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1. Introduction and basic concepts
This article seeks to present an overview of current approaches to solving large-
scale linear least-squares problems. These problems typically occur as part of a
more complex computational problem. Most real-world problems are nonlinear,
and many approaches to understanding and solving them proceed by locally repla-
cing the nonlinear problem with a linear one. Specifically, analysing and solving
nonlinear least-squares problems frequently requires the solution of a sequence of
linear least-squares problems. More generally, almost any problem with sufficient
data to overdetermine a solution needs an approximation method: least-squares –
the first and best-known technique for fitting models to data – remains central to
scientific computing

1.1. Background

The use of models is fundamental throughout scientific computing. Models are
used in science and engineering, finance and economics and, more recently, in
rapidly developing areas such as machine learning, AI and speech processing.
Models are only useful when calibrated against real-world systems and driven by
data. The huge explosion in the availability of data and computing resources has led
to many new opportunities to improve the effectiveness and reliability of models.
For this, algorithms that incorporate the data into the models are needed; therein
lies the continued importance of the least-squares method.

The least-squares method provides a solution to the problem of adjusting the
parameters of a model function to best fit a given data set. A simple model in
two dimensions is a straight line. In this case, linear least-squares computes the
best-fitting line through a set of points, that is, it minimizes the sum of the squares
of the distances between the points and the line. The method originated during
the eighteenth century in the fields of astronomy and geodesy, as scientists and
mathematicians sought to address the challenges of ocean navigation. Being able
to accurately and reliably predict the behaviour of celestial bodies was key for ships
in open seas where land sightings cannot be used for navigation. The least-squares
method was first published by Adrien-Marie Legendre (1805), although it is also
credited to Carl Friedrich Gauss (1809), who made significant contributions to the
mathematical formulation and theoretical understanding of least-squares around
the same time as Legendre. Gauss successfully used the method to approximate
the orbit of the newly discovered asteroid Ceres from the few observations that had
been made of it before it was lost in the glare of the sun.

Today, least-squares is an essential tool in mathematics and statistics that is
widely used in a variety of fields. It is the simplest and most commonly applied
form of linear regression, which in turn is the most straightforward machine learn-
ing algorithm. Least-squares problems can be linear or nonlinear, depending on
whether or not the residuals are linear in the unknowns. The nonlinear problem is
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usually solved by an iterative procedure; at each iteration the system is approximated
by a linear one, and thus the core calculation is similar in both cases.

Diverse application areas of least-squares include the following.

• Medicine, e.g. to study the impact of environmental factors on human health
by using variables such as air quality, water quality, pollution levels and
exposure levels to assess risks, design interventions and monitor outcomes.
• Finance, e.g. to help quantify the relationship between two or more variables,

such as a stock’s share price and its earnings per share.
• Marketing, e.g. to model the relationship between advertising spending and

sales.
• Image processing, e.g. to enhance, restore or compress images by using

models that capture the features, structures or patterns of the images.
• Geophysics, e.g. to interpret subsurface structures from field data by minim-

izing a target objective function expressed as the sum of squared residuals
between observed and modelled data, to estimate the physical properties,
locations and shapes of geological formations or anomalies.
• Climate change, e.g. to study the relationship between greenhouse gas emis-

sions and global temperature, and to predict future temperature changes based
on emissions scenarios.
• Sports science, e.g. to measure the performance of athletes by using variables

such as scores, statistics, rankings and ratings to predict outcomes, evaluate
strengths and weaknesses, and identify trends and patterns.

The focus in this article is on solution methods for large-scale least-squares prob-
lems arising from large data sets; we do not examine specific application areas but
introduce general techniques that are widely applicable.

1.2. Introduction to linear least-squares fitting

To set the scene, let us assume we have 𝑚 data points

(𝑡1, 𝑏1), (𝑡2, 𝑏2), . . . , (𝑡𝑚, 𝑏𝑚),

and the relationship
𝑏𝑖 = Γ(𝑡𝑖) + 𝑒𝑖 , 1 ≤ 𝑖 ≤ 𝑚,

where the unknown function Γ(𝑡) describes the noise-free data. The (unknown)
data errors or noise 𝑒1, 𝑒2, . . . , 𝑒𝑚 represent measurement errors and/or random
variations in the physical process that generates the data. The 𝑏𝑖 are termed
the observations. We want to approximate Γ(𝑡) in the interval [𝑡1, 𝑡𝑚].1 The
approximation is given by the fitting (or prediction) model H(𝑥, 𝑡), where the 𝑛

1 Without loss of generality, we assume 𝑡1 ≤ 𝑡2 ≤ . . . ≤ 𝑡𝑚.
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parameters 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)⊤ that characterize the model are to be determined
from the given noisy data. The least-squares method is a standard technique for
determining the unknown parameters in the fitting model. Let the residual 𝑟𝑖
associated with the 𝑖th data point be given by

𝑟𝑖 = 𝑟𝑖(𝑥) = 𝑏𝑖 −H(𝑥, 𝑡𝑖), 𝑖 = 1, 2, . . . , 𝑚. (1.1)

If we assume that all the data errors are uncorrelated and of the same size, that is, the
errors 𝑒𝑖 have mean zero and identical variance, then the least-squares fit minimizes
the sum of the squared residuals

min
𝑥∈R𝑛

F(𝑥) =
𝑚∑︁
𝑖=1

𝑟𝑖(𝑥)2 =
𝑚∑︁
𝑖=1

(𝑏𝑖 −H(𝑥, 𝑡𝑖))2. (1.2)

More generally, if the standard deviation depends on 𝑖, then from the Maximum
Likelihood Principle, the weighted residuals are minimized, with the non-zero
weights equal to the reciprocals of the standard deviations, that is,

min
𝑥

𝑚∑︁
𝑖=1

(
𝑟𝑖(𝑥)
𝜍𝑖

)2
= min

𝑥

𝑚∑︁
𝑖=1

(
𝑏𝑖 −H(𝑥, 𝑡𝑖)

𝜍𝑖

)2
,

where 𝜍𝑖 is the standard deviation of 𝑒𝑖 . Observe that the residual can be written
as the sum of two terms:

𝑟𝑖 = 𝑒𝑖 + (Γ(𝑡𝑖) −H(𝑥, 𝑡𝑖)), 𝑖 = 1, 2, . . . , 𝑚.

The data error 𝑒𝑖 comes from the measurements, and the approximation error
Γ(𝑡𝑖) −H(𝑥, 𝑡𝑖) is the difference between the data function and the fitting model.

In linear data fitting, the model is of the form

H(𝑥, 𝑡) =
𝑛∑︁
𝑗=1
𝑥 𝑗 𝑓 𝑗(𝑡),

where the 𝑓 𝑗(𝑡) are called the model basis functions. The choice of the 𝑓 𝑗(𝑡)
depends on the objective of the data fitting. They may be given by the underlying
mathematical model that describes the data or chosen from functions that give
the desired approximation and enable stable computations. Defining the matrix
𝐴 ∈ R𝑚×𝑛 to be

𝐴 =




𝑓1(𝑡1) 𝑓2(𝑡1) . . . 𝑓𝑛(𝑡1)
𝑓1(𝑡2) 𝑓2(𝑡2) . . . 𝑓𝑛(𝑡2)
. . . . . . . . . . . .
𝑓1(𝑡𝑚) 𝑓2(𝑡𝑚) . . . 𝑓𝑛(𝑡𝑚)


,

for the unweighted (ordinary) linear data-fitting problem we have the relations

𝑟 = 𝑏 − 𝐴𝑥 and
𝑚∑︁
𝑖=1

𝑟2
𝑖 = ∥𝑟 ∥22 = ∥𝑏 − 𝐴𝑥∥22.
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Here ∥.∥2 denotes the Euclidean vector norm ∥𝑥∥2 = (𝑥⊤𝑥)1/2. The basic linear
least-squares problem that we seek to solve is the following.

Given 𝐴 ∈ R𝑚×𝑛 with rank(𝐴) = rk ≤ min(𝑚, 𝑛) and 𝑏 ∈ R𝑚,
find 𝑥 ∈ R𝑛 that minimizes ∥𝑏 − 𝐴𝑥∥2.

For the weighted problem, the covariance matrix 𝑊 is a diagonal matrix with
entries 𝑤𝑖𝑖 = 1/𝜍2

𝑖 . We then have
𝑚∑︁
𝑖=1

(
𝑟𝑖(𝑥)
𝜍𝑖

)2
= ∥𝑊−1/2(𝑏 − 𝐴𝑥)∥22.

More generally, for a symmetric positive (semi)definite matrix 𝑊 , the weighted
linear least-squares problem is

min
𝑥∈R𝑛

F(𝑥) = min
𝑥∈R𝑛
∥𝑏 − 𝐴𝑥∥𝑊−1 , (1.3)

where ∥𝑢∥𝑊−1 = (𝑢⊤𝑊−1𝑢)1/2.

Our main emphasis is on overdetermined problems, i.e. 𝑚 > 𝑛. In this case, it is
straightforward to show that 𝑥 is a solution of the least-squares problem if and only
if it satisfies the 𝑛 × 𝑛 normal equations

𝐶𝑥 = 𝐴⊤𝑏, 𝐶 = 𝐴⊤𝐴, (1.4)

or, in the weighted case, the generalized normal equations

𝐴⊤𝑊−1𝐴𝑥 = 𝐴⊤𝑊−1𝑏.

The concept of a pseudoinverse generalizes that of the inverse of a square matrix;
it can be used to express the general solution of the linear least-squares problem;
details are given in Björck (2024) and Laub (2005).

Lemma 1.1. Let 𝐴 ∈ R𝑚×𝑛 with rank(𝐴) = rk. Then there exist unitary matrices
𝑈 = (𝑢1, . . . , 𝑢𝑚) ∈ R𝑚×𝑚, 𝑉 = (𝑣1, . . . , 𝑣𝑛) ∈ R𝑛×𝑛 such that

𝐴 = 𝑈Σ𝑉⊤ = 𝑈

(
Σ1 0
0 0

)
𝑉⊤, (1.5)

with Σ1 = diag(𝜎1, 𝜎2, . . . , 𝜎rk). The 𝜎𝑖 are the singular values of 𝐴, which are
assumed to be ordered so that

𝜎max = 𝜎1 ≥ . . . ≥ 𝜎rk > 𝜎rk+1 = · · · = 𝜎min = 0.

The factorization (1.5) is the singular value decomposition (SVD) of 𝐴, and the
matrix

𝐴† = 𝑉Σ†𝑈⊤ = 𝑉

(
Σ−1

1 0
0 0

)
𝑈⊤
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is termed the Moore–Penrose pseudoinverse (or simply the pseudoinverse) of
𝐴. The general expression for the solution of the linear least-squares problem
min𝑥 ∥𝑏 − 𝐴𝑥∥2 is

𝑥 = 𝐴†𝑏 + (𝐼 − 𝐴†𝐴)𝑤,

where 𝑤 ∈ R𝑛 is an arbitrary vector.

In most practical cases, the least-squares solution can be expressed in a simpler
way, as shown by the following results; see, for example, the book by Björck (2024)
for details.

Lemma 1.2. Let 𝐴 ∈ R𝑚×𝑛 with 𝑚 > 𝑛. The normal matrix 𝐶 = 𝐴⊤𝐴 is
symmetric positive definite (SPD) if and only if rank(𝐴) = 𝑛. The unique least-
squares solution and corresponding residual are then given by

𝑥 = (𝐴⊤𝐴)−1𝐴⊤𝑏 and 𝑟 = 𝑏 − 𝐴(𝐴⊤𝐴)−1𝐴⊤𝑏, (1.6)

and the pseudoinverse of 𝐴 is 𝐴† = (𝐴⊤𝐴)−1𝐴⊤.

If rank(𝐴) < 𝑛 (i.e. 𝐴 is rank-deficient) then the null space of 𝐴 is of dimension
𝑛− rank(𝐴) > 0 and the solution of the least-squares problem is not unique. In this
case, we often seek the unique least-norm solution, that is,

min
𝑥∈S
∥𝑥∥2, S = {𝑥 ∈ R𝑛 | ∥𝑏 − 𝐴𝑥∥2 = min}.

But note that because there are infinitely many possible solutions, in practice the
choice as to which solution is singled out should reflect the physical model that
underlies the problem (Hansen 2010).

Lemma 1.3. Let 𝑥 be a solution of the problem min𝑥 ∥𝑏 − 𝐴𝑥∥2. Then 𝑥 is a
least-squares least-norm solution if and only 𝑥 = 𝐴⊤𝑧, 𝑧 ∈ R𝑚. If the system
𝐴𝑥 = 𝑏 is consistent, then the solution of the least-norm problem

min
𝑥
∥𝑥∥2 subject to 𝐴𝑥 = 𝑏, (1.7)

satisfies the normal equations of the second kind

𝐴𝐴⊤𝑧 = 𝑏, 𝑥 = 𝐴⊤𝑧. (1.8)

If rank(𝐴) = 𝑚, then 𝐴𝐴⊤ is non-singular and the solution to (1.8) is unique. The
solution is 𝑥 = 𝐴†𝑏, where 𝐴† = 𝐴⊤(𝐴𝐴⊤)−1 is the pseudoinverse.

As originally proposed in Bartels, Golub and Saunders (1970), the normal
equations (1.4) are equivalent to the linear equations 𝑟 = 𝑏 − 𝐴𝑥 and 𝐴⊤𝑟 = 0.
Together these can be written as the (𝑚 + 𝑛) × (𝑚 + 𝑛) augmented system

𝐾

(
𝑧
𝑥

)
=

(
𝑏
𝑐

)
with 𝐾 =

(
𝐼 𝐴
𝐴⊤ 0

)
, (1.9)

with 𝑧 = 𝑟 and 𝑐 = 0. The symmetric indefinite matrix 𝐾 is non-singular if and
only if rank(𝐴) = 𝑛.
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Lemma 1.4. If rank(𝐴) = 𝑛, then the augmented system (1.9) has a unique
solution that solves the primal and dual least-squares and least-norm problems

min
𝑥∈R𝑛

(
1
2
∥𝑏 − 𝐴𝑥∥22 + 𝑐⊤𝑥

)

and

min
𝑧∈R𝑚

1
2
∥𝑧 − 𝑏∥22 subject to 𝐴⊤𝑧 = 𝑐.

Our interest is in the case that 𝐴 is large and sparse, that is, many of its entries are
zero and these zeros need to be exploited in the solution process. Indeed, unless the
sparsity is exploited, the size of problems that can be tackled is severely limited,
even when using modern computers with large memories. The sparsity pattern
S{𝐴} of 𝐴 = {𝑎𝑖 𝑗} is defined to be the set of non-zeros, that is,

S{𝐴} = {(𝑖, 𝑗) | 𝑎𝑖 𝑗 ≠ 0, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}.
Although Lemma 1.1 shows theoretically that the pseudoinverse based on the

SVD gives the least-norm least-squares solution, our discussions avoid the SVD
as it is impractical for large sparse 𝐴. Many of the approaches we consider target
𝐴 ∈ R𝑚×𝑛 with 𝑚 > 𝑛 and rank(𝐴) = 𝑛. But similarities between this and the
underdetermined least-squares problem (𝑚 < 𝑛), where the least-norm solution is
described in Lemma 1.3, enable techniques applied to the normal matrix 𝐴⊤𝐴 to be
applied to the matrix of the normal equations of the second kind (1.8). Moreover,
as will be seen in Section 1.7, regularizing the underdetermined problem leads to
an overdetermined problem of full rank.

1.3. An introduction to sparse linear solvers

The normal equations (1.4) and the augmented system (1.9) are both sparse square
linear systems of equations; solving either yields the solution of the linear least-
squares problem. Consider the generic large sparse linear system of equations

𝐵𝑦 = 𝑑, (1.10)

where 𝐵 ∈ R𝑛×𝑛 and 𝑑 ∈ R𝑛. Assuming 𝐵 is of full rank, there are many
methods for computing the solution 𝑦 ∈ R𝑛; see, for example, the recent books
by Duff, Erisman and Reid (2017) and Scott and Tůma (2023) and the review
article by Davis, Rajamanickam and Sid-Lakhdar (2016), and the comprehensive
bibliographies that they include. For least-squares problems, we are interested in
the symmetric case (𝐵 = 𝐵⊤).

The majority of algorithms for solving (1.10) fall into two main categories: direct
methods and iterative methods (with hybrid methods combining techniques from
both classes). Direct methods transform 𝐵 using a finite sequence of elementary
transformations into a product of simpler sparse matrices in such a way that solving
linear systems of equations with these factor matrices is comparatively easy and
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inexpensive. For the SPD normal matrix 𝐴⊤𝐴, we can compute a Cholesky
factorization 𝐴⊤𝐴 = 𝐿𝐿⊤, where the factor 𝐿 is a lower triangular matrix, while
for the augmented system we can compute a factorization 𝐾 = 𝐿𝐷𝐿⊤, where
𝐿 is a unit lower triangular matrix and 𝐷 is block diagonal with the blocks on
the diagonal of size 1 and 2. Alternatively, symmetry can be ignored and a
factorization of the form 𝐾 = 𝐿𝑈 computed, where 𝐿 and 𝑈 are lower and upper
triangular matrices, respectively. Solving linear systems with a triangular matrix is
much more straightforward than for a general matrix and historically has been much
less expensive than the cost of the factorization. As the use of parallel algorithms
on modern computer architectures has substantially reduced the cost of matrix
factorizations, triangular solves have become relatively more expensive because
of their inherently serial nature, but see the progress in parallel triangular solves
discussed in Jin, Pei, Wang and Qi (2021) and the references therein. Moreover,
in general, 𝐿 has more non-zero entries than 𝐴, and if the amount of fill-in is
high, then (some of) the advantage of having a triangular matrix will be lost. An
important question is whether the system can be preordered to reduce the fill-in
in the factors; this is discussed in Section 2.3. For an LDLT or LU factorization
of an indefinite matrix, further permutations are generally required during the
factorization to ensure numerical stability.

For the linear least-squares problem, rather than factorize the normal matrix or
the augmented system matrix, the QR factorization

𝐴 = 𝑄

(
𝑅
0

)
= (𝑄1 𝑄2)

(
𝑅
0

)
= 𝑄1𝑅, 𝑄1 ∈ R𝑚×𝑛, (1.11)

can be computed (Francis 1961). Here 𝑄 = (𝑄1 𝑄2) ∈ R𝑚×𝑚 is an orthogonal
matrix and 𝑅 ∈ R𝑛×𝑛 is an upper triangular matrix. Because multiplication by
orthogonal matrices does not change the Euclidean norm, it follows that

∥𝑏 − 𝐴𝑥∥22 = ∥𝑄⊤(𝑏 − 𝐴𝑥)∥22 = ∥𝑄⊤1 𝑏 − 𝑅𝑥∥22 + ∥𝑄⊤2 𝑏∥22.
The solution of the least-squares problem and the residual can be computed by
solving

𝑅𝑥 = 𝑑1, 𝑟 = 𝑄

(
0
𝑑2

)
, where 𝑄⊤𝑏 =

(
𝑄⊤1 𝑏
𝑄⊤2 𝑏

)
=

(
𝑑1
𝑑2

)
.

𝑄⊤𝑏 can formally be obtained by applying the QR factorization to (𝐴 𝑏). This
enables storing 𝑄 to be avoided. Note that

𝐴⊤𝐴 = (𝑄1𝑅)⊤𝑄1𝑅 = 𝑅⊤(𝑄⊤1𝑄1)𝑅 = 𝑅⊤𝑅, (1.12)

and thus the 𝑅 factor is mathematically equivalent to the transpose of the 𝐿 factor
of the Cholesky factorization of the normal matrix. The normal equations can be
rewritten as

𝑅⊤𝑅𝑥 = 𝐴⊤𝑏. (1.13)
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These are called the semi-normal equations (SNE). They offer an advantage if a QR
factorization has been computed but the orthogonal factor 𝑄 has not been stored
and a problem with a new right-hand side 𝑏 must be solved.

Direct methods built on matrix factorizations are designed to be robust so that,
properly implemented, they can be confidently used as block-box solvers for com-
puting solutions with predictable accuracy. However, they can be expensive, re-
quiring large amounts of memory, which can increase rapidly with the size of the
system matrix 𝐵, and they may compute solutions to an accuracy that is either
not needed or not warranted by the supplied data. In large-scale applications,
the matrix 𝐵, even though it is sparse, may be too large to be held explicitly. In
such instances, solution methods are needed that use subroutines or functions to
compute multiplications with 𝐵 and 𝐵⊤ in a matrix-free fashion, often exploiting
graphics processing units (GPUs) or other hardware accelerators. Iterative methods
for solving the linear system (1.10) compute a sequence of approximations

𝑦(1), 𝑦(2), 𝑦(3), . . .

that (hopefully) converge to the solution 𝑦 of the linear system in an acceptable
number of iterations. The number of iterations depends on the initial guess 𝑦(1),
the matrix 𝐵 and right-hand side vector 𝑑 as well as the accuracy that is wanted
in 𝑦. Iterative methods use 𝐵 indirectly, through matrix–vector products, and their
memory requirements are limited to a (small) number of vectors of length the size
of 𝐵. They can be terminated as soon as the required accuracy in the computed
solution is achieved. Unfortunately, frequently convergence does not happen or
the number of iterations is unacceptably large; in such cases, preconditioning is
needed. The aim of preconditioning is to speed up convergence by transforming
the given linear system into an equivalent system (or one from which it is easy
to recover the solution of the original system) that has nicer numerical properties.
For example, for the consistent underdetermined least-squares problem min ∥𝑥∥2
subject to 𝐴𝑥 = 𝑏, with the non-singular preconditioner𝑀𝐿 , the left-preconditioned
problem is

min
𝑥∈R𝑛
∥𝑥∥2 subject to 𝑀−1

𝐿 𝐴𝑥 = 𝑀−1
𝐿 𝑏.

For the overdetermined least-squares problem, using right-preconditioning, the
problem becomes

min
𝑧∈R𝑛
∥𝑏 − 𝐴𝑀−1

𝑅 𝑧∥2, 𝑥 = 𝑀−1
𝑅 𝑧. (1.14)

Observe that in this case, left-preconditioning changes the objective function.
Right-preconditioning corresponds to symmetric (or split) preconditioning of the
normal equations

𝑀−⊤𝑅 𝐴⊤𝐴𝑀−1
𝑅 𝑧 = 𝑀−⊤𝑅 𝐴⊤𝑏, 𝑀𝑅𝑥 = 𝑧.

Here 𝑀 = 𝑀𝑅𝑀
⊤
𝑅 is the normal matrix preconditioner in factored form. Choos-

ing a suitable preconditioner is a challenging task. Multiple factors influence the
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preconditioner effectiveness, including features of the sparse matrix, the computa-
tional architecture, and the data structures employed. Possible preconditioners for
least-squares problems are discussed in Section 6.

1.4. The condition number of least-squares problems

When solving least-squares problems, we need to be more aware of rank deficiency
than for linear systems of equations. While the latter often come from applications
for which there are guarantees on the non-singularity and possibly also on condi-
tioning of the system matrix, this may not be the case for least-squares problems.
The condition number of a problem quantifies its sensitivity to perturbations to
the data. If 𝐴 is square and of full rank, then its normwise condition number
is 𝜅2(𝐴) = ∥𝐴∥2∥𝐴−1∥2. For an arbitrary rectangular matrix, this generalizes to
𝜅2(𝐴) = ∥𝐴∥2∥𝐴†∥2. If 𝐴 has rank rk, then 𝜅2(𝐴) is equal to the ratio of the largest
to the smallest non-zero singular values, that is,

𝜅2(𝐴) = 𝜎max(𝐴)/𝜎rk(𝐴). (1.15)

A matrix with a large condition number is said to be ill-conditioned, otherwise it is
well-conditioned. In particular, if 𝜅2(𝐴) > 𝜖−1, where 𝜖 is the machine precision,
then 𝐴 is said to be numerically rank-deficient. If the columns of 𝐴 are orthonormal,
then 𝜅2(𝐴) = 1, indicating a perfectly conditioned matrix. More generally, if 𝐴 is
of full rank and 𝑅 is its QR factor then

𝜅2(𝐴) = 𝜅2(𝑅) = (𝜅2(𝐴⊤𝐴))1/2. (1.16)

In many practical applications, ill-conditioning and possible rank deficiency is
a common problem that is often not observable in 𝐴 before its factorization is
attempted. In regression problems, the columns of 𝐴 correspond to explanatory
factors. As a simple example, we may want to use height, weight and age to explain
the probability of some disease. In this case, ill-conditioning occurs when these
factors are correlated; for instance, in the sample population, height and age may
be good predictors of weight.

Unlike for square linear systems, the sensitivity of a least-squares problem de-
pends on the vector 𝑏 as well as on the matrix 𝐴. The normwise condition number
𝜅LS(𝐴, 𝑏) that expresses sensitivity to perturbations in 𝐴 is given by Hansen, Pereyra
and Scherer (2013):

𝜅LS(𝐴, 𝑏) = 𝜅2(𝐴)
(

1 + 𝜅2(𝐴)
∥𝑟 ∥2

∥𝐴∥2∥𝑥∥2

)
, 𝑟 = 𝑏 − 𝐴𝑥.

We also refer to Wedin (1973), Golub and Van Loan (1996), Demmel (1997) and
Björck (2024). This definition can be interpreted as saying that the sensitivity of the
least-squares problem is measured by 𝜅2(𝐴) when the residual of the least-squares
solution is small or zero, and by 𝜅2(𝐴)2 otherwise, that is, the accuracy of the
computed solution depends on the square of the condition number of 𝐴.
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Error bounds for the least-squares solution combine expressions for the sensi-
tivity with expressions for the perturbations within the solution method. There are
two potential problems in using the normal equations. Firstly, information may be
lost when the inner products to compute the entries of the normal matrix 𝐴⊤𝐴 are
accumulated (Björck 2024). Even if the inner products are accumulated in double
precision arithmetic, a serious loss of information can occur when the computed
𝐴⊤𝐴 is stored in the working precision. In general, whenever 𝜅2(𝐴) ≥ 𝜖−1/2, we
can expect the computed normal matrix to be singular (or indefinite), in which case
a Cholesky factorization will break down. Secondly, although Cholesky factor-
ization algorithms are backward stable, solution methods that explicitly form the
normal equations are not backward stable because it can be shown that the best
backward error bound contains a factor 𝜅2(𝐴); this is discussed in Higham (2002).
Using the normal equations is attractive if the problem is well-conditioned or if
only modest accuracy is required; see Higham and Stewart (1987) for a discussion
of why the use of the normal equations can be justified.

Using a QR factorization is often more stable because it is always backward
stable and the relative error in the solution can be bound using 𝜅LS(𝐴, 𝑏). However,
if 𝜅2(𝐴) and the norm of the residual is large, the QR method can also return
an inaccurate solution. In practice, sparse QR factorization methods (which will
be discussed in Section 4) are significantly more expensive than sparse Cholesky
factorizations (Section 3), making them impractical for very large problems that
require real-time solutions. Furthermore, most algebraic preconditioners are for
the normal equation formulation (Section 6). Thus, although, as stated in Higham
(2002) and Higham and Pranesh (2021), solving the normal equations is often
deprecated by numerical analysts, in practice the normal equations are widely used.
For example, in many statistical applications, the entries of 𝐴 can be contaminated
by measurement errors that are large relative to the round-off level; the effects of
rounding errors are then likely to be insignificant compared with the effects of the
measurement errors, justifying the use of the normal equations. Furthermore, many
iterative algorithms avoid explicitly forming and storing the normal equations.

Using the semi-normal equations (1.13) also avoids forming 𝐴⊤𝐴 and, as 𝑅
is determined by using a stable QR factorization, it might be expected that this
approach would offer a stable alternative to solving the normal equations. However,
the forward error (i.e. the norm of the difference between the exact and computed
solutions) is bounded by a term involving 𝜅2(𝐴)2 (Björck 1987, Björck and Paige
1994).

For the weighted least-squares problem, if the weighting matrix 𝑊 is diagonal
then the errors in the data are uncorrelated, but they can vary in their accuracy; for
example, the most recent observations may be more accurate than older ones. If
the ratio of the largest to the smallest weight is large, then𝑊 is ill-conditioned and
the least-squares problem is said to be stiff (by analogy to the terminology used
in the field of differential equations). Stiff problems can arise in many application
areas, including in barrier and interior-point methods for optimization and electrical
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networks. For stiff problems the condition number 𝜅2(𝑊−1/2𝐴) is large. An upper
bound is given by

𝜅2(𝑊−1/2𝐴) ≤ 𝜅2(𝑊−1/2)𝜅2(𝐴) = max
𝑖

(𝑊−1/2)𝑖𝑖/min
𝑖

(𝑊−1/2)𝑖𝑖 𝜅2(𝐴).

Whilst in many cases it may be possible to solve a weighted problem via the
ordinary least-squares problem

min
𝑥
∥�̂� − �̂�𝑥∥2, �̂� = 𝑊−1/2𝑏, �̂� = 𝑊−1/2𝐴,

if the problem is stiff then this will not generally be a numerically stable approach.

1.5. Numerical rank

𝐴may have full rank mathematically, but if one or more of its singular values is very
small then, for computational purposes, 𝐴 is rank-deficient. In some applications,
such as discrete inverse problems, there can be a large gap in the sequence of the
singular values; in this case, 𝐴 is again said to be rank-deficient (Hansen 2010).
Conversely, if rank(𝐴) < 𝑛 and some entries of 𝐴 are perturbed, then the rank may
change. The numerical rank of 𝐴 depends on a tolerance that reflects the level of
errors in 𝐴. To determine the numerical rank in terms of the singular values of
𝐴, we can use the following result of Hansen et al. (2013) that presents sensitivity
bounds.

Lemma 1.5. Let the singular values of 𝐴 ∈ R𝑚×𝑛 be 𝜎1 ≥ 𝜎2 ≥ . . . ≥ 𝜎𝑛. Then
the singular values �̃�1 ≥ �̃�2 ≥ . . . ≥ 𝜎𝑛 of the perturbed matrix 𝐴 + 𝐸 satisfy

|𝜎𝑖 − �̃�𝑖 | ≤ ∥𝐸 ∥2 and
𝑛∑︁
𝑖=1
|𝜎𝑖 − �̃�𝑖 |2 ≤ ∥𝐸 ∥2𝐹 .

Given a tolerance 𝜖 > 0, the numerical 𝜖-rank of 𝐴 (considered here in the
Euclidean norm) is rk𝜖 if

rk𝜖 = min{rank(𝐸) | ∥𝐴 − 𝐸 ∥2 ≤ 𝜖}.
Using the above lemma, it can be shown that 𝐴 has numerical 𝜖-rank rk𝜖 if and
only if

𝜎1 ≥ 𝜎2 ≥ . . . ≥ 𝜎rk𝜖 > 𝜖 ≥ 𝜎rk𝜖 +1 ≥ . . . ≥ 𝜎𝑛.

The tolerance should be chosen to be consistent with the machine precision and the
general level of relative errors in the data.

1.6. Scaling least-squares problems

Scaling can be used to improve the conditioning of the problem. Row scaling
involves left multiplication of 𝐴 and 𝑏 by a diagonal matrix. This is not allowed
as it is equivalent to the use of weights and so changes the least-squares objective
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function and its solution. Column scaling involves multiplication of 𝐴 on the right
by a diagonal matrix 𝑆. That is,

min
𝑧∈R𝑛
∥𝑏 − 𝐴𝑆𝑧∥2, 𝑥 = 𝑆𝑧,

This corresponds to a two-sided symmetric scaling (𝐴𝑆)⊤𝐴𝑆 of the normal matrix
and right-preconditioning (recall (1.14) with 𝑀−1 = 𝑆). If 𝐴 is of full rank, the
unique least-squares solution is obtained correctly from the computed 𝑧. However,
if 𝐴 is rank-deficient, although the correct set of residual-minimizing vectors is
obtained, the least-norm vector is chosen to minimize ∥𝑆−1𝑥∥2, not ∥𝑥∥2, and
therefore the computed solution does not correspond to the correct least-norm
solution.

The following result of Van der Sluis (1969) shows how to choose 𝑆 to reduce
𝜅2(𝐴𝑆).

Lemma 1.6. Let 𝐵 be an SPD matrix of order 𝑛 with all its diagonal elements
equal. Then

𝜅2(𝐵) ≤ 𝑛min{𝜅2(𝑆⊤𝐵𝑆) | 𝑆 is a diagonal matrix}.
When applied to the normal matrix 𝐴⊤𝐴, this result states that, in the full-rank

case, if 𝑆 is constructed to make each column of 𝐴𝑆 of unit Euclidean norm – so
that all the diagonal entries of 𝐴⊤𝐴 are 1 – then 𝜅2(𝐴𝑆) is within a factor

√
𝑛 of

the optimum. Observe that because column scaling affects the singular values, a
scheme to determine the numerical rank may not return the same estimates when
applied to 𝐴 and 𝐴𝑆.

1.7. Regularized linear least-squares problems

When 𝐴 has singular values that are close to the origin, any error that is present in
𝑏 will be amplified, sometimes so much as to make the computed solution useless.
The idea of regularization is to extract the linearly independent information from
the matrix and the noisy right-hand side. One of the most popular methods is
Tikhonov regularization. For the unweighted problem, it considers

min
𝑥∈R𝑛

F(𝑥) = ∥𝑏 − 𝐴𝑥∥22 + 𝛾2∥𝑥∥22, (1.17)

where the regularization parameter 𝛾 > 0 controls the trade-off between minimizing
the residual norm and minimizing the norm of the solution. Problem (1.17) is
equivalent to the regularized (or damped) linear least-squares problem

min
𝑥∈R𝑛





(𝑏0) − ( 𝐴𝛾𝐼) 𝑥



2
. (1.18)

Observe that even if the original problem is underdetermined, this is an over-
determined least-squares problem of size (𝑚 + 𝑛) × 𝑛. Moreover, the regularized
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matrix (𝐴⊤ 𝛾𝐼)⊤ involves only 𝑛 additional entries compared to the original 𝐴 and,
as it is of full rank, (1.18) has a unique solution. If 𝛾 > 𝜎min(𝐴), the condition
number of the corresponding normal matrix satisfies

𝜅2(𝐴⊤𝐴 + 𝛾2𝐼) ≈ (∥𝐴∥2/𝛾)2 (1.19)

(Saunders 1995). An important issue is how to choose 𝛾: too little regularization
(‘small’ 𝛾) can lead to the solution method having numerical difficulties or not
being able to find a useful solution because of the level of noise in the data,
while for excessive regularization (‘large’ 𝛾), the computed objective value may
be unacceptably different from the optimum for the original problem. 𝛾 is not
known a priori and has to be selected based on the problem data. Finding a
good regularization parameter can be difficult, especially for large-scale problems
(Hansen 1998).

The regularized least-norm problem is

min
𝑥,𝑦





(𝑥𝑦)



2
subject to (𝐴 𝛾𝐼)

(
𝑥
𝑦

)
= 𝑏. (1.20)

The linear system 𝐴𝑥 + 𝛾𝑦 = 𝑏 is consistent for all 𝛾 > 0 with solution 𝑥 = 𝐴⊤𝑧,
𝑦 = 𝛾𝑧, where 𝑧 is the solution of the normal equations of the second kind

(𝐴 𝛾𝐼)
(
𝐴⊤

𝛾𝐼

)
𝑧 = (𝐴𝐴⊤ + 𝛾2𝐼)𝑧 = 𝑏.

From (1.20), 𝛾𝑦 = 𝑏 − 𝐴𝑥 = 𝑟 . Using this to eliminate 𝑦, it follows that for 𝐴
of arbitrary dimensions, both (1.17) and (1.20) are equivalent to the regularized
augmented system (

𝐼 𝐴
𝐴⊤ −𝛾2𝐼

)(
𝑟
𝑥

)
=

(
𝑏
0

)
,

or, equivalently,

𝐾𝛾

(
𝑠
𝑥

)
=

(
𝑏
0

)
, 𝐾𝛾 =

(
𝛾𝐼 𝐴
𝐴⊤ −𝛾𝐼

)
, 𝑟 = 𝛾𝑠. (1.21)

For 𝛾 > 𝜎min(𝐴), the condition number satisfies 𝜅2(𝐾𝛾) ≈ ∥𝐴∥2/𝛾, which implies
that solving (1.21) is a feasible approach provided 𝛾 is not very small. Note also that
small 𝛾 could mean ∥𝑠∥2 > ∥𝑥∥2 and may not imply good accuracy in 𝑥 (Saunders
1995, Hansen 1998).

In some applications, prior information regarding the smoothness of the solution
may be known, and instead of using ∥𝑥∥2 as the penalty term it may be preferable
to use ∥𝐹𝑥∥2, where 𝐹 is a 𝑝 × 𝑛 matrix. If rank(𝐹) = 𝑛 then ∥𝐹𝑥∥2 is a norm,
otherwise 𝐹 has a non-trivial null space and ∥𝐹𝑥∥2 is a semi-norm; in the latter
case, the Tikhonov solution is unique if N (𝐴)∩N (𝐹) = ∅. Possible choices for 𝐹
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include finite-difference approximations to the first or second derivatives of 𝑥. The
regularized weighted least-squares problem becomes

min
𝑥∈R𝑛





(𝑊−1𝑏
0

)
−
(
𝑊−1𝐴
𝛾𝐹

)
𝑥






2
. (1.22)

The change of variables �̄� = 𝐴𝐹−1, 𝑥 = 𝐹𝑥, transforms (1.22) to the standard form

min
𝑥∈R𝑛
∥𝑊−1(𝑏 − �̄�𝑥)∥22 + 𝛾2∥𝑥∥22. (1.23)

In Bayesian statistics, this transformation is sometimes referred to as priorcondi-
tioning (see e.g. Calvetti and Somersalo 2005).

The regularized augmented system is

𝐾𝑊

(
𝑟
𝑥

)
=

(
𝑏
0

)
with 𝐾𝑊 =

(
𝑊 𝐴
𝐴⊤ −𝛾2𝐹⊤𝐹

)
. (1.24)

Provided 𝑊 and 𝐹⊤𝐹 are SPD matrices, the system matrix 𝐾𝑊 is a symmetric
quasi-definite (SQD) matrix. It has 𝑚 positive and 𝑛 negative eigenvalues, is non-
singular and its inverse is also SQD (Vanderbei 1995). An SQD matrix is strongly
factorizable, that is, for any permutation matrix 𝑃, there exists a non-singular
diagonal matrix 𝐷 with positive and negative entries on the diagonal and a unit
lower triangular matrix 𝐿 such that

𝑃𝐾𝑊𝑃
⊤ = 𝐿𝐷𝐿⊤.

