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Abstract

Let F be a totally real field in which p is unramified and let B be a quaternion algebra
over F which splits at at most one infinite place. Let r : Gal(F/F )→ GL2(Fp) be a
modular Galois representation which satisfies the Taylor–Wiles hypotheses. Assume
that for some fixed place v|p, B ramifies at v and Fv is isomorphic to Qp and r is
generic at v. We prove that the admissible smooth representations of the quaternion
algebra over Qp coming from mod p cohomology of Shimura varieties associated to
B have Gelfand–Kirillov dimension 1. As an application we prove that the degree-
two Scholze’s functor (which is defined by Scholze [On the p-adic cohomology of the
Lubin–Tate tower, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), 811–863]) vanishes on
generic supersingular representations of GL2(Qp). We also prove some finer structure
theorems about the image of Scholze’s functor in the reducible case.
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1. Introduction

Let p be a prime number. The mod p (and p-adic) Langlands program has been emerged starting
from the fundamental work of Breuil [Bre03]. Up to present, the correspondence in the case of
GL2(Qp) has been well-understood in various aspects, by the work of [Bre03, Col10, Eme11,
Paš13]. Recently, there have been significant progress towards a mod p Langlands correspondence
for GL2(L), when L is a finite unramified extension of Qp (see [BHHMS23, HW22, BHHMS21]).
However, a mod p Jacquet–Langlands correspondence is still largely unknown, even in the case
of GL2(Qp).

Inspired by the local–global compatibility results [Eme11, BDJ10], it is natural to search for
the correspondence in the cohomology of Shimura curves. To explain this, let F be a totally
real extension of Q in which p is unramified. Let B be a quaternion algebra over F , which
we assume to be split at only one infinite place in this introduction (in the text, we will also
treat the case where B is definite). If U is a compact open subgroup of (B ⊗F AF,f )×, let XU

be the associated smooth projective Shimura curve over F . Let r : Gal(F/F )→ GL2(Fp) be a
continuous absolutely irreducible representation. Fix a place v above p and a compact open
subgroup Uv ⊂ (B ⊗F A{v}

F,f )
×, where A{v}

F,f denotes the ring of finite adèles of F outside v. We
define

πBv (r) := lim−→
Uv

HomGal(F/F )(r,H
1
ét(XUvUv ×F F ,Fp),

where Uv runs over compact open subgroups of B×
v := (B ⊗F Fv)×. In this way, we obtain an

admissible smooth representation of B×
v . We assume that B ramifies at v from now on.

Assume that πBv (r) is nonzero, i.e. r is modular for B and Uv; we also need to impose some
extra assumptions on r, see § 5 for details. Then it is known that πBv (r) is infinite-dimensional
(cf. [BD14, Corollary 3.5.4] and [Scho18, Theorem 1.4]). On the other hand, since B×

v is compact
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modulo its centre, irreducible smooth mod p representations of B×
v (with a fixed central charac-

ter) are easy to classify. Actually, such a representation always has dimension ≤ 2 and there are
only finitely many isomorphism classes. This implies that πBv (r) is necessarily of infinite length,
and is built out by infinitely many pieces of a finite number of isomorphism classes of irreducible
representations of B×

v in a highly non-semisimple way. A natural way to study such a represen-
tation is to look at its socle filtration. More conceptually, there is a standard invariant which
measures the growth of the dimension of this socle filtration, called Gelfand–Kirillov dimension
(cf. § 1.1).

In this paper, we study the Gelfand–Kirillov dimension of πBv (r) in the case Fv ∼= Qp. We
make this assumption and assume p ≥ 5 from now on; the reason for this restriction will be
explained below after more notation is introduced.

Let ρ := rv(1). We make the following assumption on ρ.

(H1) Assume that ρ has one of the following forms:

• ρ is absolutely irreducible and up to twist ρ|I(Qp/Qp) ∼
( ωr+1

2 0

0 ω
p(r+1)
2

)
, with 2 ≤ r ≤ p− 3,

where ω2 is Serre’s fundamental character of niveau 2;
• ρ is reducible nonsplit and up to twist ρ|I(Qp/Qp) ∼

(
ωr+1 ∗

0 1

)
, with 0 ≤ r ≤ p− 3, where

ω is the mod p cyclotomic character of Gal(Qp/Qp).

The following is our main result.

Theorem 1.1. Keep the above assumptions on F , B and r. Then πBv (r) has Gelfand–Kirillov
dimension 1.

An analogue of Theorem 1.1 was previously proved by Paškūnas [Paš22] when ρ is reducible,
using Scholze’s functor (introduced in [Scho18]) and a result of Ludwig [Lud17]. Combining with
some argument of [Paš22], Theorem 1.1 implies some vanishing result on Scholze’s functor, see
Theorem 1.2 below.

The proof of Theorem 1.1 follows the innovative method of [BHHMS23] (which treats the case
of GL2 over an unramified extension of Qp), but has several differences in technique. To explain
this, recall that one key step in [BHHMS23] is to compare some potentially crystalline deforma-
tion rings of ρ of different (tame) types, and use it to gain information about the first three steps
of the socle filtration of certain Fp-representations of GL2 with respect to the Iwahori subgroup.
In [BHHMS23], the relevant deformation rings are explicitly worked out by complicated com-
putations, but unfortunately in doing this a stronger genericity condition on ρ is imposed, for
example 12 ≤ r ≤ p− 15 when ρ is reducible. One may wonder, assuming this stronger genericity
condition, if (the analogue of) Theorem 1.1 remains true when Fv is an unramified extension of
Qp, namely if πBv (r) has Gelfand–Kirillov dimension equal to [Fv : Qp]. We believe this should
be true and provable using the method of [BHHMS23]. In fact, we do give a criterion for control-
ling the Gelfand–Kirillov dimension in this generality, see Corollary 2.12 (which is an analogue
of [BHHMS23, Corollary 5.3.5]). However, we caution that using only the deformation rings
computed in [BHHMS23] may not be enough to prove this statement, because by the clas-
sical Jacquet–Langlands correspondence only those involving discrete series inertial types are
useful to obtain information about πBv (r). Namely, to check the condition of Corollary 2.12,
one possibly needs to compute extra deformation rings (of discrete series inertial type), even
when Fv = Qp.

For the above reason and also with the wish to weaken as much as possible the genericity
condition in Theorem 1.1, we have chosen to restrict to the case Fv ∼= Qp. The point is that in
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this case there is an alternative construction of Kisin’s potentially semistable deformation rings,
due to Paškūnas [Paš15]. This construction works only for two-dimensional representations of
Gal(Qp/Qp) and, in general, does not allow us to determine the explicit form of these rings, but
it fits perfectly with our aim for the following two reasons.

– First, to carry out the strategy in [BHHMS23], we do not really need the explicit form of
these deformation rings, but only certain congruence relations between them (cf. [BHHMS23,
Proposition 4.3.3]). In Paškūnas’ construction, these congruence relations can be proved by
congruence relations between suitably chosen integral lattices inside the corresponding types.

– Second, this construction closely relates the structure of the deformation rings to the structure
of π(ρ), the admissible smooth representation of GL2(Qp) associated to ρ by the mod p local
Langlands correspondence (see § 4.2 for the precise definition). Thus, we may make use of
the results of [BL94, Bre03, Mor11, Mor17] on π(ρ) to study these deformation rings; see
Theorem 4.15 for such an example.

In addition, in [BHHMS23] they use potentially crystalline deformation rings of Hodge–Tate
weights (−1, 2) (and of (0, 1)), while we use deformation rings of Hodge–Tate weights (0, 2). This
also allows a further (minor) improvement on the genericity condition.

Theorem 1.1 can be applied to study Scholze’s functors. Let L be a finite extension of Qp

(not necessarily unramified). Let D be the central division algebra over L of dimension n2 and
invariant 1/n, Scholze [Scho18] has constructed a cohomological covariant δ-functor {Si, i ≥ 0}
from the category of admissible smooth representations of GLn(L) over Fp to admissible smooth
representations of D× which carry a continuous and commuting action of Gal(L/L). If π is
an admissible smooth representation of GLn(L) over Fp, then Si(π) is defined as the cohomol-
ogy group H i

ét(P
n−1
Cp

,Fπ), where Fπ is a certain Weil-equivariant sheaf on the adic space Pn−1
Cp

.
His construction is expected to realize both p-adic local Langlands and Jacquet–Langlands cor-
respondences. In general, these cohomology groups seem very difficult to compute, but Scholze
has computed S0(π) and showed that Si(π) vanishes whenever i > 2(n− 1). Specializing to
n = 2, the case we are interested in, we have Si(−) = 0 for i > 2. Later on, Ludwig proved
that S2(π) = 0 if either π is principal series or special series of GL2(Qp), using the geometry of
perfectoid modular curves [Lud17]. Since it is easy to compute S2(π) if π is one-dimensional,
this leaves only the case of supersingular representations for S2.

By Breuil’s classification [Bre03], any supersingular representation of GL2(Qp) with a central
character is up to twist isomorphic to(

c-IndGL2(Qp)

GL2(Zp)Q
×
p
SymrF

2
p

)
/T,

where 0 ≤ r ≤ p− 1 and T is a certain Hecke operator [BL94]. As an application of Theorem 1.1,
we have the following result.

Theorem 1.2. Let π be a supersingular representation of GL2(Qp) as above and assume 2 ≤
r ≤ p− 3. Then S2(π) = 0.

Our proof of Theorem 1.2 is inspired by Paškūnas’ work [Paš22], where he has used Ludwig’s
vanishing result of S2 to prove Theorem 1.1 in the case ρ is reducible. We observe that his
argument can actually go in reverse direction, namely the vanishing of S2 on supersingular
π can be deduced from the Gelfand–Kirillov dimension of S1(π) (see Proposition 7.4). Thus,
Theorem 1.2 follows from Theorem 1.1 and a local–global compatibility result à la Emerton
[Eme11, DLB17].
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Another reason for focusing on the case of GL2(Qp) is that we can prove some finer results
on the structure of S1(π(ρ)). We put

JL(ρ) =

⎧⎪⎨⎪⎩
HomGQp

(χω−1,S1(π(ρ))) if ρ ∼
(
χ ∗
0 χω

)
,

HomGQp
(ρ⊗ ω−1,S1(π(ρ))) otherwise.

Theorem 1.3. Let ρ be as in (H1).

(i) Assume ρ �
( χ ∗

0 χω

)
for any character χ. Then S1(π(ρ)) ∼= (ρ⊗ ω−1)⊗ JL(ρ) as representa-

tions of Gal(Qp/Qp)×B×
v .

(ii) Assume ρ is reducible. Denote by ρss the semisimplification of ρ.
(a) Assume ρss � χ⊕ χω for any χ. Then JL(ρ) depends only on ρss.
(b) Let ρ1 ∼

(
ω ∗
0 1

)
and ρ2 ∼

(
1 ∗
0 ω

)
be nonsplit extensions. Then there exists an admissible

Fp-representation V of B×
v such that

0→ 1D× → JL(ρ1)→ V → 0,

0→ V → JL(ρ2)→ (1D×)⊕2 → 0.

It may look surprising that the representation JL(ρ) does not determine ρ, but only ρss,
in case (a) of Theorem 1.3(ii); see Remark 8.13 for an explanation. It would be interesting to
describe the precise structure of JL(ρ). We plan to come back to this question in future work.

We now give a brief overview of the contents of each section. In § 2, we study the structure
of the p-adic group B×

v and prove a criterion for controlling the Gelfand–Kirillov dimension
of its representations (analogous to [BHHMS23, § 5]). In § 3 we study the structure of integral
lattices in various locally algebraic types of GL2(Zp). In § 4, we use Paškūnas’ technique to
study potentially crystalline deformation rings of tame type and Hodge–Tate weights (0, 2). In
§§ 5 and 6, we carry out the gluing process for B×

v -representations and prove our main result,
Theorem 1.1. Finally, we study Scholze’s functors, and prove Theorem 1.2 in § 7 and Theorem 1.3
in § 8.

1.1 Notation
We fix a prime number p ≥ 5. Let E ⊂ Qp be a finite unramified extension of Qp, with ring of
integers O and residue field F. We will assume without further comment that F is sufficiently
large.

If F is a field, let GF := Gal(F/F ) denote its absolute Galois group. Let ε denote the p-adic
cyclotomic character of GF , and ω the mod p cyclotomic character.

If F is a p-adic field, V is a de Rham p-adic representation of GF over E, and κ : F ↪→ E,
then we will write HTκ(V ) for the multiset of Hodge–Tate weights of V with respect to κ. By
definition, HTκ(V ) consists of −i with multiplicity dimE(V ⊗κ,F F̂ (i))GF , e.g. HTκ(ε) = {1} at
all embedding κ.

If G is a p-adic analytic group, we denote by Modsm
G (O) the category of smooth repre-

sentations of G on O-torsion modules. Let Modl.adm
G (O) (respectively, Modadm

G (O)) denote the
full subcategory of locally admissible (respectively, admissible) representations. If ζ : ZG → O×

is a continuous character of the centre of G, then we denote by Modsm
G,ζ(O) (respectively,

Modl.adm
G,ζ (O), respectively, Modadm

G,ζ (O)) the full subcategory of Modsm
G (O) consisting of smooth

(respectively, locally admissible, respectively, admissible) representations on which ZG acts by the
character ζ.
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The Pontryagin duality M 
→M∨ := Homcont
O (M,E/O) induces an anti-equivalence between

the category of discrete O-modules and the category of pseudo-compact O-modules. Under
this duality the category Modsm

G (O) is anti-equivalent to the category of profinite augmented
G-representations over O which is denoted by Modpro

G (O). Let CG(O) (respectively, CG,ζ(O))
denote the full subcategory of Modpro

G (O) which is anti-equivalent to Modl.adm
G (O) (respectively,

Modl.adm
G,ζ (O)) under the Pontryagin duality. Note that on an object in CG,ζ(O) the centre is

acting by ζ−1.
Let (R,m) be a complete noetherian local commutative O-algebra with residue field F.

We define the category Modsm
G (R) of smooth R[G]-modules, and the category Modl.adm

G (R) of
locally admissible smooth R[G]-modules as in [Paš13, § 2]. Let CG(R) be the dual category of
Modl.adm

G (R) under the Pontryagin duality. If ζ : ZG → O× is a continuous character of the centre
of G, we can similarly define Modl.adm

G,ζ (R) and its dual category CG,ζ(R).
If M is a torsion-free linear-topological O-module, Md denotes its Schikhof dual

Homcont
O (M,O). The functor M 
→Md induces an anti-equivalence of categories between the cat-

egory of pseudo-compact torsion-free linear-topologicalO-modules and the category of�-adically
complete and separated torsion-free O-modules.

If R is a ring and M is a left R-module, we denote by socR(M) (respectively, cosocR(M)) the
socle (respectively, cosocle) of M . Inductively, we define the socle (respectively, cosocle) filtration
of M . If M has finite length, we denote by JH(M) the set of Jordan–Hölder factors of M .

The grade jR(M) of M over R is defined by

jR(M) = inf{i ∈ N | ExtiR(M,R) �= 0}.

Assume R is noetherian. The ring R is called Auslander–Gorenstein if it has finite left and
right injective dimension and the following Auslander condition holds: for any R-module
M , any integer m ≥ 0 and any R-submodule N of ExtmR (M,R), we have jR(N) ≥ m. An
Auslander–Gorenstein ring is called Auslander regular if it has finite global dimension. If R
is an Auslander regular ring and M is a finitely generated R-module, define the dimension

δR(M) := gld(R)− jR(M),

where gld(R) is the global dimension of R.
Let G0 be a compact p-adic analytic group. The ring-theoretic properties of O[[G0]] are

established by the fundamental works of Lazard [Laz65] and Venjakob [Ven02]. In particular, if
G0 has no element of order p, thenO[[G0]] is an Auslander regular ring of dimension 1 + dimQp G0,
where dimQp G0 is the dimension of G0 as a p-adic analytic group. If M is nonzero, we have

0 ≤ jO[[G0]](M) ≤ 1 + dimQp G0,

and δO[[G0]](M) = 1 + dimQp G0 − jO[[G0]](M). If G is a p-adic analytic group with a fixed open
compact subgroup G0 ⊆ G and M is a finitely generated O[[G0]]-module equipped with a com-
patible G-action, we define jG(M) (respectively, δG(M)) as jO[[G0]](M) (respectively, δO[[G0]](M));
this does not depend on the choice of G0.

