent cascades eventually pass out of the parameter
space within which (2.16) are strictly valid. Yet, these equations are nonetheless accurate
even when δB‖/B0 	 β−1 (so long as β � 1). To prove this, in Appendix A we show
that the signatures of magneto-immutability, viz. ∇‖�p and ∇‖u‖ suppression, can be
recovered via a subsidiary high-β ordering of the RKMHD equations, which assume
that δB‖/B0 	 β−1. Indeed, with the assumption of Landau-fluid heat fluxes we once
again obtain the reduced system (2.16).7 Note, however, that at these small scales where
δB‖/B0 	 β−1, such a lack of parallel gradients in u‖ and �p need only be enforced
passively, as they have already been suppressed by larger scales obeying the ordering (2.4).
In this sense, magneto-immutability exists in a somewhat weaker, watchdog-like state.

7In this case, note that βΔ in the u⊥ equation is not the local pressure anisotropy, but a background anisotropy set
by large-scale βΔ ∼ 1 fluctuations, analogous to the anisotropy considered within Kunz et al. (2015).

https://doi.org/10.1017/S0022377824001296 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001296


Collisionless, high-β turbulence 15

If k‖ were somehow introduced to u‖ or �p at small scales – for instance, by field-line
wandering or magnetic reconnection (Meyrand et al. 2019) – it would be suppressed
by magneto-immutable self-organization. However, if these parallel gradients were not
created at small scales, they simply would remain negligible with �p cascading passively.
To contrast this with collisional RMHD or β ∼ 1 RKMHD, any re-introduced parallel
gradients in u‖ and �p would be allowed to persist in the absence of dissipative effects.
Unlike u‖, the evolution of small-scale u⊥ in high-β collisionless turbulence becomes
quite similar to that of collisional RMHD. The u⊥ fluctuations only feel a non-local
modification to vA,eff produced by large scale �p satisfying βΔ ∼ 1, thus u⊥ and δB⊥
effectively decouple from the u‖ and δB‖ cascades. Furthermore, the gradients in vA,eff are
negligible at these small scales, allowing the energetic coupling between |z+|2 and |z−|2
that appears in (2.19) to weaken. Thus, the Alfvénic cascade approaches that of RKMHD
with a constant background anisotropy, as described by Kunz et al. (2015).

Equations (2.16) leave us with several new testable predictions. First and foremost is that
magneto-immutability, as a reduction of b̂b̂ : ∇u and b̂ · ∇�p, is independent of scale. In
the initial studies of Squire et al. (2019) and Squire et al. (2023), the authors concluded that
the pressure anisotropy being driven by turbulent fluctuations must be competitive with
the background magnetic tension (i.e. βΔ ∼ 1) in order for the suppression of b̂b̂ : ∇u
and b̂ · ∇�p to occur. However, both of these signatures of magneto-immutability persist
throughout the cascade simply as a result of β � 1, even when β�k 	 1 at some large
wavenumber k. Note, however, that because δp⊥/‖ and δB‖ are passively advected, the outer
scale is important in that the compressive perturbations must be seeded with sufficiently
large amplitude there.8 The second testable prediction is that magneto-immutability is,
to leading order, independent of the heat fluxes. This is owed to the dynamical, rather
than diffusive, manner in which minimal field-parallel variation of δT‖ is achieved,
forcing the heat fluxes to contribute only to the next-order pressure anisotropy. Both
magneto-immutability’s independence of the heat fluxes, and the field-parallel spreading
of δT‖ in the absence of heat fluxes, can therefore be validated directly by well-constructed
CGL-MHD simulations. Equation (2.15) also predicts that δT‖ and �p behave as passive
scalars, thereby adopting the statistics of the flow that nonlinearly mixes them (Biskamp
2003). Although not addressed analytically, it is also implied that a sufficiently large
scattering frequency in the pressure equations could disable magneto-immutability. It is
essential that the δp⊥ and δp‖ evolve independently enough that δp⊥ can be suppressed by
pressure balance to give b̂b̂ : ∇u ≈ 0, while b̂ · ∇δp‖ is suppressed by the u‖ momentum
equation. This arrangement can still be preserved in the presence of a small amount
of scattering (ν 	 k‖vA), as the scattering term would remain next order in the p⊥/‖
equations and the resultant reduced system would be unchanged. However, a scattering
rate of the order of or larger than k‖vA would force the pressures to evolve together, and
the two magneto-immutability criteria would not be able to be met independently (see
Appendix B for more). This point must be borne in mind when considering the effects
of microinstabilities, because if their volume-filling fraction is large enough, then the
consequent scattering may cause the plasma to become MHD-like.

3. Numerical simulations

In this section we describe simulations performed for the purpose of verifying the
predictions of the reduced (2.16), organized in a manner that follows the layout of § 2.

8For random forcing at large scales, this is a reasonable assumption. However, if one wished to simulate turbulence
using (2.16) and begin forcing somewhere in the inertial range, they would need to take care to properly initialize the
amplitude of compressive fluctuations, or else the ordering may not be satisfied.
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As an overview, we begin by describing the numerical methods and the simulation
set-up in § 3.1, followed in § 3.2 by a summary of the key numerical diagnostics
employed. Next, §§ 3.3 and 3.4 provide evidence from the simulations that verify the
assumptions that led to the ordering (2.4), namely, that (i) the vast majority of the plasma
possesses too little pressure anisotropy to trigger the mirror and firehose instabilities,
and therefore should not be subject to their anomalous scattering; (ii) that ion-acoustic
waves are weakly mixed by the Alfvénic turbulence; (iii) and that density fluctuations
are sufficiently small that they may be neglected. In § 3.5, we re-confirm other aspects
of the turbulence that were seen previously by Squire et al. (2023) and which influenced
our ordering, such as the perpendicular balance of the thermal and magnetic pressures,
and the critically balanced scaling of the Alfvénic fluctuations. Once the assumptions
that led to (2.4) are confirmed, we test (2.16) and their consequences in §§ 3.6 and 3.7.
This includes the misalignment of b̂ and the flow rate-of-strain (figure 8), the predicted
scale independence of magneto-immutability, the reduction of ∇‖�p, and the relative
insensitivity of magneto-immutability to the magnitude of the heat flux. Lastly, in § 3.8
we discuss the ability of microinstability-induced scattering (νlim) to interfere in the
self-organization process.

3.1. Problem set-up and method of solution
To assess the claims set forth in § 2, we perform a suite of driven CGL-MHD turbulence
simulations with a variety of parameters tuned to address each individual prediction or
assumption. We employ a modified version of the ATHENA++ MHD code (Stone et al.
2020) that solves the CGL-MHD system (2.1) closed with the Landau-fluid heat fluxes
(2.2). This code allows the parallel wavenumber |k‖| in the Landau-fluid heat fluxes (2.2)
to be specified freely, and incorporates the effects of mirror and firehose instabilities
(when excited) through a collisional closure. Unless capped by some maximal value,
the Landau-fluid q⊥/‖ could grow very large at small scales because of the numerical
simplification that |k‖| is chosen to be constant. To prevent this from occurring, the heat
fluxes are not allowed to surpass a maximal ‘free-streaming’ value of ≈vthp⊥/‖ (Hollweg
1974; Cowie & McKee 1977). Exact details of how this limitation is implemented in the
code can be found in § 3.1.1 of Squire et al. (2023). The collisional microinstability closure
uses a limiting scattering frequency νlim (also specified by the user), which activates only in
regions of the domain that exceed the mirror (βΔ > 1) or firehose (βΔ < −2) thresholds
(e.g. Sharma et al. 2006). Once activated, the pressures p⊥/‖ are driven back towards
the instability thresholds, rather than to complete pressure isotropy, at a rate set by νlim.
The ability to choose |k‖| and νlim provides considerable freedom to explore how various
collisionless effects change the behaviour of turbulence in this system. Further details
about the CGL-MHD solver and microinstability closure can be found in Appendix A
of Squire et al. (2023). As first described in § 1.3, we supplement these ‘active-Δ’
CGL-MHD simulations with a set of ‘passive-Δ’ simulations, which are performed in
isothermal MHD but evolve the pressure anisotropy passively using (2.1d) and (2.1e)
given the simulated MHD fields. Such passive-Δ simulations are useful for comparing
MHD-like turbulence with CGL-MHD turbulence.

Given that the particles’ Larmor scales are infinitesimally small in our model equations,
the physical dimensions of our simulations are arbitrary. All simulations are performed in
a fully periodic domain with dimensions [Lx, Ly, Lz] = [1, 1, 2], where Lz = L‖ is aligned
with the background magnetic field B0 = ẑ and Lx = Ly = L⊥ are the perpendicular
dimensions. The ‘standard’ resolutions employed for these simulations are n⊥ = 192 and
n‖ = 2n⊥, however, higher- and lower-resolution simulations are performed (and explicitly
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referred to) for the sake of convergence and scale-dependence tests (see figure 11).
Although the initial magnetic field B0 remains the same in all simulations, the initially
isotropic thermal pressure p0 = β0B2

0/8π is varied by choosing β0 to be either 1, 10 or
100. For |k‖| and νlim, we make use of a set of ‘standard’ values in which |k‖| = 4π/L‖
represents the wavenumber of compressive fluctuations near the outer scale and νlim =
1010vA/L⊥ yields a hard-wall limiter that prevents the pressure anisotropy from straying
far beyond its microinstability thresholds. Specific instances in which |k‖| and νlim are
modified from their standard values are noted on a case-by-case basis. All simulations are
run until a final time of at least tf = 10L⊥/vA to ensure that a steady-state fluctuation level
is achieved within the turbulence.

The turbulence is forced exclusively through sinusoidal perturbations to the flow
velocity u using an Ornstein–Uhlenbeck correlated process (Uhlenbeck & Ornstein 1930),
the strength of which is input numerically as the rate of change of the total kinetic energy
in the domain dtEK . Our fiducial runs employ dtEK = 0.32ρ0v

2
AL3

⊥ and a correlation time
of tcorr = L‖/vA. This choice of tcorr assumes Alfvénically correlated forcing, and the
energy injection rate corresponds to an outer-scale magnetic perturbation amplitude of
δB⊥/‖ ≈ B0/2 in steady state. For all simulations, the sinusoidal wavenumbers at which we
force are limited to k ∈ 2π/L‖ × [1, 3], over which the power distribution scales as k−2. In
this study, we frequently vary the mode of u forcing between Alfvénic and random forcing.
Random forcing is as it sounds: u is perturbed randomly in all directions without any
special conditions relating to the directions of B and k (although it is still time correlated).
In Alfvénic forcing, however, we perturb only u ⊥ ẑ, and do so in a manner that enforces
incompressibility, ∇⊥ · u⊥ = 0, at the outer scale (below the outer scale, however, u does
become slightly compressible as a result of the nonlinear amplitudes).

3.2. Numerical diagnostics
To analyse the simulations introduced in § 3.1, we make use of several numerical
diagnostics, three of which we describe here because they are either used very frequently
in our analysis or are particularly tailored to the subject of this work. These three are
the Fourier spectra, the �p energy transfer function of Squire et al. (2023) and a novel
scale-by-scale b̂b̂ : ∇u alignment diagnostic based on the work of St-Onge et al. (2020).

