Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T04:51:17.122Z Has data issue: false hasContentIssue false

Cumulative exposure to fast speech conditions duration of content words in English

Published online by Cambridge University Press:  21 July 2023

Earl Kjar Brown*
Affiliation:
Brigham Young University, USA
*

Abstract

This paper tests the idea that the speech rate with which surrounding words are spoken affects the mental representation of words and conditions production of words. This possibility is operationalized by measuring a word's ratio of occurrence in speaker-relative fast speech. Other variables shown in the literature to influence speech rate are controlled for in a 10,000-iteration bootstrapping procedure of a mixed-effect linear regression model. The results of the analysis of 39,397 tokens of content words from 1,232 word types in English display a significant effect for a word's ratio of conditioning in speaker-relative fast speech, although the effect size is small or very small. Other variables shown in the literature to condition speech rate also significantly condition speech rate here. This paper suggests that in addition to other aspects of the context of use of words, contextual speech rate also influences the mental representation of words.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aylett, Matthew, & Turk, Alice. (2006). Language redundancy predicts syllabic duration and the spectral characteristics of vocalic syllable nuclei. The Journal of the Acoustical Society of America 119(5 Pt 1):30483058. https://doi.org/10.1121/1.2188331CrossRefGoogle ScholarPubMed
Bates, Douglas, Mächler, Martin, Bolker, Ben, & Walker, Steve. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1):148. https://doi.org/10.18637/jss.v067.i01CrossRefGoogle Scholar
Bell, Alan, Brenier, Jason M., Gregory, Michelle, Girand, Cynthia, & Jurafsky, Daniel. (2009). Predictability effects on durations of content and function words in conversational English. Journal of Memory and Language 60(1):92111.10.1016/j.jml.2008.06.003CrossRefGoogle Scholar
Borrie, Stephanie A., & Liss, Julie M. (2014). Rhythm as a coordinating device: Entrainment with disordered speech. Journal of Speech, Language, and Hearing Research 57(3):815824. (doi:10.1044/2014_JSLHR-S-13-0149)CrossRefGoogle ScholarPubMed
Box, George Edward Pelham, & Cox, David Roxbee. (1964). An analysis of transformations. Journal of the Royal Statistical Society, Series B 26(2):211252.Google Scholar
Brown, Earl K. (2009). A usage-based account of syllable- and word-final /s/ reduction in four dialects of Spanish. Munich: Lincom Europa.10.1515/shll-2009-1047CrossRefGoogle Scholar
Brown, Earl K. (2018). The company that word-boundary sounds keep: The effect of contextual ratio frequency on word-final /s/ in a sample of Mexican Spanish. In Smith, K. A. & Nordquist, D. (eds.), Functionalist and usage-based approaches to the study of language: In honor of Joan L. Bybee (Studies in Language Companion Series 192). Amsterdam: John Benjamins. 107125. https://doi.org/10.1075/slcs.192.05broCrossRefGoogle Scholar
Brown, Earl Kjar. (2020). The effect of forms’ ratio of conditioning on word-final /s/ voicing in Mexican Spanish. Languages 5(4):no. 61. https://doi.org/10.3390/languages5040061CrossRefGoogle Scholar
Brown, Earl K., & Alba, Matthew C. (2017). The role of contextual frequency in the articulation of initial /f/ in Modern Spanish: The same effect as in the reduction of Latin /f/? Language Variation and Change 29(1):5778. https://doi.org/10.1017/S0954394517000059CrossRefGoogle Scholar
Brown, Esther L. (2004). The reduction of syllable initial /s/ in the Spanish of New Mexico and southern Colorado: A usage-based approach. Doctoral dissertation, University of New Mexico.Google Scholar
Brown, Esther L. (2015). The role of discourse context frequency in phonological variation: A usage-based approach to bilingual speech production. International Journal of Bilingualism 19(4):387406.10.1177/1367006913516042CrossRefGoogle Scholar
