
J. Fluid Mech. (2023), vol. 972, A22, doi:10.1017/jfm.2023.719

Flow dynamics in sinusoidal channels at
moderate Reynolds numbers
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Pressure-gradient-driven flows through sinusoidal channels have been studied. The
analysis was carried out up to the formation of secondary nonlinear states and spanned
a range of low and moderate Reynolds numbers. Direct numerical simulations were
used to identify and determine the properties of steady as well as non-stationary,
two-dimensional (2-D) and three-dimensional secondary flows. Our results indicate the
existence of several distinct solution types. Two-dimensional, stationary flows with
periodicity determined by the corrugation represent the first type. The second type is
associated with the appearance of 2-D oscillatory flows arising from the onset of unstable
travelling waves. Such oscillatory solutions are generally out of phase with the wall
corrugation but could be in phase in special cases determined by the ratio of the critical
disturbance wavelength and the channel corrugation wavelength. Consequently, several
distinct types of time-dependent solutions are possible. The third type of solution results
from the centrifugal effect caused by wall curvature and leads to three-dimensionalization
of the flow through the onset of stationary streamwise vortices. Finally, various states
resulting from the interaction of different solution types are possible. We examine those
states and present a bifurcation diagram illustrating the formation of some of them. The
results presented in this paper might help with the development of small-scale flow
measurement and detection devices operating at low and moderate Reynolds numbers,
as well as in the use of wall topographies for the intensification of mixing in flows with
moderate, subturbulent Reynolds numbers.
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Figure 1. Groove direction.

1. Introduction

Flows through patterned conduits are encountered in numerous technological applications.
Large-scale patterns are commonly added for the enhancement of heat and/or mass
transfer. Sometimes wall corrugations result from adding ribs to increase the structural
robustness of the design. Such surface irregularities alter the flow dynamics and
can degrade flow performance by increasing hydraulic losses. The proper design and
application of surface patterns can possibly allow us to mitigate undesired effects, increase
structural robustness and improve the flow performance, either by increasing mixing
through the onset of non-stationary, chaotic (in the Lagrangian sense) motions (Gepner
& Floryan 2020; Gepner, Yadav & Szumbarski 2020) or by decreasing hydraulic drag
(Mohammadi & Floryan 2010, 2013; Yadav, Gepner & Szumbarski 2017, 2018, 2021),
allowing for energy-efficient designs.

The intent of the current work is to study the dynamics of flows through conduits
whose walls have been modified by large, regular groove patterns. The orientation of
the grooves can be such that lines of constant elevation run parallel to the flow, forming
longitudinal grooves (see figure 1a). The configuration where lines of constant elevation
are perpendicular to the flow leads to transverse grooves (see figure 1b). It is known
that longitudinal grooves lead to drag reduction (Mohammadi & Floryan 2010, 2013;
Szumbarski & Błoñski 2011; Szumbarski, Blonski & Kowalewski 2011) and are subject
to a low Reynolds number transition to secondary states driven by an inviscid instability
mechanism (Szumbarski 2007; Mohammadi, Moradi & Floryan 2015; Yadav et al. 2017;
Pushenko & Gepner 2021). They are also subject to transition at higher Re, driven by the
classical, travelling Tollmien–Schlichting (TS) wave instability (Moradi & Floryan 2014).

Investigations of flows in conduits with transverse grooves go back to the work of
Sobey (1980) and the extensive experimental investigations of Nishimura and collaborators
(Nishimura, Ohori & Kawamura 1984; Nishimura et al. 1985, 1990a,b). Different forms
of transverse grooves have been considered mostly as a method to augment heat and/or
mass transfer (Wang & Vanka 1995; Wang & Chen 2002). Recently, the use of grooves
in microchannels was considered as part of an energy harvesting piezoelectric device
(Lee et al. 2015). Theoretical investigations have been directed at understanding the
destabilization mechanisms activated by different variants of such grooves. The most
important results include the identification of two types of unstable modes. The first one is
the shear-driven travelling wave (Blancher, Creff & Le Quere 1998; Cabal, Szumbarski
& Floryan 2002; Floryan 2005; Asai & Floryan 2006; Floryan 2007, 2015; Floryan
& Floryan 2010; Floryan & Asai 2011; Rivera-Alvarez & Ordonez 2013; Gepner &
Floryan 2016) that, in the limit of a smooth channel, reduces to the classical TS wave.
This mode leads to transition from a stationary to an oscillatory (Stephanoff, Sobey &
Bellhouse 1980; Ralph 1986), eventually aperiodic (Guzmȧn & Amon 1994; Blancher
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Sinusoidal channels
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Figure 2. Shift-symmetry of the geometry.
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Figure 3. Sinusoidal channel geometry.

et al. 1998) and chaotic (Guzmȧn & Amon 1994, 1996) flow as the relevant Reynolds
number increases. The second instability mode is attributed to the centrifugal forces
associated with the groove-imposed changes of the stream direction and is manifested
by the onset of stationary, streamwise vortices. Its existence has been documented
experimentally (Gschwind, Regele & Kottke 1995; Mitsudharmadi, Jamaludin & Winoto
2012), numerically (Cho, Kim & Shin 1998) and theoretically (Cabal et al. 2002; Floryan
2002, 2003a, 2007, 2015). It has been shown that the centrifugal mode might play a critical
role in channels with a certain class of grooves (Floryan 2007; Floryan & Floryan 2010;
Gepner & Floryan 2016). A similar instability mode has been identified in the channel
flow modulated by streamwise-periodic wall transpiration with zero net flux (Floryan
1997, 2003b; Szumbarski 2002b).