The most frequently used diagnostic is a bin-averaged Fourier spectrum, defined for a
field χ as

Eχ(k) = 1
δk

∑
|k|=k

|F [χ ](k)|2, (3.1)

where F [χ ](k) is the three-dimensional Fourier transform of χ , and k =
√

k2
x + k2

y + k2
z is

the magnitude of k (or k⊥ =
√

k2
x + k2

y for k⊥). The spectra are calculated for k bins, thus
each bin contains contributions from several wavenumbers in the Fourier spectrum, and δk
represents the bin width in k or k⊥. Note that, in figure 6(b), when calculating the spectra
of ∇⊥/‖u⊥/‖, the gradients of u are calculated with respect to the local (in configuration
space) field, rather than using the same efficiency-motivated k⊥ = kxx̂ + kyŷ assumption
that the spectra employ.

Energy transfer functions illustrate the amount of turbulent kinetic energy transferred
into or out of a given k-shell as a result of specific interaction terms in the model equations
(e.g. Grete et al. 2017). In this work, we are chiefly interested in the effects of pressure
anisotropy on the turbulent cascade, thus the transfer function we make use of is designed
to capture the energy removed from the flow u at a given k⊥ due to the anisotropic
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pressure-stress ∇ · (b̂b̂�p). We use the same definition given in Squire et al. (2023), where

T�p(k⊥) =
∑

q⊥

∫
d3x〈√ρu〉k⊥ · B√

4πρ
· ∇

〈
�p
B2

B
〉

q⊥

, (3.2)

and 〈·〉k indicates that the quantity has been Fourier transformed, filtered by wavenumber
and returned to real space. There are other definitions for this transfer function (see
Arzamasskiy et al. 2023), however, as remarked by Squire et al. (2023), this particular
formulation represents the �p-stress as a damping of kinetic energy. This is well suited
to the current study as we wish to understand how magneto-immutability permits the
continuation of a turbulent cascade that would have otherwise been damped away near
the viscous scale.

Finally, the b̂b̂ : ∇u alignment diagnostic is a method for visualizing the effects of
magneto-immutability’s organization on the turbulent flow. It designed to calculate the
cosine of an angle θ that is representative of the alignment between the rate-of-strain
tensor ∇u and the (spatially) local magnetic-field direction b̂, on a scale-by-scale basis
in k⊥. Initially used by St-Onge et al. (2020) without separation by scale for a study of
the incompressible fluctuation dynamo under the action of Braginskii viscous stresses,
it is based off of analytical theory from Kazantsev (1968). In the fluctuation dynamo,
changes to the magnetic-field strength are mediated by ∇u through its three eigenvalues,
which are associated with field-line compressing motions, field-line stretching motions
and the incompressibility constraint (ensuring that the overall flow stretches as much as
it compresses). The compressing and stretching motions result in changes to |B|, thus the
angles between the compressing and stretching eigenvectors and the local magnetic-field
direction dictate how efficient the flow is at changing the magnetic-field strength.9 In
practice, we must ensure that the eigenvectors and eigenvalues are real before dotting
into b̂, therefore we diagonalize (∇u + ∇uT)/2 with T denoting the transpose. Once
the eigenvectors are obtained, the cosine of their angle with b̂ is calculated, yielding a
compressing cos θ and a stretching cos θ at each grid point within the domain. These
cosines are then compiled into a probability distribution P(| cos θ |), representing the
likelihood that the alignment angle cosine takes on a specific value at a given point in time.
We have found that the compressing and stretching distributions are qualitatively identical
for all simulations performed in this work, which is expected for Alfvénic turbulence
(as opposed to the fluctuation dynamo studied in St-Onge et al. 2020). For that reason, it
suffices to only show one of the two, which we choose to be the stretching angle. To exhibit
the P(| cos θ |) as a function of scale, we first Fourier transform u, filter it using masks in
k⊥ =

√
k2

x + k2
y bins and then transform it back to real space before performing all of the

aforementioned operations to obtain P(| cos θ |). The P(| cos θ |) values are normalized to
unity at each individual k⊥, rather than P being a distribution in both | cos θ | and k, so as to
avoid weighting larger wavenumbers less than smaller ones. When magneto-immutability
is active, our expectation that the flow organizes to avoid changes in |B| implies that we
should see a small | cos θ | between the eigenvectors of ∇u and b̂, whereas a non-immutable
cascade should have | cos θ | ∼ 1. Therefore, we can compare this cosine between passive-
and active-Δ simulations to detect whether the flow behaves in a different fashion so as to
produce a cascade with minimal variation of |B|.

9The incompressibility eigenvalue, sometimes called the ‘null’ eigenvalue, is distinguishable from the other two by
having the smallest absolute magnitude.
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(a) (b)

FIGURE 2. (a) Probability distributions of fluctuations in p‖, p⊥ and ρ, for β = 10 Alfvénically
driven turbulence. The black dotted lines represent a slope of 5/3, the expectation for
single-adiabatic, collisional MHD. Neither δp‖ nor δp⊥ appear to align with the MHD prediction
or with each other. (b) The fraction of the domain whose pressure anisotropy lies beyond the
microinstability thresholds as a function of time for all active-Δ (solid) and passive-Δ (dashed)
simulations. The passive-Δ simulations typically have ∼50 % of their volume unstable, whereas
the unstable fraction of the active-Δ simulations typically remains below 10 %.

3.3. The effective equation of state
The most fundamental assumption underlying all of the conclusions of § 2 is that
the plasma behaves in a sufficiently collisionless manner to be described by the
CGL-MHD equations. For this to be true, the portion of the plasma having pressure
anisotropy that is microphysically unstable, and therefore subject to an effective
collisionality associated with particle scattering off Larmor-scale fluctuations (i.e. that
with |Δ| � β−1), must constitute a small fraction of the total volume. In their initial
study of magneto-immutability in the CGL-MHD system, Squire et al. (2023) found
that magneto-immutability suppresses the overall level of fluctuations in the pressure
anisotropy, thereby reducing the fraction of the plasma that is unstable. To establish
the impact that this suppression has on the plasma’s effective collisionality, we plot in
figure 2(a) the relationship between the fluctuations in the parallel and perpendicular
pressures and the (relatively small) fluctuations in the density, averaged in time over the
interval tvA/L⊥ = [8, 10]. In an MHD-like plasma, both δp⊥ and δp‖ would scale with δρ

with a slope of 5/3, the single-adiabatic index characteristic of a collisional plasma (black
dotted lines). Neither is particularly well aligned with the single-adiabatic index slope,
with δp‖ having a steeper slope, and δp⊥ a shallower one. The significant differences
between the pressure slopes suggest that the δp⊥/‖ evolve in an independent manner as
is expected for a predominantly collisionless plasma.

This non-MHD equation of state is explained by figure 2(b), which compares the
fraction of the domain that is unstable to micro-instabilities between active- (solid curves)
and passive-Δ (dashed curves) simulations as a function of time. In the steady state of
the passive-Δ simulations, nearly half of the domain lies beyond the instability thresholds,
meaning that much of the plasma volume is experiencing the large scattering rate νlim,
and a collisionless model would not be a good description for a significant portion of the
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turbulent dynamics. Conversely, the active-Δ simulations are rarely beyond 10 % unstable,
with an average falling closer to just 5 % in steady state. Importantly, this reduction in
the unstable fraction appears to be independent of β, suggesting that higher values of β
are not likely to result in a significantly more collisional plasma. Infrequent excursions
of the unstable fraction beyond 10 % do occur in all simulations, which could either be
the result of intermittency or the randomness of the forcing.10 Although generally short
lived, these brief events do have the ability to change the statistics of the turbulence.
However, their cause is unlikely to originate in the inertial range, because the fluctuation
amplitudes there are small and satisfy the ordering (2.4). As we demonstrate in § 3.6,
magneto-immutability is least active at the outer scales where the turbulence is being
forced, and so these intermittent bursts are likely driven by large-scale motions. That
being said, the anisotropic-pressure stress is inherently non-local in k-space, so these
bursts’ effects on the turbulence are not limited to the largest scales. Therefore, all
statistical measurements we report are obtained by averaging over a time interval of no
less than 2L⊥/vA, taken beyond tvA/L⊥ = 6 to average over these bursts and ensure that
the turbulence statistics have reached an approximate steady state.

3.4. Compressive forcing and ion-acoustic fluctuations
With the knowledge that the turbulence is taking place within a predominantly
collisionless plasma, we surmise that the compressive wave fluctuations will behave
not as collisional fast- and slow-magnetosonic modes, but rather as collisionless fast
and ion-acoustic waves. As such, we evaluate the feasibility of an ion-acoustic wave
cascade at high β, given our expectation that ion-acoustic waves are not effectively
mixed and cascaded by the Alfvénic fluctuations in such plasmas. Conveniently, the
only waves that actively make ∇ · u 
= 0 in a collisionless plasma are the fast wave and
the ion-acoustic wave (non-propagating modes are pressure balanced and approximately
incompressible). Thus, the presence of ion-acoustic waves in the inertial range of these
turbulence simulations can be diagnosed by the compressive flow spectrum of k̂ · uk,
which is provided in figure 3(a,b).

In figure 3(a), we explore the dependence of the compressive flow spectrum on the
correlation time of the forcing. When the correlation time of the forcing is Alfvénic (as is
expected for the astrophysical turbulence we are concerned with here), very little energy
is present in compressive fluctuations, and the power-law index of the ∇ · u spectrum is
rather steep. This is true in both the randomly driven and Alfvénically driven set-ups,
with very little difference between the two spectra. Only when the correlation time of the
forcing is decreased to be sonic (tcorr ∼ L‖/vth), can a substantial amount of energy enter
into compressive fluctuations. This is likely because, in Alfvénically correlated forcing,
the time scale associated with the randomization of the forcing is too slow for the forced
wavenumbers to significantly drive ion-acoustic waves.

