
TPLP 24 (4): 698–715, 2025. c© The Author(s), 2025. Published by Cambridge University

Press. This is an Open Access article, distributed under the terms of the Creative Commons

Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted

re-use, distribution and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068424000334

698

Symbolic Parameter Learning in Probabilistic
Answer Set Programming

DAMIANO AZZOLINI
Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy

(e-mail: damiano.azzolini@unife.it)

ELISABETTA GENTILI
Department of Engineering, University of Ferrara, Ferrara, Italy

(e-mail: elisabetta.gentili1@unife.it)

FABRIZIO RIGUZZI
Department of Mathematics and Computer Science, University of Ferrara, Ferrara, Italy

(e-mail: fabrizio.riguzzi@unife.it)

submitted 7 August 2024; accepted 13 September 2024

Abstract

Parameter learning is a crucial task in the field of Statistical Relational Artificial Intelligence:
given a probabilistic logic program and a set of observations in the form of interpretations, the
goal is to learn the probabilities of the facts in the program such that the probabilities of the
interpretations are maximized. In this paper, we propose two algorithms to solve such a task
within the formalism of Probabilistic Answer Set Programming, both based on the extraction
of symbolic equations representing the probabilities of the interpretations. The first solves the
task using an off-the-shelf constrained optimization solver while the second is based on an
implementation of the Expectation Maximization algorithm. Empirical results show that our
proposals often outperform existing approaches based on projected answer set enumeration in
terms of quality of the solution and in terms of execution time.

Keywords: probabilistic answer set programming, statistical relational artificial intelligence,
parameter learning, optimization

1 Introduction

Statistical Relational Artificial Intelligence (StarAI) (Raedt et al., 2016) is a subfield

of Artificial Intelligence aiming at describing complex probabilistic domains with inter-

pretable languages. Such languages are, for example, Markov Logic Networks (Richardson

and Domingos, 2006), Probabilistic Logic Programs (De Raedt et al., 2007; Riguzzi,

2022), and Probabilistic Answer Set Programs (Cozman and Mauá, 2020). Here, we

focus on the last. Within StarAI, there are many problems that can be considered such

as probabilistic inference, MAP inference, abduction, parameter learning, and structure

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334
https://orcid.org/0000-0002-7133-2673
mailto:damiano.azzolini@unife.it
https://orcid.org/0009-0006-6901-0540
mailto:elisabetta.gentili1@unife.it
https://orcid.org/0000-0003-1654-9703
mailto:fabrizio.riguzzi@unife.it
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068424000334&domain=pdf
https://doi.org/10.1017/S1471068424000334

Symbolic Parameter Learning 699

learning. In particular, the task of parameter learning requires, given a probabilistic logic

program and a set of observations (often called interpretations), tuning the probabilities

of the probabilistic facts such that the likelihood of the observation is maximized. This

is often solved by means of Expectation Maximization (EM) (Bellodi and Riguzzi, 2013;

Dries et al., 2015; Azzolini et al., 2024) or Gradient Descent (Gutmann et al., 2008).

Recently, Azzolini and Riguzzi (2021) proposed to extract a symbolic equation for the

probability of a query posed to a probabilistic logic program. From that equation, it is

possible to model and solve complex constrained problems involving the probabilities of

the facts (Azzolini, 2023).

In this paper, we propose two algorithms to learn the parameters of probabilistic

answer set programs. Both algorithms are based on the extraction of symbolic equations

from a compact representation of the interpretations, but they differ in how they solve

the problem. The first casts parameter learning as a nonlinear constrained optimization

problem and leverages off-the-shelf solvers, thus bridging the area of probabilistic answer

set programming with constrained optimization, while the second solves the problem

using EM. Empirical results, also against an existing tool to solve the same task, on four

different datasets with multiple configurations show the proposal based on constrained

optimization is often significantly faster and more accurate w.r.t. the other approaches.

The paper is structured as follows: Section 2 discusses background knowledge, Section 3

proposes novel algorithms to solve the parameter learning task, that are tested in

Section 5. Section 4 surveys related works and Section 6 concludes the paper.

2 Background

An answer set program is composed by a set of normal rules of the form

h :− b0, . . . , bm, not c0, . . . , not cn where h, the bis, and the cis are atoms . h is called

head while the conjunction of literals after the “:−” symbol is called body . A rule without

a head is called constraint while a rule without a body is called fact . The semantics of

an answer set program is based on the concept of stable model (Gelfond and Lifschitz,

1988), often called answer set . The set of all possible ground atoms for a program P is

called Herbrand base and denoted with BP . The grounding of a program P is obtained

by replacing variables with constants in BP in all possible ways. An interpretation is a

subset of atoms of BP and it is called model if it satisfies all the groundings of P . An

answer set I of P is a minimal model under set inclusion of the reduct of P w.r.t. I,

where the reduct w.r.t. I is obtained by removing from P the rules whose body is false

in I.

2.1 Probabilistic answer set programming

We consider the Credal Semantics (CS) (Lukasiewicz, 2005; Cozman and Mauá, 2016;

Mauá and Cozman, 2020) that associates a meaning to Answer Set Programs extended

with probabilistic facts (De Raedt et al., 2007) of the form p :: a where p is the probability

associated with the atom a. Intuitively, such notation means that the fact a is present in

the program with probability p and absent with probability 1− p. These programs are

called Probabilistic Answer Set Programs (PASP, and we use the same acronym to also