While the number of possible groove configurations is uncountably infinite, here
we focus on the effects of transverse sinusoidal grooves placed on both walls in the
in-phase position which results in the formation of a wavy channel (see figures 2 and 3).
The flow regimes subject to investigation are limited to moderate Reynolds numbers
and the effects of several geometric parameters are examined. The analysis uses direct
numerical simulations (DNS) based on a spectral finite-element spatial discretization in
the streamwise and wall-normal directions combined with a Fourier decomposition in the
spanwise direction as implemented in NEKTAR++ (Cantwell et al. 2015; Moxey et al.
2019). A similar approach was successfully used in investigations of stability and nonlinear
saturation states by Gepner & Floryan (2016), Yadav et al. (2017, 2018) and Gepner et al.
(2020).
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This paper is organized into four parts. First, we study the two-dimensional (2-D),
low Reynolds number flows and use the small groove wavenumber approximation to
arrive at an analytical formula for the hydraulic losses associated with the corrugations.
Second, the dynamics and flow properties of 2-D stationary and oscillatory states are
examined for arbitrary wavenumbers. Issues of interest are the onset and growth of the
separation zones, the drag penalty associated with groove geometries, and the admissibility
of in-, anti- and out-of-phase solutions. The notion of the flow solution being out of
phase or either in phase or antiphase is understood here as its ability (or lack of it) to
commensurate with the channel’s geometry and is schematically illustrated in figure 2.
Specifically, considering two consecutive grooves, one at the bottom and the other at
the top of the channel, we note that the geometry is symmetric with a shift across the
horizontal axis (y = 0) and with a shift equal to half of the corrugation wavelength. Flow
solution either follows this type of symmetry (is in phase), reverses it (is in antiphase)
or shifts spatially to become out of phase. We will examine this in more detail in § 3.1.1.
Third, we analyse three-dimensionalization of the flow through the formation of stationary,
streamwise vortices. Finally, the nonlinear states resulting from the interaction of the
2-D and three-dimensional (3-D) states are examined, leading to the construction of
a bifurcation diagram illustrating possible paths for the flow evolution as the relevant
Reynolds number increases.

2. Problem statement

Consider flow of an incompressible, Newtonian fluid forced through a wavy, sinusoidal
channel depicted in figure 3. The upper and lower walls of the conduit are located at

y = yu = 1 + S cos(αx),

y = yl = −1 + S cos(αx).

}
(2.1)

Channel geometry is parametrized by the corrugation wavelength λα = 2π/α, with α

being the corrugation wavenumber and the corrugation amplitude S with half of the
smooth (S = 0) channel opening h used as the length scale. Flow domain extends to
±∞ in the streamwise x- and spanwise z-directions. Flow evolution is governed by the
Navier–Stokes (N–S) and continuity equation,

∇ · u = 0,

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u,

⎫⎬
⎭ (2.2)

where u = [u, v, w]T is the velocity vector and p stands for the pressure. Plane Poiseuille
flow between flat walls located at y = ±1 is used as reference – it is characterized by the
velocity u, the pressure p and the flow rate Qr of the form

u = [1 − y2, 0, 0],

p = − 2x
Re

,

Qr = 4
3
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.3)

Velocity is scaled with the maximum of the streamwise velocity component of the
reference flow Us, ρU2

s is used as the pressure scale, time is scaled with h/Us and
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Sinusoidal channels

Re = Ush/ν stands for the Reynolds number with ν representing kinematic viscosity. It
is assumed that the pressure gradient driving the flow remains constant while the channel
morphs into a sinusoidal form. This is equivalent to the imposition of the fixed pressure
gradient constraint of the form

∂p
∂x

∣∣∣∣
mean

= −2
Re

. (2.4)

The resulting flow rate and the effective Reynolds number (defined either by the maximum
or by the bulk velocity) change with geometry and need to be determined a posteriori.

Boundary conditions are the no-slip and no-penetration conditions at the channel walls
and periodicity conditions in the streamwise x- and spanwise z-directions, with Lx and Lz
denoting dimensions of the computational box which must contain an integer number of
grooves in the x-direction. Boundary conditions can be written in the following form:

u = 0 at

{
y = yu,

y = yl,
and

u(x, y, z) = u(x + Lx, y, z + Lz),

p(x, y, z) = p(x + Lx, y, z + Lz).

}
(2.5)

As the geometry of the channel morphs, the flow acquires new features and eventually
bifurcates to a totally new state. We shall use the linear stability analysis to determine
the onset conditions marking the formation of new states. In the forthcoming linear
stability analysis, we start with a stationary flow solution (U, P) to (2.2) which
we acquire via DNS using the numerical procedure outlined below. The flow is
than represented as a superposition of this stationary solution and a small amplitude
perturbation, i.e. (UT , PT) = (U, P) + (up, pp), where subscripts T and p stand for total
and perturbation quantities. Perturbed quantities are substituted into governing equations
(2.2), followed by standard linearization of the perturbation problem. The form of the
perturbation (up, pp) is restricted to a normal mode form, periodic in the spanwise x- and
streamwise z-direction, and of the form

up(x, y, z, t) = ûp(x, y) ei(δx+βz−σ t) + c.c.,

pp(x, y, z, t) = p̂p(x, y) ei(δx+βz−σ t) + c.c.,

}
(2.6)

where ûp and p̂p(x, y) are perturbation amplitude functions, c.c. stands for complex
conjugate, (β, δ)-pair represents the streamwise and spanwise wave numbers (both are real
and treated as parameters) and σ = σr + iσi is the complex amplification rate whose real
and imaginary parts correspond to perturbation frequency and growth rate, respectively.
The linearized flow problem with perturbation (2.6) leads to a generalized eigenvalue
problem for the partial differential equations for the modal functions with σ as the
complex eigenvalue. Discretization transforms this problem into an algebraic eigenvalue
problem for σ which is solved numerically by several methods. Among the methods we
use are (i) tracking the evolution of small perturbations using a full (nonlinear) N–S
formulation, which requires control of the perturbation growth to prevent contamination
of the amplification process by nonlinear interaction. For the majority of our analysis
concerning stationary (σr = 0) modes we apply (ii) the linearized N–S operator and
track evolution of the disturbance through a solution of an initial value problem. We
also apply frequently (iii) the time-stepping (power-method-like) eigenproblem solution,
or (iv) solve the generalized eigenvalue problem using standard tools (either a modified
Arnoldi iteration or ARPACK routines (Lehoucq & Sorensen 1997)). We have found that
the most efficient (timewise) for the shear-driven modes is the coupled linearized N–S
solver, which needs to be periodically cross-checked with the time-stepping approach.
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S.W. Gepner and J.M. Floryan

The most efficient method for the centrifugal mode was direct tracking of the time
evolution of the initial perturbation using the linearized N–S operator and recovery of
the complex frequency from the evolution time history.