This is known as a signed Cholesky factorization. Note that although this factoriz-
ation always exists, numerical stability is not guaranteed for all 𝑃. The connections
between various symmetric indefinite and SQD linear systems and the solution of
linear least-squares problems are given in Orban and Arioli (2017). The signed
Cholesky factorization is computationally attractive, but stability analysis shows
that the relative error in the solution is bounded by an expression in which the
standard condition number is replaced by the effective condition number for 𝐾𝑊 ,
which is not smaller than the standard condition number. But the Cholesky-based
approach may still be preferable if the factors are sufficiently sparse and the original
problem is well-scaled (Gill, Saunders and Shinnerl 1996, Saunders 1996).

1.8. The nonlinear least-squares problem

We end this section by briefly discussing the nonlinear least-squares problem

min
𝑥∈R𝑛

F(𝑥) = ∥𝑟(𝑥)∥22.

Here 𝑟(𝑥) = (𝑟1(𝑥), 𝑟2(𝑥), . . . , 𝑟𝑚(𝑥))⊤ is a smooth vector of nonlinear residual
functions. A popular approach is the Gauss–Newton method. This iterative method
avoids the use of the Hessian matrix that is required by the standard Newton’s
method. It is based on the first-order approximation of the residual function in a

https://doi.org/10.1017/S0962492924000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000059


906 J. Scott and M. Tůma

neighbourhood of the current iterate 𝑥( 𝑗), that is,

𝑟(𝑥) ≈ 𝑟(𝑥( 𝑗)) + J (𝑥( 𝑗))(𝑥 − 𝑥( 𝑗)),

where J (𝑥( 𝑗)) denotes the Jacobian of 𝑟(𝑥) at 𝑥( 𝑗). A necessary condition for 𝑥 to
be a local minimum of 𝑟(𝑥) is

J (𝑥( 𝑗))⊤(𝑟(𝑥( 𝑗)) + J (𝑥( 𝑗))(𝑥 − 𝑥( 𝑗))) = 0.

The next iterate is taken to be 𝑥( 𝑗+1) = 𝑥( 𝑗) + 𝑠( 𝑗), where 𝑠( 𝑗) is the solution of the
linear least-squares problem

min
𝑠( 𝑗)∈R𝑛

∥𝑟(𝑥( 𝑗)) + J (𝑥( 𝑗))𝑠( 𝑗)∥2. (1.25)

Here 𝑠( 𝑗) can be determined by solving the normal equations, but any approach for
solving a sequence of linear least-squares problems can be used. More generally,
the regularized weighted nonlinear problem is

min
𝑥∈R𝑛

F(𝑥) = ∥𝑟(𝑥)∥2
𝑊−1 + 𝛾2∥𝑥∥22, 𝛾 > 0,

where𝑊 is an SPD matrix. The linear subproblem to be solved is then

min
𝑠( 𝑗)∈R𝑛

𝐹( 𝑗)(𝑠( 𝑗)) = ∥𝑟(𝑥( 𝑗)) + J (𝑥( 𝑗))𝑠( 𝑗)∥2
𝑊−1 + 𝛾2∥𝑠( 𝑗) + 𝑥( 𝑗)∥22,

and the equivalent normal equations are

(J (𝑥( 𝑗))⊤𝑊−1J (𝑥( 𝑗)) + 𝛾2𝐼)𝑠( 𝑗) = −J (𝑥( 𝑗))⊤𝑊−1𝑟(𝑥( 𝑗)). (1.26)

Sufficient conditions for the convergence of the Gauss–Newton method are
known in the case where the normal equations for the linearized least-squares
problem are solved exactly at each iteration. In large-scale applications, this may
be impractical. A common approach is to solve the linearized problem approx-
imately using an ‘inner’ iteration method that is truncated before full accuracy is
reached. This is known as the truncated Gauss–Newton method. A discussion is
given in Gratton, Lawless and Nichols (2007).

2. Sparse matrices, their graphs and ordering algorithms
For any symmetric positive definite matrix𝐶, there exists a unique lower triangular
matrix 𝐿 with positive diagonal entries called the Cholesky factor such that

𝐶 = 𝐿𝐿⊤. (2.1)

The Cholesky factorization was invented by André-Louis Cholesky for least-
squares problems arising in geodesy, sometime before 1914, while he was working
for the French Geographic Service; it was posthumously published by Benoit
(1924). The Cholesky factorization is based on the systematic annihilation of the
entries in the lower triangular part of 𝐶 column-by-column; the order in which this
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is done is the elimination order and it determines the symmetric permutation of 𝐶.
Algorithms for computing sparse Cholesky factorizations start with a symbolic
factorization (or analyse phase) that uses the sparsity pattern S{𝐶} to determine
the non-zero structure of 𝐿 and other important properties (such as the number of
entries in each row and column of 𝐿) without computing the numerical values of
the non-zeros. This is then used to set up data structures for the subsequent numer-
ical factorization. Tools from graph theory are a key ingredient of the symbolic
factorization.

2.1. Introduction to undirected graphs

A graph G = (V , E) is a finite set V of vertices (or nodes), and a set E of edges
defined as pairs of distinct vertices. When there is no distinction between the pairs
of vertices (𝑢, 𝑣) and (𝑣, 𝑢), the edges are represented by unordered pairs and the
graph is undirected. In this section, we assume G is undirected. A labelling (or
ordering) of a graph G with 𝑛 vertices is a bĳection of {1, 2, . . . , 𝑛} onto V . The
integer 𝑖 (1 ≤ 𝑖 ≤ 𝑛) assigned to a vertex in V is called the label (or simply the
number) of that vertex. The standard choice of vertices is V = {1, . . . , 𝑛} so that
the vertices are directly identified by their labels.

Vertices 𝑖 and 𝑗 in V are adjacent (or neighbours) if 𝑒 = (𝑖, 𝑗) ∈ E . The notation
(𝑖 ←→ 𝑗) is also used for an edge (or (𝑖 G←−−→ 𝑣) to emphasize that the edge
belongs to the graph G). The degree deg(𝑖) of 𝑖 ∈ V is the number of 𝑗 ∈ V that
are adjacent to 𝑖, and the adjacency set adj{𝑖} is the set of adjacent vertices (thus
| adj{𝑖}| = deg(𝑖)). G𝑠 = (V𝑠, E𝑠) is a subgraph of G = (V , E) if and only if V𝑠 ⊆ V
and E𝑠 ⊆ E , and (𝑢𝑠, 𝑣𝑠) ∈ E𝑠 implies 𝑢𝑠, 𝑣𝑠 ∈ V𝑠. A subgraph is a clique when
every pair of vertices is adjacent.

Adjacency graphs provide a link between sparse matrices and graphs. Let 𝐶 =
𝐴⊤𝐴 be the normal matrix of order 𝑛; then an adjacency graphG(𝐶) = (V(𝐶), E(𝐶))
with vertices V(𝐶) = {1, . . . , 𝑛} can be associated with it. The edge set is

E(𝐶) = {(𝑖, 𝑗) | (𝐴⊤𝐴)𝑖 𝑗 ≠ 0, 𝑖 ≠ 𝑗}.
When using graphs to capture sparsity structures of matrices, it is standard to
assume that the result of adding, subtracting or multiplying two non-zero entries is
non-zero. This is the non-cancellation assumption.

The normal matrix can be expressed as a sum of 𝑚 matrices of rank one, that is,

𝐶 = 𝐴⊤𝐴 =
𝑚∑︁
𝑖=1

𝑎𝑖𝑎
⊤
𝑖 ,

where 𝑎⊤𝑖 is row 𝑖 of 𝐴. By the non-cancellation assumption, S(𝐶) is the binary sum
of the sparsity patterns S(𝑎𝑖𝑎⊤𝑖 ), 𝑖 = 1, . . . , 𝑚. This is unchanged by discarding
any row of 𝐴 whose sparsity structure is a subset of that of another row and
hence G(𝐴⊤𝐴) is the sum of the 𝑚 graphs G(𝑎𝑖𝑎⊤𝑖 ), 𝑖 = 1, . . . , 𝑚. Observe that
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each G(𝑎𝑖𝑎⊤𝑖 ) is a clique, and an alternative characterization of G(𝐴⊤𝐴) is that
(𝐴⊤𝐴) 𝑗𝑘 ≠ 0 if and only if the sparsity patterns of columns 𝑗 and 𝑘 have an entry
in common, that is, if 𝑎𝑖 𝑗 ≠ 0 and 𝑎𝑖𝑘 ≠ 0, for some 𝑖 (1 ≤ 𝑖 ≤ 𝑚). Because of
this, G(𝐴⊤𝐴) is also termed the column intersection graph of 𝐴.

A sequence of 𝑘 edges in the graphG given by 𝑖0←→ 𝑖1←→ · · ·←→ 𝑖𝑘−1←→ 𝑖𝑘
is called a walk of length 𝑘 . The walk is closed if 𝑖0 = 𝑖𝑘 ; a closed walk is called a
cycle. Graphs that do not contain cycles are acyclic. A path is a walk in which all
the vertices (and therefore also all the edges) are distinct. G is connected if every
pair of (distinct) vertices is connected by a path. If G is connected, then U ⊂ V is
a separator if G becomes disconnected when the vertices U are removed.

2.2. Elimination graphs

Graphs can be used to symbolically compute the Cholesky factors of a symmetric
positive definite matrix𝐶. Assume the vertices of G(𝐶) are labelled 𝑣𝑖 , 1 ≤ 𝑣𝑖 ≤ 𝑛,
and the elimination order is 𝑣1, 𝑣2, . . . , 𝑣𝑛. Then, starting with G1 ≡ G(𝐶), a
sequence of graphs is generated recursively using Parter’s rule (Parter 1961):

To obtain the elimination graph G𝑘+1 from G𝑘 , delete vertex 𝑣𝑘 and all its
incident edges, and add all possible edges between vertices that are adjacent
to vertex 𝑣𝑘 in G𝑘 .

In terms of graph theory, Parter’s rule says that when 𝑣𝑘 is eliminated, adj(𝑣𝑘)
becomes a clique of size equal to the number of off-diagonal entries in the matrix
corresponding to G𝑘 . Thus the symbolic interpretation of Gaussian elimination
is that it systematically generates cliques. As the elimination process progresses,
cliques grow or more than one clique join together to form larger cliques, a process
known as clique amalgamation.

An implementation difficulty is that because edges are added with each elim-
ination, the space required to represent the elimination graph G𝑘+1 is potentially
greater than for G𝑘 . For large matrices, creating and explicitly storing the edges in
the sequence of elimination graphs is impractical, and a more compact and efficient
representation is needed. In place of standard elimination graphs, special quotient
graphs are used that do not delete the vertices implied by Parter’s rule. Rather, the
eliminated vertices are kept and are distinguished from the remaining vertices by
assigning them a special flag. Each quotient graph in such a representation can be
interpreted as a collection of cliques, including the original graph G, which can be
regarded as having |E | cliques, each with two vertices (or, equivalently, one edge).
Let {V1,V2, . . . ,V𝑞} be the set of cliques for G𝑘 and {V𝑠1 ,V𝑠2 , . . . ,V𝑠𝑡 } be the
subset of cliques to which the vertex 𝑣𝑘 to be eliminated belongs. Two steps are
then required.

(1) Remove the cliques {V𝑠1 ,V𝑠2 , . . . ,V𝑠𝑡 } from {V1,V2, . . . ,V𝑞}.
(2) Add the new clique V𝑣 = {V𝑠1 ∪ . . . ∪ V𝑠𝑡 } \ {𝑣𝑘} into the set of cliques.
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Hence the degree of the eliminated vertex 𝑣𝑘 in the quotient graph satisfies

deg(𝑣𝑘) = |V𝑣𝑘 | <
𝑡∑︁

𝑖=1
|V𝑠𝑖 |,

and because {V𝑠1 ,V𝑠2 , . . . ,V𝑠𝑡 } can now be discarded, the storage required for the
representation of the sequence of these quotient graphs never exceeds that needed
for G(𝐶). The index of the eliminated vertex can be used as the index of the new
clique. This is called an element or e-node, to distinguish it from an uneliminated
vertex, which is termed an s-node.

While Parter’s rule describes how fill-in in 𝐿 develops locally, fill-in can also be
described more globally using fill-paths. Assume there is a path between distinct
vertices 𝑖 and 𝑗 in the undirected graph G. If all intermediate vertices on the path
are less than min{𝑖, 𝑗}, then the path is called a fill-path. It is well known that an
off-diagonal entry 𝑙𝑖 𝑗 (𝑖 > 𝑗) in the Cholesky 𝐿 of 𝐶 is non-zero if and only if there
is a fill-path in G(𝐶) between 𝑖 and 𝑗 (Rose, Tarjan and Lueker 1976).

2.3. Sparse matrix orderings

The number of operations needed to perform a sparse Cholesky factorization is
𝑂
(∑𝑛

𝑗=1 |𝐿:, 𝑗 |2
)
, where |𝐿:, 𝑗 | is the number of entries in column 𝑗 of 𝐿. Thus

fill-in in 𝐿 can render a direct method infeasible and so the symbolic factorization
of a direct solver typically starts by finding a symmetric permutation (ordering) of
the rows and columns of 𝐶 to limit fill-in.

The problem of minimizing the fill-in in 𝐿 is NP-complete. Instead, heuristics
are used, with no one approach resulting in the best ordering for every problem.
Note that the ordering of the rows of 𝐴 has no effect on the normal matrix or its
Cholesky factor and, because 𝐿 is equal to the factor 𝑅 in the QR factorization of 𝐴,
the same column ordering can be used for the Cholesky and the QR factorizations.
𝑃 is a permutation matrix if it is a square matrix with exactly one entry equal

to unity in each row and column, and all remaining entries are zeros (i.e. it is a
permutation of the identity matrix). Premultiplying a matrix by a permutation 𝑃𝑟
reorders the rows and postmultiplying by a permutation 𝑃𝑐 reorders the columns.
If the matrix is symmetric, setting 𝑃⊤𝑐 = 𝑃𝑟 = 𝑃 preserves symmetry and the
graph of the symmetrically permuted matrix is unchanged; only the labelling (i.e.
the ordering) of the vertices changes. Thus, for the normal matrix, we can either
relabel G(𝐴⊤𝐴) or permute the columns of 𝐴.

Two main classes of methods are commonly used to compute orderings that limit
factor fill-in.
• Local orderings use a greedy approach in an attempt to limit fill-in by repeated

local decisions based on G(𝐴⊤𝐴) or G(𝐴).
• Global orderings consider the whole of S{𝐴⊤𝐴} and seek to find a 𝑃 using a

divide-and-conquer approach, often in conjunction with a local ordering, as
the latter generally works well for matrices that are not really large.

https://doi.org/10.1017/S0962492924000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000059


910 J. Scott and M. Tůma

In the following, it is convenient to assume that G(𝐴⊤𝐴) has a single component,
that is, 𝐴⊤𝐴 is irreducible. Otherwise, the ordering algorithms are applied to
each component of G(𝐴⊤𝐴) (in particular, any rows/columns with a single entry
are removed and ordered first). We also assume here that 𝐴 has no rows that
are (almost) dense. If it does, a simple strategy is to remove such rows before
applying the ordering algorithm to the remaining rows. Afterwards, the variables
corresponding to the dense rows can be appended to the end of the computed
ordering to give the final ordering.

2.4. Minimum fill-in and minimum degree

One way to reduce fill-in is to use a local minimum fill-in criterion that, at each step,
selects as the next variable in the ordering one that will introduce the least fill-in in
the factor at that step (Markowitz 1957); see also Rothberg and Eisenstat (1998) and
Reißig (2007). This can produce good orderings, but the cost is often considered
prohibitive because the updated sparsity pattern and the fill-in associated with the
possible candidates must be determined.

The minimum degree (MD) and approximate minimum degree (AMD) al-
gorithms are the best-known and most widely used greedy heuristics for limiting
fill-in. The minimum degree approach seeks to find a permutation such that at
each step of the factorization the number of entries in the corresponding column
of the factor is minimized. It does this by selecting a vertex of minimum degree
in the current elimination graph. The approach is derived from a method proposed
in 1957 (Markowitz 1957) for non-symmetric linear systems; a symmetric variant
was published 10 years later (Tinney and Walker 1967). A graph-theoretic version
in which the factorization is only simulated was subsequently presented; it was
termed the minimum degree algorithm (Rose 1972). Efficient implementations
employ special quotient graphs and cliques.

The number of updates to the vertex degrees can be decreased using indis-
tinguishable vertices. Mutually adjacent vertices V𝑟 = {𝑣1, . . . , 𝑣𝑟 } are termed
indistinguishable if they have the same neighbours, that is,

adj(𝑣𝑖) ∪ 𝑣𝑖 = adj(𝑣 𝑗) ∪ 𝑣 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑟.
The set V𝑟 can be represented by a single vertex, called a supervariable. If 𝑣 ∈ V𝑟

is eliminated then the degree of each remaining vertex in V𝑟 will reduce by one and
they are all of minimum degree. Thus the vertices in V𝑟 can be eliminated together
and the graph transformation and vertex update only needs to be performed once.

The idea behind the popular AMD variant is to inexpensively compute an upper
bound on a vertex degree in place of the degree, and to use this when selecting
vertices within the MD algorithm (Amestoy, Davis and Duff 1996a). Even though
vertex degrees are not determined exactly, the quality of the resulting ordering is
competitive with using the MD algorithm and, on some problems, it can be better.
Importantly, the AMD run-time is typically significantly less than that of the MD
algorithm.
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𝐴 =




∗ ∗
∗

∗ ∗
∗ ∗
∗ ∗

∗ ∗
∗ ∗




, 𝐴⊤𝐴 =




∗ ∗ ∗ ∗
∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

∗ ∗



, 𝐿 =




∗
∗ ∗
∗ 𝑓 ∗

∗ ∗
∗ 𝑓 ∗

∗ 𝑓 𝑓 𝑓 𝑓 ∗




(a)

𝐴𝑃𝑐 =




∗ ∗
∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗
∗ ∗




, 𝑃𝑐𝐴
⊤𝐴𝑃𝑐 =




∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗



, 𝐿𝑐 =




∗
∗
∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗




(b)

𝑃𝐴𝐴
⊤𝐴𝑃⊤𝐴 =




∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗

∗ ∗ ∗ ∗



, 𝐿𝐴 =




∗
∗
∗

∗ ∗ ∗
∗

∗ ∗ ∗ ∗




(c)

Figure 2.1. An example to illustrate the COLAMD and AMD orderings. (a) The
pattern of the original matrix 𝐴, the normal matrix and its factor (entries in 𝐿 that
have filled in are denoted by 𝑓 ). (b) The column permuted matrix 𝐴𝑃𝑐, the normal
matrix 𝑃𝑐𝐴

⊤𝐴𝑃𝑐 and its factor, where 𝑃𝑐 corresponds to the COLAMD ordering.
(c) The symmetrically permuted normal matrix 𝑃𝐴𝐴

⊤𝐴𝑃𝐴 and its factor, where
𝑃𝐴 corresponds to the AMD ordering.

2.5. Column version of minimum degree

Applying the minimum degree approach to the normal matrix 𝐴⊤𝐴 requires the
sparsity pattern S(𝐴⊤𝐴). Even if 𝐴 is sparse, S(𝐴⊤𝐴) may contain significantly
more entries than S(𝐴). Thus, to potentially save time and storage, an attractive
alternative is to order the columns of 𝐴 using onlyG(𝐴). As observed in Section 2.1,
the structure of each row of 𝐴 corresponds to a clique in G(𝐴⊤𝐴), and 𝐴⊤𝐴 can be
represented as a sequence of cliques. This allows the minimum degree algorithm
for 𝐴⊤𝐴 to be implemented in a way that bypasses forming S(𝐴⊤𝐴), leading to
savings in work and storage.

This approach is known as COLAMD (Davis, Gilbert, Larimore and Ng 2004a).
The COLAMD and AMD orderings are illustrated in Figure 2.1. The COLAMD
ordering of 𝐴 is 2, 4, 5, 3, 1, 6 and the AMD ordering of the normal matrix 𝐴⊤𝐴 is
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Algorithm 2.1. RCM algorithm for band and profile reduction
Input: Graph G of a symmetrically structured matrix and a starting vertex 𝑠.
Output: Permutation vectors 𝑝cm and 𝑝rcm that define new labellings of the vertices
of G.

1: label(1 : 𝑛) = false
2: Compute adj{𝑢} and deg(𝑢) for all 𝑢 ∈ V(G)
3: 𝑘 = 1, 𝑣1 = 𝑠, 𝑝cm(1) = 𝑣1, label(𝑣1) = true
4: for 𝑖 = 1: 𝑛 − 1 do
5: for 𝑤 ∈ adj{𝑣𝑖} with label(𝑤) = false in order of increasing degree do
6: 𝑘 = 𝑘 + 1, 𝑣𝑘 = 𝑤, 𝑝cm(𝑘) = 𝑣𝑘 , label(𝑣𝑘) = true
7: end for
8: end for
9: Set 𝑝rcm(𝑖) = 𝑝cm(𝑛 − 𝑖 + 1), 𝑖 = 1, 2, . . . , 𝑛.

5, 4, 6, 3, 2, 1. In this example, there is no fill-in in the Cholesky factor following the
COLAMD and the AMD reorderings (although the sparsity patterns are different).
In general this is not the case, but it is not possible to determine a priori which
approach will result in the sparsest factor.

2.6. Profile-reducing orderings

An alternative way of limiting the fill-in locally is to add another criterion to the
relabelling of the vertices, such as restricting the non-zeros of the permuted matrix
to specific positions. The most popular approach is to force them to lie close to
the main diagonal, that is, to reduce the profile or envelope of 𝐶. The envelope is
the set of index pairs that lie between the first non-zero entry in each row and the
diagonal, that is,

env(𝐶) = {(𝑖, 𝑗) | 0 < 𝑖 − 𝑗 ≤ 𝛽𝑖(𝐶)},
where 𝛽𝑖(𝐶) = 𝑖 − min{ 𝑗 | 1 ≤ 𝑗 ≤ 𝑖 with 𝑐𝑖 𝑗 ≠ 0}, 1 ≤ 𝑖 ≤ 𝑛. The profile
of 𝐶 is | env(𝐶)| (the envelope size) plus 𝑛.2 During a Cholesky factorization, all
fill-in takes place between the first non-zero entry in a row and the diagonal so that
env(𝐶) = env(𝐿).

The most well-known method for reducing the profile of a symmetrically struc-
tured matrix is the reverse Cuthill–McKee (RCM) algorithm (Cuthill and McKee
1969), outlined here as Algorithm 2.1. Note that line 9 reverses the ordering. This
can reduce (but not increase) the profile of the permuted matrix. The quality of the
ordering is highly dependent on the choice of the starting vertex 𝑠. The diameter
of G is the maximum distance between any pair of its vertices. The endpoints of a
diameter provide good starting vertices. In practice, finding a diameter is expensive

2 Sometimes in the literature the profile is defined to be the envelope size.
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and an endpoint of a pseudo-diameter is used (a pseudo-diameter is defined by a
pair of vertices whose distance apart in G is close to the diameter). The GPS
approach for finding such vertices is based on constructing level sets (Gibbs, Poole
and Stockmeyer 1976), where for a given vertex 𝑟 (the root), vertices within the
same level set have the same distance to 𝑟. Modifications to the original algorithm
have been made to improve efficiency but the use of level sets remains key.

Over the years, a large number of profile reduction algorithms have been pro-
posed, many of which have their origins in the Cuthill–McKee and GPS algorithms.
A widely used two-stage variant is the Sloan algorithm (Sloan 1986); see Reid and
Scott (1999) for details of an efficient implementation. Spectral methods offer
an alternative approach (Barnard, Pothen and Simon 1995). A crucial difference
between profile reduction ordering algorithms and minimum degree strategies is
that the former is based solely on G: the costly construction of quotient graphs is
not needed. However, unless the profile after reordering is very small, there can be
significantly more fill-in in the factor.

2.7. Nested dissection

Nested dissection, which was first introduced in the early 1970s (George 1973), is a
global ordering strategy for matrices with a symmetric sparsity pattern; it is particu-
larly effective for very large sparse problems (and problems with an underlying grid
structure but this is not the case for least-squares problems). Subsequent research
gave theoretical guarantees for linear solvers (Lipton, Rose and Tarjan 1979) and
provided an important framework for graph partitioning, hierarchical solvers and
many related tasks; see, for example, Spielman and Teng (2014), Cambier et al.
(2020) and the survey of graph partitioning by Bichot and Siarry (2011). Given
a symmetric matrix 𝐶, nested dissection works with the adjacency graph G and
proceeds by identifying a small separator VS that if removed separates the graph
into two disjoint subgraphs described by the vertex subsets B and W (commonly
called ‘black’ and ‘white’, respectively). The rows and columns belonging to B are
labelled first, then those belonging to W and finally those in VS . The reordered
matrix has the form 


𝐶B,B 0 𝐶B,VS

0 𝐶W ,W 𝐶W ,VS
𝐶⊤B,VS

𝐶⊤W ,VS
𝐶VS ,VS


.

This is illustrated in Figure 2.2. Provided the variables are eliminated in the per-
muted order, no fill occurs within the zero off-diagonal blocks. If |VS | is small and
|B | ≈ |W |, these zero blocks account for approximately half the possible entries in
the matrix. The reordering can be applied recursively to the submatrices 𝐶B,B and
𝐶W ,W until the vertex subsets are of size less than a chosen threshold. At this stage,
a local ordering technique (such as AMD) is normally more effective than nested
dissection, and so a switch is made (Liu 1989); see also a more general combina-
tion that involves hypergraphs in Çatalyürek, Aykanat and Kayaaslan (2011). The
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1
2
3
4
5
6
7
8
9

10
11
12




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗




(a)

1

2

3

4

5

6

7

9

8

12

10

11

B VS W

(b)

1
2
3
4
5

8
9
10
11
12

6
7




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗




(c)

Figure 2.2. A simple example to illustrate nested dissection. (a) The pattern of the
original matrix. (b) The partitioned graph. (c) The corresponding symmetrically
permuted matrix.
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Algorithm 2.2. Nested dissection algorithm
Input: Graph G of a symmetric matrix𝐶 and a partitioning algorithm PartitionAlg.
Output: A permutation vector 𝑝 that defines a new labelling of the vertices of G.

1: recursive function (𝑝 = nested_dissection(𝐶, PartitionAlg))
2: if dissection has terminated then ⊲ Vertex subsets are sufficiently small
3: 𝑝 = AMD(V , E) ⊲ Compute an AMD ordering
4: else
5: Use PartitionAlg(V , E) to obtain the vertex partitioning (B,W ,V𝑆)
6: 𝑝B = nested_dissection(𝐶B,B, PartitionAlg)
7: 𝑝W = nested_dissection(𝐶W ,W , PartitionAlg)
8: 𝑝V𝑆

is an ordering of V𝑆

9: Set 𝑝 =



𝑝B
𝑝W
𝑝V𝑆




10: end if
11: end recursive function

approach is summarized in Algorithm 2.2. Here PartitionAlg specifies the algo-
rithm used in determining the partitioning of the vertices. Most current approaches
use multilevel techniques that create a hierarchy of graphs, each representing the
original graph, but with a successively smaller dimension (Karypis and Kumar
1998, Davis, Hager, Kolodziej and Yeralan 2020). The smallest (i.e. the coarsest)
graph is partitioned and this is then propagated back through the sequence of
graphs, while being periodically refined.

2.8. Software for ordering sparse matrices

Sparse direct solvers typically offer users a number of ordering algorithms. These
may call external packages or be built into the solver. COLAMD and AMD are
published as Algorithms 836 and 837, respectively, in ACM Transactions on Mathe-
matical Software (Amestoy, Davis and Duff 2004, Davis, Gilbert, Larimore and
Ng 2004b). The package HSL_MC68 from the HSL Mathematical Software Lib-
rary3 offers implementations of MD and AMD algorithms. MC61 is an efficient
implementation of the Sloan profile reduction algorithm and HSL_MC73 has entries
to compute multilevel variants of Sloan’s algorithm and spectral ordering. Suite-
Sparse4 offers a number of sparse matrix ordering algorithms, including COLAMD
and AMD; these also appear in MATLAB as functions colamd and amd. A Julia

3 https://www.hsl.rl.ac.uk/
4 https://people.engr.tamu.edu/davis/suitesparse.html
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version of AMD is available.5 The most well-known and widely used nested dis-
section ordering package is METIS;6 ParMETIS is an MPI-based parallel version.7
The Scotch library8 offers variants of AMD ordering, approximate minimum fill-in
ordering and nested dissection.

3. Sparse Cholesky factorizations
It is convenient to introduce the following matrix notation. For any square matrix
𝐵 = {𝑏𝑖 𝑗}, let 𝐵𝑖: 𝑗 ,𝑘:𝑙 be the submatrix comprising rows 𝑖 to 𝑗 , columns 𝑘 to 𝑙, and
let 𝐵𝑖: 𝑗 ,𝑘 denote the submatrix comprising rows 𝑖 to 𝑗 , column 𝑘 .

We again assume that the matrix 𝐶 = {𝑐𝑖 𝑗} ∈ R𝑛×𝑛 is sparse and symmetric
positive definite (SPD) and irreducible. If 𝐶 is not reducible, it can be permuted to
a non-trivial block diagonal form and the Cholesky factorization of each block on
the diagonal computed independently.

3.1. Column replication in sparse Cholesky factorizations

The Cholesky factorization of 𝐶 can be written as a recursive sequence of Schur
complements. The first step is

𝐶 =

(
𝑐11 𝐶⊤2:𝑛,1
𝐶2:𝑛,1 𝐶2:𝑛,2:𝑛

)
=

(
𝑐1/2

11
𝐶2:𝑛,1𝑐

−1/2
11 𝐼

)(
1

𝑆(2)

)(
𝑐1/2

11 𝑐−1/2
11 𝐶⊤2:𝑛,1

𝐼

)
,

(3.1)
where the (𝑛 − 1) × (𝑛 − 1) submatrix

𝑆(2) = 𝐶2:𝑛,2:𝑛 − 𝐶2:𝑛,1𝑐
−1
11𝐶

⊤
2:𝑛,1 = 𝐶2:𝑛,2:𝑛 − 𝐿2:𝑛,1𝐿

⊤
2:𝑛,1

is the Schur complement of 𝐶 with respect to 𝑐11. If 𝐶 is SPD then so too is 𝑆(2),
allowing the process to be repeated to give

𝑆(1) = 𝐶, 𝑆( 𝑗+1) = 𝑆( 𝑗)
2:𝑛− 𝑗+1,2:𝑛− 𝑗+1 − 𝐿 𝑗+1:𝑛, 𝑗𝐿

⊤
𝑗+1:𝑛, 𝑗 , 𝑗 = 1, 2, . . . , 𝑛 − 1,

where 𝑆( 𝑗+1) is of order 𝑛 − 𝑗 . Equivalently, the Schur complement can be written
using an outer product as

𝑆( 𝑗+1) = 𝐶 𝑗+1:𝑛, 𝑗+1:𝑛 −
𝑗∑︁

𝑘=1



𝑙 𝑗+1,𝑘
...
𝑙𝑛𝑘



(
𝑙 𝑗+1,𝑘 . . . 𝑙𝑛𝑘

)
. (3.2)

In the sparse case, many entries of 𝐿 are zero. Let the first non-zero subdiagonal
entry in column 𝑘 of 𝐿 be in row 𝑖 > 𝑘 . Then the first column of the Schur

5 https://github.com/JuliaSmoothOptimizers/AMD.jl
6 https://github.com/KarypisLab/METIS
7 https://github.com/KarypisLab/ParMETIS
8 https://gitlab.inria.fr/scotch/
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


1 2 3 4 5 6 7 8
1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗
8 ∗ ∗ ∗ ∗




(a)




1 2 3 4 5 6 7 8
1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗
6 ∗ ∗ 𝑓 ∗ ∗
7 ∗ 𝑓 ∗
8 ∗ ∗ ∗ ∗




(b)




1 2 3 4 5 6 7 8
1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗
6 ∗ ∗ 𝑓 ∗ ∗
7 ∗ 𝑓 𝑓 𝑓 ∗
8 ∗ ∗ ∗ ∗




(c)

Figure 3.1. An illustration of column replication. (a) The entries in 𝐿 before the
start of the Cholesky factorization, i.e. the entries in the lower triangular part of 𝐶.
(b) The replication of the non-zeros from column 1 in the pattern of column 3
(entries that have filled in are denoted by 𝑓 ). (c) The situation after the two
remaining replications in the pattern of columns 4 and 6.

complement to be updated by column 𝑘 is 𝑖. Determining the sparsity structure
S(𝐿) can therefore be described as the recursive replication of non-zeros in the
columns of 𝐿 with a key role played by the leading subdiagonal entries. This is
illustrated in Figure 3.1. The replication of the pattern of column 𝑘 of 𝐿 (rows 𝑖 to
𝑛) in the pattern of column 𝑖 > 𝑘 of 𝐿 is called the column replication principle,
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that is, for any 𝑖 > 𝑘 ≥ 1 such that 𝑙𝑖𝑘 ≠ 0 the sparsity patterns of columns 𝑖 and 𝑘
of 𝐿 satisfy S{𝐿𝑖:𝑛,𝑘} ⊆ S{𝐿𝑖:𝑛,𝑖}.

3.2. Elimination trees

Undirected graphs were discussed in Section 2.1. We now introduce trees, directed
graphs and DAGs, which we use to discuss the elimination trees that are key
to developing fast memory-efficient algorithms for the symbolic phase of sparse
Cholesky factorizations.

An undirected graph is connected if every pair of vertices is connected by a path.
A connected acyclic graph is called a tree, that is, a tree is an undirected graph in
which any two vertices are connected by exactly one path. Every tree has at least
two vertices of degree 1. Such vertices are leaf vertices. Leaf vertices have no
children.

In a directed graph (or digraph) G, the pairs of vertices that define the edges
are ordered. The notation (𝑢 → 𝑣) indicates the direction of the edge from 𝑢
to 𝑣. Any undirected tree T = (V , E) can be converted to a directed rooted tree
T ′ = (V , E ′) by specifying a root vertex 𝑣𝑟 . Note that 𝑣𝑟 can be chosen arbitrarily:
any choice gives a directed rooted tree. An edge (𝑢, 𝑣) ∈ E becomes a directed
edge (𝑢 → 𝑣) ∈ E ′ if there is a path from 𝑢 to 𝑣𝑟 such that the first edge of this
path is from 𝑢 to 𝑣. Given 𝑣𝑟 , this directed path is unique. 𝑣 is called the parent of
𝑢 if the directed edge (𝑢 → 𝑣) ∈ E ′; 𝑢 is said to be a child of 𝑣. A rooted tree is
a special case of a directed acyclic graph (DAG). A topological ordering of G is a
labelling of its vertices such that for every edge (𝑖 → 𝑗), vertex 𝑖 precedes vertex 𝑗
(i.e. 𝑖 < 𝑗). It can be shown that a topological ordering is possible if and only if G
is a DAG.

Provided the matrix 𝐶 is irreducible, each column of its Cholesky factor 𝐿
(except the final one) contains at least one non-zero subdiagonal entry (Liu 1986a).
If, as before, the first such entry in column 𝑘 is in row 𝑘1 (or, equivalently, the first
non-zero entry in row 𝑘 of 𝐿⊤ is in column 𝑘1), then the elimination tree T (𝐶) (or
simply T ) is defined to be the directed graph that is obtained by removing from the
directed graph G(𝐿⊤) all edges (𝑘 → 𝑖) for which 𝑖 > 𝑘1. It is straightforward to
see that T (𝐶) is a DAG and the ordering of its vertices is a topological ordering.
Note that because of the non-cancellation rule, (𝐿⊤)𝑖𝑘 ≠ 0 is equivalent to stating
that (𝑘 → 𝑖) is an edge of G(𝐿⊤).

The elimination tree for the matrix𝐶 from Figure 3.1 is shown in Figure 3.2. The
root vertex is 8. Following conventional notation, directional arrows are omitted
from T (𝐶) because an edge (𝑘, 𝑖) is always directed from 𝑘 to 𝑖 with 𝑖 > 𝑘 .

The time complexity for constructingT (𝐶) is𝑂(𝑛𝑧(𝐶) 𝑔(𝑛𝑧(𝐶), 𝑛)) (Tarjan 1975,
Liu 1990), where 𝑛𝑧(𝐶) is the number of non-zeros in 𝐶 and 𝑔(𝑛𝑧(𝐶), 𝑛) is a very
slowly increasing function called the functional inverse of Ackermann’s function.
This means that, in practice, the elimination tree can be efficiently constructed in
time that is essentially linear in 𝑛𝑧(𝐶) (which is generally much smaller than 𝑛𝑧(𝐿)).
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1

23

4

5

6

7

8

Figure 3.2. The elimination tree T (𝐶) for the matrix from Figure 3.1.

The importance of T (𝐶) is that it allows key characteristics of the Cholesky
factor 𝐿 to be computed symbolically. These include its row and column counts, the
maximum intermediate memory required during the factorization, and the sparsity
pattern S{𝐿}. The algorithms for doing this can depend on the ordering of T (𝐶).
A topological ordering of T (𝐶) defines a labelling of its vertices corresponding to
a symmetric permutation of 𝐶 that does not affect the amount of fill-in in 𝐿 (Liu
1990). An important class of topological orderings is obtained using a depth-first
search starting at the root vertex. Once vertex 𝑖 has been visited, all the vertices
of the subtree rooted at 𝑖 and denoted by T (𝑖) are visited immediately after 𝑖
and 𝑖 is labelled as the last vertex of T (𝑖). A topological ordering of T (𝐶) is a
postordering if and only if the set of vertex labels of any subtree T (𝑖), 1 ≤ 𝑖 ≤ 𝑛,
is a contiguous sublist of 1, . . . , 𝑛. Unless additional rules on how vertices are
selected are imposed, a postordering is usually not unique.

Note that although the ordering algorithms discussed in Section 2.3 mainly target
the reduction of fill-in (and thus 𝑛𝑧(𝐿)) and the number of operations required to
compute 𝐿, the ordering also has a significant impact on the shape of the elimination
tree, and this subsequently affects the potential to exploit parallelism within the
factorization algorithm.