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

D. Azzolini et al.700

indicate Probabilistic Answer Set Programming – the meaning will be clear from the

context). A selection for the presence or absence of each probabilistic fact defines a world

w whose probability is P (w) =
∏

a∈w p ·∏a �∈w(1− p), where with a∈w we indicate that

a is present in w and with a �∈w that a is absent in w. A program with n probabilistic

facts has 2n worlds. Let us indicate with W the set of all possible worlds. Each world is

an answer set program and it may have zero or more answer sets but the CS requires at

least one. If this holds, the probability of a query q (a conjunction of ground literals) is

defined by a lower and an upper bound. A world w contributes to both the lower and

upper probability if each of its answer sets contains the query, that is it is a cautious

consequence. If only some answer sets contain the query, that is it is a brave consequence,

w only contributes to the upper probability. If the query is not present, we have no

contribution to the probability bounds from w. In formulas,

P (q) = [P (q), P (q)] = [
∑

wi∈W |∀m∈AS(wi), m|=q

P (wi),
∑

wi∈W |∃m∈AS(wi), m|=q

P (wi)]. (1)

The conditional probability of a query q given evidence e, also in the form of conjunction

of ground literals, is (Cozman and Mauá, 2020):

P (q | e) = P (q, e)

P (q, e) + P (not q, e)
, P (q | e) = P (q, e)

P (q, e) + P (not q, e)
. (2)

For the lower conditional probability P (q | e), if P (q, e) + P (not q, e) = 0 and P (q, e)> 0,

then P (q | e) = 1. Similarly, for the upper conditional probability P (q | e), if P (q, e) +

P (not q, e) = 0 and P (not q, e)> 0, then P (q | e) = 0. Both formulas are undefined if

P (q, e) and P (not q, e) are 0.

To clarify, consider the following example.

Example 1.

The following PASP encodes a simple graph reachability problem.

0.2:: edge (1,2).

0.3:: edge (2,4).

0.9:: edge (1,3).

path(X,Y):- connected(X,Z), path(Z,Y).

path(X,Y):- connected(X,Y).

connected(X,Y):- edge(X,Y), not nconnected(X,Y).

nconnected(X,Y):- edge(X,Y), not connected(X,Y).

The first three facts are probabilistic. The rules state that there is a path between X

and Y if they are directly connected or if there is a path between Z and Y and X and

Z are connected. Two nodes may or may not be connected if there is an edge between

them. There are 23 = 8 worlds to consider, listed in Table 1. If we want to compute the

probability of the query q= path(1, 4), only w6 and w7 contribute to the upper bound

(no contribution to the lower bound), obtaining P (q) = [0, 0.06]. If we observe

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

Symbolic Parameter Learning 701

Table 1. Worlds and their probabilities for Example 1. The second, third,
and fourth columns contain 0 or 1 if the corresponding probabilistic fact is

respectively false or true in the considered world. The LP/UP column
indicates whether the considered world contributes to the lower (LP) or
upper (UP) bound (or does not contribute, marked with a dash) for the

probability of the query path(1, 4)

wid edge(1, 2) edge(2, 4) edge(1, 3) LP/UP Probability

w0 0 0 0 – 0.056
w1 0 0 1 – 0.504
w2 0 1 0 – 0.024
w3 0 1 1 – 0.216
w4 1 0 0 – 0.014
w5 1 0 1 – 0.126
w6 1 1 0 UP 0.006
w7 1 1 1 UP 0.054

e= edge(2, 4), we get P (q, e) = [0, 0.06], P (not q, e) = [0.24, 0.3], thus P (q | e) = 0 and

P (q | e) = 0.2.

Inference in PASP can be expressed as a Second Level Algebraic Model Counting

Problem (2AMC) (Kiesel et al., 2022). Given a propositional theory T where its

variables are grouped into two disjoint sets, Xo and Xi, two commutative semirings

Ri = (Di,⊕i,⊗i, n⊕i , n⊗i) and Ro = (Do,⊕o,⊗o, n⊕o , n⊗o), two weight functions, wi :

lit(Xi)→Di and wo : lit(Xo)→Do, and a transformation function f :Di →Do, 2AMC

is encoded as:

2AMC(T) =
⊕o

Io∈μ(Xo)

⊗o

a∈Io
wo(a)⊗o f(

⊕i

Ii∈ϕ(T |Io)

⊗i

b∈Ii
wi(b))

where ϕ(T | Io) is the set of assignments to the variables in Xi such that each assignment,

together with Io, satisfies T and μ(Xo) is the set of possible assignments to the variables

in Xo. In other words, 2AMC requires to solve two Algebraic Model Counting (AMC)

(Kimmig et al., 2017) tasks. The outer task focuses on the variables Xo, and for each pos-

sible assignment to these variables, an inner AMC task is performed by considering Xi.

These two tasks are connected via a transformation function that turns values from the

inner task into values for the outer task. Different instantiations of the components allow

different tasks to be represented. To perform inference in PASP, Azzolini and Riguzzi

(2023a) proposed to consider as innermost semiring Ri = (N2,+, ·, (0, 0), (1, 1)) with Xi

containing the atoms of the Herbrand base except the probabilistic facts and wi mapping

not q to (0, 1) and all other literals to (1, 1), as outer semiring the two-dimensional prob-

ability semiring, that is, Ro = ([0, 1]2,+, ·, (0, 0), (1, 1)), with Xo containing the atoms of

the probabilistic facts and wo associating (p, p) and (1− p, 1− p) to a and not a, respec-

tively, for every probabilistic fact p :: a and (1, 1) to all the remaining literals, and as

transformation function f((n1, n2)) returning the pair (vlp, vup) where vlp = 1 if n1 = n2,

0 otherwise, and vup = 1 if n1 > 0, 0 otherwise.