Brown, Esther L. (2018). Cumulative exposure to phonetic reducing environments marks the lexicon. In Smith, K. A. & Nordquist, D. (eds.), Functionalist and usage-based approaches to the study of language: In honor of Joan L. Bybee (Studies in Language Companion Series 192). Amsterdam: John Benjamins. 127153.CrossRefGoogle Scholar
Brown, Esther L., & Raymond, William. D. (2012). How discourse context shapes the lexicon: Explaining the distribution of Spanish f-/h words. Diachronica 29(2):139161. https://doi.org/10.1075/dia.29.2.02broCrossRefGoogle Scholar
Brown, Esther L., Raymond, William D., Brown, Earl Kjar, & File-Muriel, Richard J. (2021). Lexically specific accumulation in memory of word and segment speech rates. Corpus Linguistics and Linguistic Theory 17(3):625651. (doi:10.1515/cllt-2020-0016)CrossRefGoogle Scholar
Brysbaert, Marc, & Diependaele, Kevin. (2013). Dealing with zero word frequencies: A review of the existing rules of thumb and a suggestion for an evidence-based choice. Behavior Research Methods 45(2):422430. https://doi.org/10.3758/s13428-012-0270-5CrossRefGoogle Scholar
Bybee, Joan. (2001). Phonology and language use. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bybee, Joan. (2002). Word frequency and context of use in the lexical diffusion of phonetically conditioned sound change. Language Variation and Change 14:261290. https://doi.org/10.1017/S0954394502143018CrossRefGoogle Scholar
Bybee, Joan. (2006). From usage to grammar: The mind's response to repetition. Language 82(4):711733.CrossRefGoogle Scholar
Bybee, Joan. (2010). Language, usage and cognition. Cambridge: Cambridge University Press.10.1017/CBO9780511750526CrossRefGoogle Scholar
Bybee, Joan, & De Souza, Napoleão, Ricardo. (2019). Vowel duration in English adjectives in attributive and predicative constructions. Language and Cognition 11(4):555581. https://doi.org/10.1017/langcog.2019.32CrossRefGoogle Scholar
Bybee, Joan, & De Souza, Napoleão, Ricardo. (2021). The role of frequency and predictability in the formation of multi-word expressions. In Trklja, A. & Grabowski, Ł. (eds.), Formulaic language: Theories and methods. Berlin: Language Sciences Press. 329.Google Scholar
Cohen, Jacob. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
Cohen Priva, Uriel. (2017). Not so fast: Fast speech correlates with lower lexical and structural information. Cognition 160:2734. https://doi.org/10.1016/j.cognition.2016.12.002CrossRefGoogle ScholarPubMed
Cohen Priva, Uriel, Edelist, Lee, & Gleason, Emily. (2017). Converging to the baseline: Corpus evidence for convergence in speech rate to interlocutor's baseline. The Journal of the Acoustical Society of America 141(5):29892996. https://doi.org/10.1121/1.4982199CrossRefGoogle Scholar
Du Bois, John W., Chafe, Wallace L., Meyer, Charles, Thompson, Sandra A., & Martey, Nii. (2003). Santa Barbara Corpus of Spoken American English (Vol. 2). Philadelphia: Linguistic Data Consortium.Google Scholar
Eddington, David, & Channer, Caitlin. (2010). American English has go? A lo? Of glottal stops: Social diffusion and linguistic motivation. American Speech 85(3):338351.CrossRefGoogle Scholar
Egbert, Jesse, & Plonsky, Luke. (2020). Bootstrapping techniques. In Paquot, M. & Gries, S. (eds.), A practical handbook of corpus linguistics. Cham, Switzerland: Springer International Publishing. 593610. (doi:10.1007/978-3-030-46216-1_24)CrossRefGoogle Scholar
Erman, Britt, & Warren, Beatrice. (2000). The idiom principle and the open choice principle. Text 20(1):2962.Google Scholar
Fletcher, Janet. (2010). The prosody of speech: Timing and rhythm. In Hardcastle, W. J., Laver, J. & Gibbon, F. E. (eds.), The handbook of phonetic sciences (2nd ed.). Hoboken, NJ: Wiley. 521602.10.1002/9781444317251.ch15CrossRefGoogle Scholar
Forrest, Jon. (2017). The dynamic interaction between lexical and contextual frequency: A case study of (ING). Language Variation and Change 29(2):129156. http://dx.doi.org/10.1017/S0954394517000072CrossRefGoogle Scholar