In general, the groove and disturbance wavelengths do not need to be identical, which
needs to be accounted for when selecting the size of the computational domain. This
domain must contain an integer number of disturbance wavelengths and an integer number
of groove wavelengths which can be different from the number of disturbance wavelengths.
Since this domain needs to be finite, direct analysis of incommensurate states is not
possible, but potential existence of such states could be inferred by using limiting processes
and analytical arguments. Streamwise length of the computational domain is Lx = nλα
with n = 1, 2, . . . where n is an integer. This allows us to capture the onset of flow
structures with wavelengths Lx/m, where m = 1, 2, . . . is also an integer (see Blancher,
Le Guer & El Omari 2015; Gepner & Floryan 2016). This limits the streamwise wave
numbers that can be observed using a particular computational box to δ = αm/n, i.e. it
is not possible to vary disturbance wavenumber δ continuously. The process used in this
study is explained in § 4.

The field equations are solved using the spectral/hp element solver available in the
NEKTAR++ software package (Cantwell et al. 2015; Xu et al. 2018). Spatial discretization
is based on the spectral element method in the (x, y)-plane combined with Fourier
decomposition in the spanwise z-direction. A regular, structured quadrilateral mesh of
12 × 10 elements per corrugation wavelength in the streamwise and vertical directions,
respectively, was used. The mesh was generated using the GMSH package (Geuzaine
& Remacle 2009). Local element expansion uses six modes of the modified Jacobi
polynomial basis (Cantwell et al. 2011; Karniadakis & Sherwin 2013) combined with
Gauss–Lobatto–Legendre quadrature with six quadrature points in each direction.

Variation of solution in the spanwise direction is expressed as the Fourier expansion
truncated to M leading modes, i.e.

u(x, y, z, t) =
k=M∑

k=−M

ûk(x, y, t) eikβz, (2.7)

where the complex-valued amplitude function ûk satisfies conjugacy condition ûk = û∗
−k

and β is the spanwise wavenumber. The number of Fourier modes M used in analysis
of saturation states was selected by looking at modal energies – the ratio of energies of
the zeroth to the Mth (highest mode used in calculations) must be E0/EM > 1020. This
condition was met in the current study using the number of Fourier modes M in the
range M ∈ [31, 63]. Temporal discretization employed a second-order velocity-correction
scheme (Guermond & Shen 2003). The numerical accuracy used in this study has already
been demonstrated in Gepner & Floryan (2016), Yadav et al. (2017, 2018) and Gepner et al.
(2020), and both the spatial and temporal resolutions are more than sufficient to capture
both the hydrodynamic instabilities and the nonlinear saturation states past bifurcation
points.

3. Two-dimensional states

3.1. Long wavelength grooves
We start our analysis by first looking at stationary, 2-D solutions in the limit of long
corrugation wavelengths (α → 0) where an approximate analytical reasoning, similar to
the one of Mohammadi & Floryan (2012), can be applied. The first step is to regularize
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Sinusoidal channels

the flow domain defined by (2.1) using the following transformation:

ξ = αx,

η = y − S cos(αx).

}
(3.1)

Under this transformation field equation (2.2) obtains the form

α
∂u
∂ξ

+ F11
∂u
∂η

+ ∂v

∂η
= 0,

− ∂2u
∂η2 − F1

∂u
∂η

+ F2u
∂u
∂η

+ F3v
∂u
∂η

− F4
∂2u

∂ξ∂η
− F5

∂2u
∂ξ2

+ F6u
∂u
∂ξ

+ F6
∂p
∂ξ

+ F2
∂p
∂η

= 0,

− ∂2v

∂η2 − F1
∂v

∂η
+ F2u

∂v

∂η
+ F3v

∂v

∂η
− F4

∂2v

∂ξ∂η
− F5

∂2v

∂ξ2

+ F6u
∂v

∂ξ
+ F3

∂p
∂η

= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

subject to boundary conditions and pressure gradient constraint

u = 0 at η = ±1,

α
∂p
∂ξ

= − 2
Re

.

⎫⎬
⎭ (3.3)

Coefficients in the above equations are defined as

F1 = α2 S cos(ξ)

F7
, F2 = α Re

S sin(ξ)

F7
, F3 = Re

F7
,

F4 = 2α2 S sin(ξ)

F7
, F5 = α2

F7
, F6 = α

Re
F7

,

F7 = 1 + α2S2 sin2(ξ), F11 = αS sin(ξ).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.4)

The solution to (3.2) is represented in terms of power expansions of the form

u = u0 + αu1 + α2u2 + O(α2),

v = v0 + αv1 + α2v2 + O(α2),

p = α−1p−1 + p0 + α1p1 + O(α).

⎫⎪⎪⎬
⎪⎪⎭ (3.5)

Substituting (3.5) in to (3.2) and retaining terms of up to α2 leads to a sequence of
problems with the leading-order system of the form

−∂2u0

∂η2 + Re
∂p−1

∂ξ
= 0,

∂p−1

∂η
= 0,

∂v0

∂η
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)
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S.W. Gepner and J.M. Floryan

The next order system has the form

−∂2u1

∂η2 + Re S sin(ξ)u0
∂u0

∂η
+ Re v1

∂u0

∂η
+ Re u0

∂u0

∂ξ
+ Re

p0

∂ξ
= 0,

∂p0

∂η
= 0,

∂u0

∂ξ
+ S sin(ξ)

∂u0

∂η
+∂v1

∂η
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

Finally, the α2 system has the form

− ∂2u2

∂η2 + S cos(ξ)
∂u0

∂η
+ Re v2

∂u0

∂η
+ Re

p1

∂ξ

− S2 Re sin2(ξ)
p−1

∂ξ
+ S Re sin(ξ)

p1

∂η
= 0,

∂2v1

∂η2 + Re
∂p1

∂η
= 0,

∂v2

∂η
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.8)

The solution of (3.6) is

u0 = 1 − η2

1 + α2S2 ,

v0 = 0,

p−1 = − 2ξ

Re(1 + α2S2)
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.9)

to (3.7)
u1 = 0,

v1 = −sin(ξ)(1 − η2)

1 + α2S
,

p0 = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.10)

and (3.8)

u2 = −2 cos(ξ)(η − η3)

3(1 + α2S)
,

v2 = 0,

p1 = 2
Re(1 + α2S)

[
η sin(ξ) − Sξ + 1

2
S sin(2ξ)

]
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.11)

The approximate solution (3.5), (3.9)–(3.11) allows us to estimate hydraulic losses caused
by the corrugations. The flow rate can be evaluated as

Q = 4
3 (S2α2 + 1)−1 + O(α4) (3.12)

and reduces to the reference value of Qr = 4
3 when S → 0.
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Sinusoidal channels

3.1.1. Grooves with wavelength O(1)

The approximate analytical solution developed in § 3.1 demonstrates the existence of
a 2-D, stationary flow that follows the channel’s geometry and remains in phase with
the corrugation leading to a form of self-similarity of the flow. The notion of being in
phase comes down to the observation that the geometry of the channel is shift-symmetric
with respect to the horizontal axis (y = 0) with a shift equal to half of the corrugation
wavelength λα (see figure 2). Stationary flow solutions follow the wall geometry and
produce velocity fields that maintain the shift-symmetry, i.e. between consecutive top
and bottom grooves the vertical velocity component changes sign while the streamwise
velocity component remains the same. This property is preserved with a decrease of
the corrugation wavelength provided that the flow remains stationary. We shall consider
non-stationary solutions later in § 3.2.