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

D. Azzolini et al.702

2AMC can be solved via knowledge compilation (Darwiche and Marquis, 2002), often

adopted in probabilistic logical settings, since it allows us to compactly represent the

input theory with a tree or graph and then computing the probability of a query by

traversing it. aspmc (Eiter et al., 2021, 2024) is one such tool, that has been proven

more effective than other tools based on alternative techniques such as projected answer

set enumeration (Azzolini et al., 2022; Azzolini and Riguzzi, 2023a). aspmc converts the

input theory into a negation normal form (NNF) formula, a tree where each internal node

is labeled with either a conjunction (and-node) or a disjunction (or-node), and leaves are

associated with the literals of the theory. More precisely, aspmc targets sd-DNNFs which

are NNFs with three additional properties: (i) the variables of children of and-nodes are

disjoint (decomposability property); (ii) the conjunction of any pair of children of or-

nodes is logically inconsistent (determinism property); and (iii) children of an or-node

consider the same variables (smoothness property). Furthermore, aspmc also requires

X-firstness (Kiesel et al., 2022), a property that constraints the order of appearance of

variables: given two disjoint partitions X and Y of the variables in an NNF n, a node

is termed pure if all variables departing from it are members of either X or Y . If this

does not hold, the node is called mixed. An NNF has the X-firstness property if for each

and-node, all of its children are pure nodes or if one child is mixed and all the other

nodes are pure with variables belonging to X.

2.2 Parameter learning in probabilistic answer set programs

We adopt the same Learning from Interpretations framework of (Azzolini et al., 2024),

that we recall here for clarity. We denote a PASP with P(Π), where Π is the set of

parameters that should be learnt. The parameters are the probabilities associated to (a

subset of) probabilistic facts. We call such facts as learnable facts . Note that the prob-

abilities of some probabilistic facts can be fixed, that is there can be some probabilistic

facts that are not learnable facts. A partial interpretation I = 〈I+, I−〉 is composed by

two sets I+ and I− that respectively represent the set of true and false atoms. It is called

partial since it may specify the truth value of some atoms only. Given a partial interpre-

tation I, we call the interpretation query qI =
∧

i+∈I+ i+
∧

i−∈I− not i−. The probability
of an interpretation I, P (I), is defined as the probability of its interpretation query,

which is associated with a probability range since we interpret the program under the

CS. Given a PASP P(Π), the lower and upper probability for an interpretation I are

defined as

P (I | P(Π)) =
∑

w∈P(Π) | ∃m∈AS(w), m|=I

P (w),

P (I | P(Π)) =
∑

w∈P(Π) | ∀m∈AS(w), m|=I

P (w).

Definition 1 (Parameter Learning in probabilistic answer set programs)

Given a PASP P(Π) and a set of (partial) interpretations I, the goal of the parameter

learning task is to find a probability assignment to the probabilistic facts such that the

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

Symbolic Parameter Learning 703

product of the lower (or upper) probabilities of the partial interpretations is maximized,

that is solve:

Π∗ = arg maxΠP (I | P(Π)) = arg maxΠ
∏
I∈I

P (I | P(Π))

which can be equivalently expressed as

Π∗ = arg maxΠlog(P (I | P(Π))) = arg maxΠ
∑
I∈I

log(P (I | P(Π))) (3)

also known as log-likelihood (LL). The maximum value of the LL is 0, obtained when

all the interpretations have probability 1. The use of log probabilities is often preferred

since summations instead of products are considered, thus possibly preventing numerical

issues, especially when many terms are close to 0.

Note that, since the probability of a query (interpretation) is described by a range, we

need to select whether we maximize the lower or upper probability. A solution that

maximizes one of the two bounds may not be a solution that also maximizes the other

bound. To see this, consider the program {{q :− a, b, not nq}, {nq :− a, b, not q}} where

a and b are both probabilistic with probability pa and pb, respectively. Suppose we have

the interpretation I = 〈{q}, {}〉. Here, P (I) = 0 while P (I) = pa · pb. Thus, any probability

assignment to pa and pb maximizes the lower probability (which is always 0) but only

the assignment pa = 1 and pb = 1 maximizes P (I).

Example 2.

Consider the program shown in Example 1. Suppose we have two interpretations: I0 =

〈{path(1, 3)}, {path(1, 4)}〉 and I1 = 〈{path(1, 4)}, {}〉. Thus, we have two interpretation

queries: qI0 = path(1, 3), not path(1, 4) and qI1 = path(1, 4). Suppose that the probabili-

ties of all the four probabilistic facts can be set and call this set Π. The parameter learning

task of Definition 1 involves solving: Π∗ = arg maxΠ(log(P (qI0 |Π)) + log(P (qI1 |Π))).

Azzolini et al. (2024) focused on ground probabilistic facts whose probabilities should

be learnt and proposed an algorithm based on Expectation Maximization (EM) to solve

the task. Suppose that the target is the upper probability. The treatment for the lower

probability is analogous and only differs in the considered bound. The EM algorithm

alternates an expectation phase and a maximization phase, until a certain criterion is met

(usually, the difference between two consecutive iterations is less than a given threshold).

This involves computing, in the expectation phase, for each probabilistic fact ai whose

probability should be learnt:

E[ai0] =
∑
I∈I

P (not ai | I), E[ai1] =
∑
I∈I

P (ai | I). (4)

These values are used in the maximization step to update each parameter Πi as:

Πi =
E[ai1]

E[ai0] +E[ai1]
=

∑
I∈I P (ai | I)∑

I∈I P (not ai | I) + P (ai | I)
. (5)

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

D. Azzolini et al.704

3 Algorithms for parameter learning

We propose two algorithms for solving the parameter learning task, both based on the

extraction of symbolic equations from the NNF (Darwiche and Marquis, 2002) represent-

ing a query. So, we first describe this common part. In the following, when we consider

the probability of a query we focus on the upper probability. The treatment for the lower

probability is analogous and only differs in the considered bound.

3.1 Extracting equations from a NNF

The upper probability of a query q is computed as a sum of products (see equation 1).

If, instead of using the probabilities of the facts, we keep them symbolic (i.e. with their

name), we can extract a nonlinear symbolic equation for the query, where the variables

are the parameters associated with the learnable facts. Call this equation fup(Π) where Π

is the set of parameters. Its general form is fup(Π) =
∑

wi

∏
aj∈wi

pj
∏

aj �∈wi
(1− pj) · ki

where ki is the contribution of the probabilistic facts with fixed probability for world

wi. We can cast the task of extracting an equation for a query as a 2AMC problem.