Indeed, the β dependence of this conclusion is captured by figure 3(b), where we plot
these compressive spectra for only randomly driven simulations at β = 1, 10 and 100,
with the last being sonically correlated. In effect, the β = 1 simulation is also sonically
correlated because vth = vA, but because a large difference between the Alfvén and
ion-acoustic wave speeds is not present, the mixing of ion-acoustic waves by Alfvén waves
is stronger, bringing the spectrum much closer to that of the dashed passive-Δ simulation,

10The only occasion in which the volume-filling fraction exceeds 50 % in any simulation is during the first Alfvén
crossing time of the domain. Although we do find enhanced heating during this initial period, the turbulence is still
undeveloped, and there appears to be no trend relating the volume-filling fraction during this period to the steady-state
behaviour.
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(a) (b)

FIGURE 3. Spectra of compressive velocity fluctuations vs perpendicular wavenumber. (a) The
compressive spectra at β = 100 are studied as a function of the type of forcing. When the
correlation time is Alfvénic, random and Alfvénic forcing both produce similar results, with
little energy in the compressive flow. If the correlation time is instead sonic, then an increase
of two orders of magnitude is seen in the compressive flow energy. (b) Compressive spectra of
randomly driven turbulence at different values of the plasma β. At β = 100 the forcing is sonic,
leading to significant compressive fluctuations at the outer scale, but the spectrum is extremely
steep. As β is reduced, the spectra become decreasingly steep, qualitatively approaching the
passive-Δ result (black dashed).

performed at β = 100. The spectrum of the β = 100 CGL-MHD simulation, although
sonically correlated to generate substantial outer-scale compressive fluctuations, has an
extremely steep spectrum. This steep spectrum implies that very little of the compressive
mode energy driven at the outer scale penetrates into the inertial range, supporting our
claim that ion-acoustic waves may be ordered out of the dynamics. At large wavenumbers
the spectrum does become less steep. However, given the very small amount of energy
contained in Ek·u at such high k, this decrease in steepness is likely due to nonlinearities
from Alfvénic fluctuations. The weaker cascade of compressive modes at high β is
also evident from the percentage of flow energy contained in compressive fluctuations.
This percentage in the randomly forced β = 100 simulations is 1 % for the Alfvénically
correlated passive run, 0.3 % for the sonically correlated active run and 0.007 % for the
Alfvénically correlated active run. Clearly, sonic correlation is a requirement for any
substantial amount of compressive flow to be generated, but the spectra in figure 3(b)
show this does not guarantee a strong turbulent cascade of that flow.

The consequences of the lack of compressive modes in the turbulent inertial range can
be seen in the statistics of the density fluctuations. Figure 4(a) shows the probability
distribution of various values of the density within the simulation domain for each of
the Alfvénically correlated simulations, both active (solid) and passive (dashed). As β is
increased, the density takes on fewer values that deviate significantly from the background,
with the Alfvénically driven simulations being only slightly narrower than the randomly
driven runs. These narrow distributions are likely a result of the Mach number becoming
smaller, given that our simulations drive an approximately fixed amplitude of u/vA at the
outer scale. How the level of these fluctuations depends on scale is more clear in the
spectrum of density fluctuations, figure 4(b). Interestingly, even though these fluctuations
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(a) (b)

FIGURE 4. (a) Probability distribution of ρ within the domain for all Alfvénically correlated
simulations, active (solid) and passive (dashed). At higher β, the decrease in Mach number
leads to weaker density fluctuations being driven at the outer scale, and less overall variation
in ρ. Randomly driven simulations exhibit somewhat increased variation in ρ, but the dominant
parameter is β. (b) Density fluctuation spectra for all Alfvénically correlated simulations. While
the overall amplitudes are decreased with increasing β, the spectra remain strong with spectral
indices near −5/3. This may indicate that the density is passively advected in the absence
of fast and ion-acoustic wave cascades. The apparent break in power-law behaviour of the
β = 100 spectrum is a result of our particular choice for νlim, which is discussed in more detail
within § 3.8. In both panels (a,b), most all of the passive simulations exhibit larger density
fluctuations, with only the β = 100 Alfvénically driven passive run having δρ as small as its
active counterpart.

are clearly �ε2ρ0, making them too small to affect the dynamics to leading order, and
ion-acoustic wave mixing by the Alfvénic cascade is weak, their spectra appear to follow
a near −5/3 power law, as given by the dotted line. We expect that this is accounted for
by the presence of kinetic entropy and non-propagating modes, which, given that they
have no real frequency, should be well mixed by Alfvénic fluctuations (see §§ 2.2 and
2.4). As they do not feed back on the overall dynamics due to their small amplitudes,
their spectrum is probably captured by passive advection (dtδρ = 0), hence the −5/3
index.11 The β = 100 simulations do appear to show a break from the single power-law
behaviour of the other simulations, although this is likely an effect of our choice of νlim,
which is discussed in more detail within § 3.8. Note that, in figure 4(a,b), all but one of
the passive simulations possess density fluctuations larger than their active counterparts;
only the β = 100 Alfvénically driven passive simulation possesses δρ as small as its
active counterpart. The fact that the choice between random and Alfvénic forcing makes a
difference in the passive simulations at β = 100, but not the active simulations, highlights
the separation of compressive time scales between MHD and CGL. In CGL, the type
of forcing makes little difference unless it is sonically correlated so that it may excite
ion-acoustic modes. On the other hand, the correlation time need not be sonic to excite

11Although none of the simulations we performed produced density fluctuations exceeding δρ ∼ ε2ρ0, it would
certainly be possible to achieve δρ ∼ ε3/2ρ0 or ερ0 by explicitly seeding larger-amplitude kinetic entropy or
non-propagating modes at the outer scale. To explore this possibility, the consequences of such significant density
fluctuations for immutability are discussed in depth within Appendix C.
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(a) (b)

FIGURE 5. (a) Kinetic energy spectra of β = 10, Alfvénically correlated simulations with
random (solid) and Alfvénic (dash-dotted) forcing. Only slight qualitative differences are visible
between each type of forcing, reflecting the lack of a strong ion-acoustic cascade regardless
of forcing. (b) Characteristic turbulent eddy sizes along and across the local magnetic field
for Alfvénic variables. Both the randomly and Alfvénically driven simulations closely follow
the scaling relationship predicted by critical balance in standard MHD, (l‖/l0) ∼ (l⊥/l0)2/3,
represented by the black dotted line.

MHD slow modes, so random forcing can in fact drive larger density fluctuations in the
passive simulation.

3.5. Comparison with previous work
Certain aspects of our ordering (2.4) and reduced equations (2.16) explain features of
high-β CGL turbulence that were already observed in the Alfvénically driven simulations
of Squire et al. (2023), but not yet fully understood. Here, we reproduce some of the key
results of Squire et al. (2023), confirming that our simulations explore the same effects and
qualifying the extent to which the compressibility of forcing matters in a system where
ion-acoustic and fast modes are not effectively cascaded. All simulations shown within
this section are performed at β = 10 with Alfvénically correlated forcing and standard
resolution (as defined in § 3.1).

In figure 5(a), the kinetic and magnetic energy spectra from the randomly (solid) and
Alfvénically (dash-dotted) forced simulations reveal inertial ranges that are close to the
−5/3 power law expected in MHD turbulence. Although the individual spectral slopes
deviate very slightly above or below this exact value, overall, there is little qualitative
difference between the turbulence resulting from the two modes of forcing. This indicates
that the pressure-anisotropy stress does not effectively remove energy from the cascade,
at least not to the extent that would naïvely be expected when βΔ ∼ 1 (Squire et al.
2023). Upon careful inspection, the power-law index of the kinetic energy spectrum in
the randomly driven simulation is steeper than that of the Alfvénically driven simulation,
although the difference is small, likely originating from next-order effects not captured by
(2.16). In figure 5(b), the field-perpendicular and parallel scales of the Alfvénic flow and
magnetic-field perturbations are given. For both u⊥ and B⊥, the perpendicular direction is
defined with respect to the average magnetic field of all points being used in the difference
equation of the related structure functions (e.g. Chen et al. 2011). The dash-dotted and
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(a) (b)

FIGURE 6. (a) Spectra of the perpendicular-thermal, parallel-thermal and magnetic pressures
for randomly (solid) and Alfvénically (dash-dotted) driven β = 10 simulations. The difference
between p‖ and p⊥, combined with the rough equivalence of B2 and p⊥, reflects perpendicular
pressure balance (Squire et al. 2023). (b) The rate-of-strain spectra, showing suppression of ∇‖u‖
as predicted by (2.16). The most noticeable difference between forcing modes occurs here in the
spectra of ∇⊥u‖.

solid coloured lines once again represent the Alfvénic and randomly driven simulations,
while the black dotted line represents the (l‖/l0) ∼ (l⊥/l0)

2/3 relationship predicted for
critically balanced MHD turbulence. This appears to indicate that cascades of δB⊥ and
u⊥ are critically balanced, another foundational assumption of our ordering (2.4). At the
largest scales, some disagreement occurs, but this is to be expected. The definition of
B⊥ becomes vague in the presence of larger-amplitude fluctuations, and u⊥ defined with
respect to the averaged field will differ substantially from u⊥ defined with respect to the
local field at each point in the structure function. Additionally, larger scales may still be
somewhat influenced by the forcing, which does not exclusively drive critically balanced
fluctuations. Further details of how these characteristic eddy sizes are measured can be
found within § 3.2.2 of Squire et al. (2023) or § 6.3 of Cho & Lazarian (2009).

The most easily verified predictions of (2.16) are that the parallel pressure dominates the
pressure anisotropy, and that this results from the perpendicular pressure being balanced
by magnetic pressure. In figure 6(a), the thermal and magnetic pressure spectra are
shown, depicting both of these features.12 The perpendicular pressure, although larger at
the outer scale, approaches and ultimately matches the magnetic pressure in the inertial
range, as predicted by (2.10a,b); as stipulated in the reduced model, this empirical result
requires the leading-order δp⊥ perturbation to be O(ε2). By contrast, fluctuations in p‖
are much larger in amplitude, and all appear to follow the spectral index of −5/3 typical
of passive advection, with some minor variation. The inertial ranges of these pressure
spectra bear a striking resemblance to those of the β = 16, hybrid-kinetic simulation
of Arzamasskiy et al. (2023, figure 8a). This is particularly important given that the
dynamics of p⊥ and p‖ is generally reliant on the heat fluxes, which the CGL-MHD
and hybrid-kinetic approaches model in very different ways. For such agreement to exist

12Note that the magnetic pressure spectrum is the spectrum of B2 having units of energy squared times length, not
to be confused with the magnetic fluctuation spectrum, which is the spectrum of B, and has units of energy times length.
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between the two models, it is likely that the heat fluxes are reduced by the field lines
becoming nearly isotherms. This supports a key prediction of our reduced system (2.16)
(see (2.12) and (2.13)). This suppression of q⊥/‖ is also verified specifically for our
CGL-MHD simulations within § 3.7. The p‖ spectrum appears to have a slightly shorter
inertial range than the p⊥ and B2 spectra, a feature which may be due to the fact that the
heat fluxes are stronger for p‖ than for p⊥. Although the q⊥/‖ are nominally ordered out
by the reduction in ∇‖δT⊥/‖, it is possible that as the turbulence approaches grid scales
magneto-immutability weakens somewhat from the effects of finite resolution. We find
that in higher resolution simulations this steepening in Ep‖ trends with the grid scale,
therefore it is likely a numerical artifact and has no impact on our physical understanding
of the p‖ cascade. Figure 6(b) depicts the rate-of-strain spectra of the turbulent flow, broken
up into field-perpendicular and parallel gradients, as well as perpendicular and parallel
flows. As expected from (2.16), parallel gradients of u‖ are dramatically suppressed with
respect to all other elements of the rate-of-strain tensor (Squire et al. 2023). Importantly,
this includes ∇⊥u‖, which emphasizes that it is not simply that u‖ itself is being reduced,
only its gradients along the magnetic field. Between figures 5 and 6, the most apparent
difference between random and Alfvénic driving exists in the spectra of ∇⊥u‖. All other
gradients of the flow velocity are similar between each mode of forcing. However, the
randomly driven simulation features a spectrum of ∇⊥u‖ that is roughly constant with k⊥,
unlike in the Alfvénically driven run where it is increasing with k⊥, in accordance with
standard MHD scalings (Squire et al. 2023). This highlights the fact that, even though the
forcing has a clear effect on u‖, it has no apparent effect on the suppression of ∇‖u‖, given
that it is equally suppressed for both random and Alfvénic forcing.