3.3. Supervariables

The performance of most algorithms used in the symbolic phase of a sparse
Cholesky factorization can be enhanced by employing supervariables (recall Sec-
tion 2.4). Let the vertex set V of the graph G(𝐶) be partitioned into nsup ≥ 1
non-empty disjoint subsets of indistinguishable vertices

V = V1 ∪ V2 ∪ . . . ∪ Vnsup. (3.3)
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If the vertices belonging to each subset V1, . . . ,Vnsup are numbered consecutively,
with those in V𝑖 preceding those in V𝑖+1 (1 ≤ 𝑖 < nsup), and if 𝑃 is the permutation
matrix corresponding to this ordering, then the permuted matrix 𝑃𝐶𝑃⊤ has a block
structure in which the blocks are dense; the dimensions of the blocks are equal to
the sizes of the indistinguishable sets. The matrix 𝑃𝐶𝑃⊤ can be condensed to a
matrix of order equal to nsup; the corresponding graph is the supervariable graph.
If the average number of variables in each supervariable is 𝑙, using the supervariable
graph will reduce the amount of integer data that is handled during the symbolic
phase by a factor of about 𝑙2. Algorithms for finding supervariables are discussed
in Hogg and Scott (2013a); see also Ashcraft (1995) and Saad (2003a).

To illustrate supervariables, consider the following example. For the given
matrix 𝐶, we cannot immediately see sets of indistinguishable vertices. But by
symmetrically permuting the matrix, we obtain the matrix on the right. The
permutation matrix 𝑃 corresponds to the new labelling of the rows and columns. It
is now clear that there are three sets of indistinguishable vertices {(2, 4), (1, 5), (3)}:

𝐶 =




1 2 3 4 5
1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗



, 𝑃𝐶𝑃⊤ =




2 4 1 5 3
2 ∗ ∗ ∗
4 ∗ ∗ ∗
1 ∗ ∗ ∗
5 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗



.

3.4. Basic left- and right-looking sparse Cholesky factorizations

There are several classes of algorithms that implement sparse Cholesky factor-
izations. Their major differences relate to how they schedule the computations.
This affects the use of dense linear algebra kernels, memory requirements during
the factorization and the potential for parallel implementations. Given the factor
sparsity pattern S{𝐿}, define { 𝑗_𝑟} to be the set of subdiagonal row indices of the
non-zero entries in column 𝑗 of 𝐿, that is,

{ 𝑗_𝑟} = {𝑖 > 𝑗 | 𝑙𝑖 𝑗 ≠ 0}.
Thus, 𝐿 { 𝑗_𝑟 }, 𝑗 denotes the non-zero subdiagonal entries in column 𝑗 of 𝐿 and,
for any 𝑘 > 𝑗 , 𝐿 { 𝑗_𝑟 },𝑘 denotes the non-zero entries in column 𝑘 of 𝐿 with row
indices belonging to { 𝑗_𝑟}. Algorithms 3.1 and 3.2 use this notation to outline
simplified left- and right-looking variants of the sparse Cholesky factorization.
In the left-looking version, update operations are not applied immediately to the
remaining columns. Instead, at the start of major step 𝑗 , all updates from columns
1 to 𝑗 − 1 are applied together to column 𝑗 (lines 3 to 7 of Algorithm 3.1) and
then it is factorized (lines 8 to 11). In the right-looking approach, outer product
updates are applied to the part of the matrix that is still to be factorized as they are
generated (lines 7 to 11 of Algorithm 3.2).
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Algorithm 3.1. Simplified sparse left-looking Cholesky factorization
Input: SPD matrix 𝐴 and sparsity pattern S{𝐿}.
Output: Cholesky factor 𝐿 such that 𝐴 = 𝐿𝐿⊤.

1: for 𝑗 = 1: 𝑛 do ⊲ Start of major step 𝑗
2: 𝑙 𝑗 𝑗 = 𝑎 𝑗 𝑗 , 𝐿 { 𝑗_𝑟 }, 𝑗 = 𝐴{ 𝑗_𝑟 }, 𝑗
3: for 𝑘 ∈ {𝑘 < 𝑗 | 𝑙 𝑗𝑘 ≠ 0} do ⊲ Apply updates from previous columns
4: 𝑙 𝑗 𝑗 = 𝑙 𝑗 𝑗 − 𝑙 𝑗𝑘 𝑙 𝑗𝑘 ⊲ Update diagonal entry
5: 𝐿 { 𝑗_𝑟 }, 𝑗 = 𝐿 { 𝑗_𝑟 }, 𝑗 − 𝐿 { 𝑗_𝑟 },𝑘 𝑙 𝑗𝑘 ⊲ Update subdiagonal entries
6: end for
7: 𝑙 𝑗 𝑗 = (𝑙 𝑗 𝑗)1/2

8: 𝐿 { 𝑗_𝑟 }, 𝑗 = 𝐿 { 𝑗_𝑟 }, 𝑗/ 𝑙 𝑗 𝑗 ⊲ Scale current column by the pivot
9: end for

Algorithm 3.2. Simplified sparse right-looking Cholesky factorization
Input: SPD matrix 𝐴 and sparsity pattern S{𝐿}.
Output: Cholesky factor 𝐿 such that 𝐴 = 𝐿𝐿⊤.

1: for 𝑗 = 1: 𝑛 do
2: 𝑙 𝑗 𝑗 = 𝑎 𝑗 𝑗 , 𝐿 { 𝑗_𝑟 }, 𝑗 = 𝐴{ 𝑗_𝑟 }, 𝑗
3: end for
4: for 𝑗 = 1: 𝑛 do ⊲ Start of major step 𝑗
5: 𝑙 𝑗 𝑗 = (𝑙 𝑗 𝑗)1/2

6: 𝐿 { 𝑗_𝑟 }, 𝑗 = 𝐿 { 𝑗_𝑟 }, 𝑗/ 𝑙 𝑗 𝑗 ⊲ Scale current column by the pivot
7: for 𝑘 ∈ {𝑘 > 𝑗 | 𝑙𝑘 𝑗 ≠ 0} do ⊲ Update remaining columns
8: 𝑙𝑘𝑘 = 𝑙𝑘𝑘 − 𝑙 𝑗𝑘 𝑙 𝑗𝑘 ⊲ Update diagonal entry in column 𝑘
9: 𝐿 {𝑘_𝑟 },𝑘 = 𝐿 {𝑘_𝑟 },𝑘 − 𝐿 {𝑘_𝑟 }, 𝑗 𝑙 𝑗𝑘 ⊲ Update subdiagonal in column 𝑘

10: end for
11: end for

3.5. Supernodes and the assembly tree

The simplified schemes above form the basis of more sophisticated algorithms. For
efficiency, it is essential to take advantage of dense blocks within the factorization;
these are able to exploit Level 3 BLAS routines. Column replication leads to
the columns of 𝐿 becoming denser as the factorization proceeds. Furthermore,
fill-reducing orderings (such as the minimum fill and minimum degree algorithms)
seek to choose vertices of G(𝐶) that, at each stage, add a small number of new
non-zeros to 𝐿, which contributes to the early columns of 𝐿 being significantly
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(a) (b) (c)

Figure 3.3. An illustration of a supernode (a), the corresponding nodal matrix (b)
and the nodal matrix with two panels (c). The shaded lower triangular part of the
block on the diagonal and the shaded block rows are treated as dense (the white
row blocks are not stored).

sparser than those towards the end of factorization. Exploiting density within
𝐿 can significantly reduce the computation time and memory of the numerical
factorization. In particular, columns of 𝐿 with the same sparsity structure can
be grouped and the resulting block treated as a dense matrix for storage and
computation purposes. Let 1 ≤ 𝑖, 𝑗 ≤ 𝑛 with 𝑖 + 𝑗 − 1 ≤ 𝑛. A set of contiguously
numbered columns of 𝐿 with indices V𝐿 = {𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑗 − 1} is defined to be
a supernode of 𝐿 if

S{𝐿:,𝑖} ∪ {𝑖} = S{𝐿:,𝑖+ 𝑗−1} ∪ V𝐿 ,

and V𝐿 cannot be extended for 𝑖 > 1 by adding 𝑖 − 1 or for 𝑖 + 𝑗 − 1 < 𝑛 by adding
𝑖 + 𝑗 . In graph terminology, a supernode is a maximal clique of contiguous vertices
of G(𝐿 + 𝐿⊤). A supernode is stored as a dense trapezoidal matrix (only the lower
triangular part of the block on the diagonal is needed), but rows of zeros in the
columns of the supernode are not held. This is termed a nodal matrix. This is
illustrated in Figure 3.3.

Supernodes can be small (i.e. they may contain very few columns or even just
a single column), in which case the costs associated with identifying them may
not be offset by the increase in performance resulting from the potential for block
operations. Thus, it can be advantageous to merge supernodes that have similar
(but not exactly the same) non-zero patterns. This process is termed supernode
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amalgamation, and the resultant nodes are referred to as relaxed supernodes (Ash-
craft and Grimes 1989). Using relaxed supernodes increases the number of entries
in 𝐿 and the floating-point operations needed to compute it and use it, but this can
be outweighed by the benefits of better use of Level 3 BLAS.

The supernodal elimination tree, which is also commonly called the assembly
tree, is the reduction of the elimination tree that contains only supernodes. Each
vertex of the elimination tree is associated with one elimination and a single integer
(the index of its parent) is needed. Associated with each vertex of the assembly tree
is an index list of the row indices of the non-zeros in the columns of the supernode.
These implicitly define the sparsity pattern S{𝐿}.

3.6. Supernodal and DAG-based factorization

Assume 𝐿 has 𝑛𝑠 ≤ 𝑛 supernodes and let 𝑗 𝑠 and 𝑘𝑠 denote two of these supernodes.
Generalizing the notation of Section 3.4, we let { 𝑗 𝑠_𝑐} denote the set of columns in
𝑗 𝑠 and let { 𝑗 𝑠_𝑟} be the set of row indices of the non-null subdiagonal row blocks
belonging to 𝑗 𝑠 (1 ≤ 𝑗 𝑠 ≤ 𝑛𝑠). Then 𝐿 { 𝑗𝑠_𝑐}, { 𝑗𝑠_𝑐} and 𝐿 { 𝑗𝑠_𝑟 }, { 𝑗𝑠_𝑐} denote the
block on the diagonal and the non-null subdiagonal row blocks in supernode 𝑗 𝑠,
and 𝐿 { 𝑗𝑠_𝑐}, {𝑘𝑠_𝑐} and 𝐿 { 𝑗𝑠_𝑟 }, {𝑘𝑠_𝑐} , respectively, denote the blocks with columns
belonging to supernode 𝑘𝑠 and row indices belonging to { 𝑗 𝑠_𝑐} and { 𝑗 𝑠_𝑟}. Using
this notation, Algorithm 3.3 outlines a left-looking supernodal factorization. The
for loop at line 3 applies updates from previous supernodes. At lines 4 and 7,
only the lower triangular part of the block 𝐿 { 𝑗𝑠_𝑐}, { 𝑗𝑠_𝑐} on the diagonal is used.
At line 4 it is updated and then at line 7 it is overwritten by its dense Cholesky
factor. At line 8, a dense triangular solve is used to scale the columns in 𝑗 𝑠. This
supernodal left-looking approach is discussed in Ng and Peyton (1993a,b).

Algorithm 3.3. Supernodal left-looking Cholesky factorization
Input: Sparse SPD matrix 𝐶 and sparsity pattern S{𝐿} with 𝑛𝑠 supernodes.
Output: Cholesky factor 𝐿 such that 𝐶 = 𝐿𝐿⊤.

1: for 𝑗 𝑠 = 1: 𝑛𝑠 do
2: 𝐿 { 𝑗𝑠_𝑐},{ 𝑗𝑠_𝑐} = 𝐴{ 𝑗𝑠_𝑐},{ 𝑗𝑠_𝑐} , 𝐿 { 𝑗𝑠_𝑟 },{ 𝑗𝑠_𝑐} = 𝐴{ 𝑗𝑠_𝑟 },{ 𝑗𝑠_𝑐}
3: for 𝑘𝑠 ∈ {𝑘𝑠 < 𝑗 𝑠 | 𝐿 { 𝑗𝑠_𝑐},{𝑘𝑠_𝑐} ≠ 0} do
4: 𝐿 { 𝑗𝑠_𝑐},{ 𝑗𝑠_𝑐} = 𝐿 { 𝑗𝑠_𝑐},{ 𝑗𝑠_𝑐} − 𝐿 { 𝑗𝑠_𝑐},{𝑘𝑠_𝑐} 𝐿⊤{ 𝑗𝑠_𝑐},{𝑘𝑠_𝑐}
5: 𝐿 { 𝑗𝑠_𝑟 },{ 𝑗𝑠_𝑐} = 𝐿 { 𝑗𝑠_𝑟 },{ 𝑗𝑠_𝑐} − 𝐿 { 𝑗𝑠_𝑟 },{𝑘𝑠_𝑐} 𝐿⊤{ 𝑗𝑠_𝑐},{𝑘𝑠_𝑐}
6: end for
7: 𝐿 { 𝑗𝑠_𝑐},{ 𝑗𝑠_𝑐} = 𝐿 { 𝑗𝑠_𝑐},{ 𝑗𝑠_𝑐}𝐿⊤{ 𝑗𝑠_𝑐},{ 𝑗𝑠_𝑐}
8: 𝐿 { 𝑗𝑠_𝑟 },{ 𝑗𝑠_𝑐} = 𝐿 { 𝑗𝑠_𝑟 },{ 𝑗𝑠_𝑐} 𝐿−⊤{ 𝑗𝑠_𝑐},{ 𝑗𝑠_𝑐}
9: end for
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Let us denote the tasks at lines 4 and 5 by update( 𝑗 𝑠_𝑟, 𝑘𝑠) and update( 𝑗 𝑠_𝑐, 𝑘𝑠),
and those at lines 7 and 8 by factorize( 𝑗 𝑠) and solve( 𝑗 𝑠), respectively. The fac-
torization is then comprised of a set of tasks connected by dependences that
can be expressed in the form of a task DAG. For example, all update tasks
for which 𝑘𝑠 ∈ {𝑘𝑠 < 𝑗 𝑠 | 𝐿 { 𝑗𝑠_𝑐},{𝑘𝑠_𝑐} ≠ 0} must be performed before
the task factorize( 𝑗 𝑠) can be carried out. That is, the DAG contains edges
update( 𝑗 𝑠_𝑟, 𝑘𝑠) → factorize( 𝑗 𝑠) and update( 𝑗 𝑠_𝑐, 𝑘𝑠) → factorize( 𝑗 𝑠). Com-
pared to a left- or right-looking algorithm, a DAG-driven factorization allows
greater freedom in the order in which the tasks are carried out, improving the scope
for exploiting parallelism.

It can be beneficial in terms of the run-time to increase the number of tasks (i.e.
replace ‘large’ tasks by a number of smaller tasks). This can be done by splitting the
nodal matrix into a number of panels (Hogg, Reid and Scott 2010) (see Figure 3.3).

3.7. The multifrontal method

Another approach that has proved very successful is the multifrontal method. It
was introduced in the 1980s (Duff and Reid 1983) (but see also the earlier work
by Speelpenning 1978). It uses a postordering of the assembly tree and organizes
the operations that take place during the factorization in such a way that the entire
factorization is performed through the partial factorizations of a sequence of dense
submatrices.

To assist in describing the multifrontal method, observe that the single step of
a Cholesky factorization given in (3.1) can be generalized to 𝑗 ≥ 1 steps (block
elimination), that is,

𝐶 =

(
𝐶11 𝐶⊤𝑗+1:𝑛,1: 𝑗

𝐶 𝑗+1:𝑛,1: 𝑗 𝐶 𝑗+1:𝑛, 𝑗+1:𝑛

)

=

(
𝐿1

𝐶 𝑗+1:𝑛,1: 𝑗𝐿
−⊤
1 𝐼

)(
1

𝑆( 𝑗+1)

)(
𝐿⊤1 𝐿−1

1 𝐶⊤𝑗+1:𝑛,1: 𝑗
𝐼

)
.

Here 𝐶11 = 𝐿1𝐿
⊤
1 is the 𝑗 × 𝑗 Cholesky factorization of the (1, 1) block of 𝐶 and

the Schur complement

𝑆( 𝑗+1) = 𝐶 𝑗+1:𝑛, 𝑗+1:𝑛 − 𝐶 𝑗+1:𝑛,1: 𝑗𝐶
−1
11 𝐶

⊤
𝑗+1:𝑛,1: 𝑗

is the part of the matrix that is still to be factorized. The term𝐶 𝑗+1:𝑛,1: 𝑗𝐶
−1
11 𝐶

⊤
𝑗+1:𝑛,1: 𝑗

represents the update contributions from the first 𝑗 rows and columns to the (2, 2)
block 𝐶 𝑗+1:𝑛, 𝑗+1:𝑛. It can also be expressed in the outer product form (3.2) and
this is the basis of the multifrontal method, which can be viewed as providing an
effective management of the outer product updates when 𝐶 is sparse.

For each supernode 𝑗 𝑠, the multifrontal algorithm creates a matrix 𝐹( 𝑗 𝑠) called
a frontal matrix. This is a small symmetric dense matrix with columns and rows
corresponding to the groups of columns to be eliminated and all the rows in which
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Algorithm 3.4. Multifrontal Cholesky factorization
Input: Sparse SPD matrix 𝐶 and its postordered assembly tree.
Output: Cholesky factor 𝐿 such that 𝐶 = 𝐿𝐿⊤.

1: for 𝑗 𝑠 = 1: 𝑛𝑠 do ⊲ Follow the postordering of the tree
2: Assemble frontal matrix 𝐹( 𝑗 𝑠) using rows/columns of 𝐶 and contribution

blocks from children of 𝑗 𝑠
3: Permute and then partially factorize 𝐹( 𝑗 𝑠) ⊲ Results in a block column of 𝐿

and contribution block 𝑉( 𝑗 𝑠)
4: Push 𝑉( 𝑗 𝑠) onto the stack. ⊲ 𝑉( 𝑗 𝑠) will be popped from the stack when

assembling 𝐹(parent( 𝑗 𝑠))
5: end for

these columns have non-zeros. At the leaf vertices, 𝐹( 𝑗 𝑠) is assembled by adding
into it the entries in the corresponding rows and columns of the matrix 𝐶. At each
stage, 𝐹( 𝑗 𝑠) is permuted to have a 2 × 2 block structure

𝐹( 𝑗 𝑠) =
(
𝐹11 𝐹⊤21
𝐹21 𝐹22

)
,

in which all variables in the (1,1) block can be eliminated (i.e. they are fully
summed) but the remaining variables cannot be eliminated until later in the fac-
torization because further contributions are still to be added (assembled). At leaf
vertices, 𝐹22 = 0. The Schur complement formed by the elimination of the fully
summed variables within 𝐹( 𝑗 𝑠) is called the contribution block 𝑉( 𝑗 𝑠) (it is also
sometimes referred to as the generated element or update matrix). Because of
symmetry, only the lower triangular parts of 𝐹( 𝑗 𝑠) and𝑉( 𝑗 𝑠) need to be computed.

After the partial factorization of 𝐹( 𝑗 𝑠), the factor columns that have been com-
puted are added into the factor 𝐿 and 𝑉( 𝑗 𝑠) is stored. When all the children of a
parent 𝑘𝑠 have been eliminated, the parent retrieves the contribution blocks of its
children, and assembles them (together with the rows and columns of the matrix 𝐶
corresponding to 𝑘𝑠) into its own frontal matrix 𝐹(𝑘𝑠). Variables in 𝑘𝑠 are fully
summed (and ready for elimination) if all descendants of the corresponding vertex
in the assembly tree have been eliminated. The process of performing a partial
factorization and then storing the contribution block is repeated until the root vertex
is reached. At the root, all the variables are fully summed and so can be eliminated
to complete the factorization. The approach is summarized as Algorithm 3.4.

At each stage 𝑗 𝑠 (except the root), the contribution block 𝑉( 𝑗 𝑠) must be stored
until 𝑘𝑠 = parent( 𝑗 𝑠) is processed. It is convenient to use a stack for this. It is
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Figure 3.4. The multifrontal method applied to the matrix 𝐶 = {𝑐𝑖 𝑗} from Fig-
ure 3.1. The assembly tree is shown. Each vertex shows the transformation from
its frontal matrix to the computed entries of 𝐿 and contribution block that is passed
from child to parent. To illustrate the method, global indices are used for the
entries of the contribution blocks; superscripts are used to indicate the supernode
the contribution comes from.

easy to see that for any subtree T ( 𝑗 𝑠) of the postordered assembly tree, 𝑗 𝑠 is the
last vertex in T ( 𝑗 𝑠) to be processed and the contribution blocks from its children
are those on the top of the stack. Thus, they can be popped from the stack when
assembling 𝐹( 𝑗 𝑠).

Figure 3.4 illustrates the multifrontal method applied to the 8×8 matrix from Fig-
ure 3.1. It has two non-trivial supernodes (3, 4) and (6, 7, 8) and the corresponding
assembly tree has five vertices.

The contributions to the frontal matrix vary in size, so careful attention must
be paid to the indices and the mapping between global and local indices. The
assembly operation is called extend-add (Liu 1992). The ‘Achilles heel’ of sparse
direct methods is the need for indirect addressing. The multifrontal method cannot
avoid this, but it only occurs during the assembly operations while all the arithmetic
is performed using direct addressing in the dense frontal matrices.

Implementations of the multifrontal method may include an option to reduce the
main memory requirements by using disk storage, thus enabling larger problems
to be solved (this option was very necessary when computers had limited main
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memories). An out-of-core method writes the columns of 𝐿 to disk as they are
computed and may also hold the original matrix, the stack (and possibly the frontal
matrix) in files on disk. During the subsequent triangular solves, the factor data
must be read back in, which adds to the overall solution cost. The efficient use of
disk storage is discussed in Reid and Scott (2009).

An important aspect of the postordered assembly tree is that it only partially
defines an ordering of the factorization tasks. This is because it is only necessary
for the elimination operations at a child vertex to be completed before those at
its parent can be performed. This freedom enables tree level parallelism to be
exploited (Amestoy, Duff and L’Excellent 2000). In addition, advantage can be
taken of parallelism within the partial factorizations of the dense frontal matrices;
this is referred to as node level parallelism. This is key for good performance,
particularly at the large vertices that are at (or close too) the root vertex.

3.8. Numerical rank deficiency in the Cholesky factorization

So far in our discussion of Cholesky factorizations we have assumed that 𝐴 is of full
column rank. As observed in Section 1.5, when solving least-squares problems, we
need to be more aware of rank deficiency than when solving general linear systems
of equations. Formally, the Cholesky factorization of 𝐴⊤𝐴 does not break down if

𝑐 𝑛3/2 𝜖 𝜅2(𝐴⊤𝐴) ≤ 1,

where 𝑐 is a small constant (Wilkinson 1968, Golub and Van Loan 1996). If 𝐴 is
potentially ill-conditioned or if 𝐴⊤𝐴 is positive semidefinite, diagonal pivoting can
be incorporated into the factorization. At each step, the largest diagonal entry in the
Schur complement is selected as the next pivot (i.e. the next to be eliminated). It is
permuted to be the leading entry of the Schur complement and thus the Cholesky
factorization of (𝐴𝑃)⊤𝐴𝑃, for some permutation matrix 𝑃, is computed. The rank
rk of 𝐴⊤𝐴 is revealed by the factorization

𝑃⊤𝐴⊤𝐴𝑃 = 𝐿𝐿⊤, 𝐿 =

(
𝐿11 0
𝐿21 0

)
, (3.4)

where 𝐿11 ∈ Rrk×rk is lower triangular. Such a factorization exists (Higham 1990),
although incorporating pivoting adds significantly to the complexity of sparse
factorization algorithms. Once the factorization is obtained, the least-squares
solution can be computed from the relations
(
𝑏1
𝑏2

)
= 𝑃⊤𝐴⊤𝑏, 𝐿11𝑧 = 𝑏1, 𝐿⊤11𝑦1 = 𝑧 − 𝐿⊤21𝑦2, 𝑥 = 𝑃

(
𝑦⊤1 𝑦⊤2

)⊤
,

where 𝑏1, 𝑦1, 𝑧 ∈ Rrk and 𝑦2 ∈ R𝑛−rk is an arbitrary vector. The fact that 𝑦2 can be
chosen arbitrarily follows from the singularity of 𝐴⊤𝐴. If 𝐴⊤𝐴 is close to being
positive definite, the numerical rank is better revealed using a QR factorization
(Section 4.5).
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3.9. Software for sparse Cholesky factorizations

Since the 1970s, software packages that implement algorithms for sparse Cholesky
factorizations have been developed. One of the earliest and perhaps the most
well-known serial multifrontal solver is MA27 (Duff and Reid 1983). It solves
sparse symmetric linear systems that are not necessarily positive definite. It was
written for inclusion in the HSL library9 (prior to 2000, it was known as the
Harwell Subroutine Library (Scott 2023)) and, although later HSL codes have
been designed and developed with the intention of superseding it, MA27 remains
in use.10 CHOLMOD11 is a supernodal Cholesky solver for sparse SPD linear
systems (Chen, Davis, Hager and Rajamanickam 2008); it offers CUDA GPU
acceleration. CHOLMOD is used by backslash within MATLAB. PaStiX12

also has a parallel supernodal Cholesky factorization solver (Hénon, Ramet and
Roman 2002). HSL_MA87 implements a sparse DAG-based Cholesky factorization
for shared memory architectures (Hogg et al. 2010). The package HSL_MA85 is
specifically designed to use sparse direct methods to solve large-scale diagonally
weighted linear least-squares problems; it calls HSL_MA87 if the user chooses to use
the normal matrix formulation. Within the cuSolver library,13 cuSolverSP includes
a sparse Cholesky code.

In addition to MA27, there are a number of important packages that are designed
for general sparse symmetric systems and consider positive definite systems as
a special case. Pardiso14 implements a left–right looking sparse Cholesky algo-
rithm; the Intel oneAPI Math Kernel Library (oneMKL) includes a variant of this
solver. The MUMPS package15 and WSMP16 both provide distributed memory
general-purpose multifrontal solvers. The current HSL library includes a num-
ber of multifrontal codes. From the early 2000s, MA57 (Duff 2004) remains very
popular; it only exploits parallelism through the use of Level 3 BLAS during the
factorization of the frontal matrices. A more recent package is the shared memory
solver HSL_MA97 (Hogg and Scott 2013b). It has the attractive feature that, al-
though it is a parallel solver, it computes bit-compatible solutions, which can be
important for some applications. HSL_MA77 (Reid and Scott 2009) is designed to
minimize memory requirements, thereby potentially enabling larger matrices to be
factorized. The user can choose to allow the factors and the multifrontal stack
to be efficiently held outside of main memory (an option that is also offered by
MUMPS).

9 https://www.hsl.rl.ac.uk/
10 https://www.hsl.rl.ac.uk/archive/
11 https://people.engr.tamu.edu/davis/suitesparse.html
12 https://solverstack.gitlabpages.inria.fr/pastix/
13 https://docs.nvidia.com/cuda/cusolver/
14 https://panua.ch/pardiso/
15 https://mumps-solver.org/
16 http://researcher.watson.ibm.com/researcher/view_group.php?id=1426
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4. Sparse QR factorizations
4.1. Introduction to QR factorizations

Let us again assume that 𝐴 ∈ R𝑚×𝑛 (𝑚 > 𝑛) is of full column rank. Then the QR
factorization (1.11) of 𝐴 is unique if the diagonal entries of the matrix 𝑅 are positive.
Approaches for computing a QR factorization can be based on Givens rotations,
Householder reflectors or Gram–Schmidt orthogonalization. They often differ
significantly in their numerical properties as well as in their efficiency, memory
demands and computational output, particularly when 𝐴 is sparse.

4.1.1. Givens rotations
Givens’ method is based on elementary orthogonal transformations that represent
rotations in a plane spanned by two coordinate axes. Consider an anticlockwise
rotation of a non-zero vector 𝑤 = (𝑤1 𝑤2)⊤ ∈ R2 through an angle 𝜃 such that the
second entry of the rotated vector 𝑦 = (𝑦1 𝑦2)⊤ is zero. The rotation can be written
as the matrix transformation(

𝑐 −𝑠
𝑠 𝑐

)(
𝑤1
𝑤2

)
=

(
𝑦1
𝑦2

)
=

(
𝑑
0

)
, where 𝑠 = 𝑤2/𝑑, 𝑐 = −𝑤1/𝑑, 𝑑 = ∥𝑤∥2.

This transformation can be expressed as a plane rotation in the extended space
R𝑚×𝑚. If the two axes correspond to row indices 𝑖 and 𝑗 of 𝐴, then the 𝑚 × 𝑚
matrix 𝐺(𝑖, 𝑗) given by

𝐺(𝑖, 𝑗) =




𝑖 𝑗

1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

𝑖 0 . . . 𝑐 . . . 𝑠 . . . 0
...

...
. . .

...
...

𝑗 0 . . . −𝑠 . . . 𝑐 . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1




,

with 1s on the diagonal except rows 𝑖 and 𝑗 , is an orthogonal transformation that
when applied to 𝐴 affects only the entries in rows 𝑖 and 𝑗 . This is a Givens
rotation, named after the pioneering work of Wallace Givens (1953) (although it
was used even earlier by Jacobi (Jacobi 1845, Golub and Meurant 1997)). Explicit
calculation of the angle 𝜃 is rarely necessary or desirable. Instead, the scalars 𝑐
and 𝑠, which correspond to cos(𝜃) and sin(𝜃), respectively, are computed.

Givens rotations can be used to systematically eliminate individual subdiagonal
entries of 𝐴 by applying them one by one to pairs of rows. In particular, applying
them in the following order produces the QR factorization

𝐺(𝑛, 𝑚) . . . 𝐺(2, 𝑚) . . . 𝐺(2, 3) . . . 𝐺(1, 𝑚) . . . 𝐺(1, 2)𝐴 = 𝑅, (4.1)

where the 𝑄 factor is the transpose of the product of the Givens rotations. When 𝐴
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is sparse, it is sufficient to eliminate only the non-zero entries. But, as the process of
elimination of non-zero entries in 𝐴 continues, new non-zero fill-in entries typically
arise (this is termed intermediate fill-in) and they must also be eliminated. The
order in which the rotations are applied must satisfy some rules. A basic rotation-
based strategy by columns in (4.1) eliminates the subdiagonals in column 1 of 𝐴,
followed by those in column 2, and so on. Significant research has been devoted
to developing row-ordering schemes, sometimes combined with column-ordering
schemes, to minimize intermediate fill-in; see, for example, George, Liu and Ng
(1986) and the references therein.

Givens rotations provided the first technique for computing the QR factorization
of a sparse matrix and their sophisticated use resulted in an efficient computational
framework for solving linear least-squares problems (George and Heath 1980).

4.1.2. Householder reflectors
An alternative to Givens rotations is to use Householder reflectors, the name
recognizing the pioneering work of Alston Householder (1958). A Householder
reflector (also known as a Householder transformation or Householder matrix) is a
symmetric orthogonal matrix of the form

𝐻 = 𝐼 − 𝛽𝑤𝑤⊤,
where 𝛽 is a scalar and 𝑤 is a non-zero vector chosen such that if 𝑦 = 𝐻𝑥 then
|(𝑦)1 | = ∥𝑥∥2 and all other entries are zero (Golub and Van Loan 1996). The
vector 𝑤 is called a Householder vector. The application of an 𝑚 ×𝑚 Householder
reflector 𝐻(1) to the matrix 𝐴 with 𝑎1 as its first column can be written as

𝐻(1)𝐴 = 𝐻(1) (𝑎1 𝐴1:𝑚,2:𝑛
)

=
(
𝐼 − 𝛽1𝑤

(1)(𝑤(1))⊤
) (
𝑎1 𝐴1:𝑚,2:𝑛

)
=

(
𝑅1,1 𝑅1,2:𝑛

0 𝐴(1)

)
. (4.2)

The elimination of subdiagonal non-zero entries can be continued by applying
an (𝑚 − 1)× (𝑚 − 1) Householder reflector 𝐻2 = 𝐼 − 𝛽2𝑤

(2)(𝑤(2))⊤ to 𝐴(1) such that
its (1, 1) entry becomes zero. 𝐻2 can be extended to an 𝑚 × 𝑚 matrix by setting

𝐻(2) =

(
1

𝐻2

)
.

Setting 𝐴(0) = 𝐴, the iteration formula is

𝐴( 𝑗) = 𝐻( 𝑗)𝐴( 𝑗−1). (4.3)

Repeating the process yields the factorization

𝐻(𝑛) . . . 𝐻(2)𝐻(1)𝐴 = 𝐴(𝑛),

from which the QR factorization is obtained by setting 𝑄 = 𝐻(1)𝐻(2) . . . 𝐻(𝑛) and
𝑅 = 𝐴(𝑛). In the dense case, compared with using Givens rotations, Householder
reflectors reduce the floating-point operation count by a third.
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If the 𝑄 factor is required to be retained then it can be held explicitly as the
product of the Householder reflectors 𝐻(1)𝐻(2) . . . 𝐻(𝑛), or implicitly as the se-
quence of Householder vectors 𝑤(1), 𝑤(2) . . . . For sparse 𝐴, the latter generally
requires significantly less memory because the 𝑤(𝑖) are typically sparse. Storing
blocks of Householder vectors allows the use of Level 3 BLAS (Schreiber and
Van Loan 1989); see also Amestoy, Duff and Puglisi (1996b) and Davis (2011).

4.1.3. Gram–Schmidt QR factorization
The Gram–Schmidt process computes vectors 𝑞1, 𝑞2, . . . , 𝑞𝑛 such that each column
𝑎𝑘 , 𝑘 = 1, . . . , 𝑛, of 𝐴 can be expressed as a linear combination

𝑎𝑘 = 𝑟1𝑘𝑞1 + 𝑟2𝑘𝑞2 + . . . 𝑟𝑛𝑘𝑞𝑛, 𝑟𝑘𝑘 ≠ 0,

with ⟨𝑞𝑖 , 𝑞𝑖⟩ = 1 and ⟨𝑞𝑖 , 𝑞 𝑗⟩ = 0 for 𝑖 ≠ 𝑗 , where ⟨· , ·⟩ denotes the inner product.
This can be written as the QR factorization (1.11) with the orthonormal matrix
𝑄1 = (𝑞1, 𝑞2, . . . , 𝑞𝑛) ∈ R𝑛×𝑛. Unlike the Householder QR factorization, in which
orthogonal transformations are applied to reduce 𝐴 to upper triangular form 𝑅 and
𝑄 is (implicitly) defined as the product of the Householder reflectors, 𝑄1 is held
explicitly as linear combinations of the columns of 𝐴.

The classical Gram–Schmidt (CGS) process generates 𝑞𝑘 by orthonormalizing
𝑎𝑘 against 𝑄𝑘−1 = (𝑞1, 𝑞2, . . . , 𝑞𝑘−1), that is, it computes the vector

𝑎 = 𝑎𝑘 −𝑄𝑘−1𝑄
⊤
𝑘−1𝑎𝑘

and then sets 𝑟𝑘𝑘 = ∥𝑎∥2 and 𝑞𝑘 = 𝑎/𝑟𝑘𝑘 . CGS is suited to parallel computation (the
main work can be performed as matrix–vector multiplications), but it often produces
a non-orthogonal set of vectors because of cancellations in the subtractions.

In the modified Gram–Schmidt (MGS) algorithm, 𝑞𝑘 is obtained by first pro-
jecting column 𝑎𝑘 onto the subspace orthogonal to 𝑞1, then the resulting vector is
projected onto the subspace orthogonal to span{𝑞1, 𝑞2}, up to the projection onto
the subspace orthogonal to span{𝑞1, 𝑞2, . . . , 𝑞𝑘−1}. This limits the amplification of
the rounding errors affecting the orthogonality of 𝑞𝑘 with respect to the previously
computed vectors. In finite precision arithmetic, MGS is not equivalent to CGS.
The loss of orthogonality is proportional to the condition number 𝜅2(𝐴) for MGS
and to 𝜅2(𝐴)2 for a variant of CGS (Björck 1967b, Giraud, Langou, Rozložník and
van den Eshof 2005).

Some applications require that the computed vectors are orthogonal to machine
precision. In this case, it may be necessary to reapply the orthogonalization. This
can be done at each step or selectively if the computed 𝑞𝑘 is not acceptable. At step
𝑘 , 𝑞𝑘 is accepted if ∥𝑞𝑘 ∥2 > 𝛼∥𝑎𝑘 ∥2 for some chosen parameter 𝛼. Otherwise,
𝑞𝑘 is reorthogonalized against 𝑄𝑘−1. Typically 𝛼 ∈ (0.1, 1/

√
2) is used. If

reorthogonalization of CGS is applied once at each step then there is no significant
difference between this approach and MGS. Fast Gram–Schmidt algorithms use a
block approach. A recent overview of such algorithms and their stability properties
is given in Carson, Lund, Rozložník and Thomas (2022).
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4.2. Symbolic QR factorization

Contemporary sparse QR algorithms typically start with a symbolic preprocessing
phase. This first orders the columns of 𝐴 to limit fill-in in the 𝑅 factor using, for
example, a column variant of the minimum degree algorithm (Section 2.5). Further
symbolic steps may provide the size of 𝑅 or its sparsity pattern and, possibly, that
of 𝑄. If Householder reflectors are used, the size or sparsity pattern of the matrix
of Householder vectors can be predicted in advance.

A Givens rotation 𝐺(𝑖, 𝑗) applied to the row vectors 𝐴𝑖,𝑖:𝑛 and 𝐴 𝑗 ,𝑖:𝑛 of 𝐴 can be
written as (

𝑐 −𝑠
𝑠 𝑐

)(
𝐴𝑖,𝑖:𝑛
𝐴 𝑗 ,𝑖:𝑛

)
=

(
𝐴′𝑖,𝑖:𝑛
𝐴′𝑗 ,𝑖:𝑛

)
,

where 𝑐 and 𝑠 are chosen to eliminate 𝐴 𝑗 ,𝑖 (i.e. 𝐴′𝑗 ,𝑖 = 0). Consider the following
simple example:

(
𝐴𝑖,𝑖:𝑛
𝐴 𝑗 ,𝑖:𝑛

)
=

(∗ ∗ ∗ ∗ ∗
∗ ∗

)
.

Applying 𝐺(𝑖, 𝑗) gives
(
𝑐 −𝑠
𝑠 𝑐

)(
𝐴𝑖,𝑖:𝑛
𝐴 𝑗 ,𝑖:𝑛

)
=

(∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

)
=

(
𝐴′𝑖,𝑖:𝑛
𝐴′𝑗 ,𝑖:𝑛

)
.

Observe that the (1, 1) entry 𝐴′𝑖,𝑖 remains non-zero (it is the Euclidean norm of the
vector (𝐴𝑖𝑖 𝐴 𝑗𝑖)⊤) and the sparsity patterns of columns 2 to 𝑛 satisfy

S
(
𝐴′𝑖,𝑖+1:𝑛

)
= S(𝐴𝑖,𝑖+1:𝑛) ∪ S(𝐴 𝑗 ,𝑖+1:𝑛), 1 ≤ 𝑖 ≤ 𝑛 − 1.