To do so, we can consider as inner semiring and as transformation function the ones

proposed by Azzolini and Riguzzi (2023a) and described in Section 2.1. From this inner

semiring we obtain two values, one for the lower and one for the upper probability.

The sensitivity semiring by Kimmig et al. (2017) allows the extraction of an equation

from an AMC task. We have two values to consider, so we extend that semiring to

Ro = (R[X],+,−, (0, 0), (1, 1)) with

wo(l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(p, p) for a p.f. p :: a with fixed probability and l= a

(1− p, 1− p) for a p.f. p :: a with fixed probability and l= not a

(πa, πa) for a learnable fact πa :: a and l= a

(1− πa, 1− πa) for a learnable fact πa :: a and l= not a

(1, 1) otherwise

where p.f. stands for probabilistic fact and R[X] is the set of real valued functions param-

eterized by X. Variable πa indicates the symbolic probability of the learnable fact a. In

this way, we obtain a nonlinear equation that represents the probability of a query. When

evaluated by replacing variables with actual numerical values, we obtain the probability

of the query when the learnable facts have such values. Simplifying the obtained equation

is also a crucial step since it might significantly reduce the number of operations needed

to evaluate it.

Example 3

If we consider Example 1 with query path(1, 4) and associate a variable πxy with each

edge(x, y) probabilistic fact (and consider them as learnable), the symbolic equation

for its upper probability, that is fup, is π12 · π24 · π13 + π12 · π24 · (1− π13), that can be

simplified to π12 · π24.

We now show how to adopt symbolic equations to solve the parameter learning task.

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

Symbolic Parameter Learning 705

Algorithm 1 Function LearningOPT: solving the parameter learning task targeting
the upper probability with constrained optimization in a PASP P with learnable
probabilistic facts Π and interpretations I.

1: function LearningOPT(P, I)
2: eqsList←∅
3: for i∈ I do
4: eq← GetEquationFromNNF(i)
5: eqsList← eqsList ∪ Simplify(eq)
6: end for
7: Π∗← SolveOptimizationProblem(eqsList)
8: return Π∗

9: end function

3.2 Solving parameter learning with constrained optimization

The learning task requires maximizing the sum of the log probabilities of the interpreta-

tions equation (3) where the tunable parameters are the facts whose probability should be

learnt. Algorithm 1 sketches the involved steps. We can extract the equation for the prob-

ability of each interpretation from the NNF and consider each parameter of a learnable

fact as a variable (function GetEquationFromNNF). To reduce the size of the equation

we simplify it (function Simplify). Then, we set up a constrained nonlinear optimization

problem where the target is the maximization of the sum of the equations representing

the log probabilities of the interpretations (function SolveOptimizationProblem). We

need to also impose that the parameters of the learnable facts are between 0 and 1. In

this way, we can easily adopt off-the-shelf solvers and do not need to write a specialized

one.

3.3 Solving parameter learning with expectation maximization

We propose another algorithm that instead performs Expectation Maximization as

per equation (4) and (5). It is sketched in Algorithm 2. For each interpretation I,

we add its interpretation query qI into the program. To compute P (aj | Ik) for each

learnable probabilistic fact aj and each interpretation Ik we proceed as follows: first,

we compute P (aj , Ik) and P (not aj , Ik). Then, equation (2) allows us to compute

P (aj | Ik). Similarly for P (aj | Ik). We extract an equation for each of these queries

(function GetEquationsFromNNF) and iteratively evaluate them until the conver-

gence of the EM algorithm (lines 5–10 that alternates the expectation phase with function

Expectation, the maximization phase with function Maximization, and the computa-

tion of the log-likelihood with function ComputeLL). We consider as default convergence

criterion a variation of the log-likelihood less than 5 · 10−4 between two subsequent iter-

ations. However, this parameter can be set by the user. If we denote with np the number

of probabilistic facts whose probabilities should be learnt and ni the number of inter-

pretations, we need to extract equations for 2 · np · ni queries. However, this is possible

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

D. Azzolini et al.706

Algorithm 2 Function LearningEM: solving the parameter learning task targeting
the upper probability with Expectation Maximization in a PASP P with learnable
probabilistic facts Π and with interpretations I.

1: function LearningEM(P, I)
2: eqsList← GetEquationsFromNNF(π, I)
3: ll0← 0
4: ll1← 1
5: while (ll1 − ll0)> 5 · 10−4 do � Loop until convergence.
6: ll0← ll1
7: E← Expectation(eqsList)
8: Π← Maximization(E)
9: ll1← ComputeLL(eqsList,Π)
10: end while
11: return Π
12: end function

with only one pass of the NNF: across different iterations, the structure of the pro-

gram is the same, only the probabilities, and thus the result of the queries, will change.

Thus, we can store the performed operations in memory and use only those to reevaluate

the probabilities, without having to rebuild the NNF at each iteration.

Example 4

Consider Example 2 and its two interpretation queries, qI0 and qI1 . If we consider their

symbolic equations we have π12 · π24 (see Example 3) and π13 · (π12 + π24 − π12 · π24),

where with πxy we indicate the probability of edge(x, y). If we compactly denote with

Π the set of all the probabilities (i.e. all the πxy), the optimization problem of equa-

tion (3) requires solving Π∗ = arg maxΠ(log(π12 · π24) + log(π13 · (π12 + π24 − π12 · π24))).

The optimal solution is to set the values of all the πxy to 1, obtaining a log-likelihood of

0. Note that, in general, it is not always possible to obtain a LL of 0.

4 Related work

There are many different techniques available to solve the parameter learning task, but

most of them only work for programs with a unique model per world: PRISM (Sato,

1995) was one of the first tools considering inference and parameter learning in PLP. Its

first implementation, which dates back to 1995, offered an algorithm based on EM. The

same approach is also adopted in EMBLEM (Bellodi and Riguzzi, 2013), which learns the

parameters of Logic Programs with Annotated Disjunctions (LPADs) (Vennekens et al.,

2004), that is logic programs with disjunctive rules where each head atom is associated

with a probability, and in ProbLog2 (Fierens et al., 2015) that learn the parameters

of ProbLog programs from partial interpretations adopting the LFI-ProbLog algorithm

of Gutmann et al. (2011). LeProbLog Gutmann et al. (2008) still considers ProbLog

programs but uses gradient descent to solve the task.