One of the most significant consequences of magneto-immutability is the reduction of
the anisotropic-pressure stress via suppression of ∇‖�p. To compare the degree to which
this is achieved in random vs Alfvénically forced turbulence, we plot the ∇⊥/‖�p spectra
and the �p transfer function T�p(k⊥) of our β = 10 simulations in figure 7. In figure 7(a),
the active-Δ simulations exhibit clear suppression of ∇‖�p, especially with respect to
∇‖�p from the Alfvénically driven, β = 10 passive run. That being said, the difference
between the ratio ∇‖�p/∇⊥�p in the passive and active runs, which is only a factor of
≈2, is more subtle. Although the reduced equations only explicitly constrain the parallel
gradient of �p through (2.12), the overall production of pressure anisotropy is also reduced
by suppressing changes in the magnetic-field strength. As a result, perpendicular gradients
of �p are also smaller simply because of the smaller overall magnitude of �p fluctuations.

The results of ∇‖�p suppression are seen in the energy transfer due to the pressure
anisotropy T�p(k⊥) on figure 7(b) (3.2). The value of T�p(k⊥) is normalized to the total
energy transfer rate, which we approximate by the Kolmogorov cascade rate EK/τk0 ∼
EK(2πurms/L⊥), where τk0 is the outer-scale turnover time. For the passive run, T�p/Ttotal
being ∼ 1 means that if the turbulence cascaded according to MHD, the anisotropic
pressure stress would remove all of the energy from the turbulent fluctuations, ending
the inertial range as soon as it begins. However, with immutability, this pressure stress
is much smaller, permitting the inertial range to be relatively conservative. Overall, very
little difference exists between the randomly and Alfvénically driven simulations.

3.6. Organizing the turbulence
A key aspect of why magneto-immutability constitutes self-organization is that (2.4) does
not explicitly order ∇‖u‖ as small; rather it becomes necessary for ∇‖u‖ to be suppressed
in order to satisfy both perpendicular pressure balance and μ conservation. Given that
b̂ is always O(1), and figure 6(b) demonstrates that u‖ is significant, it can only be
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(a)

(b)

FIGURE 7. (a) Spectra of the field-parallel and -perpendicular gradients of the pressure
anisotropy for β = 10 simulations that are either active and Alfvénically forced, active and
randomly forced or passive and Alfvénically forced. Both of the active-Δ simulations show a
significant decrease in ∇‖�p with respect to the passive simulation, as well as greater difference
between ∇⊥�p and ∇‖�p. (b) Transfer rate into and out of the turbulent flow due to the
anisotropic-pressure stress, normalized to the total cascade rate, for the same simulations as
(a). Both active simulations show significant suppression of the pressure stress resulting from
the reduction of ∇‖�p seen in (a). The passive simulation predicts a stress that is capable of
damping turbulent motions entirely, since T�p ∼ Ttotal across the full inertial range.

the alignment angle between the magnetic field and the flow rate-of-strain tensor that
suppresses variations in the magnetic-field strength. To probe this organization, we analyse
our simulations using the alignment angle diagnostic described in § 3.2. Examples of the
scale-dependent P(| cos θ |) for both passive and active Alfvénically driven simulations
at β = 10 are shown in figure 8. Recall that the dynamics in the passive simulations is
simply isothermal MHD, and so the passively evolved pressure anisotropy does not affect
P(| cos θ |). In figure 8(a), it is clear that the peak of the distribution from the active run
closely follows cos θ ≈ 0 until dissipation scales are reached at large k⊥. This indicates
a near-complete misalignment of the rate-of-strain eigenvectors and b̂. By contrast, the
passive (MHD) run distribution in figure 8(b) is peaked near cos θ ≈ 0.6, which yields an
O(1) dot product between b̂ and ∇u, thereby permitting more change to |B|. In figure 9, we
show the dominant alignment angle as a function of k⊥ for all active (solid) and passive
(dashed) simulations by tracking the peak of P(| cos θ |) across k⊥. Without exception,
all active simulations exhibit distributions of cos θ that are concentrated between 0 and
≈0.2, while all passive simulations fall between cos θ ≈ 0.5 and 0.7. In some cases, this
misalignment begins very close to the outer scale of the simulation where u⊥/vA ∼ 1/2.
This might not be expected given that our ordering (2.4) assumes u⊥/vA 	 1, however,
figures 6(a) and 7 indicate that it is not required for the fluctuation amplitude to be very
small (e.g. � 10 %) before qualitative features of the reduced (magneto-immutable) system
are detectable.

Many of the diagnostics shown elsewhere within this work and in Squire et al.
(2023) demonstrate magneto-immutability by comparing with passive simulations that
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(a) (b)

FIGURE 8. Probability distributions of the cosine of the angle between the rate-of-strain
stretching eigenvector and the local magnetic-field direction, for β = 10, Alfvénically driven
turbulence. Distributions are calculated and normalized individually within each k⊥ bin. The
distributions of the compressing eigenvector cosines are qualitatively indistinguishable from
their stretching counterparts for both the active and passive runs. The active-Δ simulation yields
cos θ ≈ 0 throughout the inertial range, indicating that motions in the flow that would normally
lead to magnetic-field growth are misaligned with b̂, rendering them incapable of significantly
perturbing |B|. By contrast, the passive-Δ simulation has its peak probability around cos θ ≈ 0.6,
which produces an O(1) dot product between the two vectors and allows significant changes in
the magnetic-field strength.

FIGURE 9. Peak cosines of the | cos θ | probability distributions vs k⊥ for various Alfvénically
correlated simulations, both passive (dashed) and active-Δ (solid). All active simulations exhibit
large misalignment in the inertial range, while all passive simulations show greater alignment,
permitting larger changes to |B|. There is no clear trend with β or forcing mode in the scale at
which the active-simulation misalignment ends and begins to resemble the passive simulations.
For most this occurs near numerical dissipation scales, which is equivalent for all simulations
shown. The lack of misalignment at larger scales is likely due to the forcing not respecting
magneto-immutability.

possess exactly identical parameters, such as forcing and resolution. Unfortunately,
for particle-in-cell simulations (or reality), there exist no corresponding passive-Δ
simulations that can so accurately represent the MHD equivalent turbulence. With the
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FIGURE 10. Distribution of b̂b̂ : ∇u alignment angle θ as a function of k⊥ for the β = 16,
Alfvénically driven and correlated simulation of Arzamasskiy et al. (2023). This simulation was
performed within a (120.5rL,i)

2 × 241rL,i box, at a resolution of 3842 × 768. The peak alignment
angle cosine (red line) is seen to be very close to 0 in the inertial range, in contrast to the average
cosine measured from our passive-Δ (isothermal MHD) simulations (black dashed line). As
with our CGL simulations, this misalignment is weaker near the outer scale, where immutability
struggles to coexist with the forcing.

b̂b̂ : ∇u alignment diagnostic, however, there is no need to compare with an exactly
analogous passive-Δ simulation to determine whether magneto-immutability is at work,
as small values of | cos θ | alone are sufficient indication. This allows us to search for
magneto-immutability within a kinetic framework that self-consistently determines the
heat fluxes, which the Landau-fluid heat fluxes can only approximate. In figure 10, we
show the calculation of | cos θ | for a β = 16, Alfvénically driven hybrid-kinetic turbulence
simulation initially described within Arzamasskiy et al. (2023). The code used to perform
this simulation was the Pegasus++ hybrid kinetic-ion fluid-electron particle-in-cell code
(Kunz, Stone & Bai 2014). The simulation shown resolves scales both above and below
the ion-Larmor scale, additionally incorporating a non-zero electron temperature Te = Ti.
The peak of the | cos θ | distribution is traced by the red line, while a comparison with
the inertial-range average of all of our passive simulations is provided by the dashed
black line. The misalignment is distinctly stronger for the hybrid-kinetic simulation than
for the passive-Δ simulations, lasting until just past the ion-Larmor scale. While at
scales satisfying k⊥rL,i � 0.4 the misalignment is weaker, the peak value of the cosine
is still significantly less than the MHD average, and the vast majority of the probability
density falls well below | cos(θ)| = 0.62. Such imperfect misalignment is also seen in our
simulations in figure 9, and is perhaps not surprising given that these scales are closest to
the forcing scales. The peak in alignment at k⊥rL,i ∼ 0.4 specifically is likely explained
by the presence of oblique firehose modes, which Arzamasskiy et al. (2023) note grow
most rapidly at k⊥rL,i ∼ 0.4 and are expected to enhance b̂b̂ : ∇u. Those authors also
reported significant viscous dissipation near the outer scale, perhaps further evidence
that immutability is unable to coexist with the forcing, a fact reflected in the imperfect
misalignment demonstrated at the largest scales within figure 10. This outer-scale heating
can also be seen to some degree in our simulations in figure 7, as well as in most of the
simulations of Squire et al. (2023) (who used a different forcing scheme to that used here).
Figure 18 of Arzamasskiy et al. (2023) demonstrates that energy transfer from the viscous
stress appears to be suppressed in the inertial range relative to the outer scale, instead
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(a)

(b)

FIGURE 11. (a) Kinetic energy spectra for Alfvénically driven β = 10 simulations at 3 different
resolutions across B0, all with n‖ = 2n⊥. The dotted black line represents a k−5/3 power law. (b)
Alignment angle cosines as a function of k⊥ for each of the three resolutions, with vertical
dotted lines marking the transition away from misalignment of ∇u with b̂. It appears that the
transition trends with the dissipation scale of the turbulence, likely as a result of departure from
the ordering (2.4).

being dominated by the Maxwell stress. Additional evidence hinting at the presence
of magneto-immutability in Arzamasskiy et al. (2023) includes the tendency of the
turbulence to avoid the instability thresholds (their figure 5), and significant suppression
of the spectrum of p⊥ fluctuations in order to maintain pressure balance with the electron
and magnetic-field contributions (their figure 9).

In the CGL simulations depicted by figures 8 and 9, there is no obvious trend of
the scale (in k⊥) at which immutability ceases to affect cos θ ; most simulations trend
toward MHD-like alignment at roughly the same scale. To understand the meaning of
this scale, we compare the alignment angle cosines with the kinetic energy spectra of
the β = 10, Alfvénically driven simulation at several different resolutions in figure 11.
The resolutions are given for the coordinates perpendicular to B0 of each run, with
n‖ = 2n⊥. A clear trend with resolution exists, meaning that the alignment angle cosine
only changes when the flow reaches dissipation scales and the turbulence no longer
follows the ordering (2.4). Notably, this misalignment persists to smaller scales than
those satisfying δB‖/B0 � β−1, where the change in the magnetic-field strength due to
individual turbulent fluctuations is large enough to generate βΔ � 1 (in the absence
of immutability). This implies that, at least as far as the resolutions we can probe go,
magneto-immutability is not an outer-scale effect but rather persists throughout the inertial
range regardless of how small βΔ is at a given k⊥, albeit in the somewhat modified sense
discussed in § 2.5.