If π is an admissible smooth representation of G over F, then π∨ is finitely generated over
O[[G0]]. The Gelfand–Kirillov dimension of π is defined by (see [BHHMS23, Remark 5.1.1])

dimG(π) := δG(π∨).
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2. The p-adic Lie group D×

2.1 Results of Kohlhaase
We recall and extend some results of [Koh13].

Let L = Qpf be the unramified extension of degree f over Qp. Let D be the unique central
division algebra of dimension 4 over L. For a ∈ D, define vD(a) := vp(NrdD(a)), where vp is the
p-adic valuation on L normalized so that vp(p) = 1, and NrdD : D → L is the reduced norm
map; this gives a non-archimedean valuation on D. Let OD := {a ∈ D | vD(a) ≥ 0} be the ring
of integers and pD := {a ∈ D | vD(a) ≥ 1} the maximal ideal, which can be generated by a uni-
formizer �D. The residue field kD := OD/pD is isomorphic to Fq2 , where q := pf . Let L′ be the
unramified quadratic extension of L in Qp. We denote by σ : L′ → L′ a lift of the Frobenius map
x 
→ xq on Fq2 . Let L′〈X〉 denote the non-commutative polynomial ring in one variable over L′

satisfying the relation Xa = σ(a)X, ∀a ∈ L′. Then the homomorphism L′〈X〉 → D, X 
→ �D

induces an isomorphism of L-algebras

L′〈X〉/(X2 − p) ∼= D. (2.1)

Let D× (respectively, O×
D) denote the group of invertible elements of D (respectively, OD)

and
UnD := 1 +�n

DOD, n ≥ 1, (2.2)

which are compact open normal (pro-p) subgroups of D×. We have

D× = O×
D ��Z

D, O×
D/U

1
D
∼= F×

q2
.

Let ZD denote the centre of D× which is isomorphic to L×. Then ZDO×
D is of index 2 in D×.

Let Z1
D = ZD ∩ U1

D.
Assume p ≥ 5. Let ω : U1

D\{1} → (0,∞) be the map defined by ω(g) := 1
2vD(g − 1), and set

ω(1) :=∞. As in [Schn11, Example 23.2], one shows that ω is a p-valuation on U1
D in the sense

of Lazard [Laz65, III.2.1.2]. For any real number ν > 0, let

(U1
D)ν := {g ∈ U1

D |ω(g) ≥ ν}, (U1
D)ν+ := {g ∈ U1

D |ω(g) > ν}.
We set

grU1
D :=

⊕
ν>0

(U1
D)ν/(U1

D)ν+.

It is easy to see that U iD = (U1
D)i/2 and U i+1

D = (U1
D)(i/2)+, so we have

grU1
D =

⊕
i≥1

U iD/U
i+1
D .

We say a nonzero homogeneous element t ∈ grU1
D is of degree i if t ∈ U iD/U i+1

D .
As explained in [Schn11, § 25], grU1

D is a graded Lie algebra over the polynomial ring Fp[ε]
by setting

[gU i+1
D , g′U j+1

D ] := gg′g−1g′−1U i+j+1
D , g ∈ U iD, g′ ∈ U jD,

and
ε(gU i+1

D ) := gpU i+3
D , g ∈ U iD.

Note that U iD/U
i+1
D
∼= (Fq2 ,+) is an Fq-vector space by setting

λ · (1 +�i
Da)U

i+1
D := (1 +�i

D[λ]a)U i+1
D ,

where [λ] ∈ OL is the Teichmüller lift of λ ∈ Fq. One checks that the Lie bracket on grU1
D is

Fq-bilinear, hence grU1
D becomes a graded Lie algebra over the polynomial ring Fq[ε].

2591

https://doi.org/10.1112/S0010437X24007449 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007449


Y. Hu and H. Wang

Proposition 2.1. The natural map Fq[ε]⊗Fq (U1
D/U

2
D ⊕ U2

D/U
3
D)→ grU1

D is an isomorphism
of Fq[ε]-modules.

Proof. The proof of [Koh13, Lemma 3.12] (when L = Qp) extends to the general case. �

Let grU1
D := grU1

D ⊗Fq [ε] Fq where the map Fq[ε]→ Fq sends ε to 0. We first determine the
Lie algebra structure of grU1

D. Fix ξ ∈ Fq2 \ Fq and set

γ1 := 1 +�D, γ2 := 1 +�D[ξ], γ3 := γ1γ2γ
−1
1 γ−1

2 , γ4 := 1 + p,

where [ξ] ∈ OL′ is the Teichmüller lift of ξ. We have ω(γ1) = ω(γ2) = 1/2 and ω(γ3) = ω(γ4) = 1.1

Let γ1, γ2 ∈ U1
D/U

2
D be the images of γ1 and γ2 and let γ3, γ4 ∈ U2

D/U
3
D be the images of γ3 and

γ4. Then γ1, γ2, γ3, γ4 form an Fq-basis of U1
D/U

2
D ⊕ U2

D/U
3
D, hence also an Fq-basis of grU1

D.
They satisfy (in grU1

D, i.e. after modulo ε)

[γ1, γ2] = γ3, [γ1, γ3] = [γ2, γ3] = [γ4, γ1] = [γ4, γ2] = [γ4, γ3] = 0, (2.3)

see the discussion after [Koh13, Remark 3.15].
Passing to the quotient group U1

D/Z
1
D, we can consider grU1

D/Z
1
D := grU1

D/Z
1
D ⊗Fq [ε] Fq,

with the induced filtration on U1
D/Z

1
D. Then grU1

D/Z
1
D is isomorphic to grU1

D/(γ4) as graded
Lie algebras over Fq, where (γ4) := Fqγ4 is the sub-Lie algebra of grU1

D generated by γ4.
Let gFp = Fpe⊕ Fpf ⊕ Fph be the graded Lie algebra of dimension 3 over Fp, with e and f

in degree 1, h in degree 2 and satisfying the relations

[e, f ] = h, [h, e] = [h, f ] = 0.

From (2.3) we easily deduce the following result.

Corollary 2.2. The graded Lie algebra grU1
D/Z

1
D is isomorphic to gFq := Fq ⊗Fp gFp .

Remark 2.3. One can also deduce the structure of the Lie algebra grU1
D/Z

1
D
∼= grU1

D/(γ4) from
the results of [BHHMS23, § 5.3] by comparing with the pro-p-Iwahori subgroup of GL2 over OL′ .

2.2 The graded group algebra
Let Zp[[U1

D]] = lim←−i≥1
Zp[U1

D/U
i
D] be the Iwasawa algebra of U1

D over Zp. It is a pseudo-compact
local Zp-algebra. For ν ≥ 0, let Jν denote the smallest closed Zp-submodule of Zp[[U1

D]] which
contains all elements of the form p	(h1 − 1) · · · (hs − 1) with �, s ≥ 0, h1, . . . , hs ∈ U1

D and

�+ ω(h1) + · · ·+ ω(hs) ≥ ν.
Let Jν+ :=

⋃
ν′>ν Jν′ . Let

grJ Zp[[U1
D]] :=

⊕
ν≥0

Jν/Jν+,

which is an associative graded algebra over gr Zp :=
⊕

i≥0 p
iZp/pi+1Zp. It naturally has a graded

Lie algebra structure.
The homomorphism of abelian groups Lν : grν U1

D → Jν/Jν+, g(U1
D)ν+ 
→ (g − 1) + Jν+

extends to a homomorphism of graded Fp[ε]-Lie algebras L : grU1
D → gr Zp[[U1

D]], where the Fp[ε]-
algebra structure on gr Zp[[U1

D]] is given through the isomorphism Fp[ε]
∼−→ gr Zp, ε 
→ p+ p2Zp ∈

gr1 Zp. Let UFp[ε](grU1
D) be the universal enveloping algebra of grU1

D over Fp[ε]. By the universal

1 One checks that γ3 ≡ 1 + p([ξ] − [ξ]q) (mod U3
D).
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property of UFp[ε](grU1
D), we have a homomorphism of associative gr Zp-algebras

L̃ : UFp[ε](grU1
D)→ grJ Zp[[U1

D]]. (2.4)

By [Schn11, Theorem 28.3], L̃ is an isomorphism.
In practice, we will consider the Iwasawa algebra associated to the quotient group U1

D/Z
1
D.

Let Zp[[U1
D/Z

1
D]] (respectively, Fp[[U1

D/Z
1
D]]) be the Iwasawa algebra of U1

D/Z
1
D over Zp (over

Fp). We have Fp[[U1
D/Z

1
D]] = Zp[[U1

D/Z
1
D]]⊗Zp Fp. The filtration {Jν , ν ≥ 0} induces a filtration

on Zp[[U1
D/Z

1
D]] and on Fp[[U1

D/Z
1
D]]. On the other hand, letting mD denote the maximal ideal of

Fp[[U1
D/Z

1
D]], we may consider the mD-adic filtration on Fp[[U1

D/Z
1
D]]. The following result shows

that these two filtrations coincide up to rescaling indices.

Lemma 2.4. Denote by Jν the image of Jν in Fp[[U1
D/Z

1
D]]. Then J i/2 = mi

D for any i ≥ 0.

Proof. The proof of [Koh13, Lemma 3.13] (when L = Qp) extends to the general case. �
One checks that Jν �= Jν+ exactly when ν = i/2 for some i ≥ 0. Thus, by Lemma 2.4 the

graded algebra

grmD Fp[[U1
D/Z

1
D]] :=

⊕
i≥0

mi
D/m

i+1
D (2.5)

is identical to
⊕

ν≥0 Jν/Jν+.

Proposition 2.5. There is an isomorphism of graded Fp-algebras

grmD Fp[[U1
D/Z

1
D]] ∼= UFp(gFq).

Proof. By the above discussion, the result is a direct consequence of Corollary 2.2 via (2.4). �
Let F be a finite extension of Fp such that Fq embeds into F. Let J denote the set of

embeddings Fq ↪→ F and fix σ0 ∈ J . We label the embeddings σj = σ0 ◦ ϕj , so that J is identified
with {0, . . . , f − 1}. Let gj := F⊗Fq ,σj gFq . We then have F⊗Fp gFq =

⊕f−1
j=0 gj . Let ej , fj , hj ∈ gj

denote 1⊗ e, 1⊗ f , 1⊗ h ∈ F⊗Fq ,σj gFq .
We again denote by mD the maximal ideal of F[[U1

D/Z
1
D]] = F⊗Fp Fp[[U1

D/Z
1
D]]. Then

Proposition 2.5 implies that

grmD F[[U1
D/Z

1
D]] = F⊗Fp (grmD Fp[[U1

D/Z
1
D]]) ∼= UF(F⊗Fp gFq) ∼=

f−1⊗
j=0

UF(gj). (2.6)

In particular, we have gr1mD F[[U1
D/Z

1
D]] =

⊕f−1
j=0 (Fej ⊕ Ffj).

Theorem 2.6. (i) The graded ring grmD F[[U1
D/Z

1
D]] is Auslander regular.

(ii) The sequence (h0, . . . , hf−1) is a regular sequence of central elements of grmD F[[U1
D/Z

1
D]]. The

quotient grmD F[[U1
D/Z

1
D]]/(h0, . . . , hf−1) is commutative and is isomorphic to the polynomial

ring F[ej , fj ; 0 ≤ j ≤ f − 1].

Proof. The proof is the same as that of [BHHMS23, Theorem 5.3.4]. �
Theorem 2.6 is not enough for the application to Gelfand–Kirillov dimension, namely

Corollary 2.12 below. We shall find eigenbases of F⊗Fp gFq for the F×
q2

-action in the next
subsection.

2.3 Gelfand–Kirillov dimension
We regard F×

q2
as a subgroup of O×

L′ via the Teichmüller lifting map, and then as a subgroup

of O×
D via the fixed embedding L′ ↪→ D. It normalizes U1

D, thus acts on grU1
D and on gFq .
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In practice, we need a basis of F⊗Fp gFq consisting of eigenvectors for the action of F×
q2

. Note
that ej and fj are only eigenvectors for the action of F×

q , but not for F×
q2

.
Choose an embedding Fq2 ↪→ F which extends the fixed embedding σ0 : Fq ↪→ F; we again

denote it by σ0 and let σj = σ0 ◦ ϕj for 0 ≤ j ≤ 2f − 1.
For 0 ≤ j ≤ 2f − 1, define the following elements in F[[U1

D/Z
1
D]]:

Yj :=
∑
λ∈F×

q2

σj(λ)−1(1 +�D[λ]),

where the term 1 +�D[λ] is considered as an element in the group U1
D/Z

1
D. Since∑

λ∈F×
q2
σj(λ)−1 = 0, we have Yj ∈ mD. If μ ∈ F×

q2
, then one checks that

μ · Yj := [μ]Yj [μ]−1 = αj(μ)Yj , (2.7)

where αj : O×
D → F× denotes the character defined by

αj(x) := σj(x)q−1. (2.8)

Note that αj+f = αqj = α−1
j .

For 0 ≤ j ≤ 2f − 1, let yj := Yj + m2
D ∈ gr1mD F[[U1

D/Z
1
D]].

Lemma 2.7. (i) The elements {Yj , 0 ≤ j ≤ 2f − 1} generate the ideal mD.
(ii) The elements {yj , 0 ≤ j ≤ 2f − 1} form a basis of gr1mD F[[U1

D/Z
1
D]].

Proof. (i) This is equivalent to checking that the images of Yj in mD/m
2
D are linearly independent

(over F). This is proved by a standard technique; see the proof of [Schr15, Proposition 2.13] for
a similar argument.

(ii) This is clear, because gr1mD F[[U1
D/Z

1
D]] has dimension 2f (with a basis {ej , fj , 0 ≤ j ≤

f − 1}). �
Lemma 2.8. For g ∈ U iD/(U iD ∩ Z1

D) and h ∈ U jD/(U jD ∩ Z1
D), we have

gh− 1 ≡ (g − 1) + (h− 1) mod m
i+j
D .

Proof. Using Lemma 2.4, this is a consequence of the equality (g − 1)(h− 1) = (gh− 1)−
(g − 1)− (h− 1). �

For t ∈ F×
q2

, write

gt := 1 + p[t] ∈ U1
D/Z

1
D. (2.9)

Note that ω(gt) = 1, so gt − 1 ∈ m2
D by Lemma 2.4. Let ut denote the image of gt − 1 in

gr2mD F[[U1
D/Z

1
D]].

Proposition 2.9. (i) We have [yi, yj ] = 0 for any pair (i, j) with i− j �= f (in Z/2fZ).
(ii) Set h′j := [yj , yf+j ] for 0 ≤ j ≤ f − 1. Then {h′j , 0 ≤ j ≤ f − 1} are linearly independent in

gr2mD F[[U1
D/Z

1
D]] and they span the same subspace as {hj , 0 ≤ j ≤ f − 1}.

Proof. A direct computation shows

YiYj =
∑

λ,μ∈F×
q2

σi(λ)−1σj(μ)−1(1 +�D[λ] +�D[μ] + p[λqμ]).