Few tools consider PASP and allow multiple models per world. dPASP (Geh et al.,

2023) is a framework to perform parameter learning in Probabilistic Answer Set Programs

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

Symbolic Parameter Learning 707

but targets the max-ent semantics, where the probability of a query is the sum of the

probabilities of the models where the query is true. They propose different algorithms

based on the computation of a fixed point and gradient ascent. However, they do not

target the Credal Semantics. Parameter Learning under the Credal Semantics is also

available in PASTA (Azzolini et al., 2022, 2024). Here, we adopt the same setting (learning

from interpretations) but we address the task with an inference algorithm based on 2AMC

and extraction of symbolic equations, rather than projected answer set enumeration,

which has been empirically proven more effective (Azzolini and Riguzzi, 2023a). This is

also proved in our experimental evaluation.

Lastly, there are alternative semantics to adopt in the context of Probabilistic Answer

Set Programming, namely, P-log (Baral et al., 2009), LPMLN (Lee and Wang, 2016), and

smProbLog (Totis et al., 2023). The relation among these has been partially explored by

(Lee and Yang, 2017) but a complete treatment providing a general comparison is still

missing. The parameter learning task under these semantics has been partially addressed

and an in-depth comparison between all the existing approaches can be an interesting

future work.

5 Experiments

We ran the experiments on a computer with 16GB of RAM running at 2.40GHz with

8 hours of time limit. The goal of the experiments is many-fold: (i) finding which one

of the algorithms is faster; (ii) discovering which one of the algorithms better solves the

optimization problem represented by equation (3) (note that the sum of the log prob-

abilities is maximum at 0, and this happens when all the partial interpretations have

probability 1); (iii) evaluating whether different initial probability values impact on the

execution time; and (iv) comparing our approach against the algorithm based on pro-

jected answer set enumeration of Azzolini et al. (2024) called PASTA. We considered only

PASTA since it is the only algorithm that currently solves the task of parameter learning

in PASP under the credal semantics. We used aspmc (Eiter et al., 2021) as backend solver

for the computation of the formula, SciPy version 1.13.0 as optimization solver (Virtanen

et al., 2020), and SymPy (Meurer et al., 2017) version 1.12 to simplify equations. In this

way, the tool is completely open source.1 In the experiments, for the algorithm based on

constrained optimization (Section 3.2) we tested two nonlinear optimization algorithms

available in SciPy, namely COBYLA (Powell, 1994) and SLSQP (Kraft, 1994). COBYLA

stands for Constrained Optimization BY Linear Approximation and is a derivative-free

nonlinear constrained optimization algorithm based on linear approximation of the objec-

tive function and constraints during the solving process. On the contrary, SLSQP is

based on Sequential Least Squares Programming, which is based on solving, at each

iteration, a least square problem equivalent to the original problem. In the results,

we denote the algorithm based on Expectation Maximization described in Section 3.3

with EM.

1 Datasets and source code available at https://github.com/damianoazzolini/aspmc and on Zenodo with
DOI 10.5281/zenodo.12667046.

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

D. Azzolini et al.708

5.1 Datasets descriptions

We considered four datasets. Where not explicitly specified, all the initial probabilities

of the learnable facts are set to 0.5. For all the instances, we generated configurations

with 5, 10, 15, and 20 interpretations. The atoms to be included in the interpretations

are taken uniformly at random from the Herbrand base of each program and some of

them are considered as negated, again uniformly at random.

The coloring dataset models the graph coloring problem, where each node is associated

with a color and configurations are considered valid only if nodes associated with the same

color are not connected. We do not explicitly remove invalid solutions but only mark them

as not valid. This makes the following dataset crucial to test our proposal when there are

an increasing number of answer sets for each world. All the instances have the following

rules:

red(X) :- node(X), not green(X), not blue(X).

green(X) :- node(X), not red(X), not blue(X).

blue(X) :- node(X), not red(X), not green(X).

e(X,Y) :- edge(X,Y).

e(Y,X) :- edge(Y,X).

c0 :- e(X,Y), red(X), red(Y).

c1 :- e(X,Y), green(X), green(Y).

c2 :- e(X,Y), blue(X), blue(Y).

valid :- not c0, not c1, not c2.

The goal is to learn the probabilities of the edge/2 facts given an increasing number

of interpretations containing the observed colors for some edges and whether the con-

figuration is valid or not. We considered complete graphs of size 4 (coloring4) and 5

(coloring5). Here the interpretations have a random length between 3 and 4.

The path dataset models a path reachability problem and every instance has the rules

described in Example 1. We considered this dataset since it represents a graph structure

that can model many problems. The goal is to learn the probabilities of the edge/2 facts

given that some paths are observed. We considered random connected graphs with 10

(path10) and 15 (path15) edges. Here the interpretations have a random length between

1 and 3.

The shop dataset models the shopping behavior of some people, with different products

available where some of them cannot be bought together. An example of instance (with

2 people) is:

bought(spaghetti ,john):-shops(john), not bought(steak ,john).

bought(steak ,john):-shops(john), not bought(spaghetti ,john).

bought(spaghetti ,mary):-shops(mary), not bought(beans ,mary).

bought(beans ,mary):-shops(mary), not bought(spaghetti ,mary).

bought(spaghetti):- bought(spaghetti ,_).

bought(steak):- bought(steak ,_).

:- bought(spaghetti), bought(steak).