3.7. The role of heat fluxes
Not only is the �p stress suppressed by the reduction of ∇‖δT‖ and ∇‖�p, the heat fluxes
are as well. Importantly, as predicted by (2.16), the ∇‖δT⊥/‖ reductions are not diffusive
(i.e. caused by the strong heat fluxes at high-β), but rather dynamical, originating from the
momentum equation. For that reason, we should be able to artificially enhance or suppress
the heat fluxes in our simulations – for example, by adjusting the parameter |k‖| – and
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(a)

(b)

FIGURE 12. (a) Alignment angle cosine vs k⊥ for β = 10, Alfvénically driven simulations with
|k‖| in (2.2) increased (purple), unmodified (orange) and decreased (blue) by a factor of 100.
Given a change in heat-flux strength of 104, the difference between strong (blue) and weak
(purple) heat fluxes appears to have little effect on θ . An orange dashed line represents the
passive-Δ equivalent of the unmodified heat-flux run. (b) The spectra of ∇‖�p for each run.
The large suppression of parallel gradients in the pressure anisotropy reflect the suppression
of ∇‖T‖/⊥, as predicted by (2.16). This limits the ability of heat fluxes to play a role in
the turbulence, and importantly does not rely on their strength, with even the k‖ = 200π
simulation, which is effectively double adiabatic (purple), showing a comparable reduction. The
reduced ∇‖�p also implies that the heat fluxes do not interfere in the avoidance of significant
�p-stress.

observe little effect on the signatures of magneto-immutability. In figure 12 we gather plots
of cos θ and the ∇‖�p spectra, expressed as a function of k⊥, for simulations where |k‖|
is increased or decreased by a factor of 100. In all runs depicted, β = 10 and the forcing
is Alfvénic, with a corresponding passive simulation given as an orange dotted line, given
that it was performed with the nominal Landau wavenumber of |k‖| = 2π . The simulation
with |k‖| increased by 100 (purple curve in each plot) is effectively double-adiabatic MHD
because of how weak the heat fluxes are.

In figure 12(a), little variation is seen in the alignment angle cosine as a function of k⊥,
with only the double-adiabatic run being misaligned slightly further in k⊥ than the others.
Considering that the heat fluxes are 104 times stronger for the blue curve than the purple
curve, the extension of misalignment by less than a factor of 1.5 in k⊥ is an extremely small
difference. In the bottom panel, the field-parallel gradients of the pressure anisotropy are
shown, featuring strong suppression of ∇‖�p in the active-Δ simulations as compared
with the passive run. Although the active simulations are all more similar to each other
than the passive one, parallel gradients of the double-adiabatic run are moderately larger,
by a factor of ∼ 2. The comparable reduction of ∇‖�p for all values of |k‖| shown
implies that the heat fluxes have little effect on whether or not immutability is able to
effectively avoid �p-stress. Note that the results of figure 10 suggest that that this heat-flux
suppression in figure 12 extends to the kinetic simulations of Arzamasskiy et al. (2023),
where the q⊥/‖ are not approximated via the Landau-fluid form. In order for b̂ · ∇u‖ to be
relegated to next order in (2.15), the heat fluxes must be negligible, a fact also made clear

https://doi.org/10.1017/S0022377824001296 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001296


Collisionless, high-β turbulence 31

by (A5) of Appendix A. Therefore, to observe the kind of misalignment seen in figure 10, it
must be that the fully kinetic heat fluxes, like the Landau-fluid approximations, have little
effect on the leading-order dynamics. Unfortunately, unless a closure for q⊥/‖ is assumed
this cannot be proven in general. Nonetheless, these results still further the favourable
comparison between Landau-fluid CGL and kinetic simulations of high-β collisionless
turbulence.

3.8. The role of micro-instabilities
The only portions of this study that are not described by our ordered equations (2.16)
are the role of microinstability limiters. Within the CGL model, dependence on this
physics arises via our choice of νlim. As discussed in § 3.3, the sizes and distributions
of micro-unstable patches are highly intermittent and difficult to predict; however, by
varying νlim we can obtain useful information about how they interact with the turbulence.
For all other simulations outside of this section, the instability scattering rate is fixed to
νlim = 1010vA/L⊥, essentially providing a hard wall on the maximum possible pressure
anisotropy. Given that the microinstabilities being accounted for grow at rL,i scales,
which are formally zero in the CGL-MHD system, it seems reasonable that they might
scatter particles at a rate much faster than any of the dynamics being studied. For this
reason, and for simplicity, such ‘hard-wall’ limiters have been employed frequently in
past studies of pressure-anisotropic turbulence far above rL,i scales (see e.g. Sharma et al.
2006; Santos-Lima et al. 2014; Squire et al. 2019, 2023). However, studies focused on
the mirror and firehose instabilities in the absence of background turbulence have found
that the scattering rate induced typically follows the relationship ν ∼ βb̂b̂ : ∇u (Kunz
et al. 2014; Riquelme, Quataert & Verscharen 2018), which in a turbulent environment
takes on different values at different scales. Unfortunately, this is expensive to implement
directly as it requires measuring the flow shear locally at each time step. To investigate the
consequences of different choices for νlim, we perform Alfvénically driven simulations at
β = 100, where the relative forcing of �p is larger than at β = 10, and vary νlim between
20, 200 and 1010vA/L⊥.

The effects of these variations in νlim on the kinetic spectra are shown in figure 13(a).
Interestingly simulations with lower scattering rates, where the pressure anisotropy is
allowed to make larger excursions beyond the microinstability thresholds, lead to less steep
spectral indices that are much more in line with the −5/3 expectation of our ordering and
a conservative cascade. On the other hand, the simulation with a hard-wall limiter νlim,
as used in all other simulations throughout this work, exhibits a spectrum that is slightly
steeper and appears to be dissipated earlier in k⊥. This steepening implies an increase
in damping from the �p stress, as some of the energy in the turbulent motions is being
removed from the cascade.13 The reason for this steepening and apparent dissipation can
be seen in figure 13(b,c), which present probability distribution functions (p.d.f.s) of the
measured values of βΔ and b̂b̂ : ∇u in each run. These diagnostics essentially represent
how effective magneto-immutability is at regulating the overall magnitude and production
rate of pressure anisotropy. In the hard-wall-limited passive simulation (purple dashed),
the distribution of b̂b̂ : ∇u is less peaked in the stable regions (−2 < βΔ < 1) than
any of the active runs, with values of βΔ that are effectively pinned to the mirror and
firehose limiters, and no local peak in βΔ between the limiters. The hard-wall-limited
active simulation is the least peaked of the active simulations at b̂b̂ : ∇u = 0, also having

13The steepening in the hard-wall-limited simulation flow spectrum is also the most probable cause of the features
observed in the density spectra of figure 4(b) at β = 100, since the density fluctuations are likely passively cascaded.
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(a)

(b) (c)

(d)

FIGURE 13. (a) Kinetic energy spectra for β = 100, Alfvénically driven simulations with
νlim ∈ [20, 200, 1010]vA/L⊥. Significant spectral steepening is observed for the simulation with
hard-wall limiters (νlim = 1010vA/L⊥, the default in all other simulations), as well as a slightly
earlier apparent dissipation scale. (b) Probability distribution of the values of βΔ for each
simulation. The hard-wall-limited simulation exhibits significant peaks with cutoffs near the
mirror and firehose thresholds, while lower νlim simulations extend beyond the cutoffs. The
νlim = 200vA/L⊥ simulation is the only run having a distribution with a global maximum
between the instability thresholds. (c) Probability distribution of the values of b̂b̂ : ∇u for
each simulation, demonstrating that the width of the distribution reflects the strength of
magneto-immutable organization. The distribution from the hard-wall-limited simulation is
the closest of the active simulations to the passive, non-immutable simulation, with νlim =
200vA/L⊥ being the narrowest, suggesting that there is an intermediate value of νlim that allows
magneto-immutability to act most effectively. (d) The �p-stress transfer functions for each value
of νlim. There is clearly less dissipation resulting from pressure anisotropy at νlim = 200vA/L⊥
than in any other run, with the hard-walled simulation by far experiencing the most viscous
dissipation.
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no local peak in βΔ between the instability limiters. By comparison, lower values of
νlim appear to better focus the distribution of b̂b̂ : ∇u around 0, and at least in the case
of νlim = 200vA/L⊥, maximize the proportion of βΔ that lies between the instability
limiters. Note that, in the process of pushing �p between the instability thresholds,
a slight background (k = 0) pressure anisotropy develops in the νlim = 200vA/L⊥ run,
with the most probable value of βΔ in figure 13(b) being ∼ −0.5 rather than 0. This
is simply an effect of the asymmetry of the instability thresholds, and is expected to
occur whenever the outer-scale amplitude is sufficiently large that fluctuations can reach
both microinstability thresholds. If the simulation were initialized with a homogeneous,
background (undriven) pressure anisotropy, the eventual steady state would still resemble
that shown here, as the microinstability limiters alone set the location of this peak in the
p.d.f. The consequences of the varying strengths of magneto-immutable self-organization
are shown in figure 13(d), via the �p-stress transfer functions of each simulation. It
is clear that the νlim = 200vA/L⊥ simulation, where magneto-immutability appears to
enforce most strictly the suppression of b̂b̂ : ∇u, experiences the least amount of viscous
dissipation from the pressure anisotropy. The νlim = 20vA/L⊥ run dissipates slightly more,
and the hard-walled simulation experiences significant stress far into the inertial range.
This likely explains why the hard-walled simulation exhibits kinetic energy spectra that
are both steeper and shorter than the other two runs (panel a).

We hypothesize that this weakening of magneto-immutability occurs because, whenever
a strong limiter scattering rate νlim is activated, the magneto-immutable orderings of
(2.1e) and (2.1d) are broken. In an MHD plasma with ν−1 being much less than any
dynamical time scale, this does not lead to any dissipation because the scattering drives
the anisotropy to zero, and hence there is no anisotropic-pressure stress. However,
when the scattering is induced by microinstabilities, it only drives the anisotropy to
βΔ ∼ 1 levels. This is visible in the hard-wall-limited curve of figure 13(b), where the
distribution of βΔ is sharply peaked at the instability thresholds (although the proportion
of points P(Δ)dΔ at the thresholds is still not large). As a result, Δ still remains
dynamically important, but it is no longer capable of organizing to avoid �p-stress,
because the collisional term makes the dynamical equations different from those that
support magneto-immutability. Therefore, the more severely the ordering is violated
by the instability limiters, the more the anisotropic-pressure stress is allowed to affect
the cascade of turbulent energy. Interestingly then, the results of figure 13 imply that
throughout this work, many of the signatures of magneto-immutability we detect would
become even stronger if a lower (and more realistic) value of νlim were used. That
being said, it appears that if νlim is too small, then the organization can again become
somewhat less efficient. This drop in efficiency may be a result of the amplitude of
βΔ exceeding the values expected by the ordering, possibly upsetting the βΔ ∼ 1
assumption.