We may write (in U1
D)

1 +�D[λ] +�D[μ] + p[λqμ] = (1 +�D[λ] +�D[μ])(1 + p[λqμ] + x)
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with x ∈ �3
DOD and note that (1 + p[λqμ] + x)− 1 has the same image as (1 + p[λqμ])− 1 in

gr2mD F[[U1
D/Z

1
D]] by Lemma 2.8. Using Lemma 2.8 again, we have

(1 +�D[λ] +�D[μ] + p[λqμ])− 1 ≡ (hλ,μ − 1) + (gλqμ − 1) mod m3
D,

where hλ,μ := 1 +�D[λ] +�D[μ] and gλqμ is defined by (2.9). Similarly, we have

YjYi ≡
∑

λ,μ∈F×
q2

σi(λ)−1σj(μ)−1((hλ,μ − 1) + (gλμq − 1)) mod m3
D

and so

[Yi, Yj ] ≡
∑

λ,μ∈F×
q2

σi(λ)−1σj(μ)−1((gλqμ − 1)− (gλμq − 1)) mod m3
D.

Taking the image in gr2mD F[[U1
D/Z

1
D]] and noting that σi(λ) = σi−f (λq), we obtain

[yi, yj ] =
∑

λ,μ∈F×
q2

σj(λq)
σi−f (λq)

σj(λqμ)−1(uλqμ − uλμq).

The map

F×
q2
× F×

q2
→ F×

q2
, (λ, μ) 
→ λqμ

is surjective and each fibre is bijective to F×
q2

(by projecting to the second component), thus

[yi, yj ] =
∑
t∈F×

q2

( ∑
λ∈F×

q2

σj(λq)
σi−f (λq)

)
· σj(t)−1(ut − utq).

If i− j �= f , then
∑

λ∈F×
q2

(σj(λq)/σi−f (λq)) = 0 and so [yi, yj ] = 0, proving part (i). If i− j = f ,

then the last sum equals to −1, and so

[yj+f , yj ] = −
∑
t∈F×

q2

σj(t)−1(ut − utq).

To prove part (ii), one could argue as in Lemma 2.7, but this needs to make explicit the hj .
Nonetheless, we can conclude by the following observation: since yi lies in

⊕
0≤j≤f−1(Fej ⊕ Ffj),

[yi, yj ] lies in the subspace spanned by hj = [ej , fj ] (recall [ei, ej ] = [ei, fj ] = [fi, fj ] = 0 whenever
i �= j), and vice versa by part (i) and Lemma 2.7(ii). �

To make the notation more transparent, we write zi := yi+f for 0 ≤ i ≤ f − 1. Lemma 2.7
and Proposition 2.9 imply that the Lie algebra F⊗Fp gFq has another basis over F given by
{yj , zj , h′j ; 0 ≤ j ≤ f − 1}, with yj and zj in degree 1, h′j in degree 2 and satisfying the relations

h′j = [yj , zj ], [yi, zj ] = 0 if i �= j, [yi, yj ] = [zi, zj ] = [yi, h′j ] = [zi, h′j ] = 0.

Let ID be the left ideal of grmD F[[U1
D/Z

1
D]] generated by the degree-two elements yjzj and h′j for

all 0 ≤ j ≤ f − 1. The ideal ID is, in fact, a two-sided ideal of grmD F[[U1
D/Z

1
D]]; it is also the left

ideal generated by (yjzj , hj ; 0 ≤ j ≤ f − 1) by Proposition 2.9(ii).

Corollary 2.10. (i) The sequence (h′0, . . . , h′f−1) is a regular sequence of central elements

of grmD F[[U1
D/Z

1
D]]. The quotient grmD F[[U1

D/Z
1
D]]/(h′0, . . . , h′f−1) is commutative and is

isomorphic to the polynomial ring F[yj , zj ; 0 ≤ j ≤ f − 1].

2595

https://doi.org/10.1112/S0010437X24007449 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007449


Y. Hu and H. Wang

(ii) The quotient grmD F[[U1
D/Z

1
D]]/ID is isomorphic to F[yj , zj ; 0 ≤ j ≤ f − 1]/(yjzj ; 0 ≤ j

≤ f − 1).

Proof. The proof of [BHHMS23, Theorem 5.3.4] goes through by the above discussion. �
Let χ : O×

D → F× be a smooth character. Let ProjF[[O×
D/Z

1
D]] χ denote the projective envelope

of χ in the category of F[[O×
D/Z

1
D]]-modules. For n ≥ 1, let

Wχ,n := (ProjF[[O×
D/Z

1
D]] χ)/mn

D. (2.10)

It is clear that Wχ,n
∼= χ⊗W1,n, where 1 denotes the trivial character. The module Wχ,3 is of

particular importance to us.

Corollary 2.11. The module W1,3 has the following graded structure:

gr0W1,3 = F, gr1W1,3 =
f−1⊕
i=0

Fαi ⊕ Fα−1
i ,

gr2W1,3 = F2f ⊕
⊕

0≤i≤j≤f−1

Fαiαj ⊕
⊕

0≤i≤j≤f−1

Fα−1
i α−1

j ⊕
⊕

0≤i
=j≤f−1

Fαiα
−1
j ,

where αj : O×
D → F× is the character defined in (2.8).

Proof. It follows from Corollary 2.10 using (2.7); cf. [BHHMS23, (44)]. �
We have the following criterion which allows us to control the Gelfand–Kirillov dimen-

sion of an admissible smooth F-representation of O×
D/Z

1
D. It is an analogue of [BHHMS23,

Corollary 5.3.5]. Let Wχ,3 denote the quotient of Wχ,3 by the sum of characters which occur in
gr2Wχ,3 and non-isomorphic to χ. For example, if L = Qp, then dimFWχ,3 = 5 and has a socle
filtration as follows (with α = α0):

(χ⊕ χ) — (χα⊕ χα−1) — χ.

Corollary 2.12. Let π be an admissible smooth representation of O×
D/Z

1
D over F. Assume for

each character χ such that HomO×
D
(χ, π) �= 0, the natural injection

HomO×
D
(χ, π) ↪→ HomO×

D
(Wχ,3, π) (2.11)

is an isomorphism. Then dimO×
D
(π) ≤ f , where dimO×

D
(π) is the Gelfand–Kirillov dimension of

π over O×
D.

Proof. The Pontryagin dual π∨ is naturally a finitely generated module over F[[U1
D/Z

1
D]] as π

is admissible, so the graded module grmD(π∨) is finitely generated over grmD F[[U1
D/Z

1
D]]. The

condition (2.11) implies that gr0mD(π∨) is killed by yjzj and h′j (for 1 ≤ j ≤ f − 1), hence also by
ID. The result then follows from Corollary 2.10; see [BHHMS23, Corollary 5.3.5] for details. �

2.4 Exti groups when L = Qp

We assume L = Qp with p ≥ 5. We write α = α0.

Proposition 2.13. Let ψ, χ : O×
D → F× be two smooth characters. Then Ext1O×

D/Z
1
D

(ψ, χ) is

nonzero if and only if ψ = χα or ψ = χα−1. Moreover,

dimF Ext1O×
D/Z

1
D
(χα, χ) = dimF Ext1O×

D/Z
1
D
(χα−1, χ) = 1.

Proof. This is a consequence of Corollary 2.11. �
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Proposition 2.14. Let τ1, τ2 be finite-dimensional smooth representations of O×
D/Z

1
D. Then

there is an isomorphism ExtiO×
D/Z

1
D

(τ1, τ2) ∼= Ext3−iO×
D/Z

1
D

(τ2, τ1)∨ for 0 ≤ i ≤ 3.

Proof. First, we have isomorphisms

ExtiO×
D/Z

1
D
(τ1, τ2) ∼= ExtiO×

D/Z
1
D
(1, τ∨1 ⊗ τ2) ∼= H i(O×

D/Z
1
D, τ

∨
1 ⊗ τ2) ∼= H i(U1

D/Z
1
D, τ

∨
1 ⊗ τ2)F×

p2 .

Second, since U1
D/Z

1
D is a Poincaré group of dimension three (cf. [Ser02, § 4.5]), Poincaré duality

induces an isomorphism

H i(U1
D/Z

1
D, τ) ∼= H3−i(U1

D/Z
1
D, τ

∨)∨

for 0 ≤ i ≤ 3 and any finite-dimensional representation τ . The result easily follows. �

3. Lattices in some locally algebraic representations of GL2(Zp)

Let K := GL2(Zp), Γ := GL2(Fp), and K1 := Ker(K � Γ). Let I (respectively, I1) denote the
upper Iwahori (respectively, pro-p Iwahori) subgroup of K. Let Z denote the centre of G, Z1 :=
Z ∩K1. Let

H :=
{(

[a] 0
0 [d]

)
, a, d ∈ F×

p

}
.

Let α : H → F× be the character of H sending
( [a] 0

0 [d]

)
to ad−1. By abuse of notation we also

denote the image of H in Γ by the same letter. If χ is a character of H, we denote by χs the
character sending h to χ(shs), where s :=

(
0 1
1 0

)
. We regard a character of H as a character of I

via the quotient map I � H; note that any smooth F-valued character of I arises in this way.
For m,n ∈ N, we denote

σm,n := SymmF2 ⊗ detn

which are naturally representations of Γ over F. We also regard them as representations of K via
the natural projection K � Γ. Up to isomorphism the set {σm,n, 0 ≤ m ≤ p− 1, 0 ≤ n ≤ p− 2}
forms a complete list of irreducible representations of Γ (and of K) over F.

We choose the standard basis of σm,n to be {XiY m−i; 0 ≤ i ≤ m}, with the action of Γ given
by (

a b
c d

)
XiY m−i = (aX + cY )i(bX + dY )m−i.

It is well-known that σI1m,n is one-dimensional (spanned byXm), on whichH acts via the character

sending
( [a] 0

0 [d]

)
to am+ndn, which we denote by χm,n. Similarly, the space of coinvariants (σm,n)I1

is one-dimensional on which H acts via χsm,n.
Recall E := W (F)[1/p], where O := W (F) is the ring of Witt vectors in F. If V is a finite-

dimensional representation of K over E, then V ◦ will denote a K-stable O-lattice in V and V ◦
its reduction modulo p. We will write V ss for the semisimplification of V ◦. Following [EGS15],
we say V is residually multiplicity free if any of the Jordan–Hölder factors of V ss occurs with
multiplicity one. In this section, a lattice always means a K-stable O-lattice.

3.1 Preliminaries
Denote by U(Zp) (respectively, B(Zp)) the (upper) unipotent (respectively, Borel) subgroup
of K. Note that H normalizes U(Zp).
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Proposition 3.1. LetW be a finite-dimensional F-representation of B(Zp), of dimension ≥ 2.

(i) Assume that WU(Zp) is one-dimensional and isomorphic to χ as an H-representation. Then

(Sym1F2 ⊗W )U(Zp) ∼= χχ1,0 ⊕ χχs1,0.
(ii) Assume that WU(Zp) is one-dimensional and isomorphic to χ as an H-representation. Then

(Sym1F2 ⊗W )U(Zp)
∼= χχ1,0 ⊕ χχs1,0.

Proof. (i) Let W0 := WU(Zp) ∼= χ. We first prove that (W/W0)U(Zp) is one-dimensional and iso-
morphic to χα−1 as an H-representation. Since dimFW ≥ 2 by assumption, W/W0 is nonzero,
hence (W/W0)U(Zp) is also nonzero because U(Zp) is a pro-p-group. On the other hand, we have
an H-equivariant injection

0→ (W/W0)U(Zp) → H1(U(Zp),W0),

which is actually an isomorphism because H1(U(Zp), χ) ∼= χα−1 is one-dimensional (see,
e.g., [Paš10, Lemma 5.5]). This proves the claim.

Any element w ∈ Sym1F2 ⊗W can be written as Y ⊗ w0 +X ⊗ w1 for (unique) w0, w1 ∈W .
Let g =

(
1 t
0 1

) ∈ U(Zp). Then

gw = (t̄X + Y )⊗ gw0 +X ⊗ gw1 = Y ⊗ gw0 +X ⊗ (t̄ · gw0 + gw1).

Hence, w is fixed by U(Zp) if and only if{
gw0 = w0,
gw1 = w1 − t̄gw0.

We have two cases.

(a) If w0 = 0, then the above condition becomes gw1 = w1, i.e. w1 ∈W0.
(b) If w0 �= 0, then w0 ∈W0 and w1 ∈ (W/W0)U(Zp). Moreover, (W/W0)U(Zp) is one-dimensional

as seen above and the condition gw1 = w1 − t̄w0 determines uniquely w1 (whenever w0 �= 0
is fixed).

The result easily follows.
(ii) This follows from part (i) via the fact that (WU(Zp))

∨ ∼= (W∨)U(Zp), and similarly for

Sym1F2 ⊗W. �

Corollary 3.2. Let V = IndKI χ for some smooth character χ : I → F×. Then

(Sym1F2 ⊗ V )U(Zp) ∼= χsχ1,0 ⊕ χsχs1,0 ⊕ χχ1,0,

(Sym1F2 ⊗ V )U(Zp)
∼= χsχ1,0 ⊕ χsχs1,0 ⊕ χχs1,0.

Proof. Mackey’s decomposition theorem gives an isomorphism V |I ∼= χ⊕ V ′, where V ′ :=
IndIHK1

χs. It is easy to see that V ′ has dimension p, and V ′U(Zp) ∼= V ′
U(Zp)

∼= χs. Thus,
Proposition 3.1 applies to Sym1F2 ⊗ V ′. The results then follow by noting that (Sym1F2 ⊗
χ)U(Zp) ∼= FX ⊗ χ and (Sym1F2 ⊗ χ)U(Zp)

∼= FY ⊗ χ. �

Consider the following situation: V1, V2 are two irreducible locally algebraic representations
of K, and Li ⊂ Vi is a lattice for i = 1, 2. Assume that we are given an F[K]-module W , together
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with K-equivariant morphisms ri : Li →W . Let L be the fibered product of r1 and r2, namely

0→ L→ L1 ⊕ L2
r1 − r2−→ W. (3.1)

Then L is a lattice in V1 ⊕ V2. We also call L the gluing lattice of L1 and L2 along W . We remark
that, if either r1 or r2 is surjective, then so is r1 − r2.
Lemma 3.3. Assume that r1 is surjective.

(i) There exists a short exact sequence

0→ Ker(r1)/pKer(r1)→ L/pL→ L2/pL2 → 0.

(ii) Let rL denote the composite morphism L→ L/pL→ L2/pL2, where the second map is as
in part (i). Then Ker(rL) = Ker(r1) + pL and

Ker(rL)/pKer(rL) ∼= Ker(r1)/pKer(r1)⊕ pL2/p
2L2.

Proof. (i) We have the following commutative diagram.

0 �� Ker(r1) ��
� �

��

L1

r1 ��
� �

id⊕0

��

W ��

��

0

0 �� L �� L1 ⊕ L2

r1−r2 �� W �� 0

By the snake lemma, it induces a short exact sequence 0→ Ker(r1)→ L→ L2 → 0. We obtain
the result by taking mod p reduction (as L2 is O-flat).

(ii) It is clear from part (i) that Ker(rL) = Ker(r1) + pL, so we have a short exact sequence

0→ Ker(r1) ∩ pL→ Ker(r1)⊕ pL→ Ker(rL)→ 0.

Taking mod p reduction and noting that Ker(r1) ∩ pL = pKer(r1) by part (i), we obtain an exact
sequence

0→ pKer(r1)/p2 Ker(r1)→ Ker(r1)/pKer(r1)⊕ pL/p2L→ Ker(rL)/pKer(rL)→ 0.

But the map pKer(r1)/p2 Ker(r1)→ Ker(r1)/pKer(r1) is identically zero, so the result follows
from part (i). �
Lemma 3.4. Assume that both r1 and r2 are surjective. Assume moreover that:

(a) cosoc(L1) = cosoc(W );
(b) cosoc(Ker(r1)) and cosoc(Ker(r2)) do not admit common Jordan–Hölder factors.