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

Symbolic Parameter Learning 709

The goal is to learn the probabilities of the shops/1 learnable facts given an increasing

number of products that are observed being bought (or not bought) and an increasing

number of people. We considered instances with 4 (shop4), 8 (shop8), 10 (shop10), and

12 (shop12) people. Here the interpretations have a random length between 1 and 10.

With this dataset we assess the learning algorithms in programs when constraints prune

some solutions.

The smoke dataset, adapted from (Totis et al., 2023), models a network where some

people smoke and others are influenced by the smoking behavior of their friends. This is

a well-known dataset often used to benchmark probabilistic logic programming systems.

An example of instance with two people is:

0.1:: asthma_f (1). 0.4:: asthma_fact (1). 0.3:: stress (1).

0.1:: asthma_f (2). 0.4:: asthma_fact (2). 0.3:: stress (2).

0.2 :: predisposition.

smokes(X) :- stress(X).

smokes(X) :- influences(Y, X), smokes(Y).

asthma_rule(X):- smokes(X), asthma_fact(X).

asthma(X) :- asthma_f(X).

asthma(X) :- asthma_rule(X).

ill(X) :- smokes(X), asthma(X), not n_ill(X).

n_ill(X):- smokes(X), asthma(X), predisposition , not ill(X).

Here, the learnable facts have signature influences/2 and the goal is to learn their proba-

bilities given that some ill/1 facts are observed. We consider instances with 3 (smoke2), 4

(smoke4), and 6 (smoke6) people. Here the interpretations have a random length between

1 and 3.

5.2 Results

First, we compare the execution times of the four proposed algorithms. Results are

reported in Figure 1. COBYLA and SLSQP have comparable execution times while

EM and PASTA are often the slowest. The only instances where PASTA is faster

are coloring4 and coloring5 . Given the imposed time and memory limits, EM cannot

solve the instances shop12 with any number of interpretations and shop10 with 15 and

20 interpretations, and shop8 with 20 interpretations, coloring5 with any number of

interpretations, and path15 with any number of interpretations (all due to memory

limit) while PASTA was not able to solve smoke6 with any number of interpreta-

tions and smoke5 with 10, 15, and 20 interpretations (all due to time limit). The

two algorithms based on constrained optimization are able to solve every considered

instance.

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

D. Azzolini et al.710

(a) (b)

(c) (d)

Fig. 1. Execution times for EM, constrained optimization solved with COBYLA and SLSQP,
and PASTA, by increasing the number of interpretations. For path15 and coloring5 the line for
EM is missing since it cannot solve any instance. The initial probabilities for learnable facts

are set to 0.5.

We also evaluated the algorithms in terms of final log-likelihood. Table 2 shows the

results on the coloring4 , path10 , shop4 , shop8 , smoke3 , and smoke4 instances. SLSQP

has the best performance: it seems to be able to better maximize the LL in coloring4 ,

shop4 , and shop8 , while COBYLA cannot reach such maxima. For the other two, the

results are equal. EM is also competitive with SLSQP. PASTA has the worst performance

for all the datasets and cannot reach a LL of 0 while other algorithms, such as the ones

based on constrained optimization, succeed.

Lastly, we also run experiments with the two optimization algorithms by consider-

ing different initial probability values. Figure 2 shows the results. In general, the initial

probability values have little influence on the execution time for SLSQP. The impact

is more evident on COBYLA: for example, for coloring5 with 10 interpretations, set-

ting the initial values to 0.1 requires 100 s of computation while setting them to 0.5

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

Symbolic Parameter Learning 711

Table 2. Final log-likelihood (LL) values for the tested algorithms on six selected instances
with the initial probability of the learnable facts set to 0.5. The column # int. contains the
number of interpretations considered, the column EM contains the results obtained with
expectation maximization, columns C. COBYLA and C. SLSQP stands for constrained
optimization solved with, respectively, COBYLA and SLSQP, and the column PASTA

contains the results obtained with the PASTA solver

coloring4 shop8

int. EM C. COBYLA C. SLSQP PASTA EM C. COBYLA C. SLSQP PASTA

5 −0.016 0.000 0.000 −34.539 −1.389 −12.710 −1.385 −34.077
10 −0.049 0.000 0.000 −55.262 −2.257 0.000 0.000 −63.268
15 −0.044 0.000 0.000 −96.709 −1.923 0.000 −1.902 −75.986
20 −0.030 −36.775 0.000 −124.340 −1.388 −72.524 −0.011 −127.679

path10 smoke4

int. EM C. COBYLA C. SLSQP PASTA EM C. COBYLA C. SLSQP PASTA

5 −0.002 0.000 0.000 −27.631 −9.430 −9.423 −9.423 −20.723
10 −0.004 0.000 0.000 −48.354 −25.164 −25.160 −25.160 −48.354
15 −0.007 0.000 0.000 −75.985 −50.023 −50.020 −50.020 −96.709
20 −0.004 0.000 0.000 −103.616−64.576 −64.571 −64.571 −110.524

smoke3 shop4

int. EM C. COBYLA C. SLSQP PASTA EM C. COBYLA C. SLSQP PASTA

5 −14.633 −14.630 −14.630 −27.631 −1.462 −150.606 0.000 −20.633
10 −36.711 −36.708 −36.708 −69.078 −5.669 0.000 0.000 −54.992
15 −35.172 −35.166 −35.166 −69.078 −7.283 −49.346 0.000 −74.710
20 −72.872 −72.869 −72.869 −110.524 −2.770 0.000 −2.768 −101.824

or 0.9 requires 60 s. We extended this evaluation also to EM, but we do not report

the results since the initial value makes no difference in terms of execution time. In

the current version, PASTA does not allow setting an initial probability value different

from 0.5.

Overall, the algorithm based on constrained optimization outperforms in terms of effi-

ciency and in terms of final log-likelihood both the algorithm based on EM and PASTA.