While there is clearly a choice for νlim that maximizes magneto-immutability, the
question remains of whether such a choice is physically motivated or not. An instructive
comparison to make in this pursuit is between our optimal νlim and the effective scattering
rate measured in the high-β, hybrid-kinetic simulations of Arzamasskiy et al. (2023).
Those authors found that microinstability scattering in their simulations appeared to
follow the relationship ν ∼ β(b̂b̂ : ∇u)L, where the L subscript denotes that the quantity is
estimated at the outer scale. We can estimate this rate for the simulations of figure 13 from
the root-mean-square velocity 〈u〉rms ≈ 0.75vA to find that ν ∼ 235vA/L⊥. Interestingly,
this nearly coincides with the value of νlim in our survey that is minimally disruptive to

https://doi.org/10.1017/S0022377824001296 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001296


34 S. Majeski, M.W. Kunz and J. Squire

magneto-immutability.14

β
k‖vA

ν
� 1. (3.3)

If we naively substitute the result of Kunz et al. (2014) that, for pressure anisotropy driven
by a flow shear, ν ∼ βb̂b̂ : ∇u ∼ βk‖u‖, then the condition for magneto-immutability
subject to microinstability scattering is just that u‖ 	 vA. This condition is automatically
satisfied by virtue of our assumed ordering. The only effect that can then interrupt
magneto-immutability in sub-Alfvénic turbulence is the forcing, hence why Arzamasskiy
et al. (2023) obtained a scattering rate based on the parallel rate-of-strain at the outer
scale. Indeed, our figure 9 also demonstrates how magneto-immutable self-organization
tends only to fail at the forcing scales for different values of and types of forcing. Thus, the
value of νlim in our simulations should also be estimated via ν ∼ β(b̂b̂ : ∇u)L. In short, it
is therefore likely that the most physically motivated choice of νlim is also approximately
that which best supports a strong, magneto-immutable cascade.

In considering our choice of νlim, it is worthwhile to also discuss alternative sources
of anomalous scattering, such as that resulting from the ion-cyclotron instability or
distinct versions of the firehose.15 In Bott et al. (2021) and Arzamasskiy et al. (2023),
the limiting negative pressure anisotropy is −1.4/β corresponding to the oblique firehose
instability, rather than the −2/β employed in our simulations which represents the parallel
(or ‘fluid’) firehose. If the limiters in our simulations activated at the oblique threshold,
some minor quantitative results of the turbulence would change, but we do not expect
any significant qualitative changes. In particular, the peak value of the p.d.f. of βΔ,
which takes on ≈ −0.5 in figure 13(b), would likely shift to ≈ −0.2 due to there being
a new centre between the mirror/firehose thresholds. Additionally, we expect a slightly
larger fraction of microinstabilities given the more stringent threshold. To estimate this
fraction, we calculated the average microinstability filling fraction with the oblique
firehose threshold (rather than the parallel) for the final δt = 2L⊥/vA of the β = 100,
νlim = 200vA/L⊥ simulation featured in figure 13. We find that 18.5 % of the domain is
unstable with the oblique threshold, compared with 10.4 % with the parallel threshold.
While significant quantitatively, this increase is not nearly sufficient to isotropize the
entire plasma. Moreover, this estimated increase is almost certainly an overestimate, given
that in this simulation no anomalous scattering (νlim) was turned on until the anisotropy
reached −2/β. By comparison, the volume-filling fraction in the beta=16 hybrid-kinetic
simulation of Arzamasskiy et al. (2023, figure 10), which appears to obey the −1.4/β

threshold, was 17.9 %. Finally, in their broad parameter survey, Squire et al. (2023)
performed a simulation adopting the oblique firehose threshold, finding in their figure 4

14This scattering rate would ideally depend on the local value of the parallel rate of strain, rather than an average
estimate. To visualize the range of values that β(b̂b̂ : ∇u)L could take on then, the horizontal axis of figure 13(c) can be
multiplied by p0, which in our code units equals 100 for each of the simulations shown. The result is a p.d.f. of the potential
values of νlim driven by each simulation. Note that the fluctuations that generally determine the scattering rate are not
those at the core of the distribution, but those near the tails. This is because microinstabilities are driven in our simulations
through intermittent, larger-amplitude fluctuations rather than in the bulk of the plasma, given our small volume-filling
fractions. We propose that the source of this agreement comes from our understanding of how magneto-immutability
behaves in weakly collisional, Braginskii-MHD plasmas: when a pitch-angle scattering rate is included in the equations
governing the anisotropic pressures and the ordering (2.4) is satisfied, we find that magneto-immutable self-organization
can occur at all scales satisfying (see Appendix B for derivation)

15Another class of kinetic microinstability altogether is associated with significant ion heat fluxes (see, e.g.
Schekochihin et al. 2010; Bott, Cowley & Schekochihin 2024). Given the suppression of field-aligned ion temperature
gradients, these instabilities are unlikely to be driven by inertial-range magneto-immutable fluctuations, although they
could be driven near the forcing scales. While estimates of anomalous scattering have been verified for electron-scale
heat-flux instabilities, no such analyses exist yet for their ion-scale counterparts. For this reason, we cannot comment
with certainty on how they would affect the results presented here.
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that there was little qualitative difference from the simulations employing the parallel
threshold.

With regards to the positive �p instabilities, Ley et al. (2024) found that a secondary
ion-cyclotron instability can be triggered if the mirror threshold is exceeded substantially,
causing the positive pressure anisotropy to be limited instead at ≈0.5/

√
β. However, that

threshold is not likely to be relevant to our study for the following reasons. In order for this
softer threshold to come into play, the pressure anisotropy must be able to overshoot the
more restrictive 1/β mirror threshold by a substantial amount. Dedicated kinetic studies
of the mirror instability in a driven system indicate that the overshoot is proportional to
(b̂b̂ : ∇u/Ωi)

1/2 (Kunz et al. 2014, where Ωi = eB/mic is the ion-cyclotron frequency). In
well-magnetized plasmas like the ICM or black-hole accretion flows, where the separation
between the scales driving the pressure anisotropy (which are comparable to the outer
scale when magneto-immutability is active) and the ion-Larmor scale is extremely large,
this overshoot is predicted to be extremely small. In this case, the mirror instability should
reach its saturated state and scatter particles to keep the pressure anisotropy bound within
≈1/β before the pressure anisotropy can reach the ion-cyclotron threshold at ≈0.5/

√
β.

4. Summary and discussion

This work has investigated high-β collisionless turbulence through analytical and
computational means, with special attention paid to the self-organization of the magnetic
field and bulk flow via ‘magneto-immutability’. We introduced a new asymptotic ordering
that explicitly makes use of β � 1, and yields a set of reduced CGL-MHD equations that
not only reproduces previously found characteristics of magneto-immutability, but also
makes several new predictions. Numerical simulations of the full CGL-MHD equations
with Landau-fluid heat fluxes and microinstability limiters were then employed to verify
the assumptions of our ordering and to test the new predictions. The most important
conclusions drawn by this study are:

(i) Magneto-immutability, as defined by the suppression of both b̂b̂ : ∇u and ∇‖�p
through self-organization, is an inertial-range effect in high-β turbulence that
satisfies the ordering (2.4).

(ii) By suppressing b̂b̂ : ∇u, magneto-immutability reduces the fraction of the
plasma that otherwise would have had its pressure anisotropy well beyond the
mirror/firehose thresholds, in turn preventing the plasma from behaving in an
entirely collisional manner through microinstability-induced scattering.

(iii) The suppression of heat fluxes, �p-stresses and micro-instabilities by magneto-
immutable self-organization allows high-β collisionless turbulence to evolve in
a manner that is largely determined by fluid moments of the plasma particle
distribution. This is remarkable given that this parameter regime of plasma physics
is particularly susceptible to collisionless effects.

(iv) Magneto-immutability is relatively insensitive to the strength of heat fluxes, because
of the dynamical reduction of the field-aligned temperature gradients ∇‖δT⊥/‖.

(v) The suppression of b̂b̂ : ∇u is achieved through a local misalignment between b̂
and the eigenvectors of the ∇u tensor, rather than through a suppression of the
overall rate-of-strain (e.g. figure 8). Importantly, this misalignment is shown to
extend beyond CGL-MHD to the hybrid-kinetic simulations of Arzamasskiy et al.
(2023) (see figure 10).

(vi) No strong cascade of ion-acoustic waves exists in high-β collisionless turbulence;
these modes can be driven effectively only at the outer scale by sonically
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correlated (or faster) forcing. This means that there is little dependence of the
turbulence on details of the forcing in these plasmas, so long as its correlation time
remains sufficiently slow. The spectrum of density fluctuations is determined by
non-propagating modes, which adopt the statistics of the Alfvénically turbulent flow
that mixes them.

In their study of magneto-immutability within the Landau-fluid CGL system, Squire
et al. (2023) drew comparisons with the hybrid-kinetic simulations of Arzamasskiy
et al. (2023), finding that these comparisons reflected well on the ability of the fluid
model to capture the essential dynamics of collisionless high-β turbulence. The theory
and simulations presented in this work further solidify those conclusions, especially
with respect to the rate-of-strain alignment diagnostic, for which we have demonstrated
qualitatively similar results between CGL-MHD and hybrid-kinetic simulations (§ 3.6).
That being said, this work has touched on new aspects of high-β collisionless turbulence
that could benefit from further comparison with well-tuned kinetic simulations. One such
aspect is the microinstability scattering rate νlim, and how that compares with one that
minimally disrupts magneto-immutability while still regulating the overall anisotropy
(figure 13). Calculations of νeff from kinetic simulations of Alfvénic turbulence have been
performed in Arzamasskiy et al. (2023), finding good agreement with a Braginskii-based
estimate that depends on the outer-scale rate of strain. Future investigations may then
benefit from a comparison between CGL-MHD simulations with an evolving, rather than
fixed, νlim, and kinetic simulations that capture the scale dependence of νeff. Not only
could the effectiveness of the collisional microinstability closure be studied more directly,
but it would also permit a comparison of the relationship between intermittency and the
unstable fraction. Figure 2(b) demonstrates the highly intermittent nature of the instability
volume-filling fractions in our CGL simulations, especially as compared with the smoothly
varying, inferred volume-filling fractions in the passive runs. This intermittency is perhaps
better quantified by the broad, non-Gaussian tails visible in the p.d.f. of b̂b̂ : ∇u from
the νlim = 20vA/L⊥ run in figure 13(c). In fact, such non-Gaussian tails are present in
every CGL simulation, but not in the passive simulations. The most likely cause of this
intermittency is then the feedback of pressure anisotropy on the flow. Understanding
exactly how pressure anisotropy mediates intermittency in collisionless plasmas would
be a particularly useful extension of this work, with broad implications for subjects like
cosmic-ray propagation in high-β turbulence (Reichherzer et al. 2023).