Fox, John, & Weisberg, Sanford. (2019). An R companion to applied regression (3rd ed.). Thousand Oaks, CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/Google Scholar
Freud, Debora, Ezrati-Vinacour, Ruth, & Amir, Ofer. (2018). Speech rate adjustment of adults during conversation. Journal of fluency disorders 57:110.CrossRefGoogle ScholarPubMed
Gahl, Susanne. (2008). Time and thyme are not homophones: The effect of lemma frequency on word durations in spontaneous speech. Language 84(3):474496.10.1353/lan.0.0035CrossRefGoogle Scholar
Godfrey, John J., Holliman, Edward C., & McDaniel, Jane. (1992). SWITCHBOARD: Telephone speech corpus for research and development. Proceedings of the 1992 IEEE International Conference on Acoustics, Speech and Signal Processing - Volume 1, 517520.CrossRefGoogle Scholar
Gregory, Michelle L., Raymond, William D., Bell, Alan, Fosler-Lussier, Eric, & Jurafsky, Daniel. (1999). The effects of collocational strength and contextual predictability in lexical production. Proceedings of the 35th Annual Meeting of the Chicago Linguistic Society. 151166.Google Scholar
Gries, Stefan Th. (2013). Statistics for linguistics with R: A practical introduction (2nd ed.). Berlin: De Gruyter Mouton.CrossRefGoogle Scholar
Jacewicz, Ewa, Fox, Robert Allen, & Wei, Lai. (2010). Between-speaker and within-speaker variation in speech tempo of American English. The Journal of the Acoustical Society of America 128(2):839850. https://doi.org/10.1121/1.3459842CrossRefGoogle ScholarPubMed
Jurafsky, Daniel, Bell, Alan, Gregory, Michelle, & Raymond, William D. (2001). Probabilistic relations between words: Evidence from reduction in lexical production. In Bybee, J. & Hopper, P. (eds.), Frequency and the Emergence of Linguistic Structure. Amsterdam: John Benjamins. 229254.CrossRefGoogle Scholar
Kaźmierski, Kamil. (2020). Prevocalic t-glottaling across word boundaries in Midland American English. Laboratory Phonology: Journal of the Association for Laboratory Phonology 11(1):13. https://doi.org/10.5334/labphon.271CrossRefGoogle Scholar
Kleiman, Evan. (2021). EMAtools: data management tools for real-time monitoring/ecological momentary assessment data (0.1.4) [Computer software]. https://CRAN.R-project.org/package=EMAtoolsGoogle Scholar
Kuznetsova, Alexandra, Brockhoff, Per B., & Christensen, Rune H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software 82(13):126. https://doi.org/10.18637/jss.v082.i13CrossRefGoogle Scholar
Labov, William. (1984). Field methods of the Project on Linguistic Change and Variation. In Baugh, J. & Sherzer, J. (eds.), Language in use: Readings in sociolinguistics. Englewood Cliffs, NJ: Prentice Hall. 2853.Google Scholar
Lehiste, Ilse. (1970). Suprasegmentals. Cambridge, MA: MIT Press.Google Scholar
Levshina, Natalia. (2015). How to do linguistics with R: Data exploration and statistical analysis. Amsterdam: John Benjamins.CrossRefGoogle Scholar
Lison, Pierre, & Tiedemann, Jörg. (2016). OpenSubtitles2016: Extracting large parallel corpora from movie and TV subtitles. Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC 2016). http://opus.nlpl.eu/OpenSubtitles-v2018.php.Google Scholar
Nash, John C. (2014). On best practice optimization methods in R. Journal of Statistical Software 60(2):114. https://doi.org/10.18637/jss.v060.i02CrossRefGoogle Scholar
Nash, John C., & Varadhan, Ravi. (2011). Unifying optimization algorithms to aid software system users: Optimx for R. Journal of Statistical Software 43(9):114. https://doi.org/10.18637/jss.v043.i09CrossRefGoogle Scholar
Pépiot, Erwan. (2014). Male and female speech: a study of mean f0, f0 range, phonation type and speech rate in Parisian French and American English speakers. Speech Prosody 7. 305309. https://shs.hal.science/halshs-00999332 10.21437/SpeechProsody.2014-49CrossRefGoogle Scholar
Pierrehumbert, Janet B. (2001). Exemplar dynamics: Word frequency, lenition and contrast. In Bybee, J. & Hopper, P. (eds.), Frequency and the emergence of linguistic structure. Amsterdam: John Benjamins. 137157.CrossRefGoogle Scholar