With the distance between consecutive furrows being exactly half of the corrugation
wavelength λα , the self-similarity feature can be formalized as

u(x, η) = u(x + λα/2, −η),

v(x, η) = −v(x + λα/2, −η),

p(x, η) = p(x + λα/2, −η),

⎫⎪⎬
⎪⎭ (3.13)

with η = y − S cos(αx) being the same as defined in transformation (3.1). Figure 4 shows
two cases of stationary solutions that remain in phase with the corrugation and obey the
self-similarity rule (3.13). These flows correspond to Re = 900 and channel geometry
characterized by (α, S) = (1, 0.1) in figure 4(a) and (1, 0.25) in figure 4(b). A special
feature distinguishing those two flows is the formation of recirculation zones in the troughs
of the larger of the two corrugations.

We note that the onset and size of recirculation zones depends on the channel geometry,
i.e. the corrugation wavelength and amplitude, and on the flow conditions. Regardless of
the details of the channel geometry, the formation and evolution of the recirculation zone
with Re up to the limit of existence of the stationary flows remain qualitatively similar,
with differences being purely quantitative.

We will now discuss the characterization and the onset and evolution of recirculation
bubbles. Figure 5 illustrates changes to the recirculation region for a sequence of
geometries characterized by the corrugation wavenumber α = 3 at Re = 2100 and
increasing groove amplitude S. Initially, in the small amplitude limit, recirculation remains
small and unnoticeable. As the amplitude increases, recirculation appears and initially
occupies a small fraction of the groove located slightly upstream from the groove centre
as shown in figure 5(a). Further increase of the amplitude causes the separation bubble
to grow and occupy a larger fraction of the groove located slightly downstream of the
groove centre as shown in figure 5(b,c). For a fixed Reynolds number, the flow remains
stationary up to a certain (threshold) amplitude (figure 5a–c), above which the flow
undergoes transition to a time-dependent, oscillatory flow with a pulsating recirculation
zone, as shown in the snapshots displayed in figure 5(d).

We quantified the growth of the recirculation region for moderate and short wavelength
corrugations – the size of the recirculation zone was measured using recirculation bubble
height H at the groove centre (x = λα/2). Figure 6 illustrates variation of the ratio
of the recirculation height H and corrugation amplitude S shown as a function of Re
for α = 3 representing grooves with moderate wavelengths (figure 5a) and for α = 15
representing short wavelength grooves (figure 5b). For small corrugation amplitudes and
longer corrugation wavelengths the recirculation zone remains small, meaning that it fills
only a small fraction of the groove’s height. With the increase of the corrugation amplitude
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Figure 4. Streamlines (i) and isolines of the streamwise u (ii) and vertical v (iii) velocity component of the
developing recirculation zone for α = 1, Re = 900, at different groove amplitudes: (a) S = 0.1, (b) S = 0.25.
Both solutions remain in phase with the corrugation and obey the self-similarity rule (3.13). Computational
boxes containing one corrugation wavelength have been used to produce these results.

S = 0.07 S = 0.13 S = 0.19 S = 0.235

(b)(a) (c) (d )

Figure 5. Development of the recirculation region for α = 3 at Re = 2100 as a function of the groove
amplitude S. (a–c) Stationary solutions, (d) snapshots of the non-stationary flow.

the portion of the groove occupied by recirculation zone increases and asymptotically
approaches the limiting value of H/S = 2 as the Reynolds number is increased. In general,
geometries with shorter corrugation wavelengths lead to formation of recirculation regions
both at lower values of Re and at smaller corrugation amplitudes. As the corrugation
wavelength is increased, formation of the recirculation zones requires either a higher Re
or larger corrugation amplitudes. Variations of H/S with both the Reynolds number and
with the corrugation amplitude are not dissimilar for both cases illustrated in figure 5,
suggesting that for the particular corrugation geometry (fixed α) it is the ratio of the
corrugation amplitude S to the corrugation wavelength λα that is important for the
formation and growth of the recirculation region. Figure 7 demonstrates that the height
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Figure 6. Variations of the recirculation height H/S at the groove centre (x = λα/2) as a function of the
Reynolds number and the corrugation amplitude for (a) α = 3 and (b) α = 15.
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Figure 7. Variation of the recirculation height H as a function of the ratio of the groove amplitude S and
the corrugation wavelength λα . Shaded areas correspond to results obtained for a range of Reynolds numbers
Re ∈ (300, 2500).

of the recirculation zone follows an almost linear dependence on the S/λα ratio for the
range of Re considered in this study. At the same time, there seems to be a limiting ratio
around S/λα = 0.1 above which the onset of and monotonic growth of the recirculation
region is proportional to the S/λα ratio.

Grooves do not change the mean channel opening but their sinusoidal form forces the
flow to change direction, which results in the formation of recirculation regions and leads
to a decrease of the effective channel opening. Changes to the channel geometry and the
resulting changes of the flow topology result in changes to hydraulic properties of the flow.
Under the constant pressure gradient assumption, adopted in this work, those changes
are manifested as a change in the flow rate Q. On one hand, the onset of circulatory
motions dissipates energy from the main flow, while on the other hand its formation
results in the reduction of the effective cross-section flow area, as seen in figures 4 and
5, leading to an overall increase in hydraulic resistance. Variations of the flow rate Q,
expressed as a fraction of the reference flow rate Qr = 4/3, with the Reynolds number
are illustrated in figure 8 for the same corrugation wavelengths as used in figure 6. A
fivefold increase of the corrugation length does not result in a significant change of the
flow rate, which is also little affected by variations of the Reynolds number. The flow
deceleration is more pronounced when changing corrugation amplitude (marked by arrows
in figure 8). Comparison of changes in the height of the recirculation zone (see figure 6)
with variations of the flow rate (see figure 8) shows that a substantial change of the size
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Figure 8. Variation of the flow rate Q/Qr as a function of the Reynolds number for (a) α = 3 (b) α = 15.
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Figure 9. Variation of the flow rate Q normalized with the reference flow rate Qr, i.e. Q/Qr as a function of the
corrugation wavenumber α. Solid lines correspond to stationary DNS solutions obtained using computational
domains extending over a single corrugation wavelength (i.e. Lx = λα). The reader might note that some lines
end on the small α side as no stationary solution can be obtained for those cases – black dots identify limit
points. This effect is related to the relative size of the computational domain and the most unstable disturbance
wavelength and is discussed in § 4. Dashed lines in the insert correspond to approximate solution (3.12). Arrows
identify the increase of Re for each corrugation amplitude. The insert illustrates flow properties in the small α

range and indicates applicability of the approximate solution (3.12) for the evaluation of the flow rate.