Our results may serve to explain certain features of turbulence that are relevant
to the understanding of plasma dynamics in the ICM of galaxy clusters. Of the
17 galaxy clusters for which Zhuravleva et al. (2019) and Heinrich et al. (2024)
inferred the effective viscosity from the spectra of (de-projected) density fluctuations,
all measurements pointed to a viscosity that is smaller than the Spitzer value (Spitzer
1962). It has been suggested that this may be the result of the growth of microinstabilities,
which, through their anomalous scattering of particles, effectively decrease the plasma
viscosity below its Coulombic value. However, the same conditions that allow the weakly
collisional, high-β ICM to become microphysically unstable also render it susceptible
to the effects of magneto-immutability. The most notable difference between turbulence
in the ICM and that which is studied in this manuscript, is that ICM turbulence
appears to feature outer-scale fluctuations satisfying MA

.= u/vA > 1. These large-scale
super-Alfvénic fluctuations are not guaranteed to be in critical balance, thus from our
ordering they cannot be expected to self-organize à la magneto-immutability. In this
case, microinstability scattering is expected to be driven much more strongly than in the
sub-Alfvénic turbulence of our CGL simulations (e.g. Kunz et al. 2022). The results of
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§ 3.8 and Appendix B, however, imply that realistic microinstability scattering does not
prevent magneto-immutable self-organization from occurring when the ordering (2.4)
is satisfied. We therefore hypothesize that viscous stresses in the ICM are suppressed
through a combination of two effects. At large scales where MA > 1, microinstabilities
regulate the pressure anisotropy via an enhanced anomalous scattering rate. Following
the conclusions of Kunz et al. (2022), this reduces the viscous scale to the Alfvén scale
where MA ∼ 1. Below this scale, the turbulence becomes critically balanced and efficient
magneto-immutable self-organization can occur, resembling that seen in this manuscript,
but with a larger volume-filling fraction of slowly scattering micro-instabilities. An
important consequence of this would be the prediction that the cascade should continue
down to kinetic scales – a roughly ten decade extension of the length of the inertial
range of ICM turbulence from current predictions. From an observational standpoint,
if turbulent fluctuations can be observed to cascade well below the Alfvén scale, then
magneto-immutability must be active, given the limitations on micro-instability scattering
rates (Kunz et al. 2022). Unfortunately, we expect that many of the other methods
employed in this work for disentangling the two effects may be difficult to apply to
observations of the ICM. For example, current observational capabilities are unable to
calculate b̂b̂ : ∇u or the alignment angle as a function of scale below the Alfvén scale.
On the other hand, large-amplitude turbulence could be studied at very high resolution
within our numerical framework given a more ICM-like set-up, so as to resolve the
trans-Alfvénic transition and any other revealing features. We reserve such a study for
a separate publication.

While we have made frequent reference to the importance of magneto-immutability
in interpreting ICM observations, there are numerous yet-to-be-investigated ways in
which magneto-immutability might affect turbulence in other high-β plasmas. For
example, Kempski et al. (2019) showed that incompressible turbulence driven by the
magnetorotational instability (MRI; Balbus & Hawley 1991; Hawley & Balbus 1991) when
subject to Braginskii viscosity (Balbus 2004) can self-organize so as to reduce the total
(fluctuation- plus Keplerian-shear-produced) parallel rate of strain, thereby reducing the
average pressure anisotropy in the plasma despite efficient angular-momentum transport
by robust Reynolds and Maxwell stresses. That study could be extended using our
Landau-fluid CGL-MHD model, exploring further the impact of magneto-immutability
on the transport and turbulent cascade while making contact with previously published
studies of collisionless MRI turbulence and transport that used Landau-fluid CGL-MHD
(Sharma et al. 2006), hybrid-kinetic (Kunz, Stone & Quataert 2016), and pair-plasma
kinetic (Bacchini et al. 2022; Sandoval et al. 2024) simulations. A particularly timely
extension would be to investigate the compressive part of this magnetorotationally driven
cascade in its inertial range and its role in plasma heating and angular-momentum
transport. For example, a recent study by Kawazura et al. (2022) used a set of
reduced-MHD equations tailored for the ‘shearing sheet’ to perform a local study of
a magnetorotationally unstable accretion disc having a predominantly azimuthal mean
magnetic field. Those authors found that compressive modes comprise a larger portion
of the bulk kinetic energy than Alfvénic fluctuations, a result that they have recently
confirmed via large-scale incompressible MHD simulations (Kawazura & Kimura 2024).
They drew a link between this dominant compressive component and the heating of
particles through the putative Landau damping of these fluctuations. However, their
reduced model was based on the MHD equations, and it is known that the MRI in weakly
collisional and collisionless plasmas (such as protogalaxies and low-luminosity accretion
flows) is different than its MHD counterpart (e.g. Quataert, Dorland & Hammett 2002;
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Balbus 2004; Squire, Quataert & Kunz 2017b). With the MRI driving turbulence on
Alfvénic (rather than sonic) time scales, and given the results of figure 3(a,b), it is not
obvious that greater-than-unity ratios of compressive to Alfvénic energy could be achieved
in high-β, collisionless accretion flows.

In constructing the reduced system (2.16), we made the simplifying assumption
that the electrons are cold and isothermal. For the purpose of understanding how
magneto-immutability behaves in various astrophysical environments where this is not
necessarily the case, it is worth exploring the consequences of relaxing these assumptions.
If the isothermal electron assumption held but we allowed them to be warm, say Te ∼ Ti,
magneto-immutability would be unaffected so long as the density fluctuations remained
smaller than O(ε), which is the most likely case for high-β turbulence (this was tested
using the same CGL-MHD code in Squire et al. 2023, with the authors finding little
effect). If, however, the density fluctuations were larger (approaching ∼ ερ0), some
modifications would be made to the signatures of immutability. First, the perpendicular
pressure balance would not lead to the suppression of δp⊥, but rather the sum of
δp⊥ + Teδρ/mi ≈ 0. The fluctuation δp⊥/p0 could then remain O(ε), and suppression
of b̂ · ∇u‖ would not be guaranteed. On the other hand, the u‖ momentum equation
would still yield b̂ · ∇�p ≈ 0 to leading order, thus immutability’s tendency to reduce
anisotropic-pressure stress would be unaffected. The picture is much less straightforward
if we also relax the assumption of isothermal electrons. Collisionless electrons are
necessary for modelling environments such as high-β radiatively inefficient accretion
flows (Quataert 2003; Sharma et al. 2007), but the effects of electron pressure anisotropy
and microinstabilities on magneto-immutability are beyond the scope of this work. Future
efforts on this topic would not only yield interesting results on high-β turbulence, but also
motivate cost-effective ways to model fully collisionless astrophysical plasmas, akin to
what has been done between the Landau-fluid CGL approach and hybrid-kinetic particle
in cell (Arzamasskiy et al. 2023; Squire et al. 2023).
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Appendix A. Comparison with reduced kinetic MHD

The ordering (2.4) that yields the reduced high-β CGL-MHD equations is based
heavily upon that employed by Schekochihin et al. (2009) and Kunz et al. (2015) to
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derive the RKMHD equations, often used to describe collisionless Alfvénic turbulence at
long wavelengths. As a result, key signatures of immutability, like b̂ · ∇�p and b̂b̂ : ∇u
suppression, can in fact be obtained by applying a high-β subsidiary ordering to RKMHD.
However, other aspects of the reduced system (2.16), such as the non-local influence of
�p and coupled Elsässer energy cascades, cannot be recovered. To better understand
the relationship between RKMHD and our reduced equations, then, in this appendix we
explore just how well magneto-immutability can be recovered from RKMHD, discussing
the key differences from (2.16) as a result of primary vs subsidiary ordering of β.

The RKMHD equations, as given by equations (155)–(160) of Schekochihin et al.
(2009), are simplified by our assumptions of zero electron temperature and collision
frequency to yield the following:

∂Ψ

∂t
= vAb̂ · ∇Φ, (A1a)

d
dt

∇2
⊥Φ = vAb̂ · ∇∇2

⊥Ψ, (A1b)

d
dt

(
δf − v2

⊥
v2

th

δB‖
B0

F0

)
+ v‖b̂ · ∇δf = 0, (A1c)
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= − 1
2n0

∫
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(
v2
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)(
δf − v2
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, (A1d)

δB‖
B0

= − β

β + 1
1

2n0

∫
d3v

v2
⊥

v2
th

(
δf − v2

⊥
v2

th

δB‖
B0

F0

)
, (A1e)

where the full particle distribution function is f (v⊥, v‖) = F0(v⊥, v‖) + δf (v⊥, v‖) with F0
a background Maxwellian distribution, v⊥/‖ the particle velocities and

u⊥ = ẑ × ∇⊥Φ and
δB⊥√
4πρ0

= ẑ × ∇⊥Ψ. (A2a,b)

The convective derivative d/dt and field-aligned gradient b̂ · ∇ are the same as in
(2.17a,b). As a result of our assumptions, (A1d) and (A1e) have both become equivalent
to perpendicular pressure balance, which is more easily seen when the velocity integrals
are performed

δp⊥
p0

= − 2
β

δB‖
B0

. (A3)

Just like in (2.10a,b) then, β � 1 dictates that δp⊥ does not contribute to the leading-order
pressure anisotropy �p. Next we derive the parallel momentum equation, which in high-β
reduced CGL-MHD, leads to the suppression of viscosity. Taking

∫
d3v miv‖ of (A1c)

leads to
d
dt

(ρu‖) = −b̂ · ∇δp‖. (A4)

Given that RKMHD has time derivatives that scale as dt ∼ k‖vA, the leading order of this
equation is b̂ · ∇δp‖ ≈ 0; as a result, the anisotropic pressure stress is zero to leading order
once again. This should come as no surprise because the CGL-MHD parallel momentum
equation is exactly the v‖ moment of the full kinetic-MHD equation for f (indeed, the only
difference between the fluid CGL-MHD model and kinetic MHD is in the higher moments
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of f , such as v2
⊥/‖). This is clear if we take

∫
d3v miv

2
‖/2 of (A1c) to get the equation for

the μ adiabat
dδp⊥

dt
− 2

p0

B0

dδB‖
dt

= −b̂ · ∇
[

1
2

∫
d3v miv‖v2

⊥δf
]

. (A5)

In our model, the right-hand side of (A5) is approximated by the heat flux q⊥ of (2.2). If
we were to ignore q⊥, the reduction of δp⊥ from (A3) would yield dtδB‖ ≈ 0, and thus
b̂ · ∇u‖ ≈ 0, another signature of magneto-immutability. If the heat fluxes were non-zero,
we could still achieve this reduction in b̂ · ∇u‖ if q⊥ ∝ b̂ · ∇T⊥, or q⊥ ∝ b̂ · ∇p⊥ given
small density fluctuations from low Mach number forcing (as in our reduced CGL-MHD
model).