This local merge rule provides a symbolic rule for the sparsity patterns of row
vectors to which a Givens rotation is applied. It appears reasonable because, for a
non-zero vector (𝑢 𝑣)⊤ transformed by an arbitrary Givens rotation

(
𝑐 −𝑠
𝑠 𝑐

)(
𝑢
𝑣

)
=

(
𝑐𝑢 − 𝑠𝑣
𝑠𝑢 + 𝑐𝑣

)
=

(
𝑢′

𝑣′

)
,

both entries 𝑢′ and 𝑣′ are generally non-zero (unless 𝜃 is a multiple of a right
angle) (George and Heath 1980). However, the fill-in can be overestimated. This
is illustrated using the next example, in which 𝑎, 𝑏 ≠ 0 (Gentleman 1976)



∗ 𝑎 𝑏
∗ ∗ ∗
∗ ∗ ∗


→



∗ 𝑐′𝑐𝑎 𝑐′𝑐𝑏 ∗ ∗

𝑠𝑎 𝑠𝑏 ∗ ∗
𝑠′𝑐𝑎 𝑠′𝑐𝑏 ∗ ∗




→


∗ 𝑎 𝑏 ∗ ∗

𝑐′′𝑠𝑎 − 𝑠′′𝑠′𝑐𝑎 𝑐′′𝑠𝑏 − 𝑠′′𝑠′𝑐𝑏 ∗ ∗
𝑠′′𝑠𝑎 + 𝑐′′𝑠′𝑐𝑎 𝑠′′𝑠𝑏 + 𝑐′′𝑠′𝑐𝑏 ∗ ∗


.
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The second matrix is obtained from the first one by applying 𝐺(2, 1) with 𝑐, 𝑠
chosen to eliminate the (2, 1) entry. The subsequent Givens rotation 𝐺(3, 1) with
parameters 𝑐′, 𝑠′ is applied to the result to eliminate the (3, 1) entry. Then, applying
the rotation with parameters 𝑐′′, 𝑠′′ to eliminate the intermediate fill-in at position
(3, 2) to the second matrix gives the third one, in which we should have 𝑠′′𝑠𝑎 +
𝑐′′𝑠′𝑐𝑎 = 0. But this entry is just a non-zero multiple of the entry 𝑠′′𝑠𝑏 + 𝑐′′𝑠′𝑐𝑏
at (3, 3), independently of the values of 𝑎 and 𝑏. In this case, the row merge rule is
not able to predict that the (3, 3) entry also always becomes zero.

Next, consider a Householder reflector applied as in (4.2). Because its application
has the form of an outer product of sparse row and column vectors, the sparsity
pattern of a row of

(𝑅1,2:𝑛
𝐴(1)

)
can be obtained as

S(row) = S(𝑅1,2:𝑛)
⋃
𝑘

S
(
𝐴(1)
𝑘,1:𝑛−1

)
.

This can be regarded as an extension of the row merge rule for Householder
reflectors. That is, S(row) unifies the sparsity patterns of all the rows involved in
the outer product update (George and Ng 1983, George, Liu and Ng 1988). But,
as in the case of Givens rotations, the extended row merge rule may overestimate
the actual fill-in.

It is potentially possible to predict fill-in in 𝑅 using the sparsity pattern of 𝐴⊤𝐴
and the relations (1.12). Uniqueness of the Cholesky factorization implies that
an estimate of the sparsity pattern of the Cholesky factor of 𝐴⊤𝐴 can be used to
predict S(𝑅). However, this can again lead to an overestimate. Consider the matrix
given by

𝐴 =




∗ ∗ ∗
∗
∗
∗


. (4.4)

In this case, 𝐴⊤𝐴 is dense and consequentlyS(𝐿) is predicted to be dense. However,
the QR factorization of 𝐴 simply requires the elimination of the (4, 3) entry, and
this can be done by an orthogonal transformation that changes only the last two
rows of 𝐴. Consequently, S(𝑅) is equal to the sparsity pattern of the first three
rows of 𝐴.

The relationship between the different predictions is summarized by the following
result (George and Heath 1980, Coleman, Edenbrandt and Gilbert 1986), which is
independent of the numerical values of the non-zero entries of 𝐴.

Lemma 4.1. S(𝑅) ⊆ {prediction ofS(𝑅) based on row merge rule } ⊆ {prediction
of S(𝑅) based on 𝐴⊤𝐴}.
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4.2.1. The Dulmage–Mendelsohn decomposition

The strong Hall property, which is based solely on the structure of 𝐴, can be used
to examine when the row merge rule and the prediction based on 𝐴⊤𝐴 do not give
overestimates. An 𝑚 × 𝑛 matrix 𝐴 with 𝑚 ≥ 𝑛 is said to be a Hall matrix (or to
have the Hall property) if every set of 𝑘 columns has non-zeros in at least 𝑘 rows
(1 ≤ 𝑘 ≤ 𝑛). Note that a full-rank matrix must have the Hall property. 𝐴 is a
strong Hall matrix (or to have the strong Hall property) if every set of 𝑘 columns
(1 ≤ 𝑘 < 𝑛) has non-zeros in at least 𝑘 + 1 rows. The matrix in (4.4) does not have
the strong Hall property because its first column has a single entry.

It can be shown that if 𝐴 has the strong Hall property then S(𝑅) is exactly
predicted by the local merge rule and the Cholesky factorization of 𝐴⊤𝐴 (Coleman
et al. 1986). Furthermore, exact predictions for 𝑄 and for the matrix 𝑊 whose
columns are the Householder vectors are possible (Ng and Peyton 1992, Hare,
Johnson, Olesky and van den Driessche 1993); see Pothen (1993) for a discussion
of exact predictions of sparsity patterns (even if 𝐴 does not have the strong Hall
property).

The strong Hall property can be exploited by using the Dulmage–Mendelsohn
decomposition of 𝐴 (Pothen and Fan 1990). This decomposition, which is obtained
using maximum matching algorithms, provides a precise structural characterization
of rectangular matrices. For an overdetermined matrix, the Dulmage–Mendelsohn
decomposition comprises row and column permutations 𝑃1 and 𝑃2 such that

𝑃1𝐴𝑃2 =

(
𝐴1 𝐴2
0 𝐴3

)
.

Here 𝐴1 is an𝑚1×𝑚1 matrix and 𝐴3 is an𝑚3×𝑛3 overdetermined matrix (𝑚3 > 𝑛3
or𝑚3 = 𝑛3 = 0) with the strong Hall property. If the permutations are chosen so that
𝐴1 is additionally block upper triangular, then the square blocks on the diagonal of
𝐴1 also have the strong Hall property; this is termed the fine Dulmage–Mendelsohn
decomposition. A simple example illustrating this is

𝑃1𝐴𝑃2 =




∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗
∗

∗




.

If the QR factorizations of the blocks on the diagonal of 𝐴1 and the overdetermined
matrix 𝐴3 are computed, then, because they have the strong Hall property, the
sparsity patterns of their respective factors can be exactly predicted. Note that,
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Algorithm 4.1. Row ordering of 𝐴 for QR algorithm
Input: The column indices 𝑓𝑖(𝐴) and 𝑙𝑖(𝐴) of the first and last non-zero entries in
row 𝑖 of 𝐴.
Output: Row permutation of 𝐴.

1: Order the rows by increasing 𝑓𝑖(𝐴).
2: for 𝑘 = 1: max𝑖 𝑓𝑖(𝐴) do
3: Order all rows with 𝑓𝑖(𝐴) = 𝑘 by increasing 𝑙𝑖(𝐴).
4: end for

despite this, the Dulmage–Mendelsohn decomposition is not always recommended.
If 𝐴 is ill-conditioned or close to rank-deficient, then it may not be sufficient to
factorize only the blocks with the strong Hall property (Pothen 1993).

4.2.2. Row-ordering algorithms
Although the computed 𝑅 factor does not depend on the order of the rows of 𝐴,
the row ordering can significantly affect the intermediate fill and the work needed
to compute the factorization. This is illustrated by the following matrix:

𝐴 =




∗ ∗ ∗
∗
∗
∗
∗
∗



, 𝑃𝐴 =




∗
∗
∗
∗ ∗ ∗
∗
∗



.

Eliminating the (2, 1) and (3, 1) entries using Givens rotations 𝐺(1, 2) and 𝐺(1, 3),
there is intermediate fill-in in all remaining columns, but if rows 1 and 4 of 𝐴 are
exchanged then this fill-in does not occur when applying the same rotations to 𝑃𝐴.
Heuristic algorithms have been proposed, including the simple approach outlined
in Algorithm 4.1. Ties at line 3 can be resolved by ordering the rows in ascending
order of the number of new non-zero entries that are created.

An alternative strategy is to order the rows in ascending order of the column
index 𝑙𝑖(𝐴) of the last entry in the row. When row 𝑎⊤𝑖 is processed, because all
previous rows have entries only in columns with index at most 𝑙𝑖(𝐴), there is no fill
in 𝑎⊤𝑖 in columns 𝑙𝑖+1(𝐴) to 𝑛.

4.3. Numerical sparse QR factorization

A significant step in the development of efficient QR factorizations was the intro-
duction of the row merge tree (Liu 1986b). This generalizes Givens rotations to
so-called submatrix rotations that merge triangular submatrices and makes them
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more efficient. At the same time, the approach shows that the elimination tree
T (𝐴⊤𝐴) (recall Section 3.2) can be used to control the order in which the tri-
angular submatrices are merged. To illustrate the basic principle, consider the
sparse matrix

𝐴 =




1 2 3 4
1 ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗
7 ∗ ∗




.

Let 𝐴1 be the submatrix comprising rows 1, 2, 3 and columns 1, 3, 4 of 𝐴, and let
𝐴2 be the submatrix comprising rows 4, 5, 6 and columns 2, 3, 4. Perform the QR
factorizations 𝐴1 = 𝑄′1𝑅

′
1 and 𝐴2 = 𝑄′2𝑅

′
2. These can be computed independently

(and different orthogonalization techniques can be used). If 𝑄1 and 𝑄2 denote the
orthogonal matrices corresponding to extending 𝑄′1 and 𝑄′2 to 7 × 7 matrices, then
we obtain a partial orthogonal transformation of 𝐴:

𝐴 = 𝑄1𝑄2




∗ ∗ ∗
∗ ∗
∗

∗ ∗ ∗
∗ ∗
∗

∗ ∗




.

Here, the last row 𝐴7,1:4 is unchanged. The next step is to permute the rows of the
partial transformation corresponding to the first row of 𝑅′1 and the first row of 𝑅′2
to be rows 1 and 2 of the final factor 𝑅 of 𝐴. This gives




1 2 3 4
1 ∗ ∗ ∗
4 ∗ ∗ ∗
2 ∗ ∗
3 ∗
5 ∗ ∗
6 ∗
7 ∗ ∗




.

The remaining rows of each of the upper trapezoidal matrices are called the QR
contribution blocks. In the example, they correspond to rows 3 and 4 and rows 5
and 6 of the permuted partially transformed matrix. To minimize the intermediate
fill-in, the rows of the submatrix coming from the two contribution blocks and row
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7 of 𝐴 are ordered using Algorithm 4.1 to give




1 2 3 4
1 ∗ ∗ ∗
4 ∗ ∗ ∗
2 ∗ ∗
5 ∗ ∗
7 ∗ ∗
3 ∗
6 ∗




.

A third orthogonalization transformation is applied to rows 3 to 7 of this permuted
matrix to yield the final QR factorization.

This approach can be generalized to more than two blocks. The blocks that
are independently orthogonalized corresponded to sets of rows of 𝐴 that have
the first non-zero in the same column. The key observation that implies the
precedence relations among the computed triangular factors of such blocks of rows
is determined by S(R). Namely, before performing a factorization of a block of
rows with the first non-zero in column 𝑘 , all block factorizations that result in upper
triangular factors with a non-zero in column 𝑘 must already have been performed.
This order is determined by precedence relations given by the elimination tree
T (𝐴⊤𝐴).

4.4. Multifrontal QR factorization

Significant advances in efficient implementations of QR factorizations of sparse
problems have come from numerous contributions over many years, including
those of Matstoms (1994), Amestoy et al. (1996b), Pierce and Lewis (1997) and
Edlund (2002). The seminal approach of Davis (2011) encompasses many pre-
vious ideas and adds new ones, such as simulating the factorization symbolically
to predetermine the work needed. The enormous progress in the development of
computational facilities motivated GPU implementations that can factorize mul-
tiple frontal matrices at the same time (Yeralan, Davis, Sid-Lakhdar and Ranka
2017), fine-grained multithreading (Buttari 2013) and exploitation of DAG-based
parallelism (Agullo, Buttari, Guermouche and Lopez 2016). A summary of other
contributions can be found in the review by Davis et al. (2016), while contempor-
ary progress in hierarchical QR factorizations for solving least-squares problems
is given in Gnanasekaran and Darve (2022). Here we present a short introduction
to the multifrontal QR algorithm, which shares many ideas and concepts with the
multifrontal Cholesky factorization. In practice, the columns of 𝐴 are preordered
to preserve sparsity, using S(𝐴⊤𝐴); the permutation is omitted here to simplify the
notation.

Supernodes (or, for efficiency, relaxed supernodes) and the postordered assembly
tree for 𝐴⊤𝐴 (which can be computed without explicitly forming 𝐴⊤𝐴 (Gilbert,
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Algorithm 4.2. Multifrontal QR factorization
Input: Matrix 𝐴 of full column rank and the postordered assembly tree of 𝐴⊤𝐴.
Output: Upper triangular factor 𝑅 of the QR factorization, orthogonal transform-
ations used to transform 𝐴 stored implicitly or as their product 𝑄.

1: for 𝑗 𝑠 = 1: 𝑛𝑠 do ⊲ Follow the postordering of the tree
2: Assemble 𝐹( 𝑗 𝑠) using rows of 𝐴 for which the index of the first non-zero

entry belongs to 𝑗 𝑠 and QR contribution blocks from children of 𝑗 𝑠
3: Compute QR factorization of 𝐹( 𝑗 𝑠) ⊲ Results in block row of 𝑅 and

contribution block 𝑅( 𝑗 𝑠)
4: Push 𝑅( 𝑗 𝑠) onto the stack. ⊲ 𝑅( 𝑗 𝑠) will be popped from the stack when

assembling 𝐹(parent( 𝑗 𝑠))
5: end for

Li, Ng and Peyton 2001)) are exploited. For each supernode 𝑗 𝑠, a small dense
rectangular matrix 𝐹( 𝑗 𝑠), called a QR frontal matrix, is created. It comprises the
rows of 𝐴 for which the index of the first non-zero entry belongs to 𝑗 𝑠 together with
the contribution blocks from the children of 𝑗 𝑠 in the postordered assembly tree.
The contribution block 𝑅(𝑘𝑠) from child 𝑘𝑠 is the upper triangular factor obtained
by the QR factorization of 𝐹(𝑘𝑠). It is not necessary to complete the factorization
of a QR frontal matrix to transform it to an upper triangular matrix. For 𝐹( 𝑗 𝑠),
it is sufficient to perform | 𝑗 𝑠 | steps to compute | 𝑗 𝑠 | rows of 𝑅 (where | 𝑗 𝑠 | is the
number of columns in supernode 𝑗 𝑠). However, computing its QR factorization
fully can significantly reduce workspace requirements (Amestoy et al. 1996b).
The multifrontal QR approach is summarized as Algorithm 4.2. Note that the
orthogonal transformations computed in the algorithm must always be extended to
be of order equal to the row dimension of 𝐴.

Figure 4.1 illustrates the QR multifrontal method applied to a matrix with the
following sparsity pattern:

𝐴 =




1 2 3 4 5 6 7 8
1 ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗
7 ∗ ∗
8 ∗ ∗
9 ∗ ∗
10 ∗ ∗




. (4.5)
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6, 7, 8

3, 4

1 2

5

𝑎86 𝑎88
𝑎97 𝑎98

𝑟 (3)
36 𝑟 (3)

37
𝑟 (3)

47

𝑟66 𝑟67 𝑟68
𝑟77 𝑟78

𝑟88

𝑎10,3 𝑎10,4

𝑎54 𝑎56

𝑟 (1)
23 𝑟 (1)

26 𝑟 (1)
27

𝑟 (1)
66 𝑟 (1)

67

𝑟 (2)
44 𝑟 (2)

46

𝑟33 𝑟34 𝑟36 𝑟37

𝑟44 𝑟46 𝑟47

𝑟 (3)
36 𝑟 (3)

37

𝑟 (3)
47

𝑎11 𝑎13
𝑎21 𝑎27
𝑎61 𝑎66

𝑟11 𝑟13 𝑟16 𝑟17
𝑟 (1)

23 𝑟 (1)
26 𝑟 (1)

27

𝑟 (1)
66 𝑟 (1)

67

𝑎32 𝑎34 𝑎36
𝑎42 𝑎46

𝑟22 𝑟24 𝑟26

𝑟 (2)
44 𝑟 (2)

46

𝑎75 𝑎78 𝑟55 𝑟58

Figure 4.1. The QR multifrontal method applied to the matrix 𝐴 = {𝑎𝑖 𝑗} from
(4.5). Each vertex shows the transformation from its QR frontal matrix 𝐹( 𝑗 𝑠) to
the entries of the upper triangular factor 𝑅 = {𝑟𝑖 𝑗} of the QR factorization and the
QR contribution block 𝑅( 𝑗 𝑠) that is passed from child to parent. To illustrate the
method, global indices are used for the entries of the QR contribution blocks; the
superscripts indicate which supernode the QR contribution comes from.

Here S(𝐴⊤𝐴) is the same as the sparsity pattern of the matrix 𝐶 in Figure 3.1
that was used to demonstrate the multifrontal Cholesky factorization and so the
assembly tree is as in Figure 3.2. Entries belonging to the QR contribution blocks
are indicated using superscripts. We do not show the transformations that can be
composed to obtain the 𝑄 factor or how to store it implicitly.

4.5. QR factorization when 𝐴 is rank-deficient

The QR factorization is backward stable, but if 𝐴 is (close to) rank-deficient then
the computed 𝑅 factor is ill-conditioned. This usually leads to the computed least-
squares solution having a very large norm. If rank(𝐴) = rk < 𝑛 then theoretically
there is a column permutation matrix 𝑃 (which is not necessarily unique) and an
orthogonal matrix 𝑄 such that

𝐴𝑃 = 𝑄

(
𝑅11 𝑅12
0 0

)
,

where 𝑅11 ∈ Rrk×rk is upper triangular with positive diagonal entries. This is
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column-pivoted QR (CPQR). In place of (4.3), the iteration formula becomes

𝐴( 𝑗) = 𝐻( 𝑗)𝐴( 𝑗−1)𝑃( 𝑗),

where 𝑃( 𝑗) is the permutation matrix that swaps column 𝑗 of 𝐴( 𝑗−1) with the column
𝑘 ≥ 𝑗 that has the largest 2-norm. The column 𝑘 is called the pivot column. The
computed factorization is

𝐻(𝑛) . . . 𝐻(2)𝐻(1)𝐴𝑃 = 𝐴(𝑛) = 𝑅, 𝑃 = 𝑃(1)𝑃(2) . . . 𝑃(𝑛−1).

The first rk columns of 𝐴𝑃 are linearly independent and the least-squares solution
𝑥 can be obtained from

𝑅11𝑦1 = 𝑑1 − 𝑅12𝑦2, 𝑥 = 𝑃⊤
(
𝑦⊤1 𝑦⊤2

)⊤
,

where (
𝑑1
𝑑2

)
= 𝑄⊤

(
𝑏1
𝑏2

)
, 𝑏1, 𝑑1 ∈ Rrk,

and 𝑦2 ∈ R𝑛−rk is an arbitrary vector (Golub 1965, Björck 2024). In finite precision
arithmetic, the 𝑅 factor generally does not have zeros on its diagonal, even if 𝐴 is
rank-deficient. Instead, the computed factorization is of the form

𝐴𝑃 = 𝑄

(
𝑅11 𝑅12
0 𝑅22

)
.

Although the rank may be revealed by the presence of small diagonal entries, this
does not imply that the rest of the rows are negligible. A diagonal entry 𝑟rk+1,rk+1 of
large absolute value computed after rk steps of the QR factorization may hide the
fact that the rank of 𝐴 is rk. Handling rank deficiency is an important component
of approaches based on orthogonal factorizations for solving sparse least-squares
problems (Heath 1982, Ng 1991, Davis 2011).

Let the singular values𝜎𝑖(𝐴) of 𝐴 be ordered in decreasing order and let𝜎rk(𝑅11)
be the smallest singular value of the first rk columns of 𝐴𝑃 and 𝜎1(𝑅22) be the
largest singular value of 𝑅22. Then the factorization is said to be a rank-revealing
QR (RRQR) factorization if

𝜎rk(𝑅11) ≥ 𝜎rk(𝐴)/𝑐 and 𝜎1(𝑅22) ≤ 𝑐 𝜎rk+1(𝐴),

where 𝑐 = 𝑐(𝑘, 𝑛) > 0 is bounded by a low-degree polynomial in rk and 𝑛 (Björck
2024). RRQR algorithms can be classified by whether they seek to find 𝜎rk(𝑅11) ≈
𝜎rk(𝐴) or 𝜎1(𝑅22) ≈ 𝜎rk+1(𝐴) (Chandrasekaran and Ipsen 1994). There has been
significant research into theory and algorithms for RRQR factorizations. This
includes seeking to detect columns that can be considered as redundant (linearly
dependent on the others) (Foster 1986, Pierce and Lewis 1997), postprocessing the
computed QR factorization (Chan 1987), improving the bounds on the quality of
RRQR factorizations (Hong and Pan 1992) and communication-avoiding RRQR
factorizations (Demmel, Grigori, Gu and Xiang 2015).

https://doi.org/10.1017/S0962492924000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000059


Sparse linear least-squares problems 941

4.6. Techniques for column-pivoted QR

Making classical QR factorization algorithms efficient on modern hardware is
challenging, and incorporating pivoting typically incurs significant overheads. The
problem is that it involves a sequence of 𝑛−1 rank-one updates (BLAS 2 operations),
making it communication-intensive. In principle, this can be resolved by blocking.
Let 𝑛𝑏 denote a chosen block size. In a blocked Householder QR algorithm, 𝑛𝑏
pivot columns are chosen and 𝑛𝑏 Householder reflectors are computed, allowing
updates to the remainder of the matrix to be performed using BLAS 3 operations.
Many techniques for blocking Householder QR have been proposed, including, for
example, those of Bischof and Hansen (1991, 1992).

Randomized sampling can be used to overcome the problem of determining
subsets of pivot columns. The key observation is that a measure of the quality for
a subset of pivot columns is its spanning volume in R𝑚 (defined as the product of
the singular values of the matrix defined by these columns); this volume should be
maximal (Çivril and Magdon-Ismail 2009). This criterion is closely related to how
well the subset of columns represents the column space of 𝐴, which is a problem
that is well suited to randomized sampling. Consider the task of identifying a subset
of 𝑛𝑏 pivot columns in the first step of the blocked QR process. Start by choosing a
small oversampling parameter 𝑝 (typically 𝑝 = 10). Then draw a Gaussian random
matrix Ω of size (𝑛𝑏 + 𝑝)×𝑚, and form a sampling matrix 𝑌 = Ω𝐴. Next, perform
classical CPQR on the columns of 𝑌 , which is inexpensive because 𝑌 is small
and fits into fast memory. This determines 𝑃(1). The process is then repeated.
To maximize performance, it is possible to update the sample matrix used in the
first step, which obviates the need to draw a new random matrix at each stage
and renders the overhead cost induced by randomization almost negligible. The
resulting algorithm is Householder QR with randomization for pivoting (HQRRP)
(Martinsson, Quintana-Ortí, Heavner and van de Geĳn 2017). The use of random
sampling to obtain rank-revealing matrix factorizations is discussed in Duersch
and Gu (2020), and Martinsson and Tropp (2020) provides a survey of randomized
methods in numerical linear algebra.

4.7. QR for strongly overdetermined systems

The least-squares problem with 𝐴 ∈ R𝑚×𝑛 is said to be strongly overdetermined if
𝑚 ≫ 𝑛. Matrices that have many more rows than columns are often referred to as
tall-and-skinny (TS). They commonly arise in big data applications with billions
of data points and only a few hundred descriptors. TSQR algorithms (Demmel,
Grigori, Hoemmen and Langou 2012, Benson, Gleich and Demmel 2013) are
numerically stable, efficient, communication-avoiding parallel approaches to com-
puting the QR factorization of TS matrices. They can be used as panel factorizations
within a square QR factorization. The first stage partitions the rows of the TS matrix
into (non-overlapping) blocks 𝐴𝑖 and then computes the QR factorization of each
row block, i.e. 𝐴𝑖 = 𝑄𝑖𝑅𝑖 , 𝑖 = 1, 2, . . . , 𝑁 . Subsequent stages merge the resulting
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upper triangular matrices in a divide-and-conquer fashion until a single factor 𝑅 is
obtained. This requires about log2 𝑁 stages. To illustrate this, let 𝑁 = 4. After the
first stage,

𝐴 =




𝐴1
𝐴2
𝐴3
𝐴4


 =




𝑄1
𝑄2

𝑄3
𝑄4







𝑅1
𝑅2
𝑅3
𝑅4


.

The second step stacks the upper triangular factors in pairs and computes 𝑁/2
factorizations 



(
𝑅1
𝑅2

)

(
𝑅3
𝑅4

)


 =

(
𝑄1,2

𝑄3,4

)(
𝑅1,2
𝑅2,3

)
.

Finally, (
𝑅1,2
𝑅2,3

)
= 𝑄1,2,3,4 𝑅.

In general, the combination process informs a tree in which the 𝐴𝑖 are the leaf
vertices and the final 𝑅 is the root. Combining in pairs as in the example corresponds
to a binary tree. More generally, the tree can be chosen to minimize communication
between processors or the volume of memory traffic between the main memory and
the cache memory of each processor. Note that the row blocks 𝐴𝑖 are generally not
sparse and TSQR algorithms target large strongly overdetermined dense matrices.
Furthermore, while the TSQR approach is more communication-efficient than the
standard Householder algorithm for the QR factorization of highly overdetermined
matrices, it produces a different representation of the orthogonal factor, and this
requires additional software development (Ballard et al. 2015).

Another communication-avoiding QR algorithm for TS matrices is the Cholesky-
QR algorithm. If 𝐴⊤𝐴 = 𝑅⊤𝑅 is the Cholesky factorization of the normal matrix
then the Cholesky-QR algorithm computes 𝑄1 = 𝐴𝑅−1 by block forward substitu-
tion giving 𝐴 = 𝑄1𝑅. This is attractive in terms of high performance computing
as it requires only one global reduction between parallel processing units, and
most of the computational work can be performed using matrix–matrix operations.
However, the method is rarely used in practice because the loss of orthogonality
∥𝐼 −𝑄⊤1𝑄1∥𝐹 is𝑂(𝜅2(𝐴)2) and breakdown can occur even when 𝐴 has full numer-
ical rank. To overcome this, the modified Cholesky-QR2 algorithm refines the 𝑅
and 𝑄1 factors. The matrix 𝑄⊤1𝑄1 is formed and then its Cholesky factorization
𝑄⊤1𝑄1 = 𝑆⊤𝑆 computed. The refined factorization is taken to be 𝐴 = �̂��̂� , where
�̂� = 𝑄1𝑆

−1 and �̂� = 𝑆𝑅. Provided the initial Cholesky factorization does not break
down, this approach can be shown to have good stability properties (Yamamoto,
Nakatsukasa, Yanagisawa and Fukaya 2015). For ill-conditioned matrices, a pos-
sible strategy is to use the LU factors of 𝐴 to precondition before computing a
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Cholesky factorization (Terao, Ozaki and Ogita 2020). Recently, a new approach
that combines randomized preconditioning, column pivoting and Cholesky-QR has
been proposed (Melnichenko et al. 2024).

4.8. Software for sparse QR factorizations

There are many challenges to address in designing and developing efficient and
robust QR software for sparse matrices, but a number of library-quality packages
that implement the QR multifrontal method are available. The serial QR package
MA49 was developed in the 1990s (Amestoy et al. 1996b) and is part of the HSL
library. More recently, there are the parallel solvers SuiteSparseQR (Davis 2011,
Yeralan et al. 2017),17,18 qr_mumps (Buttari 2013)19 and the Intel Math Kernel
Library Sparse QR. These are general-purpose codes that incorporate numerical
pivoting. The RRQR approach used in SuiteSparseQR sets to zero the whole row
of 𝑅 if the diagonal entry is less than some tolerance. While this may not determine
the rank of 𝐴 exactly, it is efficient because the changes in the precomputed sparsity
pattern of 𝑅 are straightforward. SuiteSparseQR offers an option to compute
minimum-norm solutions to full-rank underdetermined least-squares problems (but
not rank-deficient problems).

Within the cuSolver library,20 cuSolverSP provides routines for sparse QR factor-
izations. For matrices whose sparsity pattern is not good for exploiting parallelism,
there is a CPU option; for those with abundant parallelism potential, the GPU
option delivers higher performance. cuSolver also offers a refactorization package
cuSolverRF. This can give good performance when solving a sequence of problems
where the coefficients of 𝐴 change but the sparsity pattern remains the same.

Limited implementations of TSQR are available. In MATLAB, the parallel data-
flow programming and execution framework MapReduce21 (Constantine and Gleich
2011) can be used to compute a TSQR factorization of highly overdetermined
matrices. SLEPc22 is a software library for the solution of large-scale sparse
eigenvalue problems on parallel computers; it includes TSQR.

5. Direct methods for the augmented system formulation
Recall from (1.9) that the linear least-squares problem is mathematically equivalent
to the non-singular symmetric indefinite linear system

𝐾

(
𝑟
𝑥

)
=

(
𝑏
0

)
, with 𝐾 =

(
𝐼 𝐴
𝐴⊤ 0

)
, 𝑟 = 𝑏 − 𝐴𝑥. (5.1)

17 https://faculty.cse.tamu.edu/davis/suitesparse.html
18 https://github.com/DrTimothyAldenDavis/SuiteSparse
19 https://gitlab.com/qr_mumps/qr_mumps
20 https://docs.nvidia.com/cuda/cusolver/
21 https://github.com/arbenson/mrtsqr
22 https://slepc.upv.es/
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Introducing a scaling parameter 𝛽 > 0, this is equivalent to

𝐾𝛽

(
𝛽−1𝑟
𝑥

)
=

(
𝑏
0

)
, with 𝐾𝛽 =

(
𝛽𝐼 𝐴
𝐴⊤ 0

)
, (5.2)

and so solving this augmented system also gives the solution to the original least-
squares problem. It was shown (Björck 1967a) that if the singular values of 𝐴 are
𝜎𝑖 (1 ≤ 𝑖 ≤ 𝑛), then the 𝑚 + 𝑛 eigenvalues of 𝐾𝛽 are

𝜆 =


𝛽

2
±
√︂
𝛽2

4
+ 𝜎2

𝑖 , 𝑖 = 1, . . . , 𝑛,

𝛽, otherwise.

If 𝜎𝑛 > 0, then min𝛽 𝜅2(𝐾𝛽) ≈
√

2𝜅2(𝐴) is attained when 𝛽 = 𝜎𝑛/
√

2. If rank(𝐴) =
rk ≤ 𝑛, then the eigenvalue 𝛽 has multiplicity 𝑚 − rk, and 0 is an eigenvalue of
multiplicity 𝑛 − rk. The conditioning of 𝐾𝛽 varies significantly with 𝛽: 𝐾𝛽 can
be larger than 𝜅2

2(𝐴) or smaller than 2𝜅2(𝐴). With an appropriate choice of 𝛽,
the conditioning of 𝐾𝛽 is much better than for the normal matrix. An automatic
technique for selecting 𝛽 is proposed in Arioli, Duff and de Rĳk (1989), where it
was demonstrated that the use of a direct method applied to the augmented system
formulation is an accurate and efficient approach to solving sparse least-squares
problems.

In addition to the conditioning, there are a number of other reasons for opting to
solve the augmented system. The most obvious is to avoid the difficulties associated
with using the normal matrix. In particular, 𝐶 = 𝐴⊤𝐴 can be much denser than 𝐴
(and hence 𝐾) and so a sparse Cholesky factorization may be impractical (sparse–
dense problems are discussed further in Section 8). Even if 𝐶 is not explicitly
formed, a solution approach based on factorizing 𝐶 can still be expensive because
𝐶 is used implicitly (with entries computed as they are needed). Moreover, iterative
refinement with the Cholesky factors of 𝐶 may not recover full precision in the
least-squares solution (Section 7 considers iterative refinement).

There exist sophisticated approaches to computing LDLT factorizations of sym-
metric indefinite matrices that incorporate pivoting for numerical stability. Note
also that the reduction of 𝐾 to the normal equations corresponds to the explicit
elimination of the (1,1) block, that is, choosing the 𝑚 diagonal entries of this block
as the first 𝑚 pivots in the factorization of 𝐾 . It follows that systematic pivoting at
all steps of an LDLT factorization (based only on the sparsity pattern) will generally
lead to the fill-in being less than in the Cholesky factor (Tůma 2002).

5.1. LDLT factorizations using threshold pivoting

In this section, the focus is on the factorization of general sparse symmetric in-
definite matrices. Factorizing such matrices is challenging because of the need to
maintain numerical stability. The Cholesky factorization of a symmetric positive
definite matrix takes the pivots in order from the main diagonal, and the fill in the
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computed factor is as predicted from the sparsity pattern of the matrix. This is not
the case for indefinite matrices. Modifications to the pivot (elimination) order are
needed and this generally leads to extra fill in the factors. Moreover, incorporating
pivoting strategies can limit the potential for parallelism and can be associated with
significant data movement that hinders the scalability of the methods.

Let 𝐵 be a general sparse symmetric indefinite matrix and, to simplify the
notation, we assume that 𝐵 has been prescaled for numerical stability and preordered
using a fill-reducing ordering. The ordering algorithm normally assumes that all
the diagonal entries 𝑏𝑖𝑖 of 𝐵 are non-zero, that is, the sparsity pattern S(𝐵 + 𝐼) is
used and the same ordering algorithms as for symmetric positive definite matrices
are employed (Section 2). Let 𝐵(𝑘) denote the 𝑘th partially eliminated matrix (i.e.
the matrix after the first 𝑘 − 1 elimination operations). If the diagonal entry 𝑏(𝑘)

𝑘𝑘

is zero then it cannot be chosen as the next pivot. Furthermore, if |𝑏(𝑘)
𝑘𝑘 | is small

(relative to the other entries below the diagonal in column 𝑘 of 𝐵(𝑘)) then using it
as a pivot will lead to large entries in the factor, that is, numerical instability. The
growth factor 𝜌growth is defined to be

𝜌growth = max
𝑖, 𝑗≥𝑘

2≤𝑘≤𝑛

(|𝑏(𝑘)
𝑖 𝑗 | / |𝑏𝑖 𝑗 |

)
.

If rows within 𝐵(𝑘) are permuted to bring a non-zero off-diagonal entry onto the
diagonal then symmetry is destroyed, which means an LU factorization must be
performed. This is often not attractive because it essentially doubles the factoriza-
tion cost in terms of both the storage requirements and operation counts. Extending
the notion of a pivot to 2 × 2 blocks allows symmetry to be preserved. Consider
the following matrix:

𝐵 =

(
𝛿 1
1 0

)
.

If 𝛿 = 0, an LDLT factorization in which 𝐷 is a diagonal matrix does not exist.
Furthermore, if 𝛿 ≪ 1 then an LDLT factorization with 𝐷 diagonal is not stable
because 𝜌growth = 1/𝛿. However, if the LDLT factorization is generalized to allow
𝐷 to be a block diagonal matrix with 1×1 and 2×2 blocks, then a factorization can
be computed that preserves symmetry and is nearly as stable as an LU factorization.
This is illustrated by the factorization of the following 3 × 3 symmetric indefinite
matrix:

𝐵 =




1 1 0
1 1 1
0 1 0


 =




1 0 0
1 1 0
0 0 1






1 0 0
0 0 1
0 1 0






1 1 0
0 1 1
0 0 1


 = 𝐿𝐷𝐿⊤.

Here 𝐷 has one 1 × 1 block and one 2 × 2 block.
For sparse matrices, it is necessary to balance pivoting for stability with limiting

the amount of fill-in in the factors. The compromise strategy that seeks to achieve
this is called threshold partial pivoting (TPP). Let 𝜏 > 0 be a chosen threshold
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parameter. Typical values used for factorizing a suitably scaled matrix are 0.1 or
0.01. Limiting the size of the entries of 𝐿 so that

|𝑙𝑖 𝑗 | ≤ 𝜏−1 (5.3)

for all 𝑖, 𝑗 , together with a backward stable scheme for solving 2× 2 linear systems,
suffices to show backward stability for the entire solution process. The stability
test for a 1 × 1 pivot in column 𝑡 of the active submatrix at stage 𝑘 is the standard
threshold test

max
𝑖≠𝑡 , 𝑖≥𝑘

|𝑏(𝑘)
𝑖𝑡 | ≤ 𝜏−1 |𝑏(𝑘)

𝑡𝑡 |. (5.4)

For a 2 × 2 pivot in rows and columns 𝑠 and 𝑡 of 𝐵(𝑘), the corresponding test is������
(
𝑏(𝑘)
𝑠𝑠 𝑏(𝑘)

𝑠𝑡

𝑏(𝑘)
𝑠𝑡 𝑏(𝑘)

𝑡𝑡

)−1������
(

max𝑖≠𝑠,𝑡;𝑖≥𝑘 |𝑏(𝑘)
𝑖𝑠 |

max𝑖≠𝑠,𝑡;𝑖≥𝑘 |𝑏(𝑘)
𝑖𝑡 |

)
≤ 𝜏−1

(
1
1

)
, (5.5)

where the absolute value of the matrix is interpreted element-wise (Duff et al.
1991). If 𝑏(𝑘)

𝑡𝑡 is accepted as a 1 × 1 pivot, it becomes the next diagonal entry
of 𝐷, and row and column 𝑡 are permuted (if necessary) to the pivotal position
𝑘 . The corresponding diagonal entry of 𝐿 is 1, and from the inequality (5.4), the
off-diagonal entries of column 𝑘 of 𝐿 are bounded in absolute value by 𝜏−1. If

(
𝑏(𝑘)
𝑠𝑠 𝑏(𝑘)

𝑠𝑡

𝑏(𝑘)
𝑠𝑡 𝑏(𝑘)

𝑡𝑡

)

is accepted as a 2× 2 pivot, it becomes the next diagonal block of 𝐷, and rows and
columns 𝑠 and 𝑡 are permuted (if necessary) to the next two pivotal positions, 𝑘
and 𝑘 + 1. The corresponding diagonal block of 𝐿 is the identity matrix of order 2,
and inequality (5.5) ensures that the off-diagonal entries of these columns of 𝐿 are
bounded in absolute value by 𝜏−1.