Then cosoc(L) ∼= cosoc(L2).

Proof. We need to show that the natural map

HomO[K](L2, σ)→ HomO[K](L, σ)

is an isomorphism for any Serre weight σ. By applying HomO[K](−, σ) to (3.1) we obtain a long
exact sequence

0→ Hom(W,σ)→ Hom(L1, σ)⊕Hom(L2, σ)→ Hom(L, σ)

→ Ext1(W,σ)→ Ext1(L1, σ)⊕ Ext1(L2, σ).

By assumption (a), the surjection r1 : L1 � W induces an isomorphism Hom(W,σ) ∼−→
Hom(L1, σ). To conclude we need to show that the morphism

Ext1(W,σ)→ Ext1(L1, σ)⊕ Ext1(L2, σ)
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is injective. For this, it is enough to prove that either Hom(Ker(r1), σ) or Hom(Ker(r2), σ)
vanishes, which is a consequence of assumption (b). �

Finally, we record a result which will be used later on.

Proposition 3.5. Let V be an irreducible smooth representation of K over E. Then the K-
representation Sym1E2 ⊗ V is again irreducible.

Proof. This is [STP01, Proposition 3.4]. �

3.2 Lattices in tame types
We consider the following representations of Γ over E, and view them as smooth representations
of K via the projection K � Γ.

• Let χ1, χ2 : F×
p → E× be two characters. Let I(χ1, χ2) denote the principal series represen-

tation IndΓ
B(Fp)

χ1 ⊗ χ2, where B(Fp) is the (upper) Borel subgroup of Γ. It is well-known
that I(χ1, χ2) is irreducible if χ1 �= χ2. If χ1 = χ2 = χ, then

I(χ, χ) ∼= (χ ◦ det)⊕ (sp⊗ χ ◦ det),

where sp denotes the Steinberg representation.
• Let ψ : F×

p2
→ E× be a character which does not factor through the norm map F×

p2
→ F×

p .
This is equivalent to requiring ψ �= ψp. There is an irreducible (p− 1)-dimensional repre-
sentation Θ(ψ) characterized by the isomorphism Θ(ψ)⊗ sp ∼= IndGL2(Fp)

F×
p2

ψ, where F×
p2
↪→

GL2(Fp) is a fixed group embedding. For two such characters ψ,ψ′, Θ(ψ) ∼= Θ(ψ′) if and
only if ψ′ ∈ {ψ,ψp}.

The Jordan–Hölder factors of the reduction mod p of any lattice in the above representations
are determined in [Dia07]. We recall the results in the next proposition.

Let x : Fp ↪→ F denote the natural embedding and [x] : Fp → O be the Teichmüller lift of
x which will be viewed as a multiplicative character of F×

p . Let ξ : Fp2 ↪→ F be an embedding
extending x. Let ξ′ := ξp and ζ := ξξ′. Let [ξ] : Fp2 → O be the Teichmüller lift of ξ which will
be viewed as a multiplicative character of F×

p2
. We have [x]p−1 = 1 and [ξ]p+1 = [x].

Proposition 3.6. (i) Let 0 ≤ a ≤ p− 1 and 0 ≤ b ≤ p− 2. Then

I([x]b, [x]b+a)
ss ∼= σa,b ⊕ σp−1−a,a+b.

(ii) Let ψ : F×
p2
→ E× with ψ �= ψp. Write ψ = [ξ]a+1+(p+1)b with 0 ≤ a ≤ p− 1 and 0 ≤ b ≤

p− 2. Then

Θ(ψ)
ss ∼= σa−1,b+1 ⊕ σp−2−a,a+b+1,

with the convention that σ−1,b = 0.
(iii) The representations I([x]b, [x]b+a) and Θ(ψ) are residually multiplicity free.

Proof. Part (i) follows from [Dia07, Proposition 1.1]; part (ii) follows from [Dia07,
Proposition 1.3]. Part (iii) follows directly from parts (i) and (ii). �

We recall Lemma 4.1.1 of [EGS15] on the lattices of finite-dimensional irreducible residually
multiplicity-free E-representations of K.

Proposition 3.7 [EGS15]. Let V be a finite-dimensional irreducible representation of K over
E which is residually multiplicity free. Let σ be a Jordan–Hölder factor of V

ss
. Then there is up

to homothety a unique lattice V ◦
σ in V such that the socle of V ◦

σ is σ. Similarly, there is up to
homothety a unique lattice V ◦,σ in V such that the cosocle of V ◦,σ is σ.
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3.3 Lattices in Sym1E2 ⊗ Θ(ψ)
Let pr : Q×

p → 1 + pZp denote the projection sending p to 1. As p > 2, we can define the square
root on 1 + pZp by the usual binomial formula. Define

Sym1E2 := Sym1E2 ⊗ (pr ◦ det)−1/2. (3.2)

The reason to introduce the twist is to make the central character of Sym1E2 to be trivial on
Z1. Note that the mod p reduction of Sym1O2 := Sym1O2 ⊗ (pr ◦ det)−1/2 still gives Sym1F2.

Let ψ : F×
p2
→ E× be a character with ψ �= ψp. Write ψ = [ξ]a+1+(p+1)b with 0 ≤ a ≤ p− 1

and 0 ≤ b ≤ p− 2. By Proposition 3.6, Θ(ψ)
ss

is multiplicity free and has two (respectively, one)
Jordan–Hölder factors if 1 ≤ a ≤ p− 2 (respectively, if a ∈ {0, p− 1}).

Assume first 1 ≤ a ≤ p− 2. By Propositions 3.6 and 3.7, there are two lattices T, T ′ in Θ(ψ)
such that

0→ σp−2−a,a+b+1 → T/pT → σa−1,b+1 → 0, (3.3)

0→ σa−1,b+1 → T ′/pT ′ → σp−2−a,a+b+1 → 0, (3.4)

where both extensions are nonsplit. Note that T/pT and T ′/pT ′ are Γ-representations as Θ(ψ)
itself is. Moreover, if we fix T and normalize T ′ (by a scalar) so that T ′ ⊂ T and T ′ � pT , then
by [EGS15, Proposition 5.2.3(1)] we have

pT ⊂ T ′ ⊂ T. (3.5)

Lemma 3.8. (i) We have (T/pT )I1 ∼= χp−2−a,a+b+1 and (T ′/pT ′)I1 ∼= χa−1,b+1.
(ii) We have (T/pT )I1 = χsa−1,b+1 and (T ′/pT ′)I1 ∼= χsp−2−a,a+b+1.

Proof. (i) We only give the proof in the case of T/pT . Using (3.3) we obtain an exact sequence

0→ (σp−2−a,a+b+1)I1 → (T/pT )I1 → (σa−1,b+1)I1 .

Assume for a contradiction that (T/pT )I1 is two-dimensional. Then we would obtain

(T/pT )I1 ∼= χp−2−a,a+b+1 ⊕ χa−1,b+1,

and consequently an I-equivariant injection χa−1,b+1 ↪→ T/pT . By Frobenius reciprocity, we
would get a nonzero K-equivariant map

IndKI χa−1,b+1 → T/pT.

By comparing the Jordan–Hölder factors, this map cannot be injective and must have image
isomorphic to σa−1,b+1 (see [BP12, Lemma 2.3]). This gives a contradiction because the sequence
(3.3) is nonsplit.

(ii) This is proved in a similar way as part (i). Alternatively, it can be deduced from part (i)
by taking dual. �

Recall that E is unramified over Qp. Consider Sym1O2 := OY ⊕OX, the standard lattice
in Sym1E2 and set

L := Sym1O2 ⊗O T, (3.6)

L′ := Sym1O2 ⊗O T ′. (3.7)
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Then we have2

L/pL ∼= Sym1F2 ⊗ T/pT,
L′/pL′ ∼= Sym1F2 ⊗ T ′/pT ′,

and (3.5) implies pL ⊂ L′ ⊂ L.

Lemma 3.9. The group K1 acts trivially on L/pL and L′/pL′.

Proof. This is because K1 acts trivially on both Sym1F2 and Θ(ψ). �
Lemma 3.10. (i) We have (L/pL)I1 ∼= χp−1−a,a+b+1 ⊕ χp−3−a,a+b+2 and (L′/pL′)I1 ∼= χa,b+1 ⊕

χa−2,b+2.
(ii) We have (L/pL)I1 ∼= χsa,b+1 ⊕ χsa−2,b+2 and (L′/pL′)I1 ∼= χsp−1−a,a+b+1 ⊕ χsp−3−a.a+b+2.

Proof. By Lemma 3.9, we have (L/pL)I1 = (L/pL)U(Zp) and (L/pL)I1 = (L/pL)U(Zp), so the
results follow from Proposition 3.1 and Lemma 3.8. �
Proposition 3.11. Assume 1 ≤ a ≤ p− 2.

(i) We have that L/pL is multiplicity free and has a two-step socle (and cosocle) filtration

(σp−3−a,a+b+2 ⊕ σp−1−a,a+b+1) — (σa,b+1 ⊕ σa−2,b+2) (3.8)

(with the convention σ−1,b+1 = σ−1,b+2 = 0). Moreover, the following nonsplit extensions

E1 = (σp−3−a,a+b+2 — σa,b+1),

E2 = (σp−1−a,a+b+1 — σa−2,b+2),

E3 = (σp−1−a,a+b+1 — σa,b+1)

occur in L/pL as subquotients, with the exception that E1 (respectively, E2) does not exist
if a = p− 2 (respectively, a = 1).

(ii) We have that L′/pL′ is multiplicity free and has a two-step socle (and cosocle) filtration

(σa,b+1 ⊕ σa−2,b+2) — (σp−3−a,a+b+2 ⊕ σp−1−a,a+b+1).

(with the convention σ−1,b+1 = σ−1,b+2 = 0). Moreover, the following nonsplit extensions

E′
1 = (σa,b+1 — σp−3−a,a+b+2),

E′
2 = (σa−2,b+2 — σp−1−a,a+b+1),

E′
3 = (σa,b+1 — σp−1−a,a+b+1)

occur in L′/pL′ as subquotients, with the exception that E′
1 (respectively, E′

2) does not exist
if a = p− 2 (respectively, a = 1).

Proof. It suffices to prove part (i). Recall the following facts (see [BP12, Lemma 3.8])

Sym1F2 ⊗ σa−1,b+1
∼= σa,b+1 ⊕ σa−2,b+2,

Sym1F2 ⊗ σp−2−a,a+b+1
∼= σp−1−a,a+b+1 ⊕ σp−3−a,a+b+2,

with the convention σ−1,b+1 = σ−1,b+2 = 0. Using (3.3) this implies that L/pL ∼= Sym1F2 ⊗ T/pT
has a two-step filtration as claimed in (3.8), and is multiplicity free. By Lemma 3.10, the filtration
gives exactly the socle (and cosocle) filtration. This also completes the proof if a ∈ {1, p− 2}.
2 To remind ourselves of the distinguished role of Sym1F2, here and below we write Sym1F2 instead of σ1,0.

2602

https://doi.org/10.1112/S0010437X24007449 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007449


On some mod p representations of quaternion algebra over Qp

Assume 2 ≤ a ≤ p− 3 in the rest of the proof. For a Serre weight σ, denote by InjΓ(σ) the
injective envelope of σ in the category of F[Γ]-modules; we remark that InjΓ(σ) is also projective.
Let W1 denote the image of the unique (up to scalar) nonzero map InjΓ(σa−2,b+2)→ L/pL. Since
σp−3−a,a+b+2 is not a Jordan–Hölder factor of InjΓ(σa−2,b+2) (see [BP12, Lemma 3.2]), W1 does
not admit σp−3−a,a+b+2 as a subquotient. Since cosoc(W1) ∼= σa−2,b+2 by construction, we deduce
from (3.8) that

W1
∼= (σp−1−a,a+b+1 — σa−2,b+2),

i.e. the nonsplit extension E2 occurs in L/pL. Consequently, the cokernel of the inclusion W1 ↪→
L/pL, denoted by W2, has {σa,b+1, σp−3−a,a+b+2} as the set of Jordan–Hölder factors, hence is
isomorphic to the nonsplit extension E1 = (σp−3−a,a+b+2 — σa,b+1) because σp−3−a,a+b+2 does
not occur in the cosocle of W2 by (3.8).

We are left to show that L/pL is a nonsplit extension ofW2 byW1 (this implies that E3 occurs
in L/pL). Assume for a contradiction that L/pL ∼= W1 ⊕W2. Let V denote the principal series
IndKI χ

s
a+1,b which is isomorphic to the (unique) nonsplit extension (σa+1,b — σp−2−a,a+b+1).

By [BP12, § 3], there exists a short exact sequence

0→ T/pT → InjΓ(σp−2−a,a+b+1)→ V → 0,

which induces a short exact sequence

0→ L/pL→ Sym1F2 ⊗ InjΓ(σp−2−a,a+b+1)→ Sym1F2 ⊗ V → 0.

By Lemma 3.12 below, if 2 ≤ a ≤ p− 4, then

Sym1F2 ⊗ InjΓ(σp−2−a,a+b+1) = InjΓ(σp−1−a,a+b+1)⊕ InjΓ(σp−3−a,a+b+2).

Comparing the socles, it is clear thatW2 ∩ InjΓ(σp−1−a,a+b+1) = 0, thusW2 ↪→ InjΓ(σp−3−a,a+b+2).
Moreover, we have

L/pL ∩ InjΓσp−3−a,a+b+2 = W2,

which induces a (nonzero) morphism

InjΓ(σp−3−a,a+b+2)/W2 → Sym1F2 ⊗ V.
However, by [BP12, § 3] we have

InjΓ(σp−3−a,a+b+2)/W2
∼= IndΓ

B(Fp)
χp−3−a,a+b+2,

so by Frobenius reciprocity we obtain a nonzero I-equivariant morphism

χp−3−a,a+b+2 → Sym1F2 ⊗ V.
But this contradicts Corollary 3.2, by which (Sym1F2 ⊗ V )I1 ∼= χa+2,b ⊕ χa,b+1 ⊕ χp−1−a,a+b+1.

The case a = p− 3 is a little subtle. By Lemma 3.12 below we have

Sym1F2 ⊗ InjΓ(σ1,b−1) = InjΓ(σ2,b−1)⊕ InjΓ(σ0,b)⊕ σp−1,b.

Comparing the socles, one checks that W2 embeds into InjΓ(σ0,b) and actually

L/pL ∩ InjΓ(σ0,b) = W2.

Hence, we obtain a nonzero morphism from InjΓ(σ0,b)/W2
∼= σ0,b to Sym1F2 ⊗ V . On the other

hand, σp−1,b also occurs in Sym1F2 ⊗ V and, in fact, is a direct summand because σp−1,b is an
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injective F[Γ]-module. Thus, there exists an embedding

σ0,b ⊕ σp−1,b ↪→ Sym1F2 ⊗ V.
However, by Corollary 3.2 we have (Sym1F2 ⊗ V )I1 ∼= χp−1,b ⊕ χp−3,b+1 ⊕ χ2,b−1, in which the
character χp−1,b (= χ0,b) occurs only once. This gives a contradiction and finishes the proof. �

Recall the following facts (see [BP12, § 3]): InjΓ(σa,b) is of dimension 2p if 1 ≤ a ≤ p− 2;
InjΓ(σp−1,b) ∼= σp−1,b is of dimension p; InjΓ(σ0,b) ∼= (σ0,b — σp−3,b+1 — σ0,b) is of dimension p.