However, this reduction of b̂ · ∇u‖ and b̂ · ∇�p is of little consequence to the turbulent
evolution, because in this model, the pressure-anisotropy stress on the turbulent flow has
already been ordered out. The momentum equation for u⊥ is written in terms of the
potential Φ in (A1b), where it is clear that only one characteristic velocity is present – the
background Alfvén speed. As RKMHD does not include β−1 ∼ ε in the primary ordering,
the effects of anisotropic pressure on the evolution of u⊥ are lost and cannot be recovered
through a subsidiary ordering, and so there is no way to enforce βΔ ∼ 1. This subsidiary
ordering would then certainly misrepresent the outer scale of our CGL-MHD turbulence
simulations. However, would RKMHD suffice when the fluctuations in �pk at some large
wavenumber k far from the outer scale become too small to satisfy β�k ∼ 1? It may seem
reasonable to apply the Schekochihin et al. (2009) RKMHD to the deep inertial range of
such turbulence, however, as discussed in § 2.5, this would still miss a possibly important
effect: �p can act very non-locally in k-space through its modification of vA,eff. Small-scale
Alfvénic fluctuations in the high-β reduced CGL-MHD model are subject to a background
effective Alfvén speed set by the turbulence and consequent pressure anisotropies at the
largest scales. Because of this, patches of the turbulence may evolve somewhat uniquely, or
may vary in their ability to interact with cosmic rays, for example (Marcowith, van Marle
& Plotnikov 2021). In this situation, the Kunz et al. (2015) model of RKMHD that includes
pressure anisotropy in the background particle distribution could more accurately capture
these effects. The slowly evolving, large-scale motions would provide the background
pressure anisotropy upon which the anisotropic RKMHD could be evolved, and as the
model otherwise includes the same assumptions that lead to immutability signatures in
isotropic RKMHD, it also captures the reduction of b̂b̂ : ∇u and b̂ · ∇�p at high β.

Appendix B. Magneto-immutability and the Braginskii viscous stress

The initial discovery of magneto-immutability in Squire et al. (2019) came from an
investigation of weakly collisional Braginskii-MHD turbulence, rather than turbulence
with a collisionless model as is studied in this work. While the Braginskii closure for
�p differs dramatically from that of our collisionless Landau-fluid CGL model,16 the
magneto-immutable suppression of the �p-stress in our reduced CGL approach comes
only from the momentum equation, which is shared by both models. It is therefore within
reason to suspect that the mechanism for viscosity suppression also originates from the
momentum equation in Braginskii-MHD. For that reason, in this appendix we derive the
condition for viscous stress reduction in Braginskii-MHD by assuming that the cause is

16Note that the Landau-fluid CGL-MHD equations, given a uniform scattering rate, do reproduce the
Braginskii-MHD model in the collisional limit ν � k‖vth. This scattering rate must not only isotropize the pressures,
but also suppress the heat fluxes, using the approach given in Sharma, Hammett & Quataert (2003).
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the same as that leading to (2.12) (i.e. b̂ · ∇δT‖ = 0 to leading order), essentially obtaining
a threshold for realizing magneto-immutable behaviour in the weakly collisional limit.

Unlike the CGL-MHD model, Braginskii-MHD does not evolve the pressure anisotropy
directly from conservation of the double-adiabatic invariants. Instead, it assumes that
the rate of scattering is sufficiently rapid (ν � k‖vth) that a balance is struck between
production of anisotropy via changes in B and ρ and its depletion through pitch-angle
scattering. As a result, the leading-order perturbation to p is isotropic, and �p only arises
at next order in k‖vth/ν. This allows the double-adiabatic (2.1d) and (2.1e) to be replaced
with (Braginskii 1965) 17

d
dt

ln
p

ρ5/3
= 2

ν

[(
b̂b̂ − I

3

)
: ∇u

]2

and �p = 3p
ν

(
b̂b̂ − I

3

)
: ∇u. (B1a,b)

To achieve suppression of parallel viscous forces through magneto-immutability in the
same manner as realized in our reduced CGL-MHD model, we seek to ensure that the
leading order of the u‖ momentum equation becomes b̂ · ∇�p ≈ 0. As with the reduced
CGL-MHD model, we make the simplifying assumption that both density fluctuations and
∇ · u are negligible, and apply the ordering (2.3) to the Braginskii-MHD equations. Note,
however, that we make no assumption regarding the size of β, as we will instead derive
a β-dependent criterion for magneto-immutability to take effect in Braginskii-MHD.
Therefore, we will simply have to assume that �p cannot be neglected in the momentum
equation, so that it can later inform us of how large β needs to be in order to suppress the
�p parallel gradients (otherwise magneto-immutability would be impossible to recover).
Reducing the momentum equation produces the following leading-order equation for u⊥,
which still describes pressure balance, but in this case the isotropic pressure dominates to
leading order:

δp
p0

≈ −β

2
δB‖
B0

, (B2)

only in this case it is struck with the isotropic-pressure perturbation. The leading order of
the parallel momentum equation can then be written as

ρ0
du‖
dt

≈ −b̂ · ∇�p + B0b̂ · ∇δB‖. (B3)

To compare the sizes of each term, we now substitute for �p the weakly collisional closure
(B1a,b), which, if ordered according to (2.3), yields �p ≈ (3p0/ν)b̂ · ∇u‖. Substituting
this into (B3) yields

ρ0
du‖
dt

≈ −3β

2ν
B2

0b̂ · ∇(b̂ · ∇u‖) + B0b̂ · ∇δB‖. (B4)

In (B4), the �p-stress takes on its familiar viscous form. The left-hand side and the
final term on the right-hand side are both of order ∼εk‖B2

0, while the viscous term is
∼εk‖B2

0(βk‖vA/ν). Thus, if the viscosity is to dominate, forcing the plasma to self-organize

17Another regime of Braginskii-MHD can be obtained by instead assuming that ν � k‖vA, which is a considerably
weaker criterion than ν � k‖vth at high β. In this limit, however, the heat fluxes are in the collisionless regime and not
ordered out of the system, and so they must be taken into account. It may be the case that their effects are suppressed by
magneto-immutability regardless, although further investigation would be needed to confirm such a conclusion.
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in order to avoid it, we require

β
k‖vA

ν
� 1. (B5)

If this criterion is met, then b̂ · ∇�p will be suppressed and the Alfvénic cascade will
not be strongly damped by viscous stress. By design, this is precisely the regime within
which magneto-immutability was studied in Squire et al. (2019) and Squire et al. (2023).
Equation (B5) also implies that magneto-immutability in Braginskii-MHD, unlike its
CGL-MHD counterpart, is scale-dependent. Consider a scenario in which outer-scale
motions are too slow to produce �p faster than it can be eroded by the scattering rate,
and the criterion (B5) is not satisfied. As the cascade progresses, the eddy turnover times
get shorter at smaller scales, and the production of pressure anisotropy occurs at a faster
rate. Eventually, when the generation of pressure anisotropy occurs on time scales small
enough that it competes with the scattering, magneto-immutability can step in to regulate
its magnitude. At some point, however, the scales will become sufficiently small that the
collisional assumption of ν/k‖vth � 1 becomes inadequate and a fully collisionless model
must be used.

Appendix C. High-β reduced CGL with large density fluctuations

One of the fundamental assumptions we make within this work is that density
fluctuations are O(ε2) or smaller. Physically, this is motivated by the difficulty of
driving both high Mach number and sonically correlated turbulence in astrophysical
high-β plasmas. Indeed for all of the simulations performed within the scope of this
work, in no circumstances did δρ exceed ε2ρ0, a necessary condition for obtaining the
excellent agreement between our predictions and the simulation results. Nonetheless, it
is worthwhile to at least consider the consequences of δρ ∼ ε3/2ρ0 or ερ0, and how that
would affect the conclusions we have reached so far.

We begin with δρ ∼ ε3/2ρ0, after which δρ ∼ ερ0 is a relatively simple extension. All
non-δρ oriented aspects of the ordering (2.4) can be used once again, although we will
drop δT⊥/‖ in favour of δp⊥/‖ given the enhancement of δρ. Among other things, this
means that the pressure balance of (2.10a,b) becomes

δp(2)

⊥
p0

= − 2
β

δB(1)

‖
B0

and
δp(5/2)

⊥
p0

= − 2
β

δB(3/2)

‖
B0

, (C1a,b)

and (2.12) and (2.13) are the same but with δp‖ swapped for δT‖

b̂(0) · ∇δp(1)

‖ = (b̂ · ∇δp‖)(1) = 0, (C2a)

b̂(0) · ∇δp(3/2)

‖ + δB(3/2)

⊥
B0

· ∇⊥δp(1)

‖ = (b̂ · ∇δp‖)(3/2) = 0. (C2b)

This shows that the suppression of the anisotropic-pressure stress, being independent of
the magnitude of density fluctuations, is a particularly robust aspect of immutability.
Continuing, the equations that evolve δB⊥ and u⊥ are unaffected, as is the continuity
equation. Note that although we are allowing the density fluctuations to be larger, we will
still employ the assumption that dtδρ

(3/2) is negligible, owed to the fact that these density
fluctuations are still likely the product of non-propagating modes. As such, in evaluating
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the p⊥ and p‖ equations, we can approximate

d
dt

ln
p⊥
ρB

≈ − d
dt

ln B and
d
dt

ln
p‖B2

ρ3
≈ d

dt
ln p‖B2, (C3a,b)

where we have again used the fact that p⊥ has no O(ε) perturbation. Starting with (2.1d),
the heat flux q⊥ is still 0 at order ε1/2, since the density fluctuations are only O(ε3/2) and
b̂ · ∇δp(1,3/2)

‖ = 0. However, at order ε where the left-hand side of (2.1d) first appears, we
have

d
dt

δB(1)

‖
B0

= vth√
π |k‖|(b̂

(0) · ∇)2 δρ(3/2)

ρ0
. (C4)

As a result, instead of finding that b̂ · ∇u‖ = 0 by comparing this with parallel induction
(as we found when δρ � ε2ρ0), we find

b̂(0) · ∇
(

u(1)

‖ − vth√
π |k‖| b̂(0) · ∇ δρ(3/2)

ρ0

)
= 0. (C5)

Note that we cannot use this equation to fully determine u‖, given that taking δρ to be
smaller would imply u(1)

‖ = 0, which is not the same as the misalignment we predicted and
measured in § 3.6. The equation for δp(1)

‖ is obtained with ease given (C4)

d
dt

δp(1)

‖
p0

= − 4vth√
π |k‖|(b̂

(0) · ∇)2 δρ(3/2)

ρ0
. (C6)

Therefore, although the suppression of the �p-stress is preserved by the increase in density
fluctuation amplitude, the misalignment of b̂b̂ : ∇u and passive advection of �p are not
necessarily. Instead, the anisotropic-pressure fluctuations are expected to collisionlessly
damp as they are mixed passively by the Alfvénic turbulence. The exact rate of damping
would then be determined by the passively advected density fluctuations that are evolved
according to dtδρ

(3/2) = 0.
The extension of the above to δρ ∼ ερ0 is rather simple, with only the following

modifications: instead of the O(ε1/2) contribution to the heat fluxes q⊥/‖ being 0, they
will remain non-zero due to the density perturbation, with (2.1e) and (2.1d) becoming
b̂(0) · ∇δρ(1) to leading order. Following this, (C6) and (C4) remain the same, but it is
less clear whether the assumption dtδρ = 0 can be applied to both δρ(1) and δρ(3/2), or
if that can only be said of the leading order. This may still be the case as we expect the
only other source of density fluctuations to be Alfvén wave nonlinearities, which should
appear at order ε2, rather than ε3/2. However, this is also reliant on discerning to how many
orders ion-acoustic wave fluctuations can be ignored, given that some weak mixing may
still occur.
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