EM also outperforms PASTA in terms of final LL but it often requires excessive memory

and cannot solve instances solvable by PASTA. Nevertheless, several improvements may

be integrated within our approach to possibly increase the scalability: (i) considering

different alternatives for the representation of symbolic equations, possibly more com-

pact, also considering symmetries (Azzolini and Riguzzi, 2023b); (ii) developing ad-hoc

simplification algorithms to reduce the size of the symbolic equations since they are only

composed by summations of products. Furthermore, considering higher runtimes could

be beneficial for enumeration-based techniques.

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

D. Azzolini et al.712

(a) (b)

(c) (d)

Fig. 2. Execution times of constrained optimization solved with COBYLA and SLSQP on
coloring5 , path15 , shop12 , and smoke6 with 0.1, 0.5, and 0.9 as initial values for the learnable

facts.

6 Conclusions

In this paper, we propose two algorithms to solve the task of parameter learning in

PASP. Both are based on the extraction of a symbolic equation from a compact repre-

sentation of the problem but differ in the solving approach: one is based on Expectation

Maximization while the other is based on constrained optimization. For the former, we

tested two algorithms, namely COBYLA and SLSQP. We compare them against PASTA,

a solver adopting projected answer set enumeration. Empirical results show that the algo-

rithms based on constrained optimization are more accurate and also faster than the ones

based on EM and PASTA. Furthermore, the one based on EM is still competitive with

PASTA but often requires an excessive amount of memory. As a future work we plan

to consider the parameter learning task for other semantics and also theoretically study

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

Symbolic Parameter Learning 713

the complexity of the task in light of existing complexity results for inference (Mauá and

Cozman, 2020).

Acknowledgements

This work has been partially supported by Spoke 1 “FutureHPC & BigData” of the Italian

Research Center on High-Performance Computing, Big Data and Quantum Computing

funded by MUR Missione 4 – Next Generation EU (NGEU) and by Partenariato Esteso

PE00000013 – “FAIR – Future Artificial Intelligence Research” – Spoke 8 “Pervasive AI”,

funded by MUR through PNRR – M4C2 – Investimento 1.3 (Decreto Direttoriale MUR

n. 341 of 15th March 2022) under the Next Generation EU (NGEU). All the authors

are members of the Gruppo Nazionale Calcolo Scientifico – Istituto Nazionale di Alta

Matematica (GNCS-INdAM). Elisabetta Gentili contributed to this paper while attend-

ing the PhD program in Engineering Science at the University of Ferrara, Cycle XXXVIII,

with the support of a scholarship financed by the Ministerial Decree no. 351 of 9th April

2022, based on the NRRP – funded by the European Union – NextGenerationEU –

Mission 4 “Education and Research”, Component 1 “Enhancement of the offer of educa-

tional services: from nurseries to universities” – Investment 4.1 “Extension of the number

of research doctorates and innovative doctorates for public administration and cultural

heritage”.

Competing interests

The authors declare none.

References

Azzolini, D. 2023. A constrained optimization approach to set the parameters of probabilistic
answer set programs. In Inductive Logic Programming, E. Bellodi, F. A. Lisi and R. Zese, Eds.
Springer Nature Switzerland, Cham, 1–15.

Azzolini, D., Bellodi, E. and Riguzzi, F. 2022. Statistical statements in probabilistic logic
programming . In Logic Programming and Nonmonotonic Reasoning, G. Gottlob, D. Inclezan
and M. Maratea, Eds., Springer International Publishing, Cham, 43–55.

Azzolini, D., Bellodi, E. and Riguzzi, F. 2024. Learning the parameters of probabilistic
answer set programs. In Inductive Logic Programming, S. H. Muggleton and A. Tamaddoni-
Nezhad, Eds. Springer Nature Switzerland, Cham, 1–14.

Azzolini, D. and Riguzzi, F. 2021. Optimizing probabilities in probabilistic logic programs.
Theory and Practice of Logic Programming 21, 5, 543–556.

Azzolini, D. and Riguzzi, F. 2023a. Inference in probabilistic answer set programming under
the credal semantics. In AIxIA. 2023 - Advances in Artificial Intelligence, Basili, R., Lembo,
D., Limongelli, C. and Orlandini, A., Eds. 14318. Heidelberg, Germany, Springer, 367–380.
Lecture Notes in Artificial Intelligence.

Azzolini, D. and Riguzzi, F. 2023b. Lifted inference for statistical statements in probabilistic
answer set programming. International Journal of Approximate Reasoning 163, 109040.

Baral, C., Gelfond, M. and Rushton, N. 2009. Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming 9, 1, 57–144.

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

D. Azzolini et al.714

Bellodi, E. and Riguzzi, F. 2013. Expectation maximization over binary decision diagrams for
probabilistic logic programs. Intelligent Data Analysis 17, 2, 343–363.

Cozman, F. G. and Mauá, D. D. 2016. The structure and complexity of credal semantics. In
Hommersom, A. and Abdallah, S. A., Eds. 3rd International Workshop on Probabilistic
Logic Programming (PLP 2016), volume 1661 of CEUR Workshop Proceedings, 3–14.CEUR-
WS.org.

Cozman, F. G. and Mauá, D. D. 2020. The joy of probabilistic answer set program-
ming: Semantics, complexity, expressivity, inference. International Journal of Approximate
Reasoning 125, 218–239.

Darwiche, A. and Marquis, P. 2002. A knowledge compilation map. Journal of Artificial
Intelligence Research 17, 229–264.

De Raedt, L., Kimmig, A. and Toivonen, H. 2007.ProbLog: A probabilistic Prolog and its
application in link discovery. In 20th International Joint Conference on Artificial Intelligence
(IJCAI 2007), Veloso, M. M., ed.7, AAAI Press,2462–2467.

Dries, A., Kimmig, A., Meert, W., Renkens, J., Van den Broeck, G., Vlasselaer, J. and
De Raedt, L. 2015. ProbLog2: Probabilistic logic programming. In European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECMLPKDD 2015), Springer, 9286, 312–315.Lecture Notes in Computer Science.