In addition to bounding the size of the entries in 𝐿, the ability to stably apply the
inverse of 𝐷 to a vector is required. This is trivially the case for 1 × 1 pivots, but
for 2 × 2 pivots it is necessary to check that the determinant |𝑏(𝑘)

𝑠𝑠 𝑏
(𝑘)
𝑡𝑡 − 𝑏(𝑘)

𝑠𝑡 𝑏
(𝑘)
𝑠𝑡 |

is sufficiently large and cancellation does not occur during the application of the
inverse.

A major difficulty when TPP tests are incorporated into a sparse matrix factoriz-
ation algorithm is that, at a particular stage, a pivot satisfying the stability criteria
may not exist. As in the Cholesky case, the assembly tree is constructed during
the analyse phase of the solver using the sparsity pattern of the matrix (with the
diagonal entries assumed to be present). If no stable 1×1 or 2×2 pivot is available
within a supernode, then pivot candidates that have not been selected are passed up
the assembly tree and eliminated later at an ancestor in the tree. These are known
as delayed pivots. Provided 𝜏 ≤ 0.5, it can be shown that a complete set of pivots
can be chosen at the root vertex. Delaying a pivot candidate results in additional
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fill-in, more work (in the factorization and solve phases of the solver) and, very
importantly, hinders the exploitation of parallelism and so is undesirable.

5.2. Avoiding delayed pivots

A number of strategies have been proposed that seek to limit the occurrence of
delayed pivots. One possibility if entry 𝑏𝑖𝑖 is small is to symmetrically permute
𝐵 before the numerical factorization commences, to put a large off-diagonal entry
𝑏𝑖 𝑗 onto the subdiagonal to give a 2 × 2 block

(
𝑏𝑖𝑖 𝑏𝑖 𝑗
𝑏𝑖 𝑗 𝑏 𝑗 𝑗

)

that is potentially a good 2 × 2 candidate pivot. This can be achieved using a
symmetric matching-based ordering and scaling algorithm (Duff and Pralet 2005,
Schenk and Gärtner 2006). A reordering 𝑃1, based on a symmetrized maximum
weight matching of 𝐵 is followed by a fill-reducing reordering 𝑃2 that maintains
the diagonal block structure. The matrix can also be scaled by a symmetric scaling
𝑆 that is also obtained through the weighted matching algorithm. Thus, the fac-
torization algorithm is applied to the matrix 𝐵 = 𝑃2𝑃1𝑆𝐵𝑆

⊤𝑃⊤1 𝑃
⊤
2 . Disadvantages

are that computing the matching can be expensive, and as the numerical values
of the entries of 𝐵 are used, if a series of matrices with the same sparsity pat-
tern but different numerical values need to be factorized (such as in a nonlinear
least-squares problem) then the whole procedure may have to be rerun for each
matrix, potentially adding significantly to the total solution time. Furthermore, the
computed ordering may lead to the analyse phase of the direct solver applied to
S{𝐵} predicting more entries in the factors than for an ordering computed using
nested dissection or minimum degree applied directly to S{𝐵}. This can result in
the run-time of the factorization and subsequent triangular solves being signific-
antly increased over a standard ordering if little or no pivoting is actually needed.
However, for ‘tough’ indefinite problems for which standard orderings lead to large
numbers of delayed pivots, combining a matching-based approach with a numer-
ically aware nested dissection ordering can deliver a significantly lower operation
count while also limiting the number of delayed pivots (Hogg, Scott and Thorne
2017).

Static (or restricted) pivoting schemes respect the data structures obtained by the
analyse phase (symbolic factorization) that precedes the numerical factorization.
The aim is to (closely) follow the pivot order selected in the analyse phase to
limit fill-in in the factors and the factorization time at the potential cost of reduced
accuracy in the factorization. During the factorization, when a forecast pivot is
too small, a prescribed perturbation is added to maintain numerical stability. The
computed factors are for a perturbed matrix that is ‘close’ to the original matrix
(Schenk and Gärtner 2006, Duff and Pralet 2007). Relaxed pivoting, in which the
threshold parameter 𝜏 is increased to allow pivots to be chosen, is another possible
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strategy. These ideas are reviewed in Hogg and Scott (2013c) and Davis et al.
(2016). Because such strategies weaken the stability tests, the factorization and
hence the computed solution may be less accurate, and it may be necessary to try
and improve the solution using iterative refinement (Section 7.2) or by employing
the factors as a preconditioner for a Krylov subspace solver. This often works
well, but for some very ill-conditioned systems this may not be enough to obtain
an accurate solution, so awareness of the potential issues is important.

More recently, a posteriori threshold pivoting (APTP) has been proposed (Duff,
Hogg and Lopez 2020). APTP involves a fail-in-place approach that keeps the
failed columns in place, updates them during the factorization and then handles
them at the end of the factorization. Additionally, it uses speculative execution:
it speculatively runs a task assuming that no numerical issues have occurred in
other tasks that might affect the current one. The overhead is the need for a backup
of entries and implementing a backtracking strategy if numerical instability is
detected.

5.3. Refactorization for sequences of linear least-squares problems

Solving a nonlinear least-squares problem involves solving a sequence of linear
least-squares problems (1.25). For each problem, the least-squares matrix 𝐴 =
J (𝑥( 𝑗)) has the same sparsity pattern but different values. Thus, unless an ordering
that uses the numerical values is employed, it is only necessary to perform the
symbolic analysis for the first augmented system. The numerical factorization with
pivoting is also performed for the first system. Then, for each subsequent system,
if the values of the entries of the matrix have not changed substantially, only
the numerical factorization is performed, reusing both the symbolic analysis and,
importantly, the pivot sequence obtained for the first system. This reuse of the pivot
sequence within the numerical factorization is referred to as refactorization, and
is possible because sparse solvers normally offer separate calls to the analyse and
factorization phases. Iterative refinement can be employed to improve the accuracy
of the computed solution (Section 7.2). Periodically, it may be necessary to
recompute the numerical factorization with pivoting to obtain a new pivot sequence.

5.4. Software for sparse augmented systems

Since the 1980s, significant effort has gone into developing robust LDLT solvers
for symmetric indefinite systems. The HSL library includes a number of packages
that are designed for symmetric indefinite systems, most notably the multifrontal
codes MA57 and HSL_MA97, and the supernodal DAG-based code HSL_MA86 (Hogg
and Scott 2013b). These codes all include the threshold partial pivoting de-
scribed in Section 5.1. The sparse linear least-squares package HSL_MA85 calls
HSL_MA97 for (weighted) and optionally regularized least-squares problems. It
also handles the case that 𝐴 contains a small number of dense rows (Section 8).
Other well-known parallel sparse direct solvers that support symmetric indefinite
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systems include MUMPS, Pardiso and WSMP (Section 3.9). Pardiso combines
dense Bunch–Kaufman pivoting (Bunch and Kaufman 1977) with a static pivot-
ing strategy, and for augmented systems the use of a matching-based preordering
is recommended. The APTP algorithm is implemented within the SSIDS sparse
symmetric indefinite direct solver, which is part of the Sparse Parallel Robust
Algorithms Library (SPRAL).23 SSIDS is a multifrontal solver that is able to ex-
ploit GPU devices on heterogeneous CPU-GPU architectures. As with HSL_MA97,
when used with a bit-compatible BLAS library, SSIDS guarantees bit-compatibility
results.

There are standalone routines for computing maximum weighted matchings
and scalings. The most well-known is the HSL package MC64 (and the later
version HSL_MC64). HSL_MC80 combines a matching algorithm with a fill-reducing
ordering algorithm to compute an elimination order that is suitable for use with a
sparse direct solver for general symmetric indefinite systems.

6. Iterative solvers and algebraic preconditioners
6.1. Stationary iterative methods

The earliest mention of using an iterative method to solve a linear system of
equations is attributed to the original work of Gauss in the mid-1820s. A brief
history of developments in the nineteenth and twentieth centuries is given in Saad
and van der Vorst (2000). Let us assume that the normal system of equations is
to be solved. The basic idea behind stationary iterative methods is to split the
system matrix so that at each iteration we only have to solve a simple linear system.
Specifically, the normal matrix is split into

𝐴⊤𝐴 = 𝑀 − 𝑁,
where 𝑀 is non-singular and easy to invert. Starting with an initial guess 𝑥(1), the
iterations are then given by

𝑀𝑥(𝑘+1) = 𝑁𝑥(𝑘) + 𝐴⊤𝑏, 𝑘 = 1, 2, . . . (6.1)

This can be rewritten as

𝑥(𝑘+1) = 𝑥(𝑘) + 𝑀−1𝐴⊤(𝑏 − 𝐴𝑥(𝑘)) = 𝑥(𝑘) + 𝑀−1𝐴⊤ 𝑟 (𝑘), 𝑘 = 1, 2, . . . , (6.2)

where 𝑟 (𝑘) is the residual vector that corresponds to the approximation solution 𝑥(𝑘).
Observe that by substituting 𝑏 = 𝑟 (𝑘) + 𝐴𝑥(𝑘) into 𝑥 = (𝐴⊤𝐴)−1 𝐴⊤𝑏, we obtain

𝑥 = (𝐴⊤𝐴)−1𝐴⊤(𝑟 (𝑘) + 𝐴𝑥(𝑘)) = 𝑥(𝑘) + (𝐴⊤𝐴)−1𝐴⊤ 𝑟 (𝑘),

and if 𝑀 is used to approximate 𝐴⊤𝐴, we again get the iteration (6.2). From (6.2),

𝑟 (𝑘+1) = 𝑏−𝐴(𝑥(𝑘)+𝑀−1𝐴⊤ 𝑟 (𝑘)) = (𝐼−𝐴𝑀−1𝐴⊤) 𝑟 (𝑘) = · · · = (𝐼−𝐴𝑀−1𝐴⊤)𝑘 𝑟 (1).

23 https://github.com/ralna/SPRAL
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The matrix 𝐺 = 𝐼 − 𝑀−1𝐴⊤𝐴 = 𝑀−1𝑁 is called the iteration matrix.

Lemma 6.1. For any initial vector 𝑥(1) and vector 𝑏, the iteration (6.1) converges
if and only if the spectral radius of the iteration matrix 𝐺 = 𝑀−1𝑁 is less than
unity.

In general, it is impractical to compute the spectral radius, and sufficient con-
ditions that guarantee convergence are used. Because 𝜌(𝐵) ≤ ∥𝐵∥ for any square
matrix and any consistent matrix norm, a sufficient condition is ∥𝐺∥ < 1. A
small spectral radius leads to rapid convergence and the closer the eigenvalues of
𝑀−1𝐴⊤𝐴 are to unity, the faster the convergence. However, the eigenvalue distribu-
tion (not just the spectral radius) is important in evaluating the rate of convergence.
Often it is desirable for the iteration matrix to have real eigenvalues. This is the
case if the iterative method is symmetrizable, that is, if there exists a non-singular
matrix 𝑌 such that 𝑌𝑀−1𝐴⊤𝐴𝑌−1 = 𝑌 (𝐼 − 𝐺)𝑌−1 is symmetric positive definite.

Several standard stationary methods are obtained from the splitting

𝐶 = 𝐴⊤𝐴 = 𝐷𝐶 + 𝐿𝐶 +𝑈𝐶 ,

where 𝐷𝐶 is a diagonal matrix that represents the diagonal part of 𝐶, and 𝐿𝐶 and
𝑈𝐶 are the strictly lower and upper triangular parts of 𝐶, respectively. If 𝜔 > 0 is
a scalar parameter, classical methods include:

• the relaxed Richardson method, 𝑀 = 𝜔−1𝐼,
• the Jacobi and damped Jacobi methods, 𝑀 = 𝐷𝐶 and 𝑀 = 𝜔−1𝐷𝐶 ,
• the Gauss–Seidel and SOR methods, 𝑀 = 𝐷𝐶 + 𝐿𝐶 and 𝑀 = 𝜔−1𝐷𝐶 + 𝐿𝐶 .

These can be implemented without forming the normal matrix. The Jacobi method
is symmetrizable but the Gauss–Seidel method is not. However, there exists a
symmetrizable variant of the SOR method called SSOR, and the Gauss–Seidel
method, as a special case of the SOR method, can also be symmetrized. Com-
pared to Gauss–Seidel, the Jacobi method can be more readily adapted to parallel
computation. Both methods can be generalized to block matrices (Elfving 1980).

For Richardson’s method, from (6.1), if 𝑥(1) ∈ R(A⊤) then 𝑥(𝑘) ∈ R(A⊤) for all
𝑘 > 1. It follows that if 𝐴 is rank-deficient then Richardson’s method converges to
the pseudoinverse solution 𝑥 = 𝐴†𝑏. However, in practice rounding errors result in
a small error component in N (A) that grows linearly with 𝑘 . This is also the case
for many other iterative methods for solving the normal equations.

An approach that is related to Richardson’s method and has received attention in
recent years is the (block) Cimmino method (Benzi 2004). It is potentially attractive
because the main computational effort involves independent subproblems, defined
by a partitioning of the system matrix into blocks of rows or blocks of columns.
These can be solved efficiently in parallel using existing software. Variants of
the approach have been proposed but the method generally lacks robustness (Duff,
Guivarch, Ruiz and Zenadi 2015, Dumitraşc et al. 2018). Recently, extending the
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augmented block Cimmino method to full-rank least-squares problems has been
proposed (Dumitraşc et al. 2021)

The concept of splitting can be applied directly to rectangular matrices 𝐴,
avoiding the use of the normal equations and its poorer conditioning. Suppose
𝐴 = 𝑀𝐴 − 𝑁𝐴. For the splitting to be valid it must be a so-called proper splitting,
that is, the range and null spaces of 𝐴 and 𝑀𝐴 must be equal. For a proper splitting,
it can be shown that the iteration

𝑥(𝑘+1) = 𝑀†𝐴(𝑁𝐴𝑥
(𝑘) + 𝑏)

converges to the pseudoinverse solution 𝑥 = 𝐴†𝑏 for every 𝑥(1) if and only if the
spectral radius of the iteration matrix is less than unity, i.e. 𝜌(𝑀†𝐴𝑁𝐴) < 1 (Berman
and Plemmons 1974, Climent and Perea 2003).

6.2. Krylov subspace methods

Let 𝐵 ∈ R𝑛×𝑛. Given 𝑣 ∈ R𝑛 (𝑣 ≠ 0), the sequence of vectors 𝑣, 𝐵𝑣, 𝐵2𝑣, 𝐵3𝑣, . . .
is called a Krylov sequence and the subspace spanned by the first 𝑘 vectors is a
Krylov subspace, denoted by

K(𝑘)(𝐵, 𝑣) = span{𝑣, 𝐵𝑣, . . . , 𝐵𝑘−1 𝑣}.
Krylov subspace-based methods provide powerful tools for solving linear systems
of equations; they form the most widely used class of preconditioned iterative
methods. Importantly, for very large problems they do not need the matrix 𝐵 to be
stored; instead, each iteration requires products with 𝐵 (and, in the general case,
with 𝐵⊤). Because Krylov subspace methods build a basis, convergence is achieved
in exact arithmetic in at most 𝑛 iterations. In the presence of rounding errors, this
is not guaranteed. If 𝑛 is large, it is impractical to perform 𝑂(𝑛) iterations; the
hope is that the process returns a sufficiently accurate solution far earlier. Indeed,
in some practical applications, it may only be feasible to perform a very limited
number of iterations.

For SPD linear systems, the Krylov subspace method of choice is the classical
conjugate gradient (CG) method. It can be shown that the approximate solution
𝑦(𝑘) at iteration 𝑘 computed using the CG method satisfies

∥𝑦 − 𝑦(𝑘)∥𝐵 ≤ 2
(√

𝜅2(𝐵) − 1√
𝜅2(𝐵) + 1

)𝑘

∥𝑦 − 𝑦(0)∥𝐵, (6.3)

where ∥ · ∥𝐵 is the 𝐵-norm, and 𝜅2(𝐵) = 𝜆max/𝜆min is the spectral condition number
(𝜆max and 𝜆min are the largest and smallest eigenvalues of 𝐵). Clearly there is good
(fast) convergence when 𝜅2(𝐵) is small, but poor (slow) convergence can occur if
𝜅2(𝐵) ≫ 1 (𝜆min is close to zero). The error bound (6.3) is often highly pessimistic.
It does not show the potential for the CG method to converge superlinearly or that
the rate of convergence depends on the distribution of all the eigenvalues of 𝐵. In
practice, it is not normally possible to obtain detailed spectral information for 𝐵.
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Algorithm 6.1. CGLS (conjugate gradients for least-squares)
Input: Matrix 𝐴 ∈ R𝑚×𝑛, right-hand side vector 𝑏, initial approximation 𝑥(1).
Output: least-squares solution 𝑥.

1: 𝑟 (1) = 𝑏 − 𝐴𝑥(1), 𝑧(1) = 𝑝(1) = 𝐴⊤𝑟 (1), 𝛾(1) = ∥𝑧(1)∥22
2: for 𝑗 = 1, 2, . . . 𝑢𝑛𝑡𝑖𝑙 convergence do
3: 𝑞( 𝑗) = 𝐴𝑝( 𝑗)

4: 𝛼( 𝑗) = 𝛾( 𝑗)/∥𝑞( 𝑗)∥22
5: 𝑥( 𝑗+1) = 𝑥( 𝑗) + 𝛼( 𝑗)𝑝( 𝑗)

6: 𝑟 ( 𝑗+1) = 𝑟 ( 𝑗) − 𝛼( 𝑗)𝑞( 𝑗)

7: 𝑧( 𝑗+1) = 𝐴⊤𝑟 ( 𝑗+1)

8: 𝛾( 𝑗+1) = ∥𝑧( 𝑗+1)∥22
9: 𝛽( 𝑗) = 𝛾( 𝑗+1)/𝛾( 𝑗)

10: 𝑝( 𝑗+1) = 𝑧( 𝑗+1) + 𝛽( 𝑗)𝑝( 𝑗)

11: end for

For non-singular indefinite matrices, possible methods are the short-term recur-
rence methods SYMMLQ and MINRES (MINimal RESidual) (Paige and Saunders
1975). When using preconditioning, the preconditioned system matrix also needs
to be symmetric and this generally requires that the preconditioner is SPD. If no
good SPD preconditioner is available, or if there is a very good non-symmetric
preconditioner, the potential advantage of the symmetry of 𝐵 is lost and it may be
necessary to use a solver for non-symmetric matrices. In this case, the most widely
used Krylov subspace method is GMRES (Generalized Minimal RESidual) (Saad
and Schultz 1986). GMRES has the disadvantage of not being a short-term recur-
rence method and it may be necessary to incorporate a restarting strategy to limit
the number of vectors that must be held and the work involved in each iteration.

Krylov subspaces with 𝐵 = 𝐴⊤𝐴 or 𝐵 = 𝐴𝐴⊤ play a fundamental role in non-
stationary iterative methods for solving large-scale least-squares problems. If 𝐴 is
ill-conditioned then the CG method applied naively to the normal equations will
generally perform poorly. CGLS (Hestenes and Stiefel 1952), which is derived by a
slight algebraic rearrangement of the CG method, has better numerical properties,
at the expense of a small amount of additional storage and work per iteration.
Specifically, CGLS avoids explicit formation of the normal matrix and the residual
𝑟 = 𝑏 − 𝐴𝑥 is recurred (rather than the residual 𝐴⊤𝑟 of the normal equations); at
each iteration ∥𝑟 ∥2 is minimized. The method is outlined in Algorithm 6.1. Each
iteration requires one matrix–vector multiplication with 𝐴 and one with 𝐴⊤.

Recall that if rank(𝐴) < 𝑛, the least-squares solution is not unique. However, it
is straightforward to verify that if 𝑥(1) ∈ R(A⊤) (e.g. 𝑥(1) = 0) then 𝑥( 𝑗) ∈ R(A⊤),
𝑗 = 0, 1, . . . . Hence, in exact arithmetic, CGLS converges to the pseudoinverse
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Algorithm 6.2. 𝑘-step GK bidiagonalization (for LSQR)
Input: 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚.
Output: Orthonormal bases {𝑞(1), 𝑞(2), . . . , 𝑞(𝑘)} and {𝑝(1), 𝑝(2), . . . , 𝑝(𝑘)} for
K(𝑘)(𝐴𝐴⊤, 𝑞(1)) and K(𝑘)(𝐴⊤𝐴, 𝑝(1)), respectively.

1: 𝛽(1) = ∥𝑏∥2, 𝑞(1) = 𝑏/𝛽(1), 𝛾(1) = ∥𝐴⊤𝑞(1)∥2, 𝑝(1) = 𝐴⊤𝑞(1)/𝛾(1)

2: for 𝑗 = 1, 2, . . . , 𝑘 do
3: 𝑠( 𝑗) = 𝐴𝑝( 𝑗) − 𝛾( 𝑗)𝑞( 𝑗)

4: 𝛽( 𝑗+1) = ∥𝑠( 𝑗)∥2
5: 𝑞( 𝑗+1) = 𝑠( 𝑗)/𝛽( 𝑗+1)

6: 𝑟 ( 𝑗) = 𝐴⊤𝑞( 𝑗+1) − 𝛽( 𝑗+1)𝑝( 𝑗)

7: 𝛾( 𝑗+1) = ∥𝑟 ( 𝑗)∥2
8: 𝑝( 𝑗+1) = 𝑟 ( 𝑗)/𝛾( 𝑗+1)

9: end for

solution 𝑥 = 𝐴†𝑏 ∈ R(A⊤) and, in theory, CGLS can be employed to solve
least-squares problems of any rank, either overdetermined or underdetermined.

LSQR (Paige and Saunders 1982) is also algebraically equivalent to applying
CG to the normal equations. It is popular because it should be more reliable for
ill-conditioned problems, again at the cost of extra storage and work per iteration
(although as with CGLS, each iteration requires one multiplication with 𝐴 and
one with 𝐴⊤ and these are frequently the dominant cost). LSQR is based on
the Golub–Kahan (GK) bidiagonalization of 𝐴 (sometimes called Golub–Kahan–
Lanczos bidiagonalization). Again, let 𝑥(1) be an initial approximation to the
solution with initial residual 𝑟 (1) = 𝑏 − 𝐴𝑥(1). Generically, 𝑘 ≪ min(𝑚, 𝑛) steps
of GK bidiagonalization determine orthonormal bases {𝑞(1), 𝑞(2), . . . , 𝑞(𝑘)} and
{𝑝(1), 𝑝(2), . . . , 𝑝(𝑘)} for the Krylov subspaces

K(𝑘)(𝐴𝐴⊤, 𝑞(1)) = span{𝑞(1), 𝐴𝐴⊤ 𝑞(1), . . . , (𝐴𝐴⊤)𝑘−1 𝑞(1)},
K(𝑘)(𝐴⊤𝐴, 𝑝(1)) = span{𝑝(1), 𝐴⊤𝐴 𝑝(1), . . . , (𝐴⊤𝐴)𝑘−1 𝑝(1)},

respectively, with initial vectors 𝑞(1) = 𝑟 (1)/∥𝑟 (1)∥2 and 𝑝(1) = 𝐴⊤𝑞(1)/∥𝐴⊤𝑞(1)∥2.
With 𝑥(1) = 0, the 𝑘-step GK bidiagonalization procedure is given in Algorithm 6.2.

In exact arithmetic, if 𝐵(𝑘) is the lower bidiagonal matrix with 𝛾(1), 𝛾(2), . . . , 𝛾(𝑘)

on the diagonal and 𝛽(2), 𝛽(3), . . . , 𝛽(𝑘+1) on the subdiagonal, the bidiagonalization
can be written in matrix form as

𝑄(𝑘+1)𝛽(1)𝑒1 = 𝑏,

𝐴𝑃(𝑘) = 𝑄(𝑘+1)𝐵(𝑘),

𝐴⊤𝑄(𝑘+1) = 𝑃(𝑘)(𝐵(𝑘))⊤ + 𝛾(𝑘+1)𝑝(𝑘+1)𝑒⊤𝑘+1,
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where the columns of 𝑃(𝑘) and 𝑄(𝑘+1) are

{𝑝(1), 𝑝(2), . . . , 𝑝(𝑘)} and {𝑞(1), 𝑞(2), . . . , 𝑞(𝑘+1)},
respectively. It follows that

min
𝑥=𝑃(𝑘)𝑦

∥𝑏 − 𝐴𝑥∥2 = min
𝑦∈R𝑘
∥𝛽(1)𝑒1 − 𝐵(𝑘)𝑦∥2,

and the 𝑘-step LSQR solution is

𝑥(𝑘) = 𝑃(𝑘)𝑦(𝑘), 𝑦(𝑘) = arg min
𝑦∈R𝑘
∥𝛽(1)𝑒1 − 𝐵(𝑘)𝑦∥2 = (𝐵(𝑘))†𝛽(1)𝑒1.

Practical implementations use a recursive formula to obtain 𝑥(𝑘+1) from 𝑥(𝑘), avoid-
ing solving the projected least-squares problems at each iteration.

LSQR was generalized by Benbow (1999) to use a non-standard inner product
to solve the weighted least-squares problem

min
𝑥
∥𝑏 − 𝐴𝑥∥𝑊−1 ,

where 𝑊 is SPD. The only changes needed are in lines 1 and 6 of Algorithm 6.2,
where 𝐴⊤𝑞(1) and 𝐴⊤𝑞( 𝑗+1) are replaced by 𝐴⊤𝑊−1𝑞(1) and 𝐴⊤𝑊−1𝑞( 𝑗+1), and in
line 5, 𝛽 = ∥𝑠( 𝑗)∥𝑊−1 .

For least-squares problems with a well-conditioned matrix 𝐴, LSQR often con-
verges quickly, yielding an approximation to the solution with the desired accuracy
long before linear dependence is encountered in the Krylov subspaces. However,
when 𝐴 is ill-conditioned, LSQR (and CGLS) can require prohibitively many it-
erations. A contributing reason is that in finite precision arithmetic, storing and
using only a few basis vectors at a time cannot maintain orthogonality among all
previously non-stored basis vectors. This can be overcome by keeping previously
computed basis vectors and reorthogonalizing. However, for large 𝑘 , this can be too
computationally expensive and require too much storage to be practical. Solutions
include partial reorthogonalization and implicit restarting (Baglama and Richmond
2014), or it can be sufficient to orthogonalize only one set of the column vectors
(Barlow 2013).

Both CGLS and LSQR compute an approximate solution by minimizing

∥𝑟 (𝑘)∥2 = ∥𝑏 − 𝐴𝑥(𝑘)∥2 for 𝑥(𝑘) ∈ 𝑥(1) +K(𝑘)(𝐴⊤𝐴, 𝑝(1)).

The associated residual vector 𝑟 (𝑘) = 𝑏− 𝐴𝑥(𝑘) lies in K(𝑘)(𝐴𝐴⊤, 𝑞(1)) and the norm
∥𝑟 (𝑘)∥2 reduces monotonically. For underdetermined systems, LSQR solves the
problem min ∥𝑥∥2 subject to 𝐴𝑥 = 𝑏. More generally, it solves min ∥𝑥∥2 subject to
𝐴⊤𝐴𝑥 = 𝐴⊤𝑏, where 𝐴 may have any shape or rank.

For underdetermined systems, CGNE (or Craig’s method (Craig 1955)) is the
CG method implicitly applied to the problem 𝐴𝐴⊤𝑧 = 𝑏 with 𝑥 = 𝐴⊤𝑧. The error
∥𝑥 − 𝑥(𝑘)∥2 decreases monotonically but the residual ∥𝑟 (𝑘)∥2 can oscillate. Because
the stopping criterion for consistent systems is usually based on the size of ∥𝑟 (𝑘)∥2,
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it may be preferable to use CGLS for underdetermined systems. However, for
ill-conditioned noisy problems, CGLS can behave poorly (Hnětynková, Kubínová
and Plešinger 2017).

Within CGLS and LSQR, the residuals ∥𝑟 (𝑘)∥2 decrease monotonically but,
in general, the normal equation residuals ∥𝐴⊤𝑟 (𝑘)∥2 oscillate. When 𝐴 is ill-
conditioned, the oscillations can be large. This behaviour is undesirable, because
practical stopping criteria for least-squares problems use ∥𝐴⊤𝑟 (𝑘)∥2. Specifically,
the iterations may be terminated when

∥𝐴⊤𝑟 (𝑘)∥2 ≤ 𝜂 (∥𝐴∥2 ∥𝑟 (𝑘)∥2 ), (6.4)

where 𝜂 > 0 is a prescribed small tolerance. Quantities within the Krylov method
can be used for this test. The criterion (6.4) is sufficient to obtain a backward stable
solution, but it is not necessary. An alternative based on estimation of the error
norm is described in Papež and Tichý (2023); see also references therein.

The LSMR algorithm (Fong and Saunders 2011) is also based on GK bidiagon-
alization. It is mathematically equivalent to the MINRES method applied to the
normal equations, with ∥𝑟 (𝑘)∥2 and ∥𝐴⊤𝑟 (𝑘)∥2 decreasing monotonically. This may
allow LSMR to follow the convergence more easily and terminate after fewer itera-
tions than CGLS and LSQR. But while CGLS and LSQR are based on minimizing
the norm of the residual ∥𝑟 (𝑘)∥2, at each iteration LSMR minimizes ∥𝐴⊤𝑟 (𝑘)∥2.

Iterative methods exhibit semi-convergence on least-squares problems originat-
ing from discretized ill-posed problems, with the scaled errors ∥𝑥 − 𝑥(𝑘)∥2/∥𝑥∥2
decreasing initially, but at some point they begin to increase. Terminating the
iterations before divergence occurs is an important challenge; see Reichel, Sadok
and Zhang (2020).

6.3. Introduction to algebraic preconditioners

The rate of convergence of the methods of the last section depends on the condition
number of 𝐴 and on the distribution of its singular values. Convergence may be
slow when 𝐴 has unfavourably distributed singular values and a preconditioner
may be needed to try and accelerate convergence. Recall (1.14). The non-singular
preconditioner 𝑀 should be chosen so that:

• 𝜅2(𝐴𝑀−1) = 𝜎max(𝐴𝑀−1)/𝜎min(𝐴𝑀−1) is small (clustered singular values)
and less than 𝜅2(𝐴),
• matrix–vector products with 𝑀−1 and 𝑀−⊤ can be performed efficiently.

Consider the stopping criterion (6.4). When preconditioning is used, if the unpre-
conditioned residual is not available, then terminating when

∥(𝐴𝑀−1)⊤𝑟 (𝑘)∥2 ≤ 𝜂(∥𝐴𝑀−1∥2 ∥𝑟 (𝑘)∥2)

is an option. In this case, the stopping criterion is based on the preconditioned
problem, not the original one.
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The choice of preconditioner is influenced by many factors, including the order
of the matrix, its eigenvalues, its conditioning, its sparsity pattern, density and
positive definiteness. Finding good preconditioners for least-squares problems is
often difficult because they come from a wide range of applications with different
characteristics that require different preconditioners (there is no ‘one size fits all’
preconditioner). The choice can be delicate if we are to avoid accelerating the
convergence of those components dominated by amplified errors. Often it is down
to user experience, availability of the preconditioner in an accessible form, or even
trial-and-error. For least-squares problems, 𝐴 usually lacks the properties that make
preconditioning techniques for linear systems arising from PDEs successful. Hence
we use algebraic preconditioners that do not require knowledge of the provenance
of the system.

Compared with other classes of linear systems, the development of precondition-
ers for sparse least-squares problems may be regarded as still being in its infancy.
Most algebraic preconditioners are least-squares adaptations of approaches for
square linear systems (Bru, Marín, Mas and Tůma 2014, Gould and Scott 2017).
In general, it is desirable to avoid explicitly computing the normal matrix and, in
some applications, a preconditioner that can work in a matrix-free environment is
needed. In this case, the construction of the preconditioner should only involve
matrix–vector products with 𝐴 and 𝐴⊤ and, ideally, only a small number of such
products should be performed. In some large-scale applications where limiting the
time for computing the solution is critical (e.g. in numerical weather forecasting),
products with 𝐴 represent the dominant cost and practical algorithms must restrict
the number of such products.

An obvious idea is to approximate 𝐴 by 𝑀𝑅 and then employ 𝑀 = 𝑀𝑅𝑀
⊤
𝑅

as a split preconditioner for the normal matrix. However, although the singular
values of 𝐴𝑀−1

𝑅 may be favourably distributed and 𝑀𝑅 may provide an excellent
preconditioner for 𝐴, the eigenvalues of the symmetrically preconditioned system
𝑀−⊤𝑅 𝐴⊤𝐴𝑀−1

𝑅 can have an adverse distribution and 𝑀 can be arbitrarily poor as a
preconditioner for 𝐴⊤𝐴. This was noted in Braess and Peisker (1986) and recently
discussed and illustrated in Gratton, Gürol, Simon and Toint (2018) and Wathen
(2022); see also the notes on eigenvalues clustering in Liesen and Strakoš (2013).

Recall (1.14). Applying an iterative method such as CGLS, LSQR or LSMR to
the right-preconditioned problem

min
𝑧∈R𝑛
∥𝑏 − 𝐴𝑀−1

𝑅 𝑧∥2, 𝑥 = 𝑀−1
𝑅 𝑧, 𝑀 = 𝑀𝑅𝑀

⊤
𝑅 ,

can be performed by replacing matrix–vector products with 𝐴 and 𝐴⊤ by products
with 𝐴𝑀−1

𝑅 and 𝑀−⊤𝑅 𝐴⊤ (i.e. the matrix and preconditioner factor are applied to-
gether). The overhead per iteration is one solve with 𝑀𝑅 and one with 𝑀⊤𝑅 . This
approach is commonly used if the factors of 𝑀 are available; other possibilities
for incorporating preconditioners into Krylov subspace methods are discussed in
classical monographs such as that of Saad (2003b). Factorization-free precondi-
tioned LSQR and LSMR algorithms are presented in Arridge, Betcke and Harhanen
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(2014) and Cerdán, Guerrero, Marín and Mas (2020), respectively. Combining pre-
conditioning with iterative solvers for augmented systems that are quasi-definite
is described in Orban and Arioli (2017), including flexible preconditioning of
GMRES (the FGMRES approach) that allows the preconditioner to change within
the solver. The development of new sophisticated iterative strategies for least-
squares problems is on-going (Estrin, Orban and Saunders 2019).

Finally, an interesting alternative approach is given by the AB- and BA-GMRES
iterative methods (Hayami, Yin and Ito 2010). AB-GMRES solves

min
𝑦∈R𝑚

∥𝑏 − 𝐴𝐵𝑦∥2, 𝑥 = 𝐵𝑦,

with 𝐵 ∈ R𝑛×𝑚 as a right-preconditioner, while BA-GMRES solves

min
𝑥∈R𝑛
∥𝐵𝑏 − 𝐵𝐴𝑥∥2,

with 𝐵 ∈ R𝑛×𝑚 as a left-preconditioner. If R(𝐵) = R(𝐴⊤), then AB-GMRES
computes the least-squares solution 𝑥 for all 𝑏 ∈ R𝑚 if and only ifR⊤(𝐵) = R(𝐴⊤).
If 𝐵 = 𝐴⊤, then AB-GMRES is mathematically equivalent to LSQR and CGLS.
It can also be shown that the problems min𝑥 ∥𝑏 − 𝐴𝑥∥2 and min𝑥 ∥𝐵𝑏 − 𝐵𝐴𝑥∥2
are mathematically equivalent for all 𝑏 ∈ R𝑚 if and only if R(𝐵⊤𝐵𝐴) = R(𝐴),
e.g. if R(𝐵⊤) = R(𝐴). If 𝐵 = 𝐴⊤, then BA-GMRES is mathematically equivalent
to LSMR.

In X-ray computed tomography (CT), 𝐴 is the forward projector and 𝐴⊤ repres-
ents the so-called back projector. For large-scale instances, it is common to use
different discretization techniques for the forward and back projectors. This means
that if 𝐵 ∈ R𝑛×𝑚 represents the back projector then 𝐵 is typically not equal to the
transpose 𝐴⊤ of the forward projector; 𝐵 is termed an unmatched back projector or
an unmatched transpose. As a result, instead of the normal equations, the so-called
unmatched normal equations in one of the forms

𝐴𝐵𝑦 = 𝑏, 𝑥 = 𝐵𝑦, or 𝐵𝐴𝑥 = 𝐵𝑏, with 𝐵 ≈ 𝐴⊤,
are solved. AB-GMRES or BA-GMRES can still be used, but applying LSQR or
LSMR is potentially problematic because 𝐵𝐴 is neither symmetric nor positive
semidefinite (Hansen, Hayami and Morikuni 2022).

In the following subsections, we discuss some possible algebraic preconditioners
for Krylov subspace methods for solving large sparse least-squares problems.

6.4. Diagonal preconditioning

As observed in Section 1.6, the simplest form of preconditioning is diagonal pre-
conditioning, that is,

min
𝑧∈R𝑛
∥𝑏 − 𝐴𝑆𝑧∥2, 𝑥 = 𝑆𝑧,

where 𝑆 is a diagonal matrix that scales the columns of 𝐴 to give each unit 2-norm.
This requires only the diagonal entries of the normal matrix 𝐴⊤𝐴 to be computed
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or, equivalently, the squares of the 2-norms of the columns of 𝐴. Theoretical results
show that diagonal scaling is important because it reduces the condition number
(Van der Sluis 1969), but it is also important because it can be trivially applied in
parallel. It is generally advantageous to first apply diagonal scaling and then, if
convergence of the iterative solver is unacceptably slow, to try one or more of the
methods outlined in the following sections, applied to the scaled problem. In many
situations, block diagonal preconditioners (Elfving 1980) corresponding to block
scaling are another efficient way achieving good parallelism.

6.5. Incomplete Cholesky factorization preconditioners

Incomplete Cholesky (IC) factorizations approximate the exact Cholesky factoriz-
ation of a given SPD matrix 𝐶 by disallowing some of the entries that occur in a
complete factorization. Thus 𝐶 ≈ �̃� �̃�⊤, where the incomplete factor �̃� is sparse
and lower triangular. The split preconditioned normal equations are

�̃�−1𝐴⊤𝐴�̃�−⊤𝑦 = �̃�−1𝐴⊤𝑏, 𝑥 = �̃�−⊤𝑦.

IC factorizations were first introduced for model PDE problems (Buleev 1959)
but soon after were considered as a class of general algebraic procedures (Varga
1960). The simplest sparsity pattern allows no entries in �̃� outside the sparsity
pattern of𝐶, i.e. S{�̃� + �̃�⊤} = S{𝐶}. The resulting factorization is called an 𝐼𝐶(0)
(or no-fill) factorization. We always assume that S{�̃�} contains the positions of
diagonal entries. Motivation for considering S{�̃�} that is a superset of S{𝐶} is
given by the following straightforward but important result that can be found in
Chan and van der Vorst (1997) and van der Vorst (2003).