of the recirculation zone with the Reynolds number has a small effect on the flow rate,
indicating little correlation between these two flow properties and pointing to the change
in the flow direction and narrowing of the cross-sectional area as reasons for increased
hydraulic losses.
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Figure 9 illustrates variations of the flow rate Q related to the reference quantity
Qr as a function of the corrugation wavenumber α. Results have been obtained using
computational domains spanning a single corrugation wavelength (i.e. Lx = λα) to limit
the computational cost and are limited to conditions giving rise to stationary flows, i.e. they
end at a limit point. The reader might note that the size of the computational domain,
equal to a single corrugation wavelength, acts as a filter and allows development of only
those flow features that are commensurate with this length. Consequently, non-stationary
states may be identified only when the computational box is long enough, as in the case
with the long wavelength corrugations. This effect is further discussed in § 4. The largest
impact of the corrugation wavelength on the stationary state flow rate is observed for
a range of moderate corrugation wavelengths (0.5 < α < 4), with this effect becoming
stronger with an increase of the corrugation amplitude and being marginally affected by
the Reynolds number. We note that from the perspective of the hydraulic resistance it is
the corrugation amplitude S that influences the change in the flow rate the most as it is
the main factor responsible for narrowing the effective cross-sectional area of the channel.
The insert in figure 9 illustrates the approach to the limit of α → 0 and provides means
for determination of the range of validity of analytic solution (3.12) (dashed lines). Since
the values of Q/Qr displayed in the insert change by only 3 %, it can be concluded that
the approximate analytical solution provides an acceptable accuracy for α < 0.1 or when
S < 0.04 and α < 0.5 for Reynolds numbers not exceeding 300.

3.2. Onset of the non-stationary flow
Variation of the channel geometry and/or increase of the Reynolds number may lead to a
non-stationary form of the flow. The critical condition for this transition can be determined
using the linear stability theory, which is discussed in § 4. The temporal flow variations
for conditions slightly above critical have the form of pumping-like time-periodic motion
of recirculation regions. We will demonstrate that flow under such conditions may either
maintain the same self-similarity as the stationary solution, i.e. it remains in phase with
the corrugation and follows (3.13), or it moves to be in antiphase with the corrugation, or
it assumes a form not correlated with the geometry entirely. The flow form depends on
the conduit geometry, the flow conditions and the size of the computational domain. We
examine velocity fluctuations at two test points located (x, y) = (λα/2, −1 − S + 0.005),
(x, y) = (λα, 1 + S − 0.005) for corrugation wavenumber α = 1, amplitudes S = 0.22
and 0.19 and the computational box containing a single corrugation – the solution is
stationary for Re = 1210 and Re = 1060. Time variation of velocity components displayed
in figure 10(a,b) demonstrates that the stationary solutions satisfy (3.13), follow the
geometry and are in phase with it. An increase of the Reynolds number to Re = 1230
for S = 0.19 and to Re = 1070 for S = 0.22 leads to transition to oscillatory flows with
characteristics illustrated in figure 10(c,d). The solution for S = 0.19 remains in phase
with the corrugation and obeys the self-similarity property (3.13) (see also figure 11).
Solution for S = 0.22 is in antiphase with geometry, i.e. fluctuations of the streamwise
velocity component u at consecutive grooves become shifted, while fluctuations of the
vertical velocity component v are synchronized with geometry (see also figure 12).

Snapshots of flow topologies for S = 0.19 at Re = 1230 (figure 11) and for S = 0.22 at
Re = 1070 (figure 12) illustrate the qualitative differences in the flow character. These
differences are underlined by the form of the perturbation velocity field obtained by
subtracting the undisturbed, stationary flow from the oscillatory one (figure 13). We note
that change in the flow temporal character is accompanied by a change in the spatial
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Figure 10. Time evolution of the streamwise u (a, c, e) and the vertical v (b, d, f ) velocity components at
test points located at (x, y) = (λα/2, −1 − S + 0.005) (solid lines) and (x, y) = (λα, 1 + S − 0.005) (dashed
lines). Plots in (a, b) show solutions that are stationary and in phase. Snapshots of velocity fields corresponding
to (c, d) are shown in figure 11 for S = 0.19 (non-stationary, in phase) and figure 12 for S = 0.22
(non-stationary, in antiphase). Computational boxes containing one corrugation wavelength were used in
(a)–(d). Results obtained for the same corrugation amplitude and wavenumber but using computational boxes
containing three corrugation wavelengths are displayed in (e, f ) – the oscillatory pattern is out of phase with
the corrugation pattern. Lower Reynolds numbers are required for transition to non-stationary solutions when
using a longer computational box.

character of perturbations, both in their size and magnitude. Details of the change are
to be examined in the next section using the linear stability techniques.

We now wish to comment on the fact that change of the length of the computational
box causes the oscillatory flow to be in general out of phase with the corrugation
pattern. The time history of velocity components displayed in figure 10(c,d) shows their
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Figure 11. Time snapshots of the oscillatory flow for α = 1, S = 0.19, Re = 1230 – streamlines (a) and
isolines of the streamwise u (b) and vertical v (c) velocity components. The solution remains in phase with the
corrugation and exhibits the self-similarity property (3.13). The time difference between snapshots is t = 11
time units and corresponds to the oscillatory pattern moving a distance of approximately half of the corrugation
wavelength λα in the streamwise direction. Computational boxes containing one corrugation wavelength have
been used.

synchronization with geometry but loss of synchronization in figure 10(e, f ) where the
length of the computational box was increased to contain three corrugation wavelengths.
The reader may note that Re required to initiate oscillatory flow decreased with an
increase of the length of the computational box. We note that the form of the observed,
non-stationary solutions that develop as the Reynolds number is increased depends on the
length of the computational domain – either in-phase or antiphase oscillatory solutions
may be obtained, depending on the length the computational box. The size of the
computational box acts as a filter, which allows development of only these flow features
which are commensurate with the box length Lx. Consequently, in a general case the
out-of-phase oscillations should be expected. Our results also indicate that for a given
geometry it should be possible to adjust parameters to obtain oscillations which can be
either in phase or in antiphase with geometry. The above results indicate the need to
examine the effect of the size of the computational box on the results of stability analysis.