Lemma 3.12. (i) If a = 1, then Sym1F2 ⊗ InjΓ(σ1,b) ∼= InjΓ(σ2,b)⊕ InjΓ(σ0,b+1)⊕ σp−1,b+1.
(ii) If a = p− 2, then Sym1F2 ⊗ InjΓ(σp−2,b) ∼= σp−1,b ⊕ σp−1,b ⊕ InjΓ(σp−3,b+1).
(iii) If 0 ≤ a ≤ p− 1 and a /∈ {1, p− 2}, then Sym1F2 ⊗ InjΓ(σa,b)=InjΓ(σa+1,b)⊕ InjΓ(σa−1,b+1)

with the convention InjΓ(σ−1,b+1) = InjΓ(σp,b) = 0.

Proof. Using the fact that Sym1F2 ⊗ InjΓσ is an injective object in the category of F[Γ]-modules,
the results can be easily deduced from [BP12, Lemma 3.8]. �

Finally, we treat the case a ∈ {0, p− 1}.
Proposition 3.13. Assume a ∈ {0, p− 1}. There are two lattices (unique up to homothety)
L,L′ of Sym1E2 ⊗Θ(ψ) such that pL ⊂ L′ ⊂ L and

L/pL ∼= σp−1,b+1 ⊕ σp−3,b+2,

L′/pL′ ∼= (σp−1,b+1 — σp−3,b+2).

The lattice pL is then identified with the kernel of the natural projection L′ � σp−3,b+2.
Moreover, (L′/pL′)K1

∼= σp−3,b+2.

Proof. Let T be any lattice in Θ(ψ) and L := Sym1O2 ⊗ T . Then T/pT ∼= σp−2,b+1 by
Proposition 3.6, and consequently L/pL ∼= σp−1,b+1 ⊕ σp−3,b+2 by [BP12, Lemma 3.8]. Let L′

be the kernel of the composition L→ L/pL
p1� σp−1,b+1. Then pL � L′ � L. Moreover, we have

a short exact sequence
0→ pL/pL′ → L′/pL′ → σp−3,b+2 → 0. (3.9)

We claim that (3.9) induces an isomorphism (L′/pL′)K1

∼−→ σp−3,b+2; this will imply that L′/pL′

is a nonsplit extension of σp−3,b+2 by σp−1,b+1.
The proof of Proposition 3.1 shows that there exist w0, w1 ∈ T/pT such that X ⊗ w0 and

Y ⊗ w0 +X ⊗ w1 span (L/pL)I1 . Comparing the H-action, we must have

(σp−1,b+1)I1 = F(X ⊗ w0), (σp−3,b+2)I1 = F(Y ⊗ w0 +X ⊗ w1).

Let w0, w1 ∈ T be a lift of w0, w1, respectively. From the definition of L′ we see that Y ⊗ w0 +
X ⊗ w1 ∈ L′. As K1 acts trivially on T , we have((

1 p
0 1

)
− 1

)
(Y ⊗ w0 +X ⊗ w1) = (pX)⊗ w0 ∈ pL.

Since (pX)⊗ w0 generates pL/pL′, the claim follows.
The uniqueness of L′ (up to homothety) follows from Proposition 3.7. Since pL is identified

with the kernel of the natural projection L′ � σp−3,b+2, the uniqueness of L follows. �

3.3.1 Sublattices in L. In this subsection we specify some sublattices in L in the case 1 ≤
a ≤ p− 2. Recall that σ−1,b+1 = σ−1,b+2 = 0 by our convention.

Let L1 := Ker(L � L/pL � σa−2,b+2). It is clear that pL ⊂ L1 ⊂ L.
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Proposition 3.14. The following nonsplit extensions

(σp−3−a,a+b+2 — σa,b+1),

(σp−1−a,a+b+1 — σa,b+1),

(σa−2,b+2 — σp−1−a,a+b+1)

occur in L1/pL1 as subquotients. Consequently, L1/pL1 has a cosocle filtration

σa−2,b+2 — (σp−1−a,a+b+1 ⊕ σp−3−a,a+b+2) — σa,b+1

and L1 is the unique (up to homothety) lattice in Sym1E2 ⊗Θ(ψ) whose reduction has cosocle
σa,b+1. Moreover, we have

(L1/pL1)K1 = (σp−1−a,a+b+1 ⊕ σp−3−a,a+b+2) — σa,b+1.

Proof. By construction, we have pL ⊂ L1 and L1/pL = Ker(L/pL→ σa−2,b+2). By
Proposition 3.11(i), the cosocle filtration of L1/pL is

(σp−1−a,a+b+1 ⊕ σp−3−a,a+b+2) — σa,b+1,

thus the nonsplit extensions (σp−3−a,a+b+2 — σa,b+1) and (σp−1−a,a+b+1 — σa,b+1) occur in
L1/pL, hence also in L1/pL1.

We need to show that the nonsplit extension (σa−2,b+2 — σp−1−a,a+b+1) also occurs in
L1/pL1. For this we note that pL1 ⊂ L′ ⊂ L1, where L′ is defined in (3.7). Consequently, L′/pL1

is a subrepresentation of L1/pL1, and it is easy to see that

JH(L′/pL1) = {σa−2,b+2, σp−1−a,a+b+1, σp−3−a,a+b+2}.
As a quotient of L′/pL′, L′/pL1 admits the nonsplit extension (σa−2,b+2 — σp−1−a,a+b+1) as a
subquotient, see Proposition 3.11(ii). The structure of (L1/pL1)K1 and other statements easily
follow. �

Let L′
1 := Ker(L′ � L′/pL′ � σp−3−a,a+b+2), where L′ is defined in (3.7). Then pL′ ⊂ L′

1 ⊂
L′. Alternatively, L′

1 is characterized by the following exact sequence:

0→ pL→ L′
1 → σp−1−a,a+b+1 → 0. (3.10)

In a similar way to Proposition 3.14, we have the following result.

Proposition 3.15. The nonsplit extensions

(σp−3−a,a+b+2 — σa,b+1),

(σa,b+1 — σp−1−a,a+b+1),

(σa−2,b+2 — σp−1−a,a+b+1)

occur in L′
1/pL

′
1. Consequently, L′

1/pL
′
1 has a cosocle filtration

σp−3−a,a+b+2 — (σa−2,b+2 ⊕ σa,b+1) — σp−1−a,a+b+1,

and L′
1 is the unique (up to homothety) lattice in Sym1E2 ⊗Θ(ψ) whose reduction has cosocle

σp−1−a,a+b+1. Moreover, we have

(L′
1/pL

′
1)K1 = (σa−2,b+2 ⊕ σa,b+1) — σp−1−a,a+b+1.

Let L2 := Ker(L � L/pL � (σp−3−a,a+b+2 — σa,b+1)). Then pL ⊂ L2 ⊂ L and there is a
short exact sequence

0→ pL→ L2 → (σp−1−a,a+b+1 — σa−2,b+2)→ 0. (3.11)
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Proposition 3.16. Assume 2 ≤ a ≤ p− 2. Then the nonsplit extensions

(σp−3−a,a+b+2 — σa,b+1),

(σa,b+1 — σp−1−a,a+b+1),

(σp−1−a,a+b+1 — σa−2,b+2)

occur in L2/pL2. Consequently, L2/pL2 has a cosocle filtration

σp−3−a,a+b+2 — σa,b+1 — σp−1−a,a+b+1 — σa−2,b+2,

and L2 is the unique (up to homothety) lattice in Sym1E2 ⊗Θ(ψ) whose reduction has cosocle
σa−2,b+2. Moreover, we have

(L2/pL2)K1 = (σp−1−a,a+b+1 — σa−2,b+2).

Proof. Since L2/pL2 is an extension of L2/pL by pL/pL2, it suffices to show that the nonsplit
extension (σa,b+1 — σp−1−a,a+b+1) occurs in L2/pL2.

It follows from (3.10) and (3.11) that pL ⊂ L′
1 ⊂ L2 and there is a short exact sequence

0→ L′
1 → L2 → σa−2,b+2 → 0.

This implies that

L′
1/pL2

∼= (L′
1/pL

′
1)/(σa−2,b+2),

and the nonsplit extension (σa,b+1 — σp−1−a,a+b+1) occurs in L′
1/pL2 by Proposition 3.15. Since

L′
1/pL2 embeds in L2/pL2, this nonsplit extension also occurs in L2/pL2. �

The sublattices L1 and L2 of L satisfy the following property.

Proposition 3.17. Assume 3 ≤ a ≤ p− 2. Fix i ∈ {1, 2}. Then for every x ∈ pL, there exist
r ∈ N, k1, . . . , kr ∈ K1, y1, . . . , yr ∈ Li, such that

x = (k1 − 1)y1 + · · ·+ (kr − 1)yr.

The proof of Proposition 3.17 requires a technique introduced in [BHHMS23, § 7], so we first
recall some notation. Let sl2,Fp be the Lie algebra consisting of trace-zero 2× 2 matrices with
coefficients in Fp. It is a three-dimensional vector space over Fp with a basis

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
subject to the Lie bracket relations

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

Let (V, ρ) be a continuous finite-dimensional representation of K/Z1 over E. Assume that V ◦ is
a K-stable O-lattice in V such that K1 acts trivially on V ◦/pV ◦. Breuil et al. [BHHMS23, § 7.1]
defined a Lie algebra action of sl2,Fp on V ◦/pV ◦, which induces an F-linear map

βV ◦ : sl2,Fp ⊗Fp (V ◦/pV ◦)→ V ◦/pV ◦

sending x⊗ v to p−1(ρ(exp(px̃))ṽ − ṽ) (mod pV ◦), where x̃ ∈ sl2,Zp is a trace-zero 2× 2 matrix
with coefficients in Zp lifting x ∈ sl2,Fp , and ṽ ∈ V ◦ is a lift of v ∈ V ◦/pV ◦. The definition does not

depend on the choice of the lifts. Moreover, letting K act on sl2,Fp by conjugation k · x := kxk
−1
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(for k ∈ K and k 
→ k ∈ GL2(Fp)), βV ◦ is K-equivariant. Indeed,

βV ◦(k(x⊗ v)) = βV ◦(kxk−1 ⊗ kv) = p−1(ρ(exp(pkx̃k−1))kṽ − kṽ) (mod pV ◦)

= p−1(ρ(k exp(px̃))ṽ − kṽ) (mod pV ◦)

= kβV ◦(x⊗ v).
In the special case V = Sym1E2 and V ◦ = Sym1O2, we easily check that the map βSym1O2 :

sl2,Fp ⊗ Sym1F2 → Sym2F2 is given by

βSym1O2(α⊗ �(X,Y )) = �(a11X + a21Y, a12X − a11Y ) (3.12)

for α =
( a11 a12
a21 −a11

) ∈ sl2,Fp and �(X,Y ) ∈ Sym1F2.

Proof of Proposition 3.17. We only give the proof for L2 (which will be used in the proof of
Proposition 3.19). Take V = Sym1E2 ⊗Θ(ψ) and V ◦ = L = Sym1O2 ⊗ T in the above discus-
sion. Since K1 acts trivially on T , the map βL : sl2,Fp ⊗ Sym1F2 ⊗ T/pT → Sym1F2 ⊗ T/pT is
given by (cf. [BHHMS23, Remark 7.1.3])

βL = βSym1O2 ⊗ IdT/pT . (3.13)

Let W1 = (σp−1−a,a+b+1 — σa−2,b+2) be the subrepresentation of L/pL defined in the proof
of Proposition 3.11. Then L2 is exactly the preimage of W1 in L under the surjection L �
L/pL. Taking W = W1 (and V ◦ = L) in [BHHMS23, Lemma 7.1.4], we obtain the following
commutative diagram in which both rows are exact.

sl2,Fp ⊗W1

ϕ

��

βL|sl2,Fp
⊗W1

��
� �

��

L/pL

��

p
�� (L2/p

2L)K1� �

��

�� W1� �

��

�� 0

sl2,Fp ⊗ L/pL
βL �� L/pL

p
�� (L/p2L)K1

�� L/pL �� 0

To prove the proposition, it suffices to check that the dotted map ϕ, which is the composite

ϕ : sl2,Fp ⊗W1 ↪→ sl2,Fp ⊗ L/pL βL−→ L/pL, (3.14)

is surjective, since this implies that the images of pL and p2L in (L2)K1 coincide. Recall that
T/pT fits into a short exact sequence

0→ σp−2−a,a+b+1 → T/pT → σa−1,b+1 → 0

and W1 ∩ (Sym1F2 ⊗ σp−2−a,a+b+1) = σp−1−a,a+b+1 (see the proof of Proposition 3.11). Using
(3.13), we see that ϕ sends sl2,Fp ⊗ σp−1−a,a+b+1 to Sym1F2 ⊗ σp−2−a,a+b+1, so that ϕ induces a
K-equivariant map

ϕ : sl2,Fp ⊗ σa−2,b+2 ↪→ sl2,Fp ⊗ Sym1F2 ⊗ σa−1,b+1 → Sym1F2 ⊗ σa−1,b+1,

where the second map is given by βSym1O2 ⊗ Idσa−1,b+1
. By Proposition 3.11(i), cosoc(L/pL) =

Sym1F2 ⊗ σa−1,b+1. Hence, to prove ϕ is surjective it suffices to prove ϕ is surjective.
We prove that ϕ is surjective by a direct computation (analogous to [BHHMS23,

Lemma 7.2.1]). Fix a nonzero element v ∈ (σa−1,b+1)U(Zp). Then (σa−1,b+1)U(Zp) = Fv and
the group H = {( [a] 0

0 [d]

)
, a, d ∈ F×

p } acts on v by χa−1,b+1. Recall that there is a natural
action of sl2,Fp on σa−1,b+1 and the set {v, f(v), . . . , fa−1(v)} forms an F-basis of σa−1,b+1,
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see [Paš04, § 4.2.1]. By construction, we have e(v) = 0 and h(v) = (a− 1)v. Consider the following
nonzero elements of Sym1F2 ⊗ σa−1,b+1:

l1 := X ⊗ v, l2 := Y ⊗ v − 1
a− 1

X ⊗ f(v).

It is easy to see that H acts on l1 (respectively, l2) by χa,b+1 (respectively, χa−2,b+2).
Moreover, using the fact ef(v) = fe(v) + h(v) = (a− 1)v, one checks that e(l1) = e(l2) = 0, so
that l1 and l2 are fixed by U(Zp). Since Sym1F2 ⊗ σa−1,b+1

∼= σa,b+1 ⊕ σa−2,b+2, we deduce that
l1 ∈ (σa,b+1)U(Zp) and l2 ∈ (σa−2,b+2)U(Zp) under this decomposition. In particular, Sym1F2 ⊗
σa−1,b+1 is generated by l1 and l2 as a K-representation.

Since ϕ is K-equivariant, to finish the proof it suffices to prove that both l1 and l2 lie in the
image of ϕ. We let (recall a ≥ 3)

w1 := e⊗ l2, w2 := −h⊗ l2 − 2
a− 2

e⊗ f(l2)

be elements of sl2,Fp ⊗ σa−2,b+2 and claim that ϕ(wi) = li, i = 1, 2. Indeed, as βSym1O2(e⊗X) = 0
and βSym1O2(e⊗ Y ) = X by (3.12),

ϕ(w1) = βL(e⊗ l2) = βL

(
e⊗

(
Y ⊗ v − 1

a− 1
X ⊗ f(v)

))
= βSym1O2(e⊗ Y )⊗ v − 1

a− 1
βSym1O2(e⊗X)⊗ f(v) = X ⊗ v = l1.

Similarly, ϕ(w2) = βL(−h⊗ l2 − (2/(a− 2))e⊗ f(l2)). We have

f(l2) = f

(
Y ⊗ v − 1

a− 1
X ⊗ f(v)

)
= Y ⊗ f(v)− 1

a− 1
(f(X)⊗ f(v) +X ⊗ f2(v))

=
a− 2
a− 1

Y ⊗ f(v)− 1
a− 1

X ⊗ f2(v),

hence

βL(e⊗ f(l2)) =
a− 2
a− 1

βSym1O2(e⊗ Y )⊗ f(v)− 1
a− 1

βSym1O2(e⊗X)⊗ f2(v)

=
a− 2
a− 1

X ⊗ f(v).