Pierrehumbert, Janet B. (2002). Word-specific phonetics. In Gussenhoven, C. & Warner, N. (eds.), Laboratory Phonology 7. Berlin: Mouton de Gruyter. 101139.CrossRefGoogle Scholar
Pierrehumbert, Janet B. (2003). Probabilistic phonology: Discrimination and robustness. In Bod, R., Hay, J. & Jannedy, S. (eds.), Probabilistic linguistics. Cambridge, MA: The MIT Press. 177228.CrossRefGoogle Scholar
Pitt, M. A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume, E., & Fosler-Lussier, E. (2007). Buckeye corpus of conversational speech (2nd ed.). Department of Psychology, Ohio State University. https://buckeyecorpus.osu.edu/Google Scholar
Pluymaekers, Mark, Ernestus, Mirjam, & Baayen, R. Harald. (2005a). Articulatory planning is continuous and sensitive to informational redundancy. Phonetica 62(2–4):146159. https://doi.org/10.1159/000090095CrossRefGoogle ScholarPubMed
Pluymaekers, Mark, Ernestus, Mirjam, & Baayen, R. Harald. (2005b). Lexical frequency and acoustic reduction in spoken Dutch. The Journal of the Acoustical Society of America 118(4):25612569.CrossRefGoogle ScholarPubMed
R Core Team. 2022. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing (v. 4.2.2) [Computer software]. https://www.R-project.org/Google Scholar
Sawilowsky, Shlomo S. (2009). New effect size rules of thumb. Journal of Modern Applied Statistical Methods 8(2):597599. https://doi.org/10.22237/jmasm/1257035100CrossRefGoogle Scholar
Schneider, Ulrike. (2020). ΔP as a measure of collocation strength: Considerations based on analyses of hesitation placement in spontaneous speech. Corpus Linguistics and Linguistic Theory 16(2):249274. https://doi.org/10.1515/cllt-2017-0036Google Scholar
Segalowitz, S. J., & Lane, K. C. (2000). Lexical access of function versus content words. Brain and Language 75(3):376389. https://doi.org/10.1006/brln.2000.2361CrossRefGoogle ScholarPubMed
Seyfarth, Scott. (2014). Word informativity influences acoustic duration: Effects of contextual predictability on lexical representation. Cognition 133(1):140155. https://doi.org/10.1016/j.cognition.2014.06.013CrossRefGoogle ScholarPubMed
Seyfarth, Scott. (2018). Classes and iterators for the Buckeye Corpus (v. 1.3) [Computer software]. https://github.com/scjs/buckeye/Google Scholar
Sóskuthy, Márton, & Hay, Jennifer. (2017). Changing word usage predicts changing word durations in New Zealand English. Cognition 166:298313. https://doi.org/10.1016/j.cognition.2017.05.032CrossRefGoogle ScholarPubMed
Tagliamonte, Sali. (2006). Analysing sociolinguistic variation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Van Borsel, John, & De Maesschalck, Dorothy. (2008). Speech rate in males, females, and male-to-female transsexuals. Clinical Linguistics & Phonetics 22(9):679685. (doi:10.1080/02699200801976695)CrossRefGoogle ScholarPubMed
Wedel, Andrew B. 2004. Self-organization and categorical behavior in phonology. Doctoral dissertation, University of California—Santa Cruz.Google Scholar
Wedel, Andrew B. (2006). Exemplar models, evolution and language change. The Linguistic Review 23(3):247274. (doi:10.1515/TLR.2006.010)CrossRefGoogle Scholar
Wynn, Camille J., Barrett, Tyson S., & Borrie, Stephanie A. 2022. Rhythm perception, speaking rate entrainment, and conversational quality: A mediated model. Journal of Speech, Language and Hearing Research 65(6):21872203.CrossRefGoogle ScholarPubMed
Wynn, Camille J., Borrie, Stephanie A., & Sellers, Tyra P. (2018). Speech rate entrainment in children and adults with and without autism spectrum disorder. American Journal of Speech-Language Pathology 27(3):965974. (doi:10.1044/2018_AJSLP-17-0134)CrossRefGoogle ScholarPubMed
Supplementary material: Image

Brown supplementary material

Brown supplementary material 1

Download Brown supplementary material(Image)
Image 149.8 MB
Supplementary material: Image

Brown supplementary material

Brown supplementary material 2

Download Brown supplementary material(Image)
Image 149.8 MB
Supplementary material: File

Brown supplementary material

Brown supplementary material 3

Download Brown supplementary material(File)
File 39.4 KB