4. The travelling wave instability

With an increase of the Reynolds number the flow transitions to a non-stationary,
oscillatory form. This transition is associated with the onset of unstable travelling
waves which can be examined using linear stability theory. In the following analysis
we shall consider stationary flow solutions obtained via long time iteration of the
non-stationary N–S solver as base flows, and use the linearization procedure outlined in
§ 2 in combination with the coupled linearized N–S solver using ARPACK (Lehoucq &
Sorensen 1997), periodically cross-checked with the time-stepping algorithm. It is known
that a diverging–converging channel is prone to the travelling wave instability (Floryan
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Figure 12. Time snapshots of the oscillatory flow for α = 1, S = 0.22, Re = 1070 – streamlines (a) and
isolines of the streamwise u (b) and vertical v (c) velocity component. Velocity fluctuations are in antiphase
with the corrugation and flow solution does not satisfy the self-similarity properties (3.13). The time difference
between snapshots is t = 4 time units and corresponds to the oscillatory pattern moving a distance of
approximately a quarter of the corrugation wavelength λα in the streamwise direction. Computational boxes
containing one corrugation wavelength have been used.

S = 0.19, Re = 1230 S = 0.22, Re = 1070

(b)(a)

Figure 13. Isolines of the vertical disturbance v-velocity component (solid lines, positive values; dashed
lines, negative values) for the same conditions as in figures 11 and 12. In (a), disturbances represent the
difference between the non-stationary solution for Re = 1230 and the stationary solution for 1210; in (b)
disturbances represent the difference between the non-stationary solution for Re = 1070 and the stationary
solution for Re = 1060. Computational boxes containing one corrugation wavelength have been used to produce
these results.

& Floryan 2010; Gepner & Floryan 2016). Flows in sinusoidal channels exhibit similar
response with the form of disturbances approaching the 2-D TS wave in the smooth conduit
limit with a well-defined critical wavenumber δc, i.e. disturbances which are either too
long or too short are attenuated. Starting from the classical value of δc ≈ 1.02 for the
smooth channel, the critical disturbances become shorter (δc increases) as the corrugation
amplitude increases, which can be explained by the channel becoming effectively narrower
due to blockage created by increasing corrugation amplitude. Since the method used in
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Figure 14. Variation of (a) the critical Reynolds number Recrit and (b) the critical wave frequency σr at the
onset of 2-D travelling waves as functions of the corrugation amplitude S for the corrugation wavenumber
α = 1 obtained using computational boxes containing n corrugation wavelengths. Results obtained using the
IBC method are represented using solid lines with label δc. The jump in the σr when using n = 1 corrugation
section results from the change in the wavelength of the most critical perturbation. This wavelength changes
from δ = α = 1 to δ = 2α = 2 with the increase of the corrugation amplitude.

this analysis captures only situations when an integer number of disturbance wavelengths
is contained in the computational domain, we vary the length of the computational
box to account for variations of δc. Consequently, when the geometry is defined by the
wavenumber α, we use a computational box containing n corrugation wavelengths which
permits us to capture waves with wavenumbers δ = mα/n where m = 1, 2, . . ..

Figure 14 shows critical conditions for the onset of travelling waves for corrugations with
α = 1 and different amplitudes. Computational boxes containing up to n = 10 corrugation
wavelengths were used. Decrease of Recrit with the corrugation amplitude is illustrated in
figure 14(a), and the corresponding variations of the critical wave frequency σr are shown
in figure 14(b). Results determined using the immersed boundary conditions (IBC) method
(Floryan 2002; Szumbarski 2002a; Husain, Floryan & Szumbarski 2009) were used for
comparison purposes and are identified using the δc symbol in both plots. The reader may
note that in the IBC formulation, Fourier expansions are used in both the streamwise and
spanwise direction (x and z) along with Chebyshev expansions in the transverse y-direction
coupled with the Tau method to enforce the no-slip and no-penetration conditions at the
walls. Consequently, this method is very effective for small corrugation amplitudes and
allows for the normal mode formulation that decouples wavenumber δ from the length
of the computational box by the introduction of an additional multiplier parameter into
the perturbation equation, thus allowing for variations of commensurate α and δ pairs
at the cost of doubling the size of the computational problem. This approach has been
applied, e.g. in Floryan (2007). On the other hand, the spectral element approach used
in the current work uses a standard mesh in the (x, y) plane and Fourier expansion in
the spanwise z-direction. This approach permits analysis of arbitrarily large corrugation
amplitudes, but the study of commensurate α, δ pairs in a way similar to the approach used
in the case of the IBC method is not possible since the numerical cost quickly becomes
prohibitive. Ultimately, boundary conditions remain the same for both methods, but in
the spectral element approach the x-periodicity is enforced by the periodic inflow/outflow
condition. We note that the difference in Recrit, as well as the corresponding value of σr,
obtained with the IBC and spectral element methods remains acceptable (see figure 14),
but care must be taken in choosing a computational domain of appropriate length. We shall
discuss this issue using the n = 1 case as an example.