As h(X) = X and h(Y ) = −Y by (3.12), we obtain

ϕ(w2) = −βL
(
h⊗

(
Y ⊗ v − 1

a− 1
X ⊗ f(v)

))
− 2
a− 2

· a− 2
a− 1

X ⊗ f(v)

= Y ⊗ v +
1

a− 1
X ⊗ f(v)− 2

a− 1
X ⊗ f(v) = l2.

This proves the claim and finishes the proof of the proposition. �

3.4 Gluing lattices
Assume 1 ≤ a ≤ p− 3. Consider the following three characters of F×

p2
:

ψ1 = [ξ]a+2+(p+1)b, ψ2 = [ξ]a+3+(p+1)(b−1), ψ3 = [ξ]a+1+(p+1)b. (3.15)
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In this subsection, we construct a lattice R̃ in

Θ(ψ1)⊕ (Sym1E2 ⊗Θ(ψ2))⊕ (Sym1E2 ⊗Θ(ψ3))

such that R̃/pR̃ is killed by m2
K1

and cosoc(R̃/pR̃) = σa,b+1. We divide the construction into two
cases: 1 ≤ a ≤ p− 4 and a = p− 3.

3.4.1 The case 1≤ a≤ p− 4. Denote byW the nonsplit Γ-extension (σp−3−a,a+b+2 — σa,b+1).

(1) Let R1 be the unique (up to homothety) lattice in Θ(ψ1) such that cosoc(R1/pR1) = σa,b+1.
Then R1/pR1

∼= W . Let r1 denote the composite

r1 : R1 � R1/pR1
∼= W.

(2) By Proposition 3.6 and [BP12, Lem. 3.8], we have

JH(Sym1E2 ⊗Θ(ψ2)
ss
) = {σa,b+1, σp−3−a,a+b+2, σa+2,b, σp−5−a,a+b+3}

with the convention σ−1,b = 0. Let R2 ⊂ Sym1E2 ⊗Θ(ψ2) be the unique (up to homo-
thety) lattice such that cosoc(R2/pR2) = σa,b+1. The structure of R2/pR2 is given by
Proposition 3.16, i.e.

R2/pR2
∼= (σp−5−a,a+b+3 — σa+2,b — σp−3−a,a+b+2 — σa,b+1). (3.16)

(3) By Proposition 3.6 and [BP12, Lemma 3.8], we have

JH(Sym1E2 ⊗Θ(ψ3)
ss
) = {σa,b+1, σp−3−a,a+b+1, σa−2,b+2, σp−1−a,a+b+1}

with the convention σ−1,b+2 = 0. Let R3 ⊂ Sym1E2 ⊗Θ(ψ3) be the unique (up to homo-
thety) lattice such that cosoc(R3) ∼= σa,b+1. By Proposition 3.14, R3/pR3 has a cosocle
filtration

σa−2,b+2 — (σp−1−a,a+b+1 ⊕ σp−3−a,a+b+2) — σa,b+1. (3.17)

Note that there exists a surjection R2 � W which we denote by r2; let R′
2 := Ker(r2). The

structure of R′
2/pR

′
2 is determined in Proposition 3.11(i). Precisely, it has a two-step socle and

cosocle filtration

(σp−3−a,a+b+2 ⊕ σp−5−a,a+b+3) — (σa+2,b ⊕ σa,b+1) (3.18)

and all possible extensions do occur.
Similarly, there exists a surjection R3 � W which we denote by r3; let R′

3 := Ker(r3). The
structure of R′

3/pR
′
3 is also determined in Proposition 3.11(i). Precisely, it has a cosocle filtration

σp−3−a,a+b+2 — (σa,b+1 ⊕ σa−2,b+2) — σp−1−a,a+b+1 (3.19)

and all possible extensions do occur.

3.4.2 Glue R1 and R2 (1 ≤ a ≤ p− 4). Let R be the lattice in Θ(ψ1)⊕ (Sym1E2 ⊗Θ(ψ2))
obtained by gluing R1 and R2 along W , i.e. R is given by the short exact sequence

0→ R→ R1 ⊕R2
r1 − r2−→ W → 0. (3.20)

Let rR denote the composition R � R/pR � R1/pR1
∼= W .
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Lemma 3.18. We have that:

(i) rR induces a short exact sequence

0→ R′
2/pR

′
2 → R/pR→W → 0; (3.21)

in particular, R/pR is killed by m2
K1

;
(ii) Ker(rR) = R′

2 + pR and

Ker(rR)/pKer(rR) ∼= R′
2/pR

′
2 ⊕W.

Proof. This is a special case of Lemma 3.3 applied to L1 = R2 and L2 = R1. �
Proposition 3.19. The short exact sequence (3.21) induces an isomorphism (R/pR)K1

∼= W .
In particular, cosoc(R/pR) = σa,b+1.

Proof. By Lemma 3.18(i), it suffices to show that for any x ∈ R′
2, there exist r ∈ N, k1, . . . , kr ∈

K1, v1, . . . , vr ∈ R such that x = (k1 − 1)v1 + · · ·+ (kr − 1)vr. By Proposition 3.17 (applied to
L = p−1R′

2 and L2 = R2), there exist r ∈ N, k1, . . . , kr ∈ K1, y1, . . . , yr ∈ R2 such that

x = (k1 − 1)y1 + · · ·+ (kr − 1)yr.

For 1 ≤ i ≤ r, choose zi ∈ R1 such that r1(zi) = r2(yi) and let vi = (zi, yi) ∈ R. Since K1 acts
trivially on R1, we have

(0, x) =
( r∑
i=1

(ki − 1)zi,
r∑
i=1

(ki − 1)yi

)
=

r∑
i=1

(ki − 1)vi,

giving the result. �

3.4.3 Glue R and R′
3 (1 ≤ a ≤ p− 4). We define R̃ to be the lattice in Θ(ψ1)⊕ (Sym1E2 ⊗

Θ(ψ2))⊕ (Sym1E2 ⊗Θ(ψ3)) obtained by gluing R and R3 along W , i.e.

0→ R̃→ R⊕R3
rR − r3−→ W → 0. (3.22)

Proposition 3.20. (i) There exists a short exact sequence

0→ Ker(rR)/pKer(rR)→ R̃/pR̃→ R3/pR3 → 0.

(ii) We have cosoc(R̃/pR̃) = σa,b+1.

Proof. (i) This is a special case of Lemma 3.3.
(ii) This is a special case of Lemma 3.4, with L1 = R and L2 = R3. First, condition (a) in

Lemma 3.4 holds by Proposition 3.19. Second, we have

cosoc(Ker(rR)) = cosoc(W )⊕ cosoc(R′
2) = σa,b+1 ⊕ σa,b+1 ⊕ σa+2,b

by (3.18) and Lemma 3.18(ii), and

cosoc(Ker(r3)) ∼= σp−1−a,a+b+1

by (3.19), hence condition (b) in Lemma 3.4 also holds. �
Proposition 3.21. Let V denote the quotient of R3/pR3 by σa−2,b+2 via (3.17). Then there
exists a short exact sequence

0→ R′
2/pR

′
2 ⊕W ⊕ σa−2,b+2 → R̃/pR̃→ V → 0. (3.23)

In particular, R̃/pR̃ is killed by m2
K1

.
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Proof. By definition, we have

0→ σa−2,b+2 → R3/pR3 → V → 0.

Note that σa−2,b+2 has no nontrivial extensions with any Jordan–Hölder factor of W and
of R2/pR2, using [BP12, Corollary 5.6] and Lemma 3.22 below. The result easily follows by
Proposition 3.20. �
Lemma 3.22. Assume 2 ≤ a ≤ p− 2. Then Ext1K(σa−2,b+2, σa,b+1) = 0.

Proof. We have a short exact sequence 0→ σp+1−a,a+b → IndKI χa−2,b+2 → σa−2,b+2 → 0. Since
Ext1K(σp+1−a,a+b, σa,b+1) = 0 by [BP12, Corollary 5.6], we are reduced to proving

Ext1K(IndKI χa−2,b+2, σa,b+1) = 0,

equivalently Ext1I(χa−2,b+2, σa,b+1) = 0 by Frobenius reciprocity.
Consider an I-extension 0→ σa,b+1|I → E → χa−2,b+2 → 0. We first prove that it splits as

U(Zp)-representation. Since σa,b+1 is a cyclic F[[U(Zp)]]-module, we have H1(U(Zp), σa,b+1) ∼=
H1(U(Zp), χsa,b+1), where χsa,b+1 is identified with the U(Zp)-cosocle of σa,b+1. As seen in the
proof of Proposition 3.1, we get

H1(U(Zp), σa,b+1) ∼= χsa,b+1α
−1.

As 2 ≤ a ≤ p− 2, this implies χa−2,b+2 �= χsa,b+1α
−1, and so Ext1U(Zp)

(χa−2,b+2, σa,b+1) = 0.
As a consequence, we may choose v ∈ E which is fixed by U(Zp) and on which H acts via

χa−2,b+2. Next, as in the proof of [Paš10, Proposition 7.2], we show that v is actually fixed by
I1, showing that E splits as I-representation. This finishes the proof. �

We obtain the following corollary.

Corollary 3.23. We have that R̃/pR̃ has cosocle σa,b+1 and is a quotient of
(ProjO[[K/Z1]] σa,b+1)/m2

K1
.

3.4.4 The case a = p− 3. In this case, we need to slightly modify the above construction.
We only sketch the construction and leave the detail to the reader.

(1) Let R1 be the unique (up to homothety) lattice in Θ(ψ1) such that cosoc(R1/pR1) =
σp−3,b+1. Then

R1/pR1
∼= (σ0,b — σp−3,b+1) =: W.

Let r1 denote the projection R1 � σp−3,b+1.
(2) By Proposition 3.6 and [BP12, Lemma 3.8], we have

JH(Sym1O2 ⊗Θ(ψ2)
ss
) = {σp−1,b, σp−3,b+1}.

Let R2 be the unique lattice in Sym1E2 ⊗Θ(ψ2) such that cosoc(R2/pR2) = σp−3,b+1. Then

R2/pR2
∼= (σp−1,b — σp−3,b+1).

Let r2 denote the projection R2 � σp−3,b+1 and R′
2 := Ker(r2). Proposition 3.13 implies

that
R′

2/pR
′
2
∼= σp−3,b+1 ⊕ σp−1,b.

(3) Let R3 and R′
3 be the lattices in Sym1E2 ⊗Θ(ψ3) constructed as in the case 1 ≤ a ≤

p− 4. Namely, R3 has cosocle σp−3,b+1, and R′
3 := Ker(r3) where r3 denotes the projection

R3 � W .
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We first glue R1 and R2 along σp−3,b+1, namely

0→ R→ R1 ⊕R2
r1 − r2−→ σp−3,b+1 → 0.

Then by Lemma 3.3(i) there is a short exact sequence

0→ R′
2/pR

′
2 → R/pR

rR−→W → 0.

Moreover, as in the proof of Proposition 3.19 one can show that rR induces an isomorphism
(R/pR)K1

∼= W . In particular, cosoc(R/pR) ∼= σp−3,b+1.
The gluing of R and R3 is exactly as in the case 1 ≤ a ≤ p− 4. Let R̃ be defined by

0→ R̃→ R⊕R3
rR − r3−→ W → 0.

One can follow the proof of Proposition 3.21 and Corollary 3.23, to show the following result.

Proposition 3.24. (i) We have that R̃/pR̃ has cosocle σp−3,b+1.
(ii) Let V denote the quotient of R3/pR3 by σp−5,b+2. Then there is a short exact sequence

0→W ⊕R′
2/pR

′
2 ⊕ σp−5,b+2 → R̃/pR̃→ V → 0. (3.24)

As a consequence, R̃/pR̃ is a quotient of (ProjO[[K/Z1]] σp−3,b+1)/m2
K1

.

4. Galois deformation rings

Assume p ≥ 5. Let ρ : GQp → GL2(F) be a two-dimensional continuous representation of GQp =
Gal(Qp/Qp). In this section, we study the congruence relation of Galois deformation rings of
different (tame) types. Our method does not allow us to determine the precise structure of the
Galois deformation rings, but is enough for application in § 6.3.

4.1 Preliminaries
We collect some results on the set of Serre weights associated to ρ and some results of Paškūnas
and of Morra. We prove in § 4.2.2 a criterion for some Galois deformation rings to be regular.

4.1.1 Serre weights. Let ω (respectively, ω2) be the mod p cyclotomic character (respectively,
Serre’s fundamental character of niveau 2) of GQp . Up to isomorphism, ρ has one of the following
forms:

Case 1. ρ is absolutely irreducible and ρ|Ip ∼
( ωr+1

2 0

0 ω
p(r+1)
2

)⊗ ωs+1, 0 ≤ r ≤ p− 1, 0 ≤ s ≤ p− 2;

Case 2. ρ ∼ (
unr1ωr+1 ∗

0 unr2

)⊗ ωs+1 is reducible nonsplit, where unr1, unr2 are unramified
characters, and 0 ≤ r ≤ p− 2, 0 ≤ s ≤ p− 2;

Case 3. ρ ∼ (
unr1ωr+1 0

0 unr2

)⊗ ωs+1 is reducible split, where unr1, unr2 are unramified characters,
and 0 ≤ r ≤ p− 2, 0 ≤ s ≤ p− 2.

Let W (ρ) be the set of Serre weights associated to ρ in [BDJ10]. We have the following
explicit description of W (ρ).

Theorem 4.1 [BDJ10, Theorem 3.17].

(i) Assume ρ is in case 1. Then W (ρ) = {σr,s+1, σp−1−r,r+s+1}.
(ii) Assume ρ is in case 2.

(a) If r �= 0, then W (ρ) = {σr,s+1}.
(b) If r = 0, unr1 = unr2 and ρ is très ramifié, then W (ρ) = {σp−1,s+1}.
(c) For other ρ, W (ρ) = {σ0,s+1, σp−1,s+1}.
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(iii) Assume ρ is in case 3.
(a) If 1 ≤ r ≤ p− 4, then W (ρ) = {σr,s+1, σp−3−r,r+s+2}.
(b) If r = 0, then W (ρ) = {σ0,s+1, σp−3,s+2, σp−1,s+1}.
(c) If r = p− 3, then W (ρ) = {σ0,s, σp−3,s+1, σp−1,s}.
(d) If r = p− 2, then W (ρ) = {σp−2,s+1}.

4.2 Mod p representations of GL2(Qp)
Assume that ρ satisfies EndGQp

(ρ) ∼= F. We associate to ρ an admissible smooth F-representation
π(ρ) of G := GL2(Qp) as follows.

Case 1. If ρ is absolutely irreducible, then π(ρ) is the irreducible supersingular representation of
G associated to ρ by the mod p local Langlands correspondence defined in [Bre03].

Case 2. If ρ ∼ ( χ1 ∗
0 χ2

)
with χ1χ

−1
2 �= ω±1,1, then there is an exact nonsplit sequence

0→ IndGB(Qp)
χ2 ⊗ χ1ω

−1 → π(ρ)→ IndGB(Qp)
χ1 ⊗ χ2ω

−1 → 0.

If ρ ∼ ( χ ∗
0 χω

)
, then there is an exact nonsplit sequence

0→ IndGB(Qp)
χω ⊗ χω−1 → π(ρ)→ τ1 ⊗ χ ◦ det→ 0,

where Sp is the Steinberg representation of G and τ1 is a nonsplit extension 0→ Sp→
τ1 → 1⊕2

G → 0 with socG(τ1) = Sp.
If ρ ∼ ( χω ∗

0 χ

)
, then π(ρ) is the representation defined in [Paš15, Lemma 6.7] (denoted

by β there). Its precise structure will be recalled in § 8.3.