Lemma 6.2. Consider the incomplete Cholesky factorization 𝐶 + 𝐸 = �̃� �̃�⊤ with
sparsity pattern S{�̃� + �̃�⊤}. The entries of the error matrix 𝐸 are zero at positions
(𝑖, 𝑗) ∈ S{�̃� + �̃�⊤}.

In practice, sophisticated and systematic ways of extending S{�̃�} are necessary
to obtain robust high-quality preconditioners. An early choice for banded 𝐶,
motivated by the simple discretization of a PDE on a rectangular grid, allows
S{�̃� + �̃�⊤} to include fill-in along a few additional diagonals within the band. This
can be extended to more general systems using the concept of levels (Watts III
1981). Entries of �̃� that correspond to non-zero entries of 𝐶 are assigned the level
0 while each potential filled entry in position (𝑖, 𝑗) is assigned a level as follows:

level(𝑖, 𝑗) = min
1≤𝑘<min{𝑖, 𝑗 }

(level(𝑖, 𝑘) + level(𝑘, 𝑗) + 1). (6.5)

Given ℓ ≥ 0, during the factorization a filled entry is permitted at position (𝑖, 𝑗)
provided level(𝑖, 𝑗) ≤ ℓ. It can be shown that using levels can be interpreted
as allowing fill-paths of limited length (Hysom and Pothen 2002). In particular,
level(𝑖, 𝑗) = 𝑘 for some 𝑘 ≤ ℓ if and only if there is a shortest fill-path between 𝑖
and 𝑗 of length 𝑘 + 1 in the adjacency graph G(𝐶). A weakness of the resulting
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𝐼𝐶(ℓ) preconditioner is that the number of entries in the incomplete factor can grow
quickly with ℓ and only small values of ℓ are practical.

Threshold-based incomplete factorizations determine the locations of permiss-
ible fill-in in conjunction with the numerical factorization of 𝐶. Entries of �̃� of
absolute value smaller than a prescribed threshold 𝜏 > 0 are dropped as they are
computed. Obtaining a good preconditioner is highly sensitive to the choice of 𝜏,
and this is problem-dependent and influenced by the scaling of 𝐶. Memory-based
methods prescribe the amount of memory available for the incomplete factoriza-
tion, and only the largest entries in each row (or column) are retained. A practical
implementation of this kind can be found in Jones and Plassmann (1995). Many
refinements, variants and hybrids of the different approaches have been proposed;
see, for example, Scott and Tůma (2011) for a brief historical overview.

A more sophisticated class of schemes employs additional memory during the
construction of the incomplete factors that is then discarded. The aim is to obtain
a high-quality preconditioner while maintaining sparsity and allowing the user
to control how much memory is used (Scott and Tůma 2014b). Consider the
decomposition

𝐶 = (�̃� + 𝑇) (�̃� + 𝑇)⊤ − 𝐸, (6.6)

where the incomplete factor �̃� is a lower triangular matrix with positive diagonal
entries, 𝑇 is a strictly lower triangular matrix and the error matrix is 𝐸 = 𝑇𝑇⊤. At
each step, the next column of �̃� and of 𝑇 is computed and then the remaining Schur
complement is modified. On step 𝑗 , the first column of the Schur complement is
split into the sum �̃� 𝑗:𝑛, 𝑗 +𝑇𝑗:𝑛, 𝑗 , where �̃� 𝑗:𝑛, 𝑗 contains the entries that are retained
in column 𝑗 of the final incomplete factor, 𝑇𝑗 𝑗 = 0, and 𝑇𝑗+1:𝑛, 𝑗 contains the entries
that are not included in �̃�. In a complete factorization, the Schur complement
would be updated by subtracting

(�̃� 𝑗+1:𝑛, 𝑗 + 𝑇𝑗+1:𝑛, 𝑗) (�̃� 𝑗+1:𝑛, 𝑗 + 𝑇𝑗+1:𝑛, 𝑗)⊤.

However, the incomplete factorization discards the term

𝐸 ( 𝑗) = 𝑇𝑗+1:𝑛, 𝑗 𝑇
⊤
𝑗+1:𝑛, 𝑗

that would be subtracted in complete factorization. Thus the matrix 𝐸 ( 𝑗) is impli-
citly added to 𝐶, and because 𝐸 ( 𝑗) is positive semidefinite, the approach does not
break down.

An obvious choice is for the largest entries in the column to be retained in �̃�.
Figure 6.1 depicts the first step 𝑗 = 1. In the first row and column, ∗ and 𝛿 denote
the entries of �̃�1:𝑛,1 and 𝑇1:𝑛,1, respectively. Because a standard sparsification
scheme does not store the smallest entries, using such a scheme gives no fill-in
in the rows and columns corresponding to the discarded entries; this is shown in
Figure 6.1(a). The fill-in in the factorization that uses intermediate memory is
depicted in Figure 6.1(b). Clearly, more fill entries are used in constructing 𝐿 than
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


∗ ∗ ∗ 𝛿 𝛿
∗ 𝑓 𝑓
∗ 𝑓 𝑓
𝛿
𝛿




(a)




∗ ∗ ∗ 𝛿 𝛿
∗ 𝑓 𝑓 𝑓 𝑓
∗ 𝑓 𝑓 𝑓 𝑓
𝛿 𝑓 𝑓
𝛿 𝑓 𝑓




(b)

Figure 6.1. An illustration of the fill-in in a standard sparsification-based incomplete
factorization (a) and in the approach that uses intermediate memory (b) after one
step of the factorization. Entries with small absolute value in row and column 1
are denoted by 𝛿. The filled entries are denoted by 𝑓 .




∗ ∗ 𝛿
∗ ∗ ∗ ∗
𝛿 ∗ ∗

∗ ∗
∗ ∗ ∗
∗ ∗ ∗




(a)




∗
∗ ∗

∗
∗ ∗

∗ ∗
∗ ∗ ∗




(b)




∗
∗ ∗
𝛿 𝑓 ∗

∗ ∗
∗ ∗
∗ ∗ ∗




(c)

Figure 6.2. (a) An SPD matrix with an entry of small absolute value in positions
(1, 3) and (3, 1). (b) S{�̃�} computed using a standard incomplete factorization
that drops the small entry 𝛿 at position (3, 1) (there are no filled entries in this
case). (c) The partially computed S{�̃� + 𝑇} after the first step of the incomplete
factorization using intermediate memory. The filled entry is denoted by 𝑓 .

in the standard factorization and the structure of the complete factorization can
be followed more closely. This is illustrated in Figure 6.2. If the small entries at
positions (1, 3) and (3, 1) are not discarded then there is a fill entry in position (3, 2)
and this allows the incomplete factorization using intermediate memory to involve
the (large) off-diagonal entries in positions (5, 2) and (6, 2) in the second step of
the incomplete factorization.

The columns of 𝑇 must be held until the end of the factorization, independently
of the order of operations used by the implementation. A practical solution to
decrease the computational complexity and reduce the memory costs is to sacrifice
the breakdown-free property and combine the factorization with the threshold-
based approach, dropping entries of small absolute value from �̃� and𝑇 . In addition,
a limit on the number of entries allowed in each column of �̃� and 𝑇 can be fixed in
advance. Algorithm 6.3 describes a left-looking memory-limited IC factorization.
In practice, 𝐶 should be symmetrically scaled before the factorization commences.
It can be beneficial to preorder𝐶 but no single approach works best for all problems.
The advantages of reordering are typically less than for a complete factorization
of a sparse matrix, because if the maximum number of entries in each column of
�̃� and 𝑇 is held constant, the amount of fill in the incomplete factors is essentially
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Algorithm 6.3. Left-looking memory-limited IC factorization
Input: SPD matrix 𝐶 ∈ R𝑛×𝑛 and lsize > 0 (maximum number of entries in a
column of �̃�) and tsize ≥ 0 (maximum number of entries in a column of 𝑇).
Output: Incomplete Cholesky factorization 𝐶 ≈ �̃� �̃�⊤.

1: 𝑤𝑖 = 0, 1 ≤ 𝑖 ≤ 𝑛
2: for 𝑗 = 1: 𝑛 do
3: for 𝑖 ∈ {𝑖 ≥ 𝑗 | (𝑖, 𝑗) ∈ S{𝐶}} do
4: 𝑤𝑖 = 𝑐𝑖 𝑗
5: end for
6: for 𝑘 ∈ {𝑘 < 𝑗 | 𝑙 𝑗𝑘 ≠ 0} do
7: for 𝑖 ∈ {𝑖 ≥ 𝑗 | 𝑙𝑖𝑘 ≠ 0} do
8: 𝑤𝑖 = 𝑤𝑖 − 𝑙𝑖𝑘 𝑙 𝑗𝑘
9: end for

10: for 𝑖 ∈ {𝑖 ≥ 𝑗 | 𝑡𝑖𝑘 ≠ 0} do
11: 𝑤𝑖 = 𝑤𝑖 − 𝑡𝑖𝑘 𝑙 𝑗𝑘
12: end for
13: end for
14: for 𝑘 ∈ {𝑘 < 𝑗 | 𝑡 𝑗𝑘 ≠ 0} do
15: for 𝑖 ∈ {𝑖 ≥ 𝑗 | 𝑙𝑖𝑘 ≠ 0} do
16: 𝑤𝑖 = 𝑤𝑖 − 𝑙𝑖𝑘 𝑡 𝑗𝑘
17: end for
18: end for
19: Copy the lsize entries of 𝑤 of largest absolute value into �̃� 𝑗:𝑛, 𝑗

20: Copy the next largest tsize entries of 𝑤 into 𝑇𝑗+1:𝑛, 𝑗 .
21: Scale 𝑙 𝑗 𝑗 = (𝑤 𝑗)1/2, �̃� 𝑗+1:𝑛, 𝑗 = �̃� 𝑗+1:𝑛, 𝑗 /𝑙 𝑗 𝑗 , 𝑇𝑗+1:𝑛, 𝑗 = 𝑇𝑗+1:𝑛, 𝑗 /𝑙 𝑗 𝑗
22: Reset 𝑤 to zero.
23: end for

independent of the ordering of 𝐶 that is used. AMD or nested dissection can be
used (recall Sections 2.4 and 2.7). Alternatively, orderings based on reducing the
profile of 𝐶 can sometimes be more effective (Section 2.6).

When implementing an incomplete Cholesky factorization algorithm it is es-
sential to handle the possibility of breakdown, which occurs if a very small or
non-positive pivot is encountered (line 21 in Algorithm 6.3); this cannot normally
be determined a priori. A simple remedy is to perturb a diagonal value if it is
found to be too small (Kershaw 1978). Another possible approach is to modify
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Algorithm 6.4. Shifted incomplete IC factorization
Input: SPD matrix 𝐶, diagonal scaling matrix 𝑆 and initial shift 𝛼𝑆 > 0.
Output: Shift 𝛼 ≥ 0 and incomplete Cholesky factorization 𝑆−1𝐶𝑆−1+𝛼𝐼 ≈ 𝐿𝐿⊤.

1: 𝐶 = 𝑆−1𝐶𝑆−1 ⊲ Symmetrically scale 𝐶
2: 𝛼0 = 0
3: for 𝑘 = 0, 1, 2, . . . do
4: 𝐶 + 𝛼𝑘 𝐼 ≈ 𝐿𝐿⊤ ⊲ Algorithm 6.3 can be used
5: If successful then set 𝛼 = 𝛼𝑘 and return
6: 𝛼𝑘+1 = max(2𝛼𝑘 , 𝛼𝑆)
7: end for

both the diagonal and off-diagonal entries (Ajiz and Jennings 1984). An alternat-
ive and generally more successful strategy is to terminate the factorization when
breakdown is detected and to compute the incomplete factorization of a globally
shifted matrix 𝐶 + 𝛼𝐼, where 𝛼 > 0 is a scalar parameter. Choosing 𝛼 is discussed
in Lin and Moré (1999) and Scott and Tůma (2014a); see also Higham and Mary
(2022). Algorithm 6.4 incorporates scaling of the normal matrix and uses a simple
doubling strategy to increase the shift until the factorization is successful. More
sophisticated strategies aim to limit the number of restarts and, if a sequence of
related problems are to be solved, the initial shift may take advantage of knowledge
of a suitable shift for the previous problem.

When the least-squares matrix 𝐴 is rank-deficient, the normal matrix for the
(unweighted) regularized problem is

𝐶𝛾 = 𝐴⊤𝐴 + 𝛾𝐼,
where 𝛾 > 0 is the regularization parameter. If 𝛾 is chosen large enough then
the IC factorization is breakdown-free. But, because the intention is to use the
incomplete factors as a preconditioner for the original (unregularized) system, 𝛾
should be chosen to be small. Both requirements can make it difficult to choose
appropriate 𝛾. One possibility is to select 𝛾 to be sufficiently large and then to
update the preconditioner to obtain a better approximation of the original problem
(Cerdán et al. 2020).

6.6. Incomplete QR factorization preconditioners

Over the years, various incomplete orthogonal factorizations of the least-squares
matrix 𝐴 have been proposed but few have survived the test of time. They can be
divided into two classes: those that give a factorization 𝐴 = 𝑄𝑅 in which 𝑄 is not
necessarily orthogonal, and those in which 𝑄 is orthogonal. The factor 𝑅 can be
used to obtain a preconditioner. Computing an incomplete QR (IQR) factorization
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normally involves more work than an incomplete Cholesky factorization but the
hope is that it will lead to a higher-quality preconditioner. Unfortunately, the QR
factorization often suffers significant fill-in, and this makes finding effective sparse
incomplete variants inherently difficult.

One possibility is to employ an incomplete modified Gram–Schmidt process
(IMGS) (Jennings and Ajiz 1984). Dropping is restricted to off-diagonal entries
of the 𝑅 factor, and column 𝑗 of 𝑄 is computed after dropping in the 𝑗 th column
of 𝑅. That is, 𝑞 𝑗 is computed using a linear combination of previously computed
columns of �̃� and the 𝑗 th column 𝑎 𝑗 of 𝐴 as

𝑞 𝑗 = 𝑞/∥𝑞∥2, where 𝑞 = 𝑎 𝑗 −
∑︁

𝑘< 𝑗,𝑟𝑘 𝑗≠0
𝑟𝑘 𝑗𝑞𝑘 .

Provided 𝐴 has full column rank, this process does not break down because 𝑎 𝑗

cannot be expressed as a linear combination of less than 𝑗 previously computed
𝑞𝑖 , 𝑖 < 𝑗 . But dropping entries in 𝑅 results in the computed columns of 𝑄 not
being orthogonal. Incorporating dropping within the computation of 𝑄 can make
the incomplete factorization less expensive, but there is then no guarantee that the
factorization will not break down.

An interesting connection between the IMGS factorization of 𝐴 and the incom-
plete Cholesky factorization of 𝐴⊤𝐴 (both without dropping) is the following result
(Wang, Gallivan and Bramley 1997).

Lemma 6.3. Assume 𝐴 has full column rank and that an incomplete QR factor-
ization 𝐴 ≈ 𝑄𝑅 is computed using the IMGS approach. Then, in exact arithmetic,
𝑅 is the same as the incomplete Cholesky factor �̃�⊤ of 𝐶 = 𝐴⊤𝐴 computed using
the decomposition (6.6) using the prescribed pattern S(�̃�) = S(𝑅⊤).

There have been attempts to compute IQR factorizations using Givens rotations
or Householder reflections. An early use of Givens rotations is in Ajiz and Jennings
(1984); see also Papadopoulos, Duff and Wathen (2005) and Bai and Yin (2009).
However, the modification and compensation strategies within these approaches
are still not well understood and this remains an important open problem.

An alternative direction is to use QR factorizations within a hierarchical ap-
proach. An example of this is the multilevel incomplete Gram–Schmidt QR (MIQR)
factorization (Li and Saad 2006). When 𝐴 is sparse, many of its columns are likely
to be orthogonal because of their structure. These structurally orthogonal columns
form an independent set 𝑆𝑐. Once 𝑆𝑐 is found, its columns are normalized and
permuted to be the leading columns. The remaining columns of 𝐴 are then ortho-
gonalized against the first set. Because the matrix of remaining columns will,
in general, still be sparse, it is natural to recursively repeat the process until the
number of columns is small enough to orthogonalize with standard methods, or a
prescribed number of reductions (levels) has been reached, or the matrix cannot be
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reduced further. This gives a QR factorization of a column-permuted 𝐴 and forms
the basis of the MIQR factorization. In practice, because the QR factorization
causes significant fill-in, sparsity is retained by relaxing the orthogonality and in-
corporating dropping strategies. The approach avoids computing the normal matrix
𝐴⊤𝐴 explicitly as only one row of 𝐴⊤𝐴 is needed at any given time. Moreover,
because 𝐴⊤𝐴 is symmetric, only its upper triangular part (i.e. the inner products
between the 𝑖th column of 𝐴 and columns 𝑖 to 𝑛) is needed.

A recent hierarchical sparse approximate QR factorization (spaQR) is built on
top of a nested dissection-based multifrontal QR approach (Gnanasekaran and
Darve 2022). Low-rank approximations of the frontal matrices are used to sparsify
vertex separators at every level in the elimination tree. A two-step sparsification
scheme reduces the number of columns and maintains the ratio of rows to columns
in each front without introducing additional fill-in. The resulting approximate
QR factorization is stored as a sequence of sparse orthogonal and upper-triangular
factors, which are straightforward to apply/solve with a vector. The approach
avoids the problems associated with dropping strategies within traditional IQR
approaches. Moreover, there is greater potential for exploiting parallelism than
within a complete QR factorization.

6.7. RIF preconditioner

The Robust Incomplete Factorization (RIF) algorithm (Benzi and Tůma 2003a,b)
computes a Cholesky factorization of the normal matrix 𝐶 without forming any
entries of 𝐶, working only with 𝐴. It is based on 𝐶-orthogonalization, that is,
orthogonalization with respect to the 𝐶-inner product defined for all 𝑥, 𝑦 ∈ R𝑛 by

⟨𝑥, 𝑦⟩𝐶 ≔ 𝑥⊤𝐶𝑦 = (𝐴𝑥)⊤(𝐴𝑦). (6.7)

Given the 𝑛 linearly independent vectors 𝑒1, 𝑒2, . . . , 𝑒𝑛 (𝑒𝑖 is the 𝑖th unit basis
vector), a 𝐶-orthogonal set of vectors 𝑧1, 𝑧2, . . . , 𝑧𝑛 is built using a Gram–Schmidt
process with respect to (6.7). This can be written in the form

𝑍⊤𝐶𝑍 = 𝐼, 𝐼 = 𝐿⊤𝑍,

where 𝑍 = [𝑧1, 𝑧2, . . . , 𝑧𝑛] is upper triangular with positive diagonal entries. In
exact arithmetic, 𝐿⊤ is the transposed Cholesky factor of 𝐶 and 𝑍 is its inverse.
The relationship between 𝐿 and 𝑍 can be found, for example, in Hestenes and
Stiefel (1952). It can be shown that 𝐿 can be obtained as a by-product of the
𝐶-orthogonalization process at no extra cost.

Two different preconditioners can be obtained by carrying out the 𝐶-orthogon-
alization process incompletely. The first drops small entries from the computed
vectors as the𝐶-orthogonalization proceeds, resulting in a sparse matrix 𝑍 ≈ 𝐿−⊤;
that is, an incomplete inverse factorization of the form

𝐶−1 ≈ 𝑍𝑍⊤,
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where 𝑍 has positive diagonal entries, is computed. This factored sparse approxim-
ate inverse can be used as a preconditioner and is generally known as the stabilized
approximate inverse (SAINV) preconditioner. It is guaranteed to be positive defin-
ite and can be applied in parallel because its application requires only matrix–vector
products.

The second approach is the RIF preconditioner, which is obtained by discarding
the computed sparsified vector 𝑧𝑖 as soon as it has been used to form the correspond-
ing parts of �̃�. This gives an algorithm for computing an incomplete Cholesky
factorization 𝐶 ≈ �̃� �̃�⊤. Again, the preconditioner is positive definite, and (in
exact arithmetic) breakdown during its computation is not possible. An important
feature of the RIF preconditioner is that it incurs only modest intermediate storage
costs, although implementing the algorithm to exploit the sparsity of 𝐴 within the
preconditioner construction is far from straightforward (Scott and Tůma 2016).

6.8. LU-based factorization approaches

Standard algorithms for solving square linear systems of equations are usually based
on an LU factorization of the system matrix. For least-squares problems in which
the system matrix is nearly square (the number of equations is not much more than
the number of unknowns), using an LU factorization to obtain a preconditioner is a
possible approach. This is also potentially useful for the (nearly square) weighted
least-squares problem, even if the weighting matrix 𝑊 is highly ill-conditioned.
The Peters–Wilkinson method (Peters and Wilkinson 1970) for linear least-squares
problems starts by computing an LU factorization of 𝐴 (or𝑊−1/2𝐴), using Gaussian
elimination with row and column interchanges, that is,

𝑃1𝐴𝑃2 = 𝐿𝐷𝑈,

where the permutation matrices 𝑃1 and 𝑃2 are chosen to preserve sparsity and so
that for 𝑖 > 𝑗 , |𝑙𝑖 𝑗 | ≤ 𝜏 for some modest threshold parameter 𝜏 > 0; this is likely
to keep 𝐿 well-conditioned (although less sparse than 𝐴) and any ill-conditioning
in 𝐴 will usually be seen in 𝐷. For the weighted problem with 𝑊 diagonal, the
weights are reflected in 𝐷. If 𝐴 is of rank 𝑘 ≤ 𝑛, the factors can be written in the
form

𝐿 =

(
𝐿1 0
𝐿2 0

)
, 𝐷 =

(
𝐷1 0
0 0

)
, 𝑈 =

(
𝑈1 𝑈2
0 𝐼

)
,

where 𝐿1 is an 𝑘 × 𝑘 unit lower triangular matrix, 𝐿2 is of order (𝑚 − 𝑘)× 𝑘 , 𝐷1 is
an 𝑘 × 𝑘 diagonal matrix, 𝑈1 is an 𝑘 × 𝑘 unit upper triangular matrix and 𝑈2 is of
order 𝑘 × (𝑛 − 𝑘). The least-squares problem becomes

min
𝑦
∥𝑃1𝑏 − 𝐿𝑦∥2, 𝑦 = 𝐷𝑈𝑃⊤2 𝑥,

and the corresponding normal equations, known as the 𝐿-normal equations, are

𝐶𝐿𝑦 = 𝐿
⊤𝑃1𝑏, 𝐶𝐿 = 𝐿⊤𝐿.
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If 𝑦 and 𝑃1𝑏 are conformally partitioned so that

𝑦 =

(
𝑦1
𝑦2

)
, 𝑃1𝑏 =

(
𝑏1
𝑏2

)
,

with 𝑦1 ∈ R𝑘 , 𝑦2 ∈ R𝑛−𝑘 , 𝑏1 ∈ R𝑘 and 𝑏2 ∈ R𝑚−𝑘 , then 𝑦1 is the solution of the
𝑘 × 𝑘 system

𝐶𝐿 𝑦1 = 𝐿⊤1 𝑏1 + 𝐿⊤2 𝑏2,

and we can set 𝑦2 = 0. Thus 𝑧 = (𝑧1 𝑧2)⊤ with 𝑧1 ∈ R𝑘 is found by back
substitution:

𝐷1𝑈1𝑧1 = 𝑦1 and 𝑧2 = 0.

Setting 𝑥 = 𝑃2 𝑧 gives the least-squares solution. If the 𝐿-normal equations are
sufficiently well-conditioned, employing, for example, CGLS to solve them can
require fewer iterations than when solving the standard normal equations (Howell
and Baboulin 2016).

The 𝐷𝑈 factor can be used as a right-preconditioner within an iterative solver
(Björck 1976, Saunders 1979). Use of the operator 𝐴(𝐷𝑈)−1 involves scaling with
𝐷−1, back substitutions with 𝑈 and multiplications with 𝐴 (𝐿 need not be stored).
An important limitation is that the method is not robust when 𝐷 has near-zero
entries. The near-singularity of 𝐷 is often undetected until the expensive LU
factorization has been attempted.

An alternative strategy is to permute and partition 𝐴 so that

𝑃𝐴 =

(
𝐴1
𝐴2

)
,

with 𝐴1 of order 𝑛 × 𝑛 and non-singular, and then employ 𝐴1 as a right-precon-
ditioner. Its application requires a sparse LU (or QR) factorization of 𝐴1. The
original idea was introduced for dense problems in the early 1960s (Läuchli 1961)
and there has been work in recent years focusing on how to determine 𝑃 so as to
preserve significant information from 𝐴 in 𝐴1; see, for example, the concept of
maximum volume in pseudoskeleton approximations (Goreinov, Tyrtyshnikov and
Zamarashkin 1997, Osinsky and Zamarashkin 2018, de Hoog and Hegland 2023).

6.9. Partial Cholesky factorizations

Partial Cholesky factorizations have been used in the area of large-scale optim-
ization in which a sequence of weighted linear least-squares problems arising
from a nonlinear problem must be solved (Bellavia, Gondzio and Morini 2013).
The approach attempts to identify the largest eigenvalues of the normal matrix
𝐶 = 𝐴⊤𝑊𝐴 and to ensure that the spectral radius of the preconditioned matrix sat-
isfies 𝜅2(𝑀−1𝐶) < 𝜅2(𝐶) by constructing a partial factorization that is terminated
once the first 𝑘 columns of the factor have been found. Omitting the permutation
matrix that brings the largest 𝑘 diagonal entries of 𝐶 to the front of the matrix,
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ready for use as pivots, a partial factorization of the form

𝐶 = 𝐿𝐷𝐿⊤ =

(
𝐿1
𝐿2 𝐼

)(
𝐷1

𝑆

)(
𝐿⊤1 𝐿⊤2

𝐼

)

is computed. Here 𝐿1 is an 𝑘 × 𝑘 unit lower triangular matrix and 𝑆 is the
Schur complement after 𝑘 eliminations. Approximating 𝑆 by its diagonal gives the
preconditioner

𝑀 =

(
𝐿1
𝐿2 𝐼

)(
𝐷1

𝐷2

)(
𝐿⊤1 𝐿⊤2

𝐼

)
.

The factorization can be computed using an implicit process in which 𝐶 and
its Schur complements are not fully formulated: only the diagonal and selected
columns of the Schur complements are calculated. In the applications of interest,
𝐴 can be accessed by rows, and this makes computing 𝑀 relatively straightforward
and inexpensive compared to the cost of the matrix–vector products performed
within the preconditioned iterative solver. The choice of 𝑘 is dependent on the
memory available for holding the first 𝑘 columns of 𝐿.

While 𝜅2(𝑀−1𝐶) is generally significantly smaller than 𝜅2(𝐶), the smallest eigen-
values of 𝐶 typically either remain unchanged or move towards the origin. If
necessary, these small eigenvalues are handled by combining the partial factoriz-
ation preconditioner with the deflated-CGLS algorithm (Saad, Yeung, Erhel and
Guyomarch 2000). This requires using a Rayleigh–Ritz procedure to approximate
the eigenvectors corresponding to some of the smallest eigenvalues of 𝑀−1𝐶. This
comes at a non-negligible cost, and a reduction in the total solution time is not
guaranteed.

6.10. Algebraic domain decomposition preconditioners

For extremely large problems, it can be infeasible (in terms of time and possibly
memory requirements) to construct the factorization-based preconditioners dis-
cussed in the previous sections. The need for robust algebraic preconditioners that
can be implemented efficiently in parallel recently led to the development of a two-
level additive Schwarz preconditioner for the normal equations (Al Daas, Jolivet
and Scott 2022). Multilevel domain decomposition preconditioners are a popular
divide-and-conquer approach for solving challenging linear systems arising from
discretizing PDEs. A fully algebraic approach for non-PDE problems is theoretic-
ally possible but, so far, it has been found to be prohibitively expensive for general
linear systems (Al Daas and Grigori 2019). However, for least-squares problems,
the similarity between the structure of the normal matrix and that of the weak
formulation of PDEs can be exploited to develop new effective preconditioners.

Start by considering any 𝑛 × 𝑛 SPD matrix 𝐵. A graph-partitioning algorithm
such as nested dissection (Section 2.7) is employed to partition the graph G(𝐵) into
2 ≤ 𝑁 ≪ 𝑛 non-overlapping subdomains; this splits the vertices 1, 2, . . . , 𝑛 into 𝑁
disjoint subsets Ω𝐼𝑖 of size 𝑛𝐼𝑖 (1 ≤ 𝑖 ≤ 𝑁). To obtain overlapping subdomains,
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let ΩΓ𝑖 be the subset of vertices that are distance one in G(𝐵) from the vertices
in Ω𝐼𝑖; let its size be 𝑛Γ𝑖 . The overlapping subdomain is then Ω𝑖 = Ω𝐼𝑖 ∪ ΩΓ𝑖 ,
of size 𝑛𝑖 = 𝑛𝐼𝑖 + 𝑛Γ𝑖 . Associated with Ω𝑖 is a restriction matrix Π𝑖 that maps
from the global domain to the subdomain; a prolongation matrix is given by Π⊤𝑖 .
A two-level additive Schwarz preconditioner is given by

𝑀−1 =
𝑁∑︁
𝑖=0

Π⊤𝑖 𝐵
−1
𝑖 Π𝑖 , 𝐵𝑖 = 𝐵(Ω𝑖 ,Ω𝑖), 𝐵0 = Π0𝐵Π

⊤
0 ,

where Π0 is of full rank and is constructed so that the preconditioned system is
well-conditioned. For any Π0 it is possible to cheaply obtain upper bounds on
the largest eigenvalue of the preconditioned system, independently of 𝑛 and 𝑁 .
However, bounding the smallest eigenvalue is highly dependent on Π0. Thus,
this choice is key to building efficient two-level Schwarz preconditioners. Other
two-level variants exist that can yield better convergence behaviour.

For least-squares problems, the normal matrix 𝐶 is not a general SPD matrix
but the product 𝐴⊤𝐴. Practical two-level Schwarz preconditioners can be derived
by exploiting this structure (Al Daas et al. 2022). The main work in building
the preconditioner is, for each 𝑁 , computing the Cholesky factors of two local
matrices of order 𝑛𝑖; these factorizations can be performed in parallel. In addition,
Π0 must be constructed and then the Cholesky factorization of𝐶0 = (𝐴Π⊤0 )⊤(𝐴Π⊤0 )
computed. It can be shown that the spectral condition number of the preconditioned
normal matrix is bounded from above independently of the number of subdomains
and the size of the problem. Moreover, this upper bound depends on a single
parameter that can be chosen to decrease (respectively, increase) the upper bound
with the costs of setting up the preconditioner being larger (respectively, smaller).

6.11. Two-level limited-memory preconditioners

Consider the SPD normal equations and assume that a preconditioner is available
that clusters most of the eigenvalues of the preconditioned normal matrix at +1 with
relatively few outliers. Provided the outlying eigenvalues are small, the conver-
gence of the preconditioned iterative method is typically not adversely effected by
this, but if they belong to the right-hand end of the spectrum, convergence can be
significantly delayed (Liesen and Strakoš 2013). It may be possible to improve the
performance of this first-level preconditioner by adding a second-level precondi-
tioner. For example, consider the normal equations (1.26) for the linear subproblem
that comes from linearizing a nonlinear least-squares problem. The structure of
the normal matrix 𝐶 = 𝑊−1

2 + 𝐻⊤𝑗 𝑊−1
1 𝐻 𝑗 suggests that a natural candidate for a

preconditioner is𝑊−1
2 , and the symmetrically preconditioned system is then of the

form

�̂�𝑠 = 𝑊1/2
2 𝐶𝑊1/2

2 𝑠 = (𝐼 + 𝑋)𝑠 = �̂�, 𝑋 = 𝑊1/2
2 𝐻⊤𝑗 𝑊

−1
1 𝐻 𝑗𝑊

1/2
2 .
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Here, the preconditioned normal matrix �̂� is the sum of the identity matrix and a
symmetric positive semidefinite matrix 𝑋 of rank 𝑞 ≪ 𝑛. Hence, �̂� is SPD and has
a cluster of 𝑛 − 𝑞 eigenvalues at +1 and 𝑞 eigenvalues that are greater than one; its
spectral condition number is equal to 𝜆max(�̂�). Second-level preconditioning seeks
to reduce the condition number while preserving the cluster of eigenvalues at +1.
More generally, the aim is to capture the directions that have been left out by the
first-level preconditioner and slow down the convergence of the Krylov solver.

A class of limited-memory preconditioners (LMPs) has been proposed with
this two-level structure in mind. These preconditioners are based on the explicit
knowledge of a full-rank matrix 𝑍 with 𝑘 ≪ 𝑛 columns and on the product of 𝑍 with
�̂�. Specifically, let 𝐶 be an SPD matrix of order 𝑛 and 𝑀1 an SPD preconditioner
for 𝐶 (the first-level preconditioner). Assume that 𝑍 is any 𝑛 × 𝑘 matrix with
rank(𝑍) = 𝑘 ≪ 𝑛. The symmetric matrix

𝑀 = (𝐼 − 𝑀2𝐶)𝑀−1
1 (𝐼 − 𝐶𝑀2) + 𝑀2, 𝑀2 = 𝑍𝐸−1𝑍⊤, 𝐸 = 𝑍⊤𝐶𝑍, (6.8)

is called an LMP (e.g. Gratton, Sartenaer and Tshimanga 2011, Daužickaitė, Law-
less, Scott and Van Leeuwen 2021). In domain decomposition, it is known as a
balancing preconditioner (Mandel 1993); see also Tang, Nabben, Vuik and Erlangga
(2009) and Zhao (2016) for an analysis of subspace enhanced preconditioners. If
𝑀1 = 𝑊2, �̂� = 𝑊1/2

2 𝐶𝑊1/2
2 and �̂� = 𝑊−1/2

2 𝑍 , then from (6.8) we obtain the
preconditioner

�̂� =𝑊−1/2
2 𝑀𝑊−1/2

2 = (𝐼 − �̂�2�̂�)(𝐼 − �̂��̂�2) + �̂�2, �̂�2 = �̂� �̂�
−1 �̂�⊤, �̂� = �̂�⊤�̂� �̂� .

(6.9)
Assume �̂� is available in factored form, i.e. �̂� �̂� = 𝑌⊤𝑌 , where 𝑌 is 𝑘 × 𝑘 . Then
(6.9) can be factorized as �̂� = 𝑀⊤3 𝑀3, where

𝑀3 = 𝐼 − �̂�𝑌−1𝑌−⊤ �̂�⊤ �̂� + �̂�𝑌−1.

A potential problem for practical applications is the need for expensive matrix–
matrix products with �̂�. Simpler formulations are obtained by imposing more
conditions on the columns 𝑧1, . . . , 𝑧𝑘 of �̂� . Two approaches used, for example, in
ocean data assimilation are the spectral-LMP and Ritz-LMP.

Let 𝑧1, . . . , 𝑧𝑛 be orthonormal eigenvectors of �̂� with corresponding eigenvalues
𝜆1, . . . , 𝜆𝑛. SetΛ = diag(𝜆1, . . . , 𝜆𝑛) and let the columns of �̂� be 𝑧1, . . . , 𝑧𝑛, so that
�̂� �̂� = �̂�Λ and �̂�𝑇 �̂� = 𝐼. Substituting into (6.9) and simplifying, the spectral-LMP
(or deflation preconditioner Giraud and Gratton 2006) is given by

𝑀sp = 𝐼 −
𝑛∑︁
𝑖=1

(1 − 𝜆−1
𝑖 )𝑧𝑖𝑧⊤𝑖 .

𝑀sp moves the eigenvalues 𝜆𝑖 , 𝑖 = 1, . . . , 𝑘 to +1 and leaves the rest of the spectrum
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unchanged. In factored form, 𝑀sp = 𝑀sp
3 (𝑀sp

3 )⊤ with

𝑀
sp
3 =

𝑛∏
𝑖=1

(
𝐼 − (1 − (

√︁
𝜆𝑖
)−1)

𝑧𝑖𝑧
⊤
𝑖

)
.

In most applications, exact eigenpairs are not available, and so Ritz values
and vectors are used. Setting 𝑧1, . . . , 𝑧𝑛 to be orthogonal Ritz vectors and Θ =
diag(𝜃1, . . . , 𝜃𝑛) to be the corresponding Ritz values, the Ritz-LMP is given by

𝑀𝑅𝑡 = (𝐼 − �̂�Θ−1 �̂�⊤ �̂�)(𝐼 − �̂� �̂�Θ−1 �̂�⊤) + �̂�Θ−1 �̂�⊤. (6.10)

Each application of𝑀𝑅𝑡 requires a matrix–matrix product with �̂�. But if a sequence
of problems needs to be solved and if the Ritz vectors are obtained by a Lanczos
process, then (6.10) can be simplified and matrix–matrix products with �̂� avoided
(Gratton et al. 2011). In practice, both spectral-LMP and Ritz-LMP use Ritz vectors
and values to construct the LMPs. Only approximations to the largest eigenvalues
and corresponding eigenvectors are required. Randomized algorithms can be used.
These are explored for problems arising in data assimilation in Daužickaitė et al.
(2021) (see also Scotto di Perrotolo 2022). In practice, these problems can be
extremely large and products involving 𝐶 are very expensive, so much so that only
a few iterations of an iterative solver can be performed (the solver is typically run
for a fixed number of iterations, not to convergence). In such situations, having a
good-quality preconditioner that is cheap to compute and apply is important and
challenging.

6.12. Sketch-and-precondition

As observed above, randomized methods can be used in constructing LMPs. More
generally, in recent years there has been significant growth in the development and
employment of randomized techniques for tackling very large problems within nu-
merical linear algebra; see, for example, the review by Drineas and Mahoney (2016)
and the survey article by Martinsson and Tropp (2020). Sketch-and-precondition
algorithms for least-squares problems use sketching to construct a preconditioner to
be used in an iterative solver. Matrix sketching is a data compression technique that
is characterized by the property of preserving most of the linear information that
is present in the data. Algorithm 6.5 outlines the classical sketch-and-precondition
approach for highly overdetermined least-squares problems (Meng, Saunders and
Mahoney 2014). Here, an SVD factorization of the sketched matrix is computed,
but a QR factorization could be used (Avron, Ng and Toledo 2009); see also Ipsen
and Wentworth (2014) for related theoretical aspects of uniform samplings.