Changing the length of the computational domain, by varying the number of corrugation
sections, allows capture of perturbation wavelengths λα that are commensurate with Lx.
This is manifested in figure 14(b) as a jump in the value of σr when n = 1 section
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S = 0.190, δ = α = 1 S = 0.22, δ = 2α = 2

(b)(a)

Figure 15. Topology of the least attenuated travelling wave determined for conditions leading to stationary
flows. Geometry is the same as in figure 13(a,b) and the flow conditions correspond to Re = 1060 in (a) and
Re = 1210 in (b) and are the same as those used in figure 10(a,b). Negative (positive) isolines of the vertical
velocity component v are identified using dashed (solid) lines and values range from −1 to 1. Computational
boxes containing one corrugation wavelength have been used.

is used. The reason for this jump is a change in the wavelength of the critical perturbation.
This wavelength decreases as the corrugation amplitude is increased, meaning that the
critical perturbations become shorter as the amplitude of the corrugation is increased.
Since the numerical method applied here fixes the length of the perturbation (or its
integer multiplicity m = 1, 2, 3 . . .) to the length of the computational domain Lx, only
perturbation with wavelength being exactly m = 1, 2, 3, . . . times shorter than the length
of the computational domain might be detected. For the case characterized by corrugation
wavenumber α = 1 at n = 1 sections the computational box is Lx = 2π, and consequently,
the available perturbations have lengths of 2π, π, 0.5π, etc., respectively. Since, for
the small corrugation amplitudes the critical perturbation is close to the most unstable
wave of the canonical Poiseuille flow (the wave number of the most unstable TS wave is
approximately δTS ≈ 1.02), waves of length 2π are initially detected as being the most
unstable. We note that fixing the length of the perturbation to the computational length
results from limitation of the method, while in reality, the length of the most critical wave
decreases continuously with corrugation amplitude. Consequently, with the increase of
the corrugation amplitude, the wavelength of the critical perturbation decreases and, once
corrugation amplitude is large enough, the most critical wave changes in a discontinuous
manner to the one that is twice shorter than the computational domain.

Topology of the disturbance velocity field for α = 1 is determined using computational
box containing one corrugation wavelength is illustrated in figure 15. The conditions used
in this figure were selected to illustrate the change of the critical wavenumber from δ = 1
(figure 13a for S = 0.190 at Re = 1060) to δ = 2 (figure 13b for S = 0.22 at Re = 1210)
with these parameters corresponding to oscillatory flows shown in figures 11 and 12. The
corresponding changes of the frequency σr are marked using black circles in figure 14(b).

Rather than presenting a detailed discussion of the dependence of stability properties
on the geometric and flow parameters, we present the critical stability characteristics of
the flow, i.e. we show variations of the critical Reynolds number Recrit as a function of the
corrugation amplitude S and wavenumber α (figure 16). These results were obtained using
computational boxes containing n = 1, 2, . . . corrugation wavelengths which constrains
variations of the critical disturbance wavenumber δc. Values of the critical Reynolds
number shown in figure 16 correspond to the lowest Re determined over all tested n for
a fixed (α, S) pair.

We note that for moderate corrugation wavenumbers increase in the corrugation
amplitude S leads to a decrease of the critical Reynolds number and that this decrease
might be substantial compared with the smooth reference channel. In the case of shorter
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Figure 16. Variations of the critical Reynolds number Recrit as a function of the corrugation amplitude S for
selected corrugation wavenumbers α. Computational boxes with different numbers of corrugation wavelengths
n were used to account for variations of the critical wave number δ with amplitude. Values displayed correspond
to the lowest computed Reynolds number for each (α, S, n) triple.

corrugation wavelengths, the character of variations changes as the critical Reynolds
number either plateaus or, surprisingly, increases as the corrugation amplitude increases.
This change can be explained by noting that the flow is driven by a constant pressure
gradient, so it slows down (Re decreases) as the corrugation amplitude is increased and
the effective conduit opening is decreased due to increase of the size of the recirculation
bubbles. As a result, the onset of the travelling waves for shorter corrugation wavelengths
requires larger Reynolds numbers.

5. Centrifugal vortices

The shape of channel walls causes the flow to turn periodically up and down creating
a centrifugal force field which may cause formation of a secondary flow in the form of
streamwise pairs of counter-rotating vortices leading to flow three-dimensionalization. The
vortices are stationary and maintain their position with respect to grooves. We use a linear
stability approach to investigate the onset of such states by tracking the time evolution of
perturbed base flows, while varying problem (α, S, β and Re) parameters. Amplification
rate, represented by σi, is recovered from the evolution history by monitoring the temporal
changes of the energy of a Fourier mode characterized by wavenumber β with the slope of
the growth curve yielding twice the growth rate σi. This instability mode is characterized
by a finite range of spanwise wavenumbers β as shown in figure 17(a,b) for corrugation
wavenumbers α = 3 and α = 8, respectively, and for selected amplitudes – it can be
seen that excessively narrow as well as excessively wide vortices are attenuated, and the
spanwise size of the vortices remains in approximately the same range with the change of
the corrugation wavelength and amplitude.

The influence of the corrugation amplitude S on the flow’s ability to amplify vortex
mode works in two ways as shown in figure 18(a,b) and for α = 3 and α = 8, respectively.
On one hand, the vortices can only exist if the corrugation amplitude is large enough
so that streamline curvature is large enough. On the other hand, excessive amplitude
leads to an increase of the size of the recirculation zone resulting in decrease of the
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Figure 17. Variations of the amplification rate σi for the vortex mode as a function of the spanwise wavenumber
β for selected corrugation amplitudes S and the Reynolds number Re for the corrugation wavenumbers (a) α =
3 and (b) α = 8.
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Figure 18. Variations of the maximum amplification rate σi for the vortex mode as a function of the
corrugation amplitude S for selected Reynolds numbers for the corrugation wave numbers (a) α = 3 and
(b) α = 8.

streamline curvature. An overview of the resulting critical conditions required for the
onset of vortices, displayed in figure 19, demonstrates destabilization potential at Reynolds
numbers as low as 500 if proper channel geometry is used.

Presence of two instability modes raises the question: Which of them will dominate
a particular flow? In general, an increase of the corrugation amplitude leads to
destabilization of the vortex mode at lower Reynolds numbers than the travelling wave
mode, making it effectively the dominant instability mechanism for a certain class
of geometries. Comparison of the critical conditions presented in figure 20 illustrates
an interesting relation between conditions required for the onset of travelling wave
and stationary vortices. The former one seems to dominate in the moderate range of
corrugation wavenumbers and for amplitudes above 0.1, while the latter one dominates
for a range of corrugation wavelengths but only when the corrugation amplitude reaches a
certain threshold for the range of Reynolds numbers considered in this analysis.