We remark that the representation π(ρ) is just the representation corresponding to ρ in the
mod p local Langlands correspondence for GL2(Qp), except in the case ρ ∼ ( χ ∗

0 χω

)
, π(ρ) has one

extra copy of χ ◦ det than the usual form.
The following theorem is a consequence of results of Morra [Mor11, Mor17].

Theorem 4.2. Assume ρ is either in case 1 of § 4.1.1 with r /∈ {1, p− 2} or ρ is in case 2 of
§ 4.1.1 with 1 ≤ r ≤ p− 3.3 Then for any σ ∈W (ρ), σ occurs in π(ρ)[m2

K1
] with multiplicity one.

Proof. If ρ is absolutely irreducible, then π(ρ) is the representation π(ρ) in [Mor11] whose K-
socle filtration is given by [Mor11, Theorem 1.1]. If ρ is reducible nonsplit and ρ �

(
1 ∗
0 ω

)⊗ χ,
then π(ρ) is equal to the representation Ar,λ (in [Mor17, Theorem 1.1]) for some λ ∈ F×. If
ρ ∼ (

1 ∗
0 ω

)⊗ χ, then π(ρ) has an extra copy of χ ◦ det than the representation Ar,λ. However, in
this case (χ ◦ det)|K is not a Serre weight of ρ. Thus, for any σ ∈W (ρ) the multiplicity of σ in
π(ρ)[m2

K1
] is equal to the multiplicity of σ in Ar,λ[m2

K1
]. The K-socle filtration of Ar,λ is given

by [Mor17, Theorem 1.1] and [Mor11, Theorem 1.2], from which the result follows. �

4.2.1 Results of Paškūnas. Recall that ρ is called generic in the sense of [Paš15] if either
ρ is absolutely irreducible or ρ ∼ ( χ1 ∗

0 χ2

)
is reducible nonsplit with χ1χ

−1
2 �= ω,1. We assume

ρ is generic, so in particular EndGQp
(ρ) = F. Let η : GQp → O× be a character such that η

(mod �) = det ρ. Let Rηρ denote the universal deformation ring of ρ with determinant η and let
ρuniv denote the universal object over Rηρ.

Let ψ = ηε−1. According to [Paš15, § 6.1], there existsN ∈ CG,ψ(O) with a faithful continuous
action of Rηρ which commutes with the action of G such that:

3 The case where r = 0 may also be considered, see the footnote of [Mor17, Theorem 1.1]. But as our method
requires to exclude this case in § 4.3, we choose to ignore it here.
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(N0) F⊗̂RηρN is of finite length in CG,ψ(O) and is finitely generated over O[[K]];
(N1) HomSL2(Qp)(1G, N

∨) = 0;
(N2) EndCG,ψ(O)(N) ∼= Rηρ and V̌(N) is isomorphic to ρuniv as Rηρ[[GQp ]]-modules, where V̌ is the

modified Colmez functor in [Paš15, § 3];
(N3) N is projective in CG,ψ(O), and there exists x ∈ Rηρ such that N/xN is isomorphic to a

projective envelope of ⊕σ∈W (ρ)σ
∨ in Modpro

K,ψ(O).

Remark 4.3. Under our assumption on ρ, N is just a projective envelope of F⊗̂RηρN in CG,ψ(O).
Hence, (N3) follows from [Paš15, Theorem 5.2].

Proposition 4.4. Assume ρ is generic. Then there is an isomorphism F⊗̂RηρN ∼= π(ρ)∨.

Proof. See the proof of [Paš15, Proposition 6.1].4 �
If Θ (respectively, σ) is a finite free O-module (respectively, F-module) equipped with a

continuous action of K, we define

M(Θ) := Homcont
O[[K]](N,Θ

d)d (resp. M(σ) := Homcont
O[[K]](N, σ

∨)∨).

Then M(Θ) (respectively, M(σ)) is a finitely generated Rηρ-module by (N0).
Let w = (a, b) be a pair of integers with a < b and τ : IQp → GL2(E) be an inertial type,

where IQp is the inertia subgroup of GQp . Let

σ(w, τ) := Symb−a−1E2 ⊗ deta ⊗ σ(τ),

σcr(w, τ) := Symb−a−1E2 ⊗ deta ⊗ σcr(τ),

where σ(τ) and σcr(τ) are finite-dimensional representations of K over E associated to τ
by the inertial local Langlands correspondence [Hen02] (see § 5.1 for details). Let Rηρ(w, τ)
(respectively, Rη,crρ (w, τ)) denote the reduced p-torsion-free quotient of Rηρ which parametrizes
potentially semistable (respectively, potentially crystalline) deformations of ρ of Hodge–Tate
weights w and type τ . It is well-known that these rings are nonzero only if ηε−(a+b)|IQp

∼ det τ ,
in which case they have Krull dimension 2. This requires, in particular, that η is locally
algebraic.

Recall the following theorem of Paškūnas.

Theorem 4.5. Let w, τ be as above. Let Θ be any K-stable O-lattice in σ(w, τ) (respectively,
σcr(w, τ)). Then Rηρ/AnnRηρ (M(Θ)) is equal to Rηρ(w, τ) (respectively, Rη,crρ (w, τ)).

Proof. See [Paš15, Corollary 6.5]. �
Let δ : GQp → O× be a continuous character that is trivial modulo p, not necessarily locally

algebraic. Twisting by δ induces a natural isomorphism of O-algebras

twδ : Rηδ
2

ρ
∼−→ Rηρ. (4.1)

By a similar discussion as in [CEG+18, § 6.1], we have the following variant of Theorem 4.5.

Corollary 4.6. Assume ηδ2ε−(a+b)|IQp
∼ det τ . Let Θ be any K-stable O-lattice in

σ(w, τ)⊗ δ−1 ◦ det (respectively, σcr(w, τ)⊗ δ−1 ◦ det). Then Rηρ/AnnRηρ (M(Θ)) is equal to

twδ(R
ηδ2

ρ (w, τ)) (respectively, twδ(R
ηδ2,cr
ρ (w, τ))). As a consequence, we have isomorphisms of

4 We remark that in [Paš15, Proposition 6.1], the characters χ1, χ2 should be swapped.
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O-algebras

twδ : Rηδ
2

ρ (w, τ) ∼−→ Rηρ/AnnRηρ (M(Θ)) (4.2)

(respectively, for Rηδ
2,cr

ρ (w, τ)).

If σ is a finite-dimensional F[K]-module, by Proposition 4.4 we have

F⊗̂RηρM(σ) = HomK(σ, π(ρ)). (4.3)

It follows from (N3) and Nakayama’s lemma that M(σ) �= 0 if and only if σ admits at least one
Jordan–Hölder factor lying in W (ρ).

4.2.2 A criterion for regularity.

Lemma 4.7. Let σ ∈ Modsm
K (F) be of finite length. Assume that, taking into account multi-

plicities, JH(σ) contains exactly one element in W (ρ). Then M(σ) is a cyclic Rηρ-module and
isomorphic to F[[x]], where x ∈ Rηρ is as in (N3).

Proof. See (the end of) the proof of [Paš15, Theorem 6.6]. �
Recall that O is unramified over Zp.

Proposition 4.8. Let w, τ be as above. Assume that there exist two K-stable O-lattices Θ1,Θ2

in σ(w, τ) (respectively, σcr(w, τ)) such that the following conditions hold:

(a) pΘ1 ⊂ Θ2 ⊂ Θ1 and dimF HomK(Θi/pΘi, π(ρ)) = 1 for i = 1, 2;
(b) taking into account multiplicities, JH(Θ1/Θ2) contains exactly one element in W (ρ).

Then Rηρ(w, τ) (respectively, Rη,crρ (w, τ)) is a regular local ring.

Proof. We only treat the case for Rηρ(w, τ). By Nakayama’s lemma and (4.3), condition (a)
implies that M(Θ1) and M(Θ2) are both cyclic modules over Rηρ. Hence, M(Θ1) and M(Θ2) are
isomorphic to Rηρ(w, τ) by Theorem 4.5.

The exact sequence 0→ Θ2 → Θ1 → Θ1/Θ2 → 0 induces a sequence of Rηρ-modules

0→M(Θ2)
f−→M(Θ1)→M(Θ1/Θ2)→ 0,

which is again exact by (N3). Since both M(Θ1) and M(Θ2) are isomorphic to Rηρ(w, τ), the
morphism f is equal to the multiplication by some element y ∈ Rηρ(w, τ). On the other hand,
by Lemma 4.7, condition (b) implies that M(Θ1/Θ2) is isomorphic to F[[x]]. This means that
Rηρ(w, τ)/(y) is a regular local ring of Krull dimension 1. Since Rηρ(w, τ) has Krull dimension 2,
it is also regular. �

4.3 Potentially crystalline deformation rings of tame supercuspidal inertial types
In this subsection, we assume ρ is of one of the following forms:

(C1) ρ is in case 1 of § 4.1.1 with 2 ≤ r ≤ p− 3;
(C2) ρ is in case 2 of § 4.1.1 with 1 ≤ r ≤ p− 3.

In particular, ρ is generic (see § 4.2.1). We study the properties of deformation rings of tame
supercuspidal inertial types and Hodge–Tate weights (0, 1) and (0, 2) in the cases (C1) and (C2)
separately. The main result is Theorem 4.15.

Recall that given a pair of integers (a, b) with 1 ≤ a ≤ p− 3, we can associate:

• characters ψi, 1 ≤ i ≤ 3, introduced in (3.15);
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• tame supercuspidal inertial types τi = ψi ⊕ ψpi satisfying σ(τi) = Θ(ψi) (cf. Lemma 5.1);
• lattices R1, R2, R3, R, R̃ introduced in § 3.4 satisfying cosoc(R/pR) = σa,b+1 for any R ∈
{R1, R2, R3, R, R̃}.

We choose (a, b) as follows:

• in the case (C1), let (a, b) ∈ {(r, s), (p− 1− r, r + s)};
• in the case (C2), let (a, b) = (r, s).

Then σa,b+1 lies in W (ρ) by Theorem 4.1. For R ∈ {R1, R2, R3, R, R̃}, we denote by

IR := AnnRηρ (M(R)) (4.4)

the annihilator of M(R) in Rηρ.

Proposition 4.9. We have that M(R) is a (nonzero) cyclic Rηρ-module for R ∈ {R1, R2, R3,

R, R̃}. As a consequence M(R) ∼= Rηρ/IR.

Proof. By Nakayama’s lemma, it suffices to show M(R)/m is of dimension 1 over F, where m

denotes the maximal ideal of Rηρ. Since σa,b+1 ∈W (ρ) is a quotient of R/pR, we always have
dimFM(R/pR)/m ≥ 1 by (N3) of § 4.2.1.

To show dimFM(R/pR)/m ≤ 1, we note thatR/pR is a quotient of (ProjF[[K/Z1]] σa,b+1)/m2
K1

by Lemma 3.18, Corollary 3.23 and Proposition 3.24. Hence, by (N3) of § 4.2.1

dimFM(R/pR)/m ≤ dimFM((ProjF[[K/Z1]] σa,b+1)/m2
K1

)/m.

If ρ satisfies either case (C1) or case (C2), then by (4.3) and Theorem 4.2, we have

dimFM((ProjF[[K/Z1]] σa,b+1)/m2
K1

)/m = dimF HomK((ProjF[[K/Z1]] σa,b+1)/m2
K1
, π(ρ)) = 1.

Hence, dimFM(R/pR)/m = 1. �

Remark 4.10. For i ∈ {2, 3}, we have constructed K-stable O-lattices L,L′ in Sym1E2 ⊗Θ(ψi)
in Proposition 3.11. The cosocle of L/pL (respectively, L′/pL′) need not be irreducible, but M(L)
(respectively, M(L′)) is still cyclic over Rηρ.

Indeed, if JH(Sym1E2 ⊗Θ(ψi)
ss
) ∩W (ρ) consists of one element, then the claim is obvi-

ous. Otherwise, ρ satisfies case (C1) and W (ρ) consists of two elements, say W (ρ) = {σ1, σ2} ⊂
JH(Sym1E2 ⊗Θ(ψi)

ss
). By Proposition 3.11, one of the nonsplit extensions, E = (σ1 — σ2) or

E′ = (σ2 — σ1), occurs in L/pL (respectively, L′/pL′). As in the proof of Proposition 4.9, M(E)
and M(E′) are cyclic over Rηρ, from which the claim follows as M(σ) = 0 for σ /∈W (ρ).

Corollary 4.11. We have:

(i) IR1 + IR2 = (p, IR1) and IR = IR1 ∩ IR2 ;
(ii) IR + IR3 = (p, IR1) and I

R̃
= IR1 ∩ IR2 ∩ IR3 .

Proof. Recall the following lemma from [HW22, Lemma 8.11]. �

Lemma 4.12. Let (A,mA) be a commutative noetherian local ring with k = A/mA. Let I0, I1, I2
be ideals of A such that I1, I2 ⊂ I0 ⊂ mA. Consider the natural surjective homomorphism A/I1 ⊕
A/I2 � A/I0. Then Ker(A/I1 ⊕A/I2 � A/I0) is a cyclic A-module if and only if I1 + I2 = I0.

By (N3), the sequence (3.20) induces a short exact sequence

0→M(R)→M(R1)⊕M(R2)→M(R1/pR1)→ 0.
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Since M(R) is cyclic over Rηρ by Proposition 4.9, we deduce part (i) using Lemma 4.12 and the
fact that5

AnnRηρ (M(R1/pR1)) = AnnRηρ (M(R1)/p) = (p, IR1).

Similarly, we obtain part (ii) by using the short exact sequence (3.22). �
Let δ : GQp → O× denote the character, via the local class field theory, sending x ∈ Q×

p 
→
pr(x)1/2 ∈ 1 + pZp. By Theorem 4.5 and Corollary 4.6, we have

Rηρ/IR1 = Rηρ((0, 1), τ1), Rηρ/IR2

tw−1
δ∼= Rηδ

2

ρ ((0, 2), τ2), Rηρ/IR3

tw−1
δ∼= Rηδ

2

ρ ((0, 2), τ3). (4.5)

Proposition 4.13. The ring Rηρ((0, 1), τ1) is a regular local ring.

Proof. Recall from § 3.3 that there exist two K-stable O-lattices T, T ′ ⊂ σ(τ1) such that pT ⊂
T ′ ⊂ T and T/T ′ ∼= σa,b+1 and cosoc(T/pT ) ∼= σa,b+1. Here, if JH(σ(τ1)

ss
) ∩W (ρ) consists of

only one element, then we take T ′ = pT . In any case, the cosocle of T ′/pT ′ is irreducible. Using
Theorem 4.2, it is easy to check that

dimF HomK(T/pT, π(ρ)) = dimF HomK(T ′/pT ′, π(ρ)) = 1.

The result then follows from Proposition 4.8. �
Remark 4.14. If ρ is generic in the sense of [BP12, Definition 11.7], Proposition 4.13 is a direct
consequence of [EGS15, Theorem 7.2.1].

Theorem 4.15. The rings Rηδ
2

ρ ((0, 2), τ2) and Rηδ
2

ρ ((0, 2), τ3) are regular local rings.

Proof. Assume ρ is in case (C1). For Rηδ
2

ρ ((0, 2), τ2), it is equivalent to proving that Rηρ/IR2

is a regular local ring by (4.5). Note that σa,b+1 is the unique Serre weight in the intersection
JH(Sym1E2 ⊗ σ(τ2)

ss
) ∩W (ρ). The assertion follows from Proposition 4.8, by choosing any K-

stable O-lattice Θ1 in Sym1E2 ⊗ σ(τ2), and taking Θ2 = pΘ1 in Proposition 4.8.

We now consider Rηδ
2

ρ ((0, 2), τ3), equivalently Rηρ/IR3 via (4.5). By Proposition 3.11, there
are K-stable O-lattices L,L′ of Sym1E2 ⊗Θ(ψ3) such that pL ⊂ L′ ⊂ L and

L/L′ = σa,b+1 ⊕ σa−2,b+2.