The approach can easily be extended to handle Tikhonov regularization and
a similarly structured algorithm works for strongly underdetermined systems.
Note that 𝐴 is used only for matrix–vector and matrix–matrix operations and
so it can be sparse or dense or a linear operator. The preconditioned system is
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Algorithm 6.5. A sketch-and-precondition LS solver (overdetermined case)
Input: 𝐴 ∈ R𝑚×𝑛 of rank rk, 𝑚 ≫ 𝑛 and 𝑏 ∈ R𝑚.
Output: Least-squares solution 𝑥.

1: Choose an oversampling factor 𝛾 > 1 and set 𝑠 = [𝛾𝑛] ⊲ e.g. 𝛾 = 2
2: Draw a Gaussian random matrix Ω ∈ R𝑠×𝑚
3: Form the sketch 𝑌 = Ω𝐴 ∈ R𝑠×𝑛 ⊲ Row sampling.
4: Compute the compact SVD factorization 𝑌 = 𝑈Σ𝑉⊤, where 𝑈 ∈ R𝑠×rk,

Σ ∈ Rrk×rk, 𝑉 ∈ R𝑛×rk

5: Set 𝑀−1 = 𝑉Σ−1 and compute least-norm solution of min𝑧∈Rrk ∥𝑏− 𝐴𝑀−1𝑧∥2.
6: Return 𝑥 = 𝑀−1𝑧

well-conditioned and, when LSQR is used in line 5, the algorithm can be shown to
have a fully predictable run-time performance, just like direct solvers, and it scales
well in parallel environments.

More recent sketch-and-precondition based-methods for regularized problems
are given in Ozaslan, Pilanci and Arikan (2023) and Meier and Nakatsukasa
(2022). One uses a Cholesky-based sketch-and-precondition technique while
the other is very efficient for matrices with small statistical dimension sd𝛾(𝐴) =
tr(𝐴(𝐴⊤𝐴 + 𝛾𝐼𝑛)−1𝐴⊤, where 𝛾 is the regularization parameter in (1.17). Unfortu-
nately, the sketch-and-precondition approach in its most commonly used form can
be numerically unstable for ill-conditioned problems. This has recently led to in-
vestigations into variants that seek to ensure improved stability properties (Epperly
2024, Epperly, Meier and Nakatsukasa 2024, Meier, Nakatsukasa, Townsend and
Webb 2024).

6.13. Preconditioning the augmented system formulation

There has been a wealth of research devoted to developing preconditioners for
symmetric indefinite linear systems of the form

(
𝐻 𝐺
𝐺⊤ −𝐸

)(
𝑦
𝑧

)
=

(
𝑓
𝑔

)
, (6.11)

where 𝐻 and 𝐸 are square symmetric matrices. These so-called saddle-point
systems arise in a wide range of practical applications that lead to blocks having
different properties. The augmented system formulation of linear least-squares
problems is just one important area. There are a number of extensive survey
articles on preconditioning saddle-point problems that include discussions relevant
to sparse least-squares problems, most notably those of Benzi, Golub and Liesen
(2005), Wathen (2015), and Pearson and Pestana (2020).
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An interesting result is that every preconditioner for the normal equations yields
an equivalent preconditioner for the augmented system but the converse is not
true (Oliveira and Sorensen 2005). Thus working with the augmented system
potentially provides greater opportunities to find effective preconditioners. Many
approaches for constructing preconditioners exploit the block structure in (6.11).
For the augmented system obtained from a (regularized) least-squares problem the
blocks are very special. In particular, if the matrix of weights 𝑊 is diagonal then
𝐻 is diagonal. Thus, in contrast to the augmented systems coming from PDE
problems, most of the complexity lies in the off-diagonal blocks and this influences
which approaches are potentially appropriate.

Block-based preconditioners with the same 2 × 2 structure as the saddle-point
system are used in many application areas. The basic block diagonal preconditioner
for the least-squares augmented system (5.1) with a zero (2, 2) block is

𝑀 =

(
𝐼

−𝑆
)
,

where 𝑆 approximates the Schur complement 𝑆 = −𝐴⊤𝐴. A straightforward choice
is 𝑆 = −𝑅⊤𝑅, where 𝑅 is the factor of an incomplete QR factorization of 𝐴:

(𝑄1 𝑄2)
(
𝑅
0

)
= 𝑄1𝑅. (6.12)

This yields the positive definite preconditioner

𝑀 =

(
𝐼 0
0 𝑅⊤𝑅

)
=

(
𝐼 0
0 𝑅⊤

)(
𝐼 0
0 𝑅

)
= 𝑀1𝑀

⊤
1 .

Two-sided application of this preconditioner gives

𝑀−1
1 𝐾𝑀−⊤1 = 𝑀−1

1

(
𝐼 𝐴
𝐴⊤ 0

)
𝑀−⊤1 =

(
𝐼 𝐴𝑅−1

𝑅−⊤𝐴⊤ 0

)
=

(
𝐼 𝑄1
𝑄𝑇

1 0

)
.

Constraint preconditioners are an important alternative family of block precon-
ditioners. These are (possibly indefinite) preconditioners in which the off-diagonal
blocks (the constraints) are as in the saddle-point matrix and the (1, 1) and (2, 2)
blocks are approximated (e.g. by their diagonal entries); see di Serafino and Orban
(2021). For the augmented systems in least-squares problems, approximating these
blocks is unnecessary (assuming the matrix of weights is the identity or diagonal).
Instead, the off-diagonal blocks are approximated, resulting in inexact constraint
preconditioners (Coleman and Verma 2001, Zilli and Bergamaschi 2022). In the
special case of the augmented system with the exact constraint preconditioner in
which the right-hand side is of the form (𝑏⊤ 0⊤)⊤, preconditioned CG can be used
to solve the indefinite preconditioned system (Lukšan and Vlček 1998); see also
Benzi et al. (2005). Given the inexact QR factorization (6.12), a natural inexact
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constraint preconditioner is

𝑀 =

(
𝐼 𝑄1𝑅

𝑅⊤𝑄⊤1 0

)
.

If a complete QR factorization of 𝐴 is available, it is not necessary to use
the augmented formulation because the factors can be used to solve the normal
equations directly. However, if the complete factorization is performed using lower
precision arithmetic (for example, single precision might be used with the possible
objective of speeding up the computation or saving memory), then the computed
factors can be used within block-based preconditioners to try and recover full
(double) precision accuracy in the least-squares solution. This is analysed in
Carson, Higham and Pranesh (2020).

6.14. Approximate factorizations of the augmented matrix

Another possibility for preconditioning the augmented system formulation is a
signed IC factorization that exploits the block structure. Specifically, compute a
signed incomplete factorization of the form

𝑆𝐾𝑆 +
(
𝛼1𝐼

−𝛼2𝐼

)
≈ �̃�𝐷�̃�⊤, (6.13)

where 𝑆 is a diagonal scaling matrix, �̃� is a unit lower triangular matrix, and 𝐷
is a diagonal matrix with positive and negative entries (Scott and Tůma 2014c).
The two non-negative shifts 𝛼1 and 𝛼2 are chosen to prevent breakdown of the
factorization. Such a shifting strategy is closely connected to the regularization
techniques used by the numerical optimization community. In exact arithmetic,
the shifts can always be chosen such that a signed IC factorization exists. If a
pivot is found to be too small then if it corresponds to an entry in the (1, 1) block
(respectively, (2, 2) block) then the factorization is terminated and restarted with
a larger value of 𝛼1 (respectively, 𝛼2). In practice, 𝐾 is generally preordered. A
key attraction of this approach is that it avoids the need for numerical pivoting. It
is straightforward to modify the memory-limited IC approach of Algorithm 6.3 to
obtain the incomplete factorization (6.13).

The computed incomplete factors can be used as preconditioners for the SQMR
method (Freund 1997) or GMRES. The SYMMLQ and MINRES methods are not
directly applicable as they require positive definite preconditioners. However, they
can be used on the symmetrically preconditioned system

|𝐷 |−1/2 �̃�−1𝑆𝐾𝑆𝐿−⊤ |𝐷 |−1/2
(
𝑠
𝑦

)
= |𝐷 |−1/2 �̃�−1

(
𝑏
0

)
,

(
𝑟
𝑥

)
= 𝐿−⊤ |𝐷 |−1/2

(
𝑠
𝑦

)
,

where the entries of |𝐷 | are the absolute values of the entries of 𝐷. Results
given in Gould and Scott (2017) demonstrate that this approach with MINRES can
outperform using GMRES with (6.13).
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A related strategy is to exploit the fact that the system matrix 𝐾𝑊 for the regu-
larized weighted least-squares problem matrix (1.24) is symmetric quasi-definite
(SQD) (recall Section 1.7). Consequently, if 𝐿 and 𝐷 are its exact factors, the
preconditioned operator

|𝐷 |−1/2𝐿−1𝐾𝑊𝐿
−⊤ |𝐷 |−1/2 = |𝐷 |−1𝐷,

possesses only two distinct eigenvalues: +1 and −1. The hope is therefore that
incomplete factors have the potential to yield a preconditioned system with a favour-
able spectral structure while keeping the computational effort reasonable. When
�̃� and 𝐷 are limited-memory factors of 𝐾𝑊 , the corresponding preconditioned
operator remains symmetric and indefinite so that it is possible to use MINRES or
SYMMLQ. This is explored in Orban (2015).

6.15. Incomplete factorizations of symmetric indefinite matrices

In comparison with research into incomplete factorization preconditioners for SPD
systems, work on reliable incomplete factorization techniques for general sym-
metric indefinite problems is limited. It is significantly more challenging because
numerical pivoting must often be incorporated to limit growth in the sizes of the
factor entries. The Bunch–Kaufman partial pivoting strategy is widely employed
for factorizing dense symmetric indefinite matrices using 1 × 1 and 2 × 2 pivots
(Bunch and Kaufman 1977). It is also often used in the factorization of dense
blocks within sparse factorizations and has been integrated within incomplete fac-
torizations for sparse symmetric indefinite matrices (Li and Saad 2005, Greif, He
and Liu 2017).

For sparse problems, the need for pivoting may be reduced by preprocessing
the matrix. The use of a matching-based ordering and scaling algorithm was
discussed in Section 5.2 for complete factorizations but it can also be applied
to avoid dynamic pivoting in incomplete factorizations (Hagemann and Schenk
2006, Chen, Huang and Li 2012, Scott and Tůma 2017a). The matching-based
ordering is used to a priori symmetrically permute large entries to the subdiagonal
positions. Tridiagonal pivoting then restricts the search for pivots to the diagonal
and subdiagonal. If a 1×1 pivot candidate is found to be too small and pairing it with
the subdiagonal entry in its row does not give a suitable a 2×2 pivot, then breakdown
can be prevented by replacing the pivot candidate with a small predefined quantity.
Details of how to do this while guaranteeing backward stability are given in Chen
et al. (2012). Combined with dropping the smallest entries as each column of
the factor is computed, the result is an incomplete factorization that is potentially
efficient to compute (because the search for pivot candidates is limited) as well as
more straightforward than more sophisticated approaches to selecting stable pivots.
For instance, strategies that monitor growth in the factors and incorporate pivot
modifications when potential instability is observed have been proposed within a
limited-memory incomplete factorization algorithm (Scott and Tůma 2017a).
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6.16. Software for algebraic preconditioners

Despite the interest in preconditioning large-scale linear least-squares problems,
there is limited high-quality software available that is specifically designed for such
problems and is fully documented and supported. A study comparing the perform-
ance of software for sparse problems is given in Gould and Scott (2017). The
sequential package HSL_MI35 from the HSL library24 implements Algorithm 6.3,
incorporating global shifts to handle potential breakdown. This software avoids
forming the normal matrix explicitly and uses it in the implicit form of 𝐴 only; it
is based on Scott and Tůma (2014a). BA-GMRES software is available25 but this
does not appear to be actively maintained.

Prototype codes for left- and right-looking implementations of RIF have been
written26 but they have not been developed into library-quality software. The
multilevel QR factorization described in Section 6.6 is available within the 2005
package MIQR.27

A parallel implementation of the the two-level additive Schwarz preconditioner
discussed in Section 6.10 is available in PCHPDDM,28 which is a part of PETSc.29
PETSc also offers a wide range of algebraic preconditioners aimed primarily at
solving sparse linear systems (rather than specifically for least-squares problems).
To employ an incomplete Cholesky factorization with the PETSc implementation
of left-preconditioned LSQR, the normal matrix must be formed.

The HSL package HSL_MC81 uses randomized algorithms to compute low-rank
approximations of a given matrix. These can be used to construct the LMPs
introduced in Section 6.11.

If 𝐴 is dense and of full rank then a well-known sketching-based solver is
Blendenpik.30 It uses a QR factorization of the sketch (rather than an SVD factor-
ization). For sparse (and possibly rank-deficient) 𝐴, the sequential code LSRN31

implements Algorithm 6.5. A comparison of sketch-and-precondition techniques
(including Blendenpik and LSRN) is given in Ozaslan et al. (2023). More recent
software is the sketching for least-squares package Ski-LLS32 (Cartis, Fiala and
Shao 2021). However, this appears to be research code that is not being actively
maintained. The monograph by Murray et al. (2023) discusses the development of
standard libraries for randomized numerical linear algebra, including least-squares.

24 https://www.hsl.rl.ac.uk/
25 https://github.com/morikuni-keiichi
26 https://www.karlin.mff.cuni.cz/ mirektuma/sparslab.html
27 https://www-users.cse.umn.edu/ saad/software/MIQR.tar.gz
28 https://petsc.org/main/manualpages/PC/PCHPDDM/
29 https://petsc.org/release/
30 https://github.com/haimav/Blendenpik
31 https://web.stanford.edu/group/SOL/software/lsrn/
32 https://github.com/numericalalgorithmsgroup/Ski-LLS
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There is little robust software for computing sparse incomplete LDLT factor-
izations of the augmented system matrix. The package HSL_MI30 implements a
memory-limited signed IC algorithm for solving saddle-point systems that can be
used for the augmented system formulation combined with either preconditioned
GMRES or preconditioned MINRES (Scott and Tůma 2014c). sym-ildl33 computes
incomplete factorizations of general symmetric indefinite matrices. It builds upon
ideas proposed in Li, Saad and Chow (2003) and Li and Saad (2005), and incorpor-
ates scaling, preordering and Bunch–Kaufman pivoting (Greif et al. 2017). As the
memory-limiting parameter increases, the incomplete factors converge to the exact
factors. This software also does not appear to be currently maintained. LLDL34

is a modification of the limited-memory Cholesky factorization code ICFS from
1999 for symmetric positive definite matrices described in Lin and Moré (1999).
It implements a similar scheme for symmetric indefinite matrices that possess a
LDLT factorization with 𝐷 diagonal. This includes SQD matrices.

Pardiso35 is primarily a package of direct solvers but it also offers a precondi-
tioning approach for general symmetric indefinite linear systems based on using
maximum weighted matching orderings and algebraic multilevel incomplete LDLT
factorizations. ILUPACK36 includes routines for incomplete Cholesky, LDLT and
ILU factorizations as well as corresponding iterative methods that exploit reli-
able (inverse-based) diagonal pivoting and multilevel framework. Comparisons
between ILUPACK and other related incomplete and complete factorizations for
solving mainly non-symmetric systems, but also symmetric indefinite systems, can
be found in Chen, Ghai and Jiao (2021). A recent strategy that exploits numerical
rank deficiency of the off-diagonal blocks of the incomplete Cholesky factor has
been compared with ILUPACK (Napov 2023).

7. Iterative refinement for least-squares problems
Direct linear solvers theoretically provide exact solutions, but if the problem is
ill-conditioned, then in finite floating-point precision, rounding errors may signi-
ficantly degrade the accuracy of the computed solution. Unfortunately, this can
pass unnoticed because the associated residual can be relatively small. The method
of iterative refinement seeks to improve accuracy of the computed approximate
solution. For the square linear system 𝐵𝑦 = 𝑑, the computed solution 𝑦(1) is refined
by computing the residual vector 𝑟 (1) (possibly using a higher precision) and solv-
ing the linear system 𝐵𝛿𝑦(1) = 𝑟 (1), with the residual as the right-hand side vector,
to obtain a correction 𝛿𝑦(1) to the solution. The process may be repeated until

33 https://github.com/where-is-paul/matrix-factor
34 https://github.com/optimizers/lldl
35 https://panua.ch/pardiso/
36 http://ilupack.tu-bs.de/
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Algorithm 7.1. Solve the LS problem using basic iterative refinement in two
precisions
Input: Overdetermined full-rank matrix 𝐴, vector 𝑏 and precisions 𝑢ℎ and 𝑢,
where 𝑢ℎ ≤ 𝑢2.
Output: least-squares solution 𝑥 and least-squares residual 𝑟 .

1: Compute an initial approximate least-squares solution 𝑥(1)

2: for 𝑖 = 1, 2, . . . do
3: Compute the residual vector 𝑟 (𝑖) = 𝑏 − 𝐴𝑥(𝑖) in precision 𝑢ℎ
4: If converged then return 𝑥 = 𝑥(𝑖) , 𝑟 = 𝑟 (𝑖) and stop
5: Solve min𝛿𝑥(𝑖) ∥𝑟 (𝑖) − 𝐴 𝛿𝑥(𝑖)∥2 in precision 𝑢 ⊲ Correction equation
6: Update the solution 𝑥(𝑖+1) = 𝑥(𝑖) + 𝛿𝑥(𝑖) in precision 𝑢
7: end for

the solution is sufficiently accurate or stagnation occurs using the following steps:
(a) compute the residual 𝑟 (𝑖) = 𝑑 − 𝐵𝑦(𝑖); (b) solve 𝐵𝛿𝑦(𝑖) = 𝑟 (𝑖) for the correction
𝛿𝑦(𝑖); (c) update the solution 𝑦(𝑖+1) = 𝑦(𝑖) + 𝛿𝑦(𝑖). A comprehensive summary of
rounding error analysis for iterative refinement for linear systems is given in Carson
and Higham (2018).

For least-squares problems, various iterative refinement strategies have been
proposed. This case is more challenging than solving square linear systems. In
particular, because the least-squares residual 𝑟 = 𝑏 − 𝐴𝑥 may be non-zero, some
of the convergence guarantees that are available for linear systems are not valid.
Moreover, the least-squares matrix 𝐴 can be so ill-conditioned that the computed
solution has few, if any, correct digits. If the overdetermined system is nearly
consistent (i.e. there exists 𝑥 for which the residual norm ∥𝑟 ∥2 = ∥𝑏− 𝐴𝑥∥2 is close
to zero), then the straightforward Algorithm 7.1 can be used; this is analogous to
iterative refinement for linear systems (Businger and Golub 1965, Golub 1965).
The approach used to compute the initial approximate solution 𝑥(1) can be reapplied
to solve for the each correction 𝛿𝑥(𝑖). In particular, if a QR factorization of 𝐴 is
computed or a Cholesky factorization of the normal matrix, then the factors can
be reused, thereby limiting the cost of each refinement step. Alternatively, if a
preconditioned iterative solver is used, then the same preconditioner can be used
for each solve.

A limitation of Algorithm 7.1 is that it is shown in Golub and Wilkinson (1966)
that when the Householder QR factorization is used to solve the correction equation,
the least-squares solution may not be found unless the system is nearly consistent.
Regardless of the precision used, there will be vectors 𝑏 for which it will fail to
give solutions that are correct to working accuracy. Furthermore, the approach can
be sensitive to the quality of the initial solution 𝑥(1).

https://doi.org/10.1017/S0962492924000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000059


978 J. Scott and M. Tůma

Algorithm 7.2. Solve the LS problem using the semi-normal equations and
iterative refinement
Input: Overdetermined full-rank matrix 𝐴 and its 𝑅 factor and vector 𝑏.
Output: Least-squares solution 𝑥 and least-squares residual 𝑟.

1: Compute an initial approximate least-squares solution 𝑥(1)

2: for 𝑖 = 1, 2, . . . do
3: Compute the residual vector 𝑟 (𝑖) = 𝑏 − 𝐴𝑥(𝑖)

4: If converged then return 𝑥 = 𝑥(𝑖) , 𝑟 = 𝑟 (𝑖) and stop
5: Solve 𝑅⊤𝑅 𝛿𝑥(𝑖) = 𝐴⊤𝑟 (𝑖) ⊲ Semi-normal equations
6: Update the solution 𝑥(𝑖+1) = 𝑥(𝑖) + 𝛿𝑥(𝑖)

7: end for

7.1. Refinement using the semi-normal equations

An alternative idea mentioned in Golub and Wilkinson (1966) is to employ the
semi-normal equations (1.13). Algorithm 7.2 uses the QR factorization of 𝐴 and,
at each refinement step, the semi-normal equations are solved for the correction.
The initial solution 𝑥(1) can be computed using any appropriate approach. If it
is obtained using the semi-normal equations and a single correction is computed,
then Algorithm 7.2 is the method of corrected semi-normal equations (CSNE).
In general, unless the problem is well-conditioned, several refinement steps may
be required. The numerical properties of this type of iterative refinement and
different variations of the semi-normal equations are discussed in Björck (1987)
and Rozložník, Smoktunowicz and Kopal (2014).

7.2. Refinement using the augmented system

A generalization of iterative refinement that can be effective whether or not the
system is close to being consistent employs the augmented system (5.1). The
approach outlined in Algorithm 7.3 simultaneously refines the computed solution
and the corresponding residual (Björck 1967a).

If the QR factorization of 𝐴 has been computed then the corrections can be
obtained by reusing the factors. Consider the augmented system

(
𝐼 𝐴
𝐴⊤ 0

)(
𝑢
𝑣

)
=

(
𝑤
𝑡

)
. (7.1)

Using the QR factorization
(
𝐴𝑃 𝑏

)
= 𝑄

(
𝑅 𝑐
0 𝑑

)
and 𝑄𝑄⊤ =

(
𝐼 0
0 𝐼

)
∈ R𝑚×𝑚,
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Algorithm 7.3. Solve the LS problem using the augmented formulation and
iterative refinement
Input: Overdetermined full-rank 𝐴 and vector 𝑏.
Output: Least-squares solution 𝑥 and least-squares residual 𝑟 .

1: Compute an initial approximate least-squares solution 𝑥(1) and residual 𝑟 (1)

2: for 𝑖 = 1, 2, . . . do
3: Compute the residual vector for the augmented system

(
𝑓 (𝑖)

𝑔(𝑖)

)
=

(
𝑏

0

)
−
(
𝐼 𝐴

𝐴⊤ 0

)(
𝑟 (𝑖)

𝑥(𝑖)

)
=

(
𝑏 − 𝑟 (𝑖) − 𝐴𝑥(𝑖)

−𝐴⊤𝑟 (𝑖)

)

4: If converged then return 𝑥 = 𝑥(𝑖) , 𝑟 = 𝑟 (𝑖) and stop.

5: Solve

(
𝐼 𝐴

𝐴⊤ 0

)(
𝛿𝑟 (𝑖)

𝛿𝑥(𝑖)

)
=

(
𝑓 (𝑖)

𝑔(𝑖)

)
⊲ Correction equation

6: Update

(
𝑟 (𝑖+1)

𝑥(𝑖+1)

)
=

(
𝛿𝑟 (𝑖)

𝛿𝑥(𝑖)

)
+
(
𝑟 (𝑖)

𝑥(𝑖)

)

7: end for

we have
(

𝐼 𝐴𝑃
𝑃⊤𝐴⊤ 0

)(
𝑢
𝑃⊤𝑣

)
=

(
𝑄

𝐼

)

𝐼 0 𝑅
0 𝐼 0
𝑅⊤ 0 0



(
𝑄⊤

𝐼

)(
𝑢
𝑃⊤𝑣

)
=

(
𝑤
𝑃⊤𝑡

)
,

so that 

𝐼 0 𝑅
0 𝐼 0
𝑅⊤ 0 0






𝑒
𝑓

𝑃⊤𝑣


 =




𝑐
𝑑
𝑃⊤𝑡


,

where (
𝑐
𝑑

)
= 𝑄⊤𝑤 and 𝑢 = 𝑄

(
𝑒
𝑓

)
= 𝑄

(
𝑒
𝑑

)
.

The component 𝑒 is found by solving

𝑃𝑅⊤𝑒 = 𝑡,

and finally 𝑣 is the solution of

𝑅𝑃⊤𝑣 = 𝑐 − 𝑒.
Hence each refinement step requires a solve with 𝑅 and with 𝑅⊤ plus a matrix–
vector product with 𝑄 and 𝑄⊤.

Without round-off errors, the process would converge to the correct solution in
a single iteration. In practice, after a few iterations stagnation occurs (i.e. a point
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is reached after which little further accuracy is achieved). Thus, the refinement
is terminated when either the correction is sufficiently small, or it stagnates, or
a prescribed maximum number of iterations is reached. While the computed
solution initially improves with each iteration, this is usually not reflected in a
corresponding decrease in the norm of the residual, which typically stays about the
same. Convergence analysis is given by Björck (1967a). Note that in the iterative
refinement of Algorithm 7.3, the solver choice in line 5 for obtaining the correction
is crucial and the system can be regularized; see (1.7).

7.3. Mixed precision refinement

There are a number of variants of iterative refinement that involve using different
precisions for all or part of the computation. In fixed precision refinement, the
same precision is used throughout. In mixed precision iterative refinement, the
most expensive operations (the matrix factorization and solving the correction
equation) are performed in the working precision 𝑢 and the residual computation
performed in a higher precision 𝑢ℎ < 𝑢 by accumulating the matrix–vector product
using precision 𝑢ℎ. This has been used since the 1960s (Businger and Golub 1965,
Björck 1967a) (see e.g. Algorithm 7.1). If 𝑢 and 𝑢ℎ are single and double precision,
respectively, employing mixed precision can be attractive because single precision
arithmetic is often significantly faster than double precision. Moreover, holding
the factors in single precision substantially reduces memory requirements and the
amount of data movement. Alternatively, for highly ill-conditioned problems, it
may be necessary to select 𝑢 to be double precision and 𝑢ℎ to be quad (double-
double) precision (Demmel, Hida, Riedy and Li 2009).

Most recently, there has been interest in using half precision (16 bit) for the
working precision because it can be very fast, it reduces memory requirements
and data movement, and can thereby potentially yield significant savings in energy
consumption and enable larger problems to be solved (Carson et al. 2020, Scott and
Tůma 2022a, 2024). The initial work in this area builds on the GMRES-IR method
(Carson and Higham 2017, 2018), which is a mixed precision variant of iterative
refinement for linear systems. At each iteration, the correction equation is solved
using GMRES preconditioned using the factors of the system matrix. Observe that
if the working precision is chosen to be low precision then the notion of what is an
ill-conditioned problem changes accordingly. For example, if 𝜅2(𝐴) ≈ 103 and the
working precision is double precision, then the problem may not be regarded as
being ill-conditioned. However, if 𝑢 is IEEE half precision, then 𝐴 is ill-conditioned
in the working precision.

For least-squares problems, if 𝐴 is well-conditioned, then GMRES-IR with
Cholesky preconditioning can be applied to the normal equations (Higham and
Pranesh 2021). More generally, the QR factorization of 𝐴 can be computed using
low precision arithmetic and then the augmented system solved using GMRES
preconditioned by a matrix based on the low precision QR factors to obtain the
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Algorithm 7.4. Solve the LS problem using GMRES-based iterative refine-
ment with precisions 𝑢 𝑓 ≥ 𝑢 ≥ 𝑢𝑟
Input: Overdetermined full-rank matrix 𝐴, vector 𝑏.
Output: Least-squares solution 𝑥 and least-squares residual 𝑟 .

1: Compute QR factorization of 𝐴 using precision 𝑢 𝑓 .
2: Store the 𝑅 factor using precision 𝑢 𝑓 .
3: Compute an initial solution 𝑥(1) and residual 𝑟 (1) using precision 𝑢

4: Set 𝑦(1) =

(
𝑟 (1)

𝑥(1)

)
.

5: for 𝑖 = 1, 2, . . . do

6: Compute 𝑠(𝑖) =

(
𝑏

0

)
−
(
𝐼 𝐴

𝐴⊤ 0

)
𝑦(𝑖) ≡

(
𝑏

0

)
− 𝐾𝑦(𝑖) in precision 𝑢𝑟 .

7: Store 𝑠(𝑖) in precision 𝑢.
8: Apply preconditioned GMRES to correction equation 𝐾𝛿𝑦(𝑖) = 𝑠(𝑖) using

precision 𝑢, with matrix–vector products computed using precision 𝑢𝑟 .
9: Compute 𝑦(𝑖+1) = 𝑦(𝑖) + 𝛿𝑦(𝑖) using precision 𝑢.

10: If converged then return 𝑥 = 𝑥(𝑖+1), 𝑟 = 𝑟 (𝑖+1) and stop.
11: end for

least-squares solution to working precision (Carson et al. 2020); see Algorithm 7.4.
It can be shown under reasonable assumptions that, with an appropriate choice of
preconditioner, this approach yields a forward least-squares error, and a backward
error for the augmented system, of the order of the working precision.

A recent study by Carson and Daužickaitė (2024) discusses the theoretical and
practical aspects of three two-precision iterative refinement methods, and proposes
a new approach that is based on the augmented system and involves solving three
least-squares problems at each refinement iteration to obtain the corrections.

8. Updating techniques and sparse–dense problems
In some applications it may be convenient to split the rows of the system matrix
𝐴 into disjoint sets. A practical example in which the rows are naturally split is
the addition of rows as a result of incorporating new data into the least-squares
estimation of parameters in a linear model (or, conversely, the removal of rows
because variables are removed from the problem). Updating procedures seek to
handle such instances by updating the solution of the original problem, rather than
recomputing the factorization or updating the factorization to incorporate the effects
of the extra rows. The history of updating algorithms for adjusting a least-squares
solution when new equations are added dates back to Gauss; see Gauss and Stewart
(1995) and the recent discussion in Magnus (2022).

https://doi.org/10.1017/S0962492924000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000059


982 J. Scott and M. Tůma

Another example of splitting the rows of 𝐴 that is often faced in practice is when
some rows contain significantly more non-zeros than the other rows. The latter are
referred to as sparse rows and the former as dense rows (although they may contain
far fewer than 𝑛 entries). Dense rows need to be handled carefully. If 𝐴 contains
just a single dense row, then the normal matrix 𝐴⊤𝐴 suffers catastrophic fill-in, and
if 𝑛 is large, it may not be possible to store or factorize it using a direct solver. Fur-
thermore, it may be difficult (as well as computationally expensive) to construct an
IC factorization. Clearly, an IC factorization with sparsity pattern-based dropping
that includes the lower triangular part of S(𝐴⊤𝐴) in the prescribed pattern is not
feasible if 𝐴⊤𝐴 is close to dense. Furthermore, threshold-based dropping is a poor
strategy if there are many non-zero entries that have to be discarded. The error in
the factorization can be so large as to prohibit its effectiveness as a preconditioner.
A discussion of the interplay of structure-based and threshold-based dropping is
given in Scott and Tůma (2011).

Other modifications to least-squares problems are possible. For example, 𝐴
may be modified by matrices of low rank, adding new columns to 𝐴 or removing
columns. Björck (2024) provides a general reference for classical modification
approaches (see also Marín, Mas, Guerrero and Hayami 2017).

Assume 𝐴 has 𝑚𝑑 rows that are either to be treated as dense or they correspond
to new added (or removed) sparse rows, and let us suppose that these rows have
been permuted to be the last rows of 𝐴. The remaining rows are all assumed to
be sparse. With a conformal partitioning of the vector 𝑏 (and omitting the row
permutation matrix for simplicity of notation), we have

𝐴 =

(
𝐴𝑠

𝐴𝑑

)
, 𝐴𝑠 ∈ R𝑚𝑠×𝑛, 𝐴𝑑 ∈ R𝑚𝑑×𝑛,

𝑏 =

(
𝑏𝑠
𝑏𝑑

)
, 𝑏𝑠 ∈ R𝑚𝑠 , 𝑏𝑑 ∈ R𝑚𝑑 ,

(8.1)

where 𝑚 = 𝑚𝑠 + 𝑚𝑑 , 𝑚𝑠 ≥ 𝑛 and 𝑚𝑑 ≪ 𝑚𝑠. The linear least-squares problem is
then

min
𝑥
∥𝑏 − 𝐴𝑥∥2 = min

𝑥





(𝑏𝑠𝑏𝑑) − (𝐴𝑠

𝐴𝑑

)
𝑥






2
. (8.2)

It can be shown that if 𝐴 is of full rank then 𝐶𝑠 = 𝐴⊤𝑠 𝐴𝑠 is positive definite on
the null space of 𝐴𝑑 (Scott and Tůma 2022b). Note that ordering the rows so that
𝐴𝑑 forms the last rows can always be assumed because the least-squares solution
(but not necessarily the solution approaches) is independent of the row reordering.
For convenience, in the remainder of this section we refer to problems of the form
(8.1)–(8.2) as sparse–dense least-squares problems (although 𝐴𝑑 is not necessarily
fully dense).

The simplest way to deal with 𝐴𝑑 is to drop it before factorizing the remaining
matrix 𝐴𝑠 and then employing the computed factors as a preconditioner for an
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iterative solver applied to the original problem. This was discussed in the case of
QR factorizations in Avron et al. (2009), with the conclusion that if adding (or even
dropping) a small number of rows is considered to be a perturbation of 𝐴𝑠, the 𝑅
factor from the QR factorization of 𝐴𝑠 can provide an effective least-squares pre-
conditioner for 𝐴. The targeted sophisticated approaches we discuss here attempt
to either avoid the need for an iterative solver and/or seek to obtain higher-quality
preconditioners by taking the rows of 𝐴𝑑 into account in their construction. They
also address the common case that on dropping 𝐴𝑑 , the remaining matrix con-
tains null columns. This situation occurs when the rows of 𝐴𝑑 are dense or when
𝐴𝑑 corresponds to added rows that contain new components of the least-squares
solution 𝑥.

8.1. Updating a Cholesky factorization

Updating a Cholesky factorization is an efficient approach if 𝐴𝑑 corresponds to
added sparse rows. Consider the case where 𝐶𝑠 = 𝐴⊤𝑠 𝐴𝑠 is SPD and the sparse
Cholesky factorization of 𝐶𝑠 has been computed before additional sparse rows are
appended to 𝐴𝑠 to give problem (8.2). The normal equations for (8.2) are given by

𝐶𝑥 = (𝐶𝑠 + 𝐴⊤𝑑 𝐴𝑑) 𝑥 = 𝑐, 𝑐 = 𝐴⊤𝑠 𝑏𝑠 + 𝐴⊤𝑑 𝑏𝑑 .
Computing the Cholesky factorization of 𝐶 involves a rank-𝑚𝑑 update, and a
sparse Cholesky factorization update algorithm can be used (Davis and Hager
2001). This exploits and modifies the elimination tree T (𝐶𝑠) of the normal matrix
of 𝐶𝑠. Suppose 𝐴𝑑 comprises a single sparse row, 𝑎⊤ (𝑚𝑑 = 1), and let 𝑖 be the
index of the first non-zero in 𝑎⊤. A rank-one update to 𝐶𝑠 modifies all columns
along the path from 𝑖 to the root of T (𝐶𝑠). If the sparsity pattern changes, the path
in the new tree is followed. The entire algorithm (finding the path, modifying both
S(𝐿𝑠) and the values of 𝐿𝑠, and modifying T (𝐶𝑠)) takes time proportional to the
number of entries in 𝐿𝑠 that change. This can be extended to an asymptotically
optimal rank-𝑚𝑑 update that modifies a set of 𝑚𝑑 paths in the tree. A state-of-
the-art implementation for general sparse SPD systems is available in the software
package CHOLMOD37 (Chen et al. 2008). It uses the concept of dynamically
defined supernodes. It also includes downdating a Cholesky factorization in which
rows are removed, rather than added.

8.2. Updating a QR factorization

Using a QR factorization involves the factorization of the sparse row block 𝐴𝑠 and
not the factorization of the normal matrix, and so the rows of 𝐴𝑑 can be either sparse
or dense. Assume that 𝐴𝑠 is of full rank and that its QR factorization with column

37 https://people.engr.tamu.edu/davis/suitesparse.html
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Algorithm 8.1. Updating QR for solving problem (8.2)
Input: 𝐴 and 𝑏 of the form (8.1), the factorization (8.3) and the solution 𝑦 of (8.4).
Output: Least-squares solution 𝑥.

1: Solve 𝑃𝑠𝑅
⊤
𝑠 𝐾
⊤
𝑑 = 𝐴⊤𝑑 for 𝐾𝑑 . ⊲ Triangular solve

2: Solve 𝑅𝑠𝑃
⊤
𝑠 𝑦 = 𝑐𝑠 for 𝑦 and form 𝑟𝑑 = 𝑏𝑑 − 𝐴𝑑𝑦. ⊲ Triangular solve and

residual computation
3: Compute least-squares minimum-norm solution of

(
𝐾𝑑 𝐼

)(𝑢
𝑣

)
= 𝑟𝑑 . ⊲ Use dense linear algebra

4: Solve 𝑅𝑠𝑃
⊤
𝑠 𝑧 = 𝑢 for 𝑧 and set 𝑥 = 𝑦 + 𝑧. ⊲ Triangular solve

permutation and formal embedding of the right-hand side vector 𝑏𝑠 is given by
(
𝐴𝑠𝑃𝑠 𝑏𝑠

)
= 𝑄𝑠

(
𝑅𝑠 𝑐𝑠
0 𝑑𝑠

)
, (8.3)

where 𝑃𝑠 ∈ R𝑛×𝑛 represents the column permutation of 𝐴𝑠, 𝑄𝑠 ∈ R𝑚𝑠×𝑚𝑠 is an
orthogonal matrix and 𝑅𝑠 ∈ R𝑚𝑠×𝑚𝑠 is an upper triangular matrix. Furthermore,
let 𝑦 ∈ R𝑛 be the solution of the sparse least-squares problem

min
𝑦
∥𝑏𝑠 − 𝐴𝑠𝑦∥2. (8.4)

The solution 𝑥 of (8.2) can be computed using Algorithm 8.1 (Heath 1982). Observe
that the least-squares minimum-norm problem in line 3 is the same as the following
least-squares problem of size (𝑚𝑑 + 𝑛) × 𝑚𝑑:

min
𝑢





( 0
𝑟𝑑

)
−
(
𝐾𝑑

𝐼

)
𝑣






2
, 𝑢 = 𝐾⊤𝑑 𝑣,

with normal equations (𝐼 +𝐾𝑑𝐾
⊤
𝑑 )𝑣 = 𝑟𝑑 . The solution can be efficiently computed

using dense linear algebra (e.g. the LAPACK routine _getsls).
If 𝐴𝑠 is close to being rank-deficient then Algorithm 8.1 is not stable. In this

case, QR updates can be applied using the techniques of Section 4.5 that handle the
QR factorization of rank-deficient problems. Once the factorization is computed,
the conditioning of 𝑅 should be checked, and, if necessary, further rows added
and rotated into 𝑅 using Givens rotations. The well-conditioned 𝑅 factor of the
extended matrix can be employed as a preconditioner. In exact arithmetic, the
number of appended rows bounds the number of LSQR iterations (Avron et al.
2009).