Eiter, T., Hecher, M. and Kiesel, R. 2021. Treewidth-aware cycle breaking for algebraic
answer set counting. Proceedings of the 18th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2021, 269–279.

Eiter, T., Hecher, M. and Kiesel, R. 2024. Aspmc: New frontiers of algebraic answer set
counting. Artificial Intelligence 330, 104109.

Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D. S., Gutmann, B., Thon, I.,
Janssens, G. and De Raedt, L. 2015. Inference and learning in probabilistic logic programs
using weighted Boolean formulas. Theory and Practice of Logic Programming 15, 3, 358–401.

Geh, R. L., Goncalves, J., Silveira, I. C., Maua, D. D. and Cozman, F. G. 2023. DPASP:
A comprehensive differentiable probabilistic answer set programming environment for neu-
rosymbolic learning and reasoning, CoRR. https://doi.org/10.48550/arXiv.2308.02944

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In 5th
International Conference and Symposium on Logic Programming (ICLP/SLP), MIT Press,
USA, 88, 1070–1080.

Gutmann, B., Kimmig, A., Kersting, K. and Raedt, L. D. 2008. Parameter learning in proba-
bilistic databases: A least squares approach. Lecture Notes in Computer Science. In European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECMLPKDD 2008), Springer, 5211, 473–488.

Gutmann, B., Thon, I. and De Raedt, L. 2011. Learning the parameters of probabilistic logic
programs from interpretations. In European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECMLPKDD 2011), Gunopulos, D.,
Hofmann, T., Malerba, D. and Vazirgiannis, M. Eds.6911, Springer, 581–596. Lecture
Notes in Computer Science.

Kiesel, R., Totis, P. and Kimmig, A. 2022. Efficient knowledge compilation beyond weighted
model counting. Theory and Practice of Logic Programming 22, 4, 505–522.

Kimmig, A., Van den Broeck, G. and De Raedt, L. 2017. Algebraic model counting. Journal
of Applied Logic 22, C, 46–62.

Kraft, D. 1994. Algorithm 733: TOMP-fortran modules for optimal control calculations. ACM
Transactions on Mathematical Software 20, 3, 262–281.

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

Symbolic Parameter Learning 715

Lee, J. and Wang, Y. 2016. Weighted rules under the stable model semantics. In Baral, C.,
Delgrande, J. P. and Wolter, F., Eds. Proc. of the Fifteenth International Conference on
Principles of Knowledge Representation and Reasoning, AAAI Press, 145–154.

Lee, J. and Yang, Z. 2017. LPMLN, weak constraints, and P-log. In Singh, S. and
Markovitch, S., Proc. of the Thirty-First AAAI Conference on Artificial Intelligence, 4-9
Feb. 2017, AAAI Press, San Francisco, California, USA,1170–1177.

Lukasiewicz, T. 2005. Probabilistic description logic programs. In Godo, L., Ed. Lecture Notes
in Computer Science, Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
8th European Conference, ECSQARU, 6-8 July, 2005, Springer, Barcelona, Spain, 3571, 737–
749.

Mauá, D. D. and Cozman, F. G. 2020. Complexity results for probabilistic answer set
programming. International Journal of Approximate Reasoning 118, 133–154.

Meurer, A., Smith, C. P., Paprocki, M., Čert́ık, O., Kirpichev, S. B., Rocklin, M.,
Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger,
B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F.,
Curry, M. J., Terrel, A. R., Roučka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman,
R. and Scopatz, A. 2017. SymPy: symbolic computing in python. PeerJ Computer Science
3, e103.

Powell, M. J. D. 1994. A direct search optimization method that models the objective and
constraint functions by linear interpolation. In Advances in Optimization and Numerical
Analysis,Gomez, S. and Hennart, J.-P. Eds. Dordrecht,Springer Netherlands, 51–67.

Raedt, L. D., Kersting, K., Natarajan, S. and Poole, D. 2016. Statistical relational artificial
intelligence: Logic, probability, and computation. Synthesis Lectures on Artificial Intelligence
and Machine Learning 10, 2, 1–189.

Richardson, M. and Domingos, P. 2006. Markov logic networks. Machine Learning 62, 1,
107–136.

Riguzzi, F. 2022. Foundations of Probabilistic Logic Programming Languages, Semantics,
Inference and Learning. 2nded. River Publishers, Gistrup, Denmark.

Sato, T. 1995. A statistical learning method for logic programs with distribution semantics. In
Sterling, L., Ed. Logic Programming, Proeedings of the Twelfth International Conference
on Logic Programming, 13-16 June 1995, MIT Press, Tokyo, Japan,715–729.

Totis, P., De Raedt, L. and Kimmig, A. 2023. smProbLog: Stable model semantics in
ProbLog for probabilistic argumentation, Theory and Practice of Logic Programming, 1–50.
https://doi.org/10.1017/S147106842300008X

Vennekens, J., Verbaeten, S. and Bruynooghe, M. 2004.Logic programs with annotated
disjunctions. In 20th International Conference on Logic Programming (ICLP 2004), Demoen,
B. and Lifschitz, V., Eds. 3131. Berlin, Heidelberg,Springer, 431–445, Lecture Notes in
Computer Science.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,
E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald,
A. M., Ribeiro, A. H.,Pedregosa, F.,van MulbregtP. and SciPy 1.0 Contributors 2020.
SciPy 1.0: Fundamental algorithms for scientific computing in python. Nature Methods 17, 3,
261–272.

https://doi.org/10.1017/S1471068424000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000334

	Introduction
	Background
	Probabilistic answer set programming
	Parameter learning in probabilistic answer set programs

	Algorithms for parameter learning
	Extracting equations from a NNF
	Solving parameter learning with constrained optimization
	Solving parameter learning with expectation maximization

	Related work
	Experiments
	Datasets descriptions
	Results

	Conclusions
	References