6. Nonlinear solutions and bifurcations

We shall now discuss the flow character for supercritical conditions for both types of
instability. As the instability modes are amplified to the point when nonlinear interactions
appear, the flow transitions to new forms. This process can be illustrated using a bifurcation
tree showing variations of the flow rate Q as a function of the Reynolds number. Such a tree
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Figure 19. Variations of the critical Reynolds number for the onset of the vortex mode as a function of the
corrugation amplitude for selected corrugation wavenumbers.
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Figure 20. Variations of the critical Reynolds number for the travelling wave (dashed lines) and vortex (solid
lines) modes as functions of the corrugation amplitude S and the wavenumber α. Squares on the horizontal
and vertical axes indicate geometries used for DNS computations. The isolines for specific values of Re were
created using quadratic spline interpolation.
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Figure 21. Bifurcation diagram displaying variations of the flow rate Q/Qr as a function of Re for channel
geometry with α = 1, S = 0.19. Computational boxes with n = 1 and n = 3 were used to capture travelling
waves appearing at Re = 1220 and Re = 876, respectively. Spanwise wavenumber β = 1.5 was used for the
vortex mode with this mode appearing below Re = 450. The circle marks the bifurcation point for streamwise
vortices, while crossed circles are used to mark Hopf bifurcations leading to the formation of travelling waves.
Dashed line results from extrapolation of the 2-D results.
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Figure 22. Time snapshot of the flow topology for α = 1, S = 0.19 at Re = 900 using computational box
with n = 3 illustrating 3-D oscillatory flow. (a) Isosurfaces of the x-vorticity component (Wx = ±0.5) and
(b) y-velocity component. Colours in the spanwise cuts illustrate variations of the streamwise velocity
component.

has been constructed for the corrugation wavenumber α = 1 and the amplitude S = 0.19
using computational boxes containing either n = 1 or n = 3 corrugation wavelengths with
their spanwise extend characterized by the spanwise wavenumber β = 1.5. Streamwise
vortices for such conditions appear already below Re = 450 and the travelling waves
appear at Re = 1220 using computational box with n = 1 and at Re = 876 using
computational box with n = 3. The overall critical Reynolds number for the travelling
waves was determined using computational boxes with up to n = 10 is Recrit = 864.

The bifurcation tree is displayed in figure 21. Initially, at low Re the flow maintains
a 2-D and stationary form. As Re increases the flow rate decreases monotonically.
The flow becomes oscillatory due to formation of travelling waves around Re ≈ 875
while maintaining two-dimensionality – its evolution follows one of the bifurcation
branches determined using computational boxes of different lengths. The qualitative
characterization of the oscillatory, 2-D flow character and its topology, once nonlinear
effects lead to saturation of the travelling wave instability, is given in § 3.2. Only two

972 A22-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.719


Sinusoidal channels

0

–1.0

–0.5

0.5

1.0

0

0.2 0.4 0.6
λβ/z

y

0.8
u

1.0

0

–1.0

–0.5

0.5

1.0

0

0.2 0.4 0.6

y

0.8 1.0

0

–1.0

–0.5

0.5

1.0

0

0.2 0.4 0.6

y

0.8 1.0

0.05 0.35 0.65

(b)

(a)

(c)

Figure 23. Streamwise velocity component (colour) and the spanwise and vertical velocity components
(arrows) at cuts taken at (a) λα/x = 0, (b) λα/x = 4/3 and (c) λα/x = 8/3 shown in figure 22(b). Conditions
same as in figure 22.

branches are shown in figure 21 with the corresponding bifurcation points marked
using crossed circles. The three-dimensionalization of the flow results from the onset of
stationary centrifugal mode at Re ≈ 450 and is marked in figure 21 using a circle. The 3-D
‘path’ results in a rapid decrease of the flow rate with Re indicating a rapid growth of flow
perturbations away from the base state, at least as far as this growth being measured by
changes of the flow rate. Increasing the length of the computational box to n = 3 and
allowing for flow three-dimensionalization, the solution follows the same path (as for
n = 1) until approximately Re = 870 where the 3-D travelling wave instability appears.
As a result, the flow undergoes a secondary (Hopf) bifurcation to another oscillatory form.
Topology of the flow corresponding to the 3-D oscillatory branch is illustrated in figures 22
and 23, showing a single time snapshot of the flow field obtained at Re = 900 using
a computational box with n = 3. We note that at the considered value of the Reynolds
number, which is marginally supercritical with respect to the travelling wave instability,
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the flow features a mild time-dependant component, which seems to be limited to relatively
small, pumping-like motions inside the grooves and not unlike those presented in § 3.2.
Presence of streamwise vortices is illustrated by means of the isosurfaces of x-vorticity
ωx = ±0.5 in figure 22(a) and with in-plane velocity components illustrated with arrows
in figure 23. Isosurfaces of the vertical velocity component v associated with the 3-D
flow structures are shown in figure 22(b) along with spanwise slices, taken at λα/x = 0,
λα/x = 4/3 and λα/x = 8/3 and coloured according to the distribution of the streamwise
velocity component. Those slices are illustrated in figure 23 and show that the onset of
centrifugal vortices results in the appearance of an additional in-plane velocity, which
modifies the distribution of vertical velocity resulting from channel curvature and leads
to modulation of the spanwise distribution of the streamwise velocity component, which
could potentially lead to a type of instability not dissimilar to the one studied by Yadav
et al. (2017).

7. Conclusions

Flows through wavy sinusoidal channels driven by a constant pressure gradient have
been analysed. Our results demonstrate the formation of several flow types ranging from
stationary 2-D and 3-D flows to time-dependent oscillatory flows, which can be either in
or out of phase with the corrugations, and could be either 2-D or 3-D. The characters of
these flows have been examined using linear stability theory. Two types of unstable modes
have been identified. The first mode has the form of a downstream travelling wave, and
the second mode has the form of a stationary streamwise vortex. The vortices are formed
in the section of the channel where the stream impinging on the wall is forced to change
direction. The overall flow stability diagram has been determined. Results of the linear
stability analysis indicate that for a broad range of geometries, the critical value of the
Reynolds number required for the onset of the shear driven, travelling wave instability
is decreased compared with the canonical plane Poiseuille flow. At the same time the
stationary, 3-D vortices may appear at much lower values of the Reynolds numbers than the
shear-driven travelling wave mode, provided proper geometrical configuration is selected.
For such geometries, this makes stationary vortices the critical form of instability, capable
of changing the flow topology long before the shear driven waves may be detected. While
the onset of stationary vortices leads to flow three-dimensionalization, we have shown
that it is possible for the 2-D travelling wave to create the secondary Hopf bifurcation
of the solution which already involves streamwise vortices, leading to a form of the flow
involving a combination of the two states.
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