For strongly overdetermined problems (𝑚 ≫ 𝑛), a Gram–Schmidt-based QR
factorization that generates 𝑅 and only the first 𝑛 columns of 𝑄 (rather than the
whole of 𝑄) may be a more suitable approach, which can also be easily updated.
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8.3. Handling null columns in 𝐴𝑠

As already observed, it frequently happens that 𝐴𝑑 contains a few columns that
correspond to new solution components that are not represented in 𝐴𝑠. That is, 𝐴𝑠,
after being combined with 𝐴𝑑 to give 𝐴, has one or more null columns and these
cause Algorithm 8.1 to break down. The problem can be solved as follows. Assume
rank(𝐴) = 𝑛 and 𝐴𝑠 has 𝑛2 null columns with 𝑛2 ≪ 𝑛. If these are permuted to be
the final columns and 𝑥 is partitioned conformally, then we have

𝐴 =
(
𝐴1 𝐴2

)
=

(
𝐴𝑠1 0
𝐴𝑑1 𝐴𝑑2

)
, 𝑥 =

(
𝑥1
𝑥2

)
, (8.5)

where rank(𝐴1) = 𝑛1, 𝐴𝑑1 ∈ R𝑚𝑑×𝑛1 and 𝐴𝑑2 ∈ R𝑚𝑑×𝑛2 are obtained from column
split of 𝐴𝑑 , and 𝑥1 ∈ R𝑛1 , 𝑥2 ∈ R𝑛2 with 𝑛1 + 𝑛2 = 𝑛. Let 𝑧 ∈ R𝑛1 and 𝑍 ∈ R𝑛1×𝑛2

be the solutions to the problems

min
𝑧
∥𝑏 − 𝐴1𝑧∥2 and min

𝑊
∥𝐴2 − 𝐴1𝑍 ∥𝐹 , (8.6)

respectively, where ∥ · ∥𝐹 denotes the Frobenius norm. It can be shown (Scott and
Tůma 2017b) that the solution to the least-squares problem (8.1) is given by

(
𝑥1
𝑥2

)
=

(
𝑧 − 𝑍𝑥2
𝑥2

)
,

where 𝑥2 is the solution of the least-squares problem

min
𝑥2
∥(𝑏 − 𝐴1𝑧) − (𝐴2 − 𝐴1𝑍) 𝑥2∥2.

Because 𝑛2 is small, this can be solved using dense linear algebra. The partial
solutions 𝑧 and 𝑍 can be computed by employing Algorithm 8.1 with 𝐴1 replacing
𝐴 and 𝑛2 + 1 right-hand sides.

8.4. Updating by complete or approximate solution of an SQD system

The solution of the linear least-squares problem expressed in the form (8.2) can
be computed by solving the equivalent (𝑛 + 𝑚𝑑) × (𝑛 + 𝑚𝑑) symmetric indefinite
system

(
𝐶𝑠 𝐴⊤𝑑
𝐴𝑑 −𝐼

)(
𝑥
𝐴𝑑𝑥

)
=

(
𝑐
0

)
, 𝐶𝑠 = 𝐴

⊤
𝑠 𝐴𝑠, 𝑐 = 𝐴⊤𝑠 𝑏𝑠 + 𝐴⊤𝑑 𝑏𝑑 . (8.7)

Provided 𝐴𝑠 has full column rank, this is a symmetric quasi-definite system. If 𝐿𝑠
denotes the Cholesky factor of 𝐶𝑠, then the signed Cholesky factorization is

(
𝐶𝑠 𝐴⊤𝑑
𝐴𝑑 −𝐼

)
=

(
𝐿𝑠
𝐵𝑑 𝐿𝑑

)(
𝐼
−𝐼
)(

𝐿⊤𝑠 𝐵⊤𝑑
𝐿⊤𝑑

)
, (8.8)

where 𝐿𝑠𝐵⊤𝑑 = 𝐴⊤𝑑 and 𝑆𝑑 = 𝐼 + 𝐵𝑑𝐵
⊤
𝑑 = 𝐿𝑑𝐿

⊤
𝑑 . Here 𝐿𝑑 is the (dense) Cholesky

factor of the 𝑚𝑑 ×𝑚𝑑 Schur complement 𝑆𝑑 . Algorithm 8.2 summarizes the steps
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Algorithm 8.2. Block factorization approach for sparse–dense problems
Input: 𝐵𝑑 , the Cholesky factors 𝐿𝑠 and 𝐿𝑑 , and 𝑐 = 𝐴⊤𝑠 𝑏𝑠 + 𝐴⊤𝑑 𝑏𝑑 .
Output: Least-squares solution 𝑥.

1: Solve 𝐿𝑠𝑢𝑠 = 𝑐. ⊲ Sparse triangular solve
2: Compute 𝑤𝑑 = 𝐵𝑑𝑢𝑠.
3: Solve 𝐿𝑑𝑢𝑑 = 𝑤𝑑 and then 𝐿⊤𝑑 𝑦𝑑 = 𝑢𝑑 . ⊲ Dense triangular solves
4: Form 𝑤𝑠 = 𝑢𝑠 − 𝐵⊤𝑑 𝑦𝑑 .
5: Solve 𝐿⊤𝑠 𝑥 = 𝑤𝑠. ⊲ Sparse triangular solve

to compute the least-squares solution once 𝐿𝑠, 𝐵𝑑 and 𝐿𝑑 have been computed. If
𝐴𝑑 represents a set of rows that have been appended to the original matrix 𝐴𝑠 then
this algorithm can be viewed as an updating procedure in which the normal matrix
factorization remains fixed, and lines 2–4 represent the additional work involved.
As in the previous section, if 𝐴𝑠 contains null columns then (8.5) and (8.6) can be
used with Algorithm 8.2.

Another possibility is to compute an approximate solution of the SQD system.
It is straightforward to verify that the normal matrix satisfies the following rela-
tionship:

(𝐶𝑠 + 𝐴⊤𝑑 𝐴𝑑)−1 =
(
𝐼 0

)(𝐶𝑠 𝐴⊤𝑑
𝐴𝑑 −𝐼

)−1(
𝐼
0

)
.

This implies that the inverse of the updated normal matrix applied to a given vector
𝑧 ∈ R𝑛 to obtain the solution vector 𝑦 ∈ R𝑛 as 𝑦 = (𝐶𝑠+𝐴⊤𝑑 𝐴𝑑)−1𝑧 can be computed
from the solution of the system

(
𝐶𝑠 𝐴⊤𝑑
𝐴𝑑 −𝐼

)(
𝑦
𝑤

)
=

(
𝑧
0

)
. (8.9)

If 𝐶𝑠 ≈ �̃�𝑠 �̃�
⊤
𝑠 is an IC factorization then an incomplete version of (8.8) can

be employed to give a preconditioner for use with an iterative solver. If 𝐶𝑠 is
rank-deficient (including the case that it has some null rows and columns) then
a global shift 𝛼 > 0 can be used and the factorization of 𝐶𝑠 + 𝛼𝐼 computed
(Section 6.5). Exploiting (8.9), each application of the preconditioner involves
using a modified version of Algorithm 8.2 in which the complete factors are replaced
by the incomplete ones. Alternatively, the techniques discussed in Sections 6.13–
6.15 can also be used for solving the SQD system.

Because the matrix in (8.7) is symmetric indefinite, an obvious approach is to
employ an existing sparse direct solver to compute an LDLT factorization (Sec-
tion 5). The major advantage of this is that it is straightforward: all the work of
ordering the matrix to limit fill in the factors (including exploiting any zero entries
within the rows of 𝐴𝑑) and ensuring numerical stability is handled by the solver.
However, the 2-block structure of the matrix is ignored and the factorization cannot
be easily updated if different row blocks 𝐴𝑑 are appended to 𝐴𝑠; but see some early
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work on rank-one updates (Sorensen 1977) and a recent strategy for a sequence of
saddle-point systems with the same sparsity pattern (Kuřátko 2019).

8.5. Updating by solving an SQD system with an embedded QR factorization
of 𝐴𝑠

The problem of updating can be also formulated via the solution of an augmented
system in which the QR factorization of 𝐴𝑠 is embedded. This can be useful, for
example, for iterative refinement that was discussed in Section 7.2 and which we
extend here to problems with split 𝐴.

Consider the following (𝑚𝑠 +𝑚𝑑 + 𝑛)× (𝑚𝑠 +𝑚𝑑 + 𝑛) augmented system formu-
lation of the least-squares problem used in the correction equation of the iterative
refinement given in (7.1). Assume 𝐴 is of the form (8.1) and that we have a
conformal partitioning of 𝑢 and 𝑤 so that



𝐼 𝐴𝑠

𝐼 𝐴𝑑

𝐴⊤𝑠 𝐴⊤𝑑 0





𝑢𝑠
𝑢𝑑
𝑣


 =



𝑤𝑠

𝑤𝑑

𝑡


. (8.10)

Using the QR factorization
(
𝐴𝑠𝑃𝑠 𝑤𝑠

)
= 𝑄𝑠

(
𝑅𝑠 𝑐𝑠
0 𝑑𝑠

)

yields 


𝐼 𝑅𝑠

𝐼 0
𝐼 𝐴𝑑𝑃𝑠

𝑅⊤𝑠 0 𝑃⊤𝑠 𝐴⊤𝑑 0







𝑒𝑠
𝑓𝑠
𝑢𝑑
𝑃⊤𝑠 𝑣


 =




𝑐𝑠
𝑑𝑠
𝑤𝑑

𝑃⊤𝑠 𝑡


,

where (
𝑐𝑠
𝑑𝑠

)
= 𝑄⊤𝑠 𝑤𝑠 and 𝑢𝑠 = 𝑄𝑠

(
𝑒𝑠
𝑓𝑠

)
= 𝑄𝑠

(
𝑒𝑠
𝑑𝑠

)
. (8.11)

Setting 𝑧 = 𝑅𝑠𝑃
⊤
𝑠 𝑣 and 𝑃𝑠𝑅

⊤
𝑠 𝐾
⊤
𝑑 = 𝐴⊤𝑑 , we have



𝐼 𝐼

𝐼 𝐾𝑑

𝐼 𝐾⊤𝑑 0





𝑒𝑠
𝑢𝑑
𝑧


 =



𝑐𝑠
𝑤𝑑

𝑝


,

where 𝑃𝑠𝑅
⊤
𝑠 𝑝 = 𝑡. The first block gives 𝑧 = 𝑐𝑠 − 𝑒𝑠, and eliminating 𝑒𝑠 from the

above equation gives
(
𝐼 𝐾𝑑

𝐾⊤𝑑 −𝐼
)(

𝑢𝑑
𝑧

)
=

(
𝑤𝑑

𝑝 − 𝑐𝑠

)
.

This is another SQD system, and to solve it we can use techniques from Section 8.4
with 𝐶𝑠 replaced by 𝐼. Eliminating 𝑧, we can also use the transformed normal
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equations
(𝐼 + 𝐾𝑑𝐾

⊤
𝑑 ) 𝑢𝑑 = 𝑤𝑑 + 𝐾𝑑(𝑝 − 𝑐𝑠).

Once 𝑢𝑑 has been computed, 𝑣 is found by forming 𝑒𝑠 = 𝑝 − 𝐾⊤𝑑 𝑢𝑑 , then solving
𝑅𝑠𝑃

⊤
𝑠 𝑣 = 𝑐𝑠 − 𝑒𝑠, and finally computing 𝑢𝑠 from (8.11).

Observe that 𝐾𝑑 is independent of the right-hand side vector in (8.10) and so it
can be reused, limiting the amount of work needed to perform iterative refinement.
For small 𝑚𝑑 , it is clear that the work per iteration for the sparse–dense case is
essentially the same as for 𝐴 with no dense rows.

If we simply need to solve the least-squares problems with extra rows 𝐴𝑑 (and
not the iterative refinement correction equations); this can be done by setting 𝑡 = 0
in (8.10), which implies 𝑝 = 0.

8.6. Updating using the Woodbury formula

A standard tool when the factors of 𝐶𝑠 are known and one or more rows 𝐴𝑑 is
appended is the Woodbury formula; see the classical papers by Woodbury (1949,
1950) and the review article by Hager (1989). Assume 𝐴𝑠 is of full column rank
and is well-conditioned. Then this formula, which is sometimes referred to as
the Sherman–Morrison–Woodbury formula, expresses the inverse of the extended
normal matrix 𝐶 = 𝐴⊤𝐴 in the compact form

𝐶−1 = (𝐶𝑠 + 𝐴⊤𝑑 𝐴𝑑)−1 = 𝐶−1
𝑠 − 𝐶−1

𝑠 𝐴⊤𝑑 (𝐼 + 𝐴𝑑𝐶
−1
𝑠 𝐴⊤𝑑 )−1𝐴𝑑𝐶

−1
𝑠 . (8.12)

The least-squares solution may be explicitly expressed as

𝑥 = 𝑥𝑠 + 𝐶−1
𝑠 𝐴⊤𝑑 (𝐼 + 𝐴𝑑𝐶

−1
𝑠 𝐴⊤𝑑 )−1(𝑏𝑑 − 𝐴𝑑𝑥𝑠) with 𝑥𝑠 = 𝐶

−1
𝑠 𝐴⊤𝑠 𝑏𝑠 .

It is straightforward to show that, in exact arithmetic, Algorithm 8.2 is equivalent
to the Woodbury formula.

The formula (8.12) leads to a direct method for updating the least-squares
solution. Alternatively, if an IC factorization 𝐶𝑠 ≈ �̃�𝑠 �̃�

⊤
𝑠 is computed, then

𝐼 + 𝐴𝑑𝐶
−1
𝑠 𝐴𝑑 ≈ 𝐼 + (𝐴𝑑 �̃�

−1
𝑠 )(𝐴𝑑 �̃�

−1
𝑠 )⊤ = �̃�𝑑 �̃�

⊤
𝑑 . The approximate inverse of the

updated normal matrix expressed via the Woodbury formula using two incomplete
factorizations provides a preconditioner for the conjugate gradient method (Scott
and Tůma 2017b). Recently, a preconditioning strategy that is derived from an
alternating splitting scheme and combined with (8.12) has been proposed and suc-
cessfully applied to solve sparse–dense least-squares problems (Benzi and Faccio
2024).

8.7. Matrix stretching

Matrix stretching targets the case when 𝐴𝑑 is composed of rows that are significantly
denser than the rest of the rows of 𝐴. It aims to split each dense row into a number of
sparser rows and to formulate a (larger) modified problem from which the solution
to the original least-squares problem can be derived (Adlers and Björck 2000).
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Suppose 𝐴𝑑 represents a single dense row, 𝑎⊤. Stretching starts by splitting 𝑎⊤
into two 𝑎⊤ = (𝑎⊤1 𝑎⊤2 ). Assume a conformal splitting of the sparse row block 𝐴𝑠

and the solution 𝑥. Then, introducing a linking variable 𝑠, the 𝑥 component of the
solution of the extended least-squares problem

min
(𝑥⊤ 𝑠)⊤










𝑏𝑠
𝑏𝑑
0


 −



𝐴𝑠1 𝐴𝑠2 0
𝑎⊤1 𝑎⊤2 0
𝑎⊤1 −𝑎⊤2

√
2





𝑥𝑎
𝑥𝑏
𝑠











2

is the solution of (8.1). Next, an orthogonal transformation is applied to replace
𝑎⊤2 in the second block row and 𝑎⊤1 in the third block row by zeros. Orthogonal
invariance of the norm leads to the equivalent stretched problem

min
𝑧
∥�̂� − 𝐴𝑧∥2,

where

𝐴 =




𝐴𝑠𝑎 𝐴𝑠𝑏 0√
2 𝑎⊤1 0 1
0

√
2 𝑎⊤2 −1


, 𝑧 =



𝑥𝑎
𝑥𝑏
𝑠


, �̂� =




𝑏𝑠
𝑏𝑑/
√

2
𝑏𝑑/
√

2


.

The approach can be generalized by splitting the dense row into 𝑘 > 1 parts,
resulting in a stretched problem in which 𝐴 and the normal matrix 𝐴⊤𝐴 are of the
form

𝐴 =

(
𝐴𝑠

𝐵⊤ 𝑆

)
and 𝐶 = 𝐴⊤𝐴 =

(
𝐴⊤𝑠 𝐴𝑠 + 𝐵𝐵⊤ 𝐵𝑆

𝑆⊤𝐵⊤ 𝑆⊤𝑆

)
,

where 𝐵⊤ ∈ R𝑘×𝑛 and the 𝑘 × (𝑘 − 1) linking matrix 𝑆 has 1s on the diagonal and
−1s on the first subdiagonal (and all other entries are 0). If 𝑚𝑑 > 1, then each
dense row can be stretched independently.

Stretching replaces the effect of adding S{𝐴⊤𝑑 𝐴𝑑} to S{𝐴⊤𝑠 𝐴𝑠} to obtain the
sparsity pattern of 𝐴⊤𝐴 by adding the sparsity pattern of (𝐵⊤ 𝑆)⊤(𝐵⊤ 𝑆) toS{𝐴⊤𝑠 𝐴𝑠}
to get the sparsity pattern of 𝐶, while seeking to have |S{𝐶}| much smaller than
|S{𝐴⊤𝐴}|. Standard stretching splits 𝐴𝑑 into sets of (almost) equal contiguous
segments without any reference to 𝐴𝑠. This is a simple approach but it can result
in significant fill in 𝐶. A more sophisticated sparse stretching strategy considers
the pattern of 𝐴⊤𝑠 𝐴𝑠 and, for each row in 𝐴𝑑 , chooses the subsets of row indices in
the splitting such that S(𝐵𝐵⊤) ⊆ S(𝐴⊤𝑠 𝐴𝑠), thereby limiting the number of entries
in 𝐶 (Scott and Tůma 2019). Finding the subsets of row indices can be formulated
as a bipartite graph matching problem.

In some cases, 𝐴 can be much larger than the original 𝐴 (particularly if 𝐴𝑠 is
highly sparse) and the cost of solving the stretched problem (in terms of time and
memory) may still be prohibitive. Another potential problem is that stretching
increases the condition number of the normal equations (Adlers and Björck 2000,
Scott and Tůma 2019). A compromise is partial stretching (Scott and Tůma 2021).
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This selects a small subset of the rows of 𝐴𝑑 that contain non-zero entries at column
positions that are null in the rows of 𝐴𝑠. Sparse stretching is applied to each row in
this subset. The stretched rows are sparse so they are added to an enlarged sparse
row block 𝐴𝑠 that has no null columns, while the remaining dense rows are moved
to a dense block 𝐴𝑑 that has fewer rows than 𝐴𝑑 . The rows in 𝐴𝑑 can be handled
by applying Algorithm 8.1 to the partially stretched problem.

9. Equality constrained least-squares problems
Least-squares problems with equality constraints (LSE problems) arise in a variety
of fields, including constrained optimization, scattered data approximation, fitting
curves to data, surface fitting, and in various tasks of control and communication.
For instance, when fitting curves to data, equality constraints may arise from the
need to interpolate some data or from a requirement for adjacent fitted curves to
match with continuity. In applications such as beam-forming or spatial filtering it
is necessary to solve a sequence of LSE problems in which the equality constraints
change. Moreover, solving least-squares problems with more general inequality
constraints can sometimes be reduced to solving sequences of LSE problems, e.g.
Dehghani, Lambe and Orban (2020). Motivations for LSE problems together with
solution strategies are summarized in the research monographs by Lawson and
Hanson (1995) and Björck (2024); see also Scott and Tůma (2022c) for sparse–
dense LSE problems and numerical results comparing different approaches.

We assume that 𝐴 ∈ R𝑚×𝑛 is sparse and that 𝐵 ∈ R𝑝×𝑛, with 𝑚 > 𝑛 ≫ 𝑝,
represents a few linear constraints (which may be sparse or dense). Given 𝑏 ∈ R𝑚
and 𝑑 ∈ R𝑝, the LSE problem is

min
𝑥∈R𝑛
∥𝑏 − 𝐴𝑥∥2 (9.1)

such that 𝐵𝑥 = 𝑑. (9.2)

If 𝐵 has full row rank then (9.2) is consistent for any 𝑑. A solution to the LSE
problem exists if and only if (9.2) is consistent. It is unique if and only if N (𝐴) ∩
N (𝐵) = {0}. This is equivalent to the extended matrix (𝐵⊤ 𝐴⊤)⊤ having full
column rank. In the case of non-uniqueness, there is a unique minimum-norm
solution. In the following, we assume that 𝐵 is of full row rank.

9.1. The use of weighting

The simplest approach to solving the LSE problem is to solve the full-rank weighted
least-squares problem

min
𝑥𝜔∈R𝑛





(𝜔𝑑𝑏 ) − (𝜔𝐵𝐴 ) 𝑥𝜔 




2
, (9.3)

with 𝜔 ≫ 1. Because lim𝜔→∞ 𝑥𝜔 = 𝑥, the weighted problem can be used to
approximately solve the LSE problem. If 𝐵 is sparse then an obvious strategy is to
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Algorithm 9.1. The LSE problem with 𝐵 sparse
Input: 𝐴, 𝐵, 𝑏 and 𝑑 defining the LSE problem (9.1)–(9.2) and weight 𝜔 > 0.
Output: LSE solution 𝑥.

1: Solve the sparse weighted least-squares problem (9.3)
2: Set 𝑥(1) = 𝑥𝜔
3: for i = 1, 2, . . . do
4: Set 𝑠(𝑖) = 𝑑 − 𝐵𝑥(𝑖) ⊲ 𝑠(𝑖) is the residual of the constraints.
5: If converged then return 𝑥 = 𝑥(𝑖)

6: Solve min







(
𝑠(𝑖)

0

)
−
(
𝜔𝐵

𝐴

)
𝛿𝑥(𝑖)







2

⊲ The factors computed in line 1 can be reused
7: Set 𝑥(𝑖+1) = 𝑥(𝑖) + 𝛿𝑥(𝑖)

8: end for

either compute a QR factorization of
(
𝜔𝐵
𝐴

)
or to solve the normal equations

𝐶𝜔𝑥𝜔 =
(
𝜔𝐵⊤ 𝐴⊤

)(𝜔𝐵
𝐴

)
𝑥𝜔 = (𝐴⊤𝐴 + 𝜔2𝐵⊤𝐵) 𝑥𝜔 = 𝐴⊤𝑏 + 𝜔2𝐵⊤𝑑.

The appeal is that no special methods are required. However, a very large weight
may be needed for the constraints to be tightly satisfied, even for well-conditioned
problems. With a large𝜔, the problem is stiff (recall Section 1.4),𝐶𝜔 is dominated
by the 𝜔2𝐵⊤𝐵 term, and information in 𝐴 can potentially be lost.

A smaller 𝜔 can be successfully used by employing an iterative procedure; this
is outlined in Algorithm 9.1. An appropriate weight is𝜔 ≈ 𝜖−1/2 (Van Loan 1985).
The approach can be used even if 𝐵 is not of full rank.

In practice, the constraint matrix 𝐵 often contains one or more dense rows. For
such problems, one possibility is to introduce a regularization parameter 𝛾 > 0 and
solve the (𝑚 + 𝑝 + 𝑛) × (𝑚 + 𝑝 + 𝑛) augmented system



𝛾𝐼 0 𝐴
0 𝛾𝐼 𝜔𝐵
𝐴⊤ 𝜔𝐵⊤ −𝛾𝐼





𝑦𝑠
𝑦𝑐
𝑥𝜔


 =




𝑏
𝜔 𝑑
0


.

This 3-block system is structurally similar to the system (8.10) and can be solved
by embedding a QR factorization of 𝐴 and modifying the approaches proposed in
Section 8.5. Alternatively, the block structure can be ignored and a numerically
stable LDLT factorization computed using a sparse symmetric indefinite direct
solver. Or, eliminating 𝑦𝑠 and choosing the parameters such that 𝛾𝜔 = 1 yields
(−𝐶𝛾 𝐵⊤

𝐵 𝛾2𝐼

)(
𝑥𝜔
𝑦𝑐

)
=

(−𝐴⊤𝑏
𝑑

)
, 𝐶𝛾 =

(
𝐴⊤ 𝛾𝐼

)( 𝐴
𝛾𝐼

)
= 𝐴⊤𝐴+𝛾2 𝐼 . (9.4)
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This system is similar to that discussed in Section 8.4. A sparse QR factorization
of (𝐴⊤ 𝛾𝐼)⊤ can be computed and employed in the solution of this augmented
system. If more than one problem with the same 𝐴 but different constraints
𝐵 are to be solved, an attractive approach may be to compute a block signed
(incomplete) Cholesky factorization of the augmented matrix (9.4) and employ it
as a preconditioner. In particular, if 𝐶𝛾 ≈ �̃�𝛾 �̃�

⊤
𝛾 then the right-preconditioned

system is (−𝐶𝛾 𝐵⊤

𝐵 𝛾2𝐼

)
𝑀−1

(
𝑤𝛾

𝑤𝑐

)
=

(−𝐴⊤𝑏
𝑑

)
, 𝑀

(
𝑥𝜔
𝑦𝑐

)
=

(
𝑤𝛾

𝑤𝑐

)
,

with the preconditioner in factored form given by

𝑀 =

(
�̃�𝛾

𝐵𝛾 𝐼

)(−𝐼
𝑆𝛾

)(
�̃�⊤𝛾 𝐵⊤𝛾

𝐼

)
,

with
�̃�𝛾 𝐵

⊤
𝛾 = −𝐵⊤ and 𝑆𝛾 = 𝛾2𝐼 + 𝐵𝛾 𝐵

⊤
𝛾 .

As the preconditioner is indefinite, it needs to be used with a general non-symmetric
iterative method based on full recurrences such as GMRES. A positive definite
preconditioner for use with MINRES can be obtained by replacing −𝐼 with 𝐼.

9.2. The null-space approach

There are two standard ways to derive an unconstrained linear least-squares problem
of lower dimension that is equivalent to the LSE problem: the null-space approach
(Hanson and Lawson 1969, Lawson and Hanson 1995) and the method of direct
elimination (Björck and Golub 1967). When suitably implemented, both offer
good numerical stability, but retaining sparsity is challenging and may compromise
stability.

The null-space approach is based on constructing a matrix 𝑍 ∈ R𝑛×(𝑛−𝑝) whose
columns form a basis for N (𝐵). Any 𝑥 ∈ R𝑛 satisfying the constraints can be
written in the form

𝑥 = 𝑥1 + 𝑍𝑥2,

where 𝑥1 ∈ R𝑛 is a particular solution of the underdetermined system (9.2). Sub-
stituting into (9.1) yields the reduced least-squares problem

min
𝑥2∈R𝑛−𝑝

∥(𝑏 − 𝐴𝑥1) − 𝐴𝑍𝑥2∥2. (9.5)

An overview of the use of the null-space approach for solving large-scale saddle-
point systems is given in Rees and Scott (2018). Using null-space methods leads to
the problem of how to compute null-space bases that preserve sparsity and lead to
a stable transformed system. Significant attention has been devoted to developing
approaches to find a sparse null-space basis of a sparse matrix; a brief historical
review is given in Scott and Tůma (2022b).
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For the LSE problem, 𝐵 ∈ R𝑝×𝑛 with 𝑝 ≪ 𝑛, so that 𝐵 is a wide matrix. One
possibility is to compute the QR factorization of 𝐵⊤, that is,

𝐵⊤ = (𝑄1 𝑄2)
(
𝑅𝐵

0

)
.

Here 𝑄1 ∈ R𝑛×𝑝 while 𝑄2 ∈ R𝑛×(𝑛−𝑝) gives an orthogonal basis for N (𝐵) and we
can choose 𝑍 = 𝑄2. If 𝐵 is of full rank, the upper triangular matrix 𝑅𝐵 ∈ R𝑝×𝑝

is non-singular and hence 𝑥1 = 𝑄1𝑅
−⊤
𝐵 𝑑. Unfortunately, this 𝑍 is typically dense

and 𝐴𝑍 is much denser than 𝐴 and, if 𝑛 is large, solving (9.5) is challenging. In
particular, forming and factorizing the potentially ill-conditioned normal matrix
𝑍⊤𝐴⊤𝐴𝑍 may be impractical. If a preconditioned iterative solver is used, forming
𝑍⊤𝐴⊤𝐴𝑍 can be avoided, and because 𝑍 only needs to be applied implicitly, the
need for sparsity can be relaxed. However, finding a good and sufficiently general
robust preconditioner for this system remains an open problem.

Another option is to construct a banded 𝑍 by exploiting the fact that each
column of 𝐵 that is linearly dependent on previous columns can be written as a
linear combination of at most 𝑝 of these columns. Consider the following wide
2 × 7 matrix and its null-space basis 𝑍:

𝐵 =

(
1 2 3 4 5 1 6
3 4 7 10 11 1 12

)
, 𝑍 =




1 1
1 1
−1 1 1

−1 −1
−1 1 1

−1 1
−1




.

Here column 5 of 𝐵 is the sum of columns 2 and 3. This linear dependence can
be expressed by a vector in R7 that has non-zero entries in positions 2, 3 and
5 only. More generally, expressing each linearly dependent column 𝑗 of 𝐵 as a
linear combination of previous columns whose column indices 𝑖 are as close to 𝑗
as possible results in 𝑍 with a band structure. The dependences can be determined
stably using QR factorizations of submatrices of 𝐵; the incorporation of pivoting
can be used to balance stability of the factorization with limiting the bandwidth.
This is discussed in Scott and Tůma (2022b); recent work on solving LSE problems
based on this approach is presented in Scott and Tůma (2022c). While this strategy
can be useful, in general the columns of the computed 𝑍 are not orthogonal and, in
some cases, the norm of the constraints residual may be larger than is desirable.

9.3. The method of direct elimination

The basic idea is to express the dependence of 𝑝 selected components of the
solution vector 𝑥 on the remaining 𝑛 − 𝑝 components and to substitute this into the
least-squares problem (9.1). The 𝑝 components need to be chosen to retain sparsity
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in the transformed problem. The method starts by permuting and splitting so that

𝐵𝑥 = 𝐵𝑃𝑦 =
(
𝐵1 𝐵2

)(𝑦1
𝑦2

)
= 𝑑,

where the permutation 𝑃 ∈ R𝑛×𝑛 is chosen to ensure that 𝐵1 ∈ R𝑝×𝑝 is non-
singular. Let 𝐴𝑃 = (𝐴1 𝐴2) be a conformal partitioning of 𝐴. Substituting the
expression

𝑦1 = 𝐵−1
1 (𝑑 − 𝐵2 𝑦2) ∈ R𝑝

into (9.1) gives the transformed least-squares problem

min
𝑦2
∥(𝑏 − 𝐴1𝐵

−1
1 𝑑) − 𝐴𝑇 𝑦2∥2, 𝐴𝑇 = 𝐴2 − 𝐴1𝐵

−1
1 𝐵2 ∈ R𝑚×(𝑛−𝑝) (9.6)

for the remaining (𝑛 − 𝑝) solution components.

Note that if 𝐵1 is irreducible, the transformation combines all the rows of 𝐵2.
If both 𝐴 and 𝐵 are sparse then 𝐴𝑇 is sparse, but if 𝐵 contains dense rows then
𝐴𝑇 has more dense rows than 𝐴 and (9.6) is a sparse–dense least-squares problem.
This is illustrated by the following example, in which 𝑚 = 9, 𝑝 = 3, 𝑛 = 7:




∗
∗ ∗

∗
∗
∗ ∗

∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗




−




∗
∗

∗

∗






∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗




−→




∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗




.

The matrices (from the left) represent the transformation 𝐴𝑇 = 𝐴2 − 𝐴1𝐵
−1
1 𝐵2; the

matrix 𝐵−1
1 𝐵2 ∈ R𝑝×𝑛 is depicted as fully dense. In this instance, 𝐴𝑇 has four

dense rows.

The permuting and splitting of 𝐵 cannot be separated from consideration of S(𝐴)
because the splitting also determines 𝐴1 and 𝐴2. Thus there needs to be a balance

https://doi.org/10.1017/S0962492924000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000059


Sparse linear least-squares problems 995

Algorithm 9.2. Straightforward updating approach based on Lagrange mul-
tipliers for the LSE problem with 𝐵 having full row rank
Input: 𝐴, 𝐵, 𝑏 and 𝑑 defining the LSE problem (9.1)–(9.2).
Output: LSE solution 𝑥.

1: Solve the sparse unconstrained least-squares problem min𝑦 ∥𝑏 − 𝐴𝑦∥2
2: Solve 𝐴⊤𝐴𝐽 = 𝐵⊤ for 𝐽 ∈ R𝑛×𝑝
3: Set 𝑌 = 𝐵𝐽 and solve 𝑌𝜆 = 𝐵𝑦 − 𝑑 ⊲ 𝑌 ∈ R𝑝×𝑝 is SPD.
4: Set 𝑥 = 𝑦 − 𝐽𝜆

between ensuring there is a sufficiently well-conditioned factorization of 𝐵1 while
limiting the number of dense rows in 𝐴𝑇 (Scott and Tůma 2022c).

9.4. Lagrange multiplier approach

Complementary approaches for solving the LSE problem are based on substitution
from the unconstrained least-squares problem into the constraints. The Lagrangian
for (9.1)–(9.2) is

L(𝑥, 𝜆) = ∥𝑏 − 𝐴𝑥∥22 + 2𝜆⊤(𝑑 − 𝐵𝑥),

where 𝜆 ∈ R𝑝 is the vector of Lagrange multipliers. Setting the partial derivatives
to zero gives the first-order optimality condition

𝐴⊤(𝑏 − 𝐴𝑥) + 𝐵⊤𝜆 = 0 and 𝑑 − 𝐵𝑥 = 0.

Combining with the residual equation 𝑟 = 𝑏 − 𝐴𝑥 yields a 3-block augmented
system 


0 𝐴⊤ 𝐵⊤

𝐴 𝐼 0
𝐵 0 0





𝑥
𝑟
𝜆


 =




0
𝑏
𝑑


. (9.7)

The 𝑥 component is the solution of the LSE problem. Again, the system (9.7)
can be solved using an LDLT factorization. Alternatively, eliminating 𝑟 we have a
2-block system (

𝐴⊤𝐴 𝐵⊤

𝐵 0

)(
𝑥
𝜆

)
=

(
𝐴⊤𝑏
𝑑

)
.

Algorithm 9.2 is a straightforward updating scheme for computing 𝑥 that can be
used whether or not the rows of 𝐵 are dense. Any appropriate direct or iterative
method can be used for line 1, which is usually the most expensive part of the
computation. The method used to solve the system with a block of 𝑝 right-hand
sides in line 2 may be chosen to exploit line 1; for example, a complete or incomplete
Cholesky factorization of the normal matrix 𝐴⊤𝐴 can be reused. Line 3 involves a
small dense system.
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A numerically superior but more expensive method that avoids both forming
the normal matrix and computing the multipliers 𝜆 can be derived using a QR
factorization of 𝐴 and modifying the updating approach of Section 8.2.

10. Summary and outlook
In this article, we have sought to provide an overview of modern approaches for
solving large-scale linear least-squares problems. In particular, having briefly
introduced important tools used in sparse matrix technology, we have addressed
the following topics.

• Sparse direct methods for (i) the symmetric positive definite but possibly
highly ill-conditioned normal equations, (ii) the mathematically equivalent
symmetric indefinite augmented system, and (iii) the QR factorization of the
least-squares matrix.
• The development of algebraic preconditioners for use with Krylov subspace

methods for least-squares problems.
• The use of iterative refinement for least-squares problems.
• Updating techniques, including methods for solving sparse–dense problems

that arise in many practical applications.
• Linear least-squares problems with equality constraints.

We are conscious that it is not possible to cover all aspects of such a wide field
in one paper and so we have aimed to provide a self-contained introduction to the
fundamental ideas and concepts, along with useful references where the underlying
theory can be found, and pointers to the available software. To cite all the relevant
publications would increase the bibliography to thousands of items; an extensive
bibliography of over 1100 historical and recent references is included within the
new book by Björck (2024). We have chosen in the main to reference key papers,
books, research monographs and survey articles that themselves include many other
useful references, as well as citing recent publications related to algorithms and
theory for solving least-squares problems that are not yet so well-known.

We have included basic outline algorithmic descriptions using pseudocode that
is independent of any programming language, together with simple examples to
provide an insight into sparse factorization techniques. The complex implementa-
tion details that are needed in the development of high-quality sophisticated (paral-
lel) production software are outside the scope of the paper. Indeed, the design and
development of general-purpose high-quality software for efficiently solving sparse
least-squares problems using modern computer architectures remains a challenge.

Despite the fact that solving linear least-squares problems is a mature scientific
field that is employed in many practical applications, there remain significant theor-
etical as well as computational challenges. One such challenge is the development
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of robust preconditioners, with underlying theory and efficient implementations. In
the case of general-purpose Cholesky factorization methods, novel regularization
techniques seamlessly combined with shifting strategies may be needed. QR-based
preconditioners are even less well-developed. We have mentioned their relation to
memory-limited incomplete Cholesky factorizations; this relationship may lead to
better understanding and new insights and developments. The techniques for solv-
ing large-scale sparse–dense problems may potentially be extended to more general
problems where the interaction of partially sparse structures in the matrix of the
normal equations may lead to efficient preconditioners (Scott and Tůma 2021). The
use of mixed precision arithmetic in the development of preconditioners and their
use in iterative solvers has only recently started to be considered, but may offer
significant future potential (Carson et al. 2020, Higham and Pranesh 2021, Scott
and Tůma 2022a, 2024, 2025).

While much research has been devoted to robust stopping criteria for precondi-
tioned iterative solvers (Chang, Paige and Titley-Peloquin 2009, Papež and Tichý
2023), for least-squares problems originating from discretized ill-posed problems,
an excessive number of iterations can lead to overfitting and thus useless approx-
imations (Hansen 1998). In some practical applications (such as the extremely
large problems that arise in weather forecasting), early stopping (possibly after a
fixed number of iterations) is essential because of real-time constraints. It may
be possible to resolve the crucial task of determining early stopping by exploiting
a priori information, such as statistical properties of noise and solution smoothness
(Havelková and Hnětynková 2023). However, further work is needed to better
understand the interplay between stopping criteria and other parameters.

Finally, many challenges are connected to embedding linear least-squares solvers
into more general problems, including nonlinear least-squares problems, least-
squares problems with inequality constraints, and the efficient solution of sequences
of least-squares problems.
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