Note that σa−2,b+2 /∈W (ρ). Using Remark 4.10, the result follows from Proposition 4.8.
Assume ρ is in case (C2). Then ρ has only one Serre weight σa,b+1, and we conclude as in

the first paragraph. �

4.4 Endomorphism rings and faithfulness
In this subsection, we assume ρ is reducible nonsplit and isomorphic to

(
1 ∗
0 ω

)
. Let N ∈ CG/ZG(O)

be as in § 4.2.1. In this case N is isomorphic to a projective envelope of (IndGB(Qp)
ω ⊗ ω−1)∨ in

CG/ZG(O).
Let (A,mA) be a pseudo-compact flat local O-algebra with residue field F. Set R := A⊗̂OR

η
ρ

and
M := R⊗̂RηρN ∼= A⊗̂ON.

5 In general, if A is a commutative ring, I an ideal of A and M a finite A-module, then AnnA(M) + I ⊆
AnnA(M/IM) and their radicals coincide. In our situation, (p, IΘ1) is a prime ideal, so we have the claimed
equality.
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Then M ∈ CG/ZG(R). In fact, as in [CEG+18, Lemma 4.9] we show that M∨ is admissible in
Modsm

G (R), and so M ∈ CG/ZG(O).

Lemma 4.16. The object M is a projective object in CG/ZG(O).

Proof. By assumption A is O-flat. Since pseudo-compact flat O-modules are projective (see, e.g.,
[Bru66, Proposition 3.1]), A is a projective O-module. By the definition of M we have

HomCG/ZG (O)(M,−) ∼= HomCG/ZG (O)(A⊗̂ON,−) ∼= Homcont
O (A,HomCG/ZG (O)(N,−)) (4.6)

from which the result follows. �
Lemma 4.17. We have HomCG/ZG (R)(M,1∨

G) = 0 and Ext1CG/ZG (R)(M,1∨
G) = 0.

Proof. The first assertion follows from (4.6) because HomCG/ZG (O)(N,1∨
G) = 0, see (N1) in § 4.2.1.

For the second, we work on the dual side and show Ext1R[G](1G,M
∨) = 0. By Lemma 4.16, M is

a projective object in CG/ZG(O), so dually M∨ is an injective object in Modl.adm
G/ZG

(O). Consider
an extension

0→M∨ → E → 1G → 0

in Modl.adm
G/ZG

(R). It must split in Modl.adm
G/ZG

(O), so we may find v ∈ E such that 〈O[G].v〉 ∼= 1G.
It suffices to show that R acts on v via the quotient R � R/mR

∼= F. This is clear, since if
x ∈ mR, then x · v ∈M∨ and, if it were nonzero, then it would generate a subrepresentation of
M∨ isomorphic to 1G, which is not possible by the first assertion. �
Proposition 4.18. For any compact R-module m, the natural map v 
→ (m 
→ (v⊗̂m)) (where
v ∈ m and m ∈M) induces an isomorphism

m ∼−→ HomCG/ZG (R)(M,m⊗̂RM).

Remark 4.19. Note that M is not projective in CG/ZG(R) so that we cannot apply [Paš13,
Lemma 2.9].

Proof. The proof is similar to [HP19, Proposition 3.12]. As in [HP19, Proposition 3.12], we may
assume that m is of finite length. In particular, the completed tensor product m⊗̂RM coincides
with the usual one.

We proceed by induction on the length of m. Note that sinceR is a local ring, any R-module of
length 1 is isomorphic to R/mR

∼= F. If m ∼= F, we need to show that HomCG/ZG (R)(M,F⊗RM) ∼=
F. But any morphism M → F⊗RM in CG/ZG(R) factors through

M � F⊗RM → F⊗RM,

so the assertion is reduced to

EndCG/ZG (O)(F⊗RM) = EndCG/ZG (O)(F⊗Rηρ N) ∼= F,

which is a direct consequence of Proposition 4.4. If the length of m is ≥ 2, let m1 ⊂ m be a
proper R-submodule such that m2 := m/m1 has length 1, i.e. m2

∼= F. We then obtain a long
exact sequence

TorR1 (m2,M)→ m1 ⊗RM → m⊗RM → m2 ⊗RM → 0. (4.7)

Since m2
∼= F and R is flat over Rηρ by construction, we have

TorR1 (m2,M) = TorR1 (F, R⊗̂RηρN) ∼= Tor
Rηρ
1 (F, N) ∼= (1∨

G)⊕2,
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where the last isomorphism follows from [Hu21, Proposition 3.30]. By applying
HomCG/ZG (R)(M,−) to (4.7) and using Lemma 4.17, we obtain the following short exact sequence

0→ HomCG/ZG (R)(M,m1 ⊗RM)→ HomCG/ZG (R)(M,m⊗RM)→ HomCG/ZG (R)(M,m2 ⊗RM).

By inductive hypothesis, we have mi
∼−→ HomCG/ZG (R)(M,mi ⊗RM) for i ∈ {1, 2}, hence the

result using the snake lemma. �

Corollary 4.20. We have EndCG/ZG (R)(M) ∼= R. In particular, R acts faithfully on M .

Proposition 4.21. Let x1, . . . , xg ∈ R be an M -regular sequence. Then (x1, . . . , xg) is also
R-regular and

EndCG/ZG (R)(M/(x1, . . . , xi)M) ∼= R/(x1, . . . , xi)R

for any 1 ≤ i ≤ g.
Proof. The proof is analogous to [Hu21, Proposition 5.11].

Since R acts faithfully on M by Corollary 4.20 and x1 is M -regular, x1 is also R-regular. By
Proposition 4.18, we have

R/x1R
∼−→ HomCG/ZG (R)(M,M/x1M) = EndCG/ZG (R)(M/x1M).

This, in turn, shows that R/x1R acts faithfully on M/x1M , hence x2 is R/x1R-regular because
it is M/x1M -regular by assumption. We may thus continue the above argument to conclude. �

Remark 4.22. Proposition 4.21 could be used to prove a big ‘R = T’ theorem, see the proof of
Proposition 8.20 below. Such a result is proved in [GN22, Theorem B(3)] when Rηρ is formally
smooth, by first proving that a suitable patched module M∞ is faithfully flat over the patched
ring R∞ and then passing to the quotient. However, when ρ ∼ (

1 ∗
0 ω

)⊗ χ, Rηρ is not formally
smooth and the patched module M∞ is not flat over R∞, so the argument in [GN22] does not
apply. In addition, this case is also excluded in [Eme11, Theorem 1.3], so Proposition 4.21 may
be of independent interest.

5. Automorphic forms and big patched modules

Let F be a totally real extension of Q in which p is unramified, and let OF be its ring of integers.
Let Σp denote the set of places of F dividing p and let Σ∞ denote the set of infinite places
of F . For any place v of F , let Fv denote the completion of F at v with ring of integers OFv ,
uniformizer �v and residue field kFv . Let qv denote the cardinality of kFv . Let AF,f denote the
ring of finite adèles of F . If S is a finite set of finite places of F , let AS

F,f denote the ring of
finite adèles outside S. Recall GF = Gal(F/F ) and GFv = Gal(F v/Fv). By fixing an embedding
F ↪→ F v, GFv is identified with the decomposition group at v. We let Frobv ∈ GFv denote a (lift
of the) geometric Frobenius element, and let ArtFv denote the local Artin map, normalized so
that it sends �v to Frobv. The global Artin map is denoted by ArtF which is compatible with
the local Artin map. We denote by recv the local Langlands correspondence normalized as in the
introduction of [HT01], so that if π is a smooth irreducible Qp-representation of GL2(Fv), then
recv(π) is a Weil–Deligne representation of the Weil group WFv defined over Qp. Recall that F
is a sufficiently large finite extension of Fp, O = W (F) and E = O[1/p]. We prepare the global
setup we need in this section.
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5.1 Tame types and the inertial local Langlands correspondence
Let IFv be the inertia subgroup of GFv . An inertial type at v is a two-dimensional represen-
tation τ : IFv → GL2(Qp) with open kernel which extends to a representation of GFv . We say
τ is a discrete series inertial type if it is either scalar, or extends to an irreducible represen-
tation of GFv . In the latter case, we call τ supercuspidal. We say τ is tame if it is trivial on
the wild inertia subgroup. Under Henniart’s inertial local Langlands correspondence [Hen02]
(cf. also [Kis09]), there is a unique finite-dimensional irreducible representation σ(τ) (respectively,
σcr(τ)) of GL2(OFv) over Qp-vector spaces, called types, satisfying if π is an infinite-dimensional
smooth irreducible representation of GL2(Fv), then HomGL2(OFv )(σ(τ), π) �= 0 (respectively,
HomGL2(OFv )(σcr(τ), π) �= 0) if and only if recv(π)|IFv ∼= τ (respectively, recv(π)|IFv ∼= τ and
the monodromy operator N on recv(π) is zero), in which case the space HomGL2(OFv )(σ(τ), π)
(respectively, HomGL2(OFv )(σcr(τ), π)) is one-dimensional. We always have σ(τ) = σcr(τ) except
when τ = χ⊕ χ, in which case σ(χ⊕ χ) = sp⊗ χ ◦ det (here sp denotes the Steinberg represen-
tation of GL2(kFv) over Qp) and σcr(χ⊕ χ) = χ ◦ det. Let ψ : F×

q2v
→ Q

×
p be a character such

that ψ �= ψqv . Let Θ(ψ) be the irreducible cuspidal Qp-representation of GL2(kFv) associated to
ψ as in [Dia07]. A tame supercuspidal type is an irreducible Qp-representation of GL2(OFv) that
arises by inflation from Θ(ψ) for some ψ as above.

In [GG15], Gee and Geraghty developed an analogous theory for D×, where D is the nonsplit
central quaternion algebra over Fv. Let JL denote the Jacquet–Langlands correspondence giving a
bijection from irreducible smooth representations of D× over Qp to discrete series representations
of GL2(Fv) over Qp. Let τ be a discrete series inertial type. By the Jacquet–Langlands correspon-
dence, there is an irreducible smooth representation πD,τ of D× such that recv(JL(πD,τ ))|IFv ∼= τ .
Since F×

v O×
D has index two in D×, πD,τ |O×

D
is either irreducible or a sum of two irreducible rep-

resentations which are conjugate under the uniformizer �D of D. Let σD(τ) be one of the
irreducible components of πD,τ |O×

D
. If πD is a smooth irreducible Qp-representation of D×, then

HomO×
D
(σD(τ), πD) �= 0 if and only if recv(JL(πD))|IFv ∼= τ , in which case, HomO×

D
(σD(τ), πD)

is one-dimensional. If τ is a tame inertial type, then σ(τ) and σD(τ) can be defined over E once
E is taken sufficiently large (and unramified), see the proof of [EGS15, Lemma 3.1.1]. Recall the
following lemma.

Lemma 5.1. Let ψ : F×
q2v
→ E× with ψ �= ψqv . Let τ := ψ ⊕ ψqv be the supercuspidal inertial type

associated to ψ, where we denote by ψ the composition IFv � F×
q2v

ψ−→ E×. Then σ(τ) = Θ(ψ)
and πD,τ |O×

D
= ψ ⊕ ψqv .

Proof. The assertion on σ(τ) follows from Henniart’s construction in [Hen02]. The assertion on
σD(τ) follows from the classical Jacquet–Langlands correspondence; see, for example, [BH06,
Chapter 13]. �

5.2 Automorphic forms, Galois representations and the big patched modules
We define the space of automorphic forms. Let B be a quaternion algebra over F . Fix a maximal
order OB of B. Let ΣB be the set of primes v in F at which B is ramified. Let ∞F be a fixed
infinite place of F . We say B is definite if it is ramified at all infinite places; B is indefinite
if it splits at ∞F and ramifies at all other infinite places. If v is a finite place of F , let O×

Bv
denote the maximal compact subgroup of B×

v := (B ⊗F Fv)×. For v /∈ ΣB, we fix an isomorphism
B×
v
∼= GL2(Fv) so thatO×

Bv
is identified with GL2(OFv). Let ψ : F× \ A×

F,f → O× be a continuous
character. Via the global Artin map, ψ induces a continuous character GF → O× which, by abuse
of notation, is again denoted by ψ. Assume, moreover, that (F,B) �= (Q,GL2).
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Let U be a compact open subgroup of (B ⊗F AF,f )×. We denote by Y B
U the finite set B× \

(B ⊗F AF,f )×/U if B is definite. If B is indefinite, let Y B
U denote the quotient ofXB

U by the action
of the finite group A×

F,f/(F
×(A×

F,f ∩ U)), where XB
U is the associated Shimura curve as in [BD14],

which is the same convention used in [Eme11, Scho18] but is different from the convention used
in [BDJ10].

From now on until the end of the paper, we assume that ΣB and Σp intersect at a unique
place v above p. Fix Up =

∏
w�p Uw a compact open subgroup of (B ⊗F AΣp

F,f )
×. For each place

w ∈ Σp \ {v}, let σw be a finite free O-module equipped with a continuous action of Uw such
that F×

w ∩ Uw acts by ψ−1|F×
w

. Denote

σvp = ⊗w∈Σp\{v}σw.

Let Uv = UpUvp ⊂ (B ⊗F A{v}
F,f )

×. Then σvp is equipped with an action of Uv via the projection
Uv � Uvp . We extend this action to UvA×

F,f by letting A×
F,f act by ψ−1. Assume that Uv is

a compact open subgroup of GL2(OFv) such that ψ|Uv∩O×
Fv

= 1. Then σvp admits an action of

UvUvA
×
F,f by letting Uv act trivially.

If B is definite, set

H̃0,B
σvp ,ψ

(Uv,O) := {f : B× \ (B ⊗F AF,f )× → σvp | f is continuous and f(gu) = u−1f(g),

∀g ∈ (B ⊗F AF,f )×,∀u ∈ UvUvA×
F,f}.

If B is indefinite, let Fσvp/�s be the local system over Y B
UvUv

associated to σvp/�
s (see [Eme06]),

and set

H̃1,B
σvp ,ψ

(Uv,O) := lim←−
s

lim−→
Uv

H1
ét(Y

B
UvUv ,Fσvp/�s).

Both H̃0,B
σvp ,ψ

(Uv,O) and H̃1,B
σvp ,ψ

(Uv,O) carry an action of (B ⊗F Fv)×.
Let S be a set of places of F containing all places in Σ∞ ∪ ΣB ∪ Σp, all places where ψ is

ramified, and all places w such that Uw is not O×
Bw

. Let r : GF → GL2(F) be an absolutely irre-
ducible totally odd representation. Assume r is unramified outside S. Assume ψ := ψ (mod �)
is equal to ω det r. Denote rw

def= r|GFw . We make the following assumptions on r:

(a) r is modular in the sense of [BD14, § 3.1], r|GF ( p
√

1)
is absolutely irreducible and, if p = 5,

the image of r(GF ( p
√

1)) in PGL2(F) is not isomorphic to PSL2(F5);
(b) for w ∈ S \ Σp the framed deformation ring of rw is formally smooth over O (cf. [BHHMS23,

Remark 8.1.1]);
(c) if w � p and w ∈ ΣB, then rw is either irreducible or a twist of an extension of the trivial

representation by ε;
(d) if w|p, w �= v, then r|IFw is generic in the sense of [BP12, Definition 11.7] (which is different

from the genericity used in § 4.2.1).

Assumption (c) is often called the compatibility condition between B and r. By [BD14,
Corollaire 3.2.3], the above assumptions guarantee the non-vanishing of πB(r), where πB(r)
is defined in (5.4). For each w ∈ Σp \ {v}, we fix a tame inertial type τw over E such
that det(τw)|IFw = ψ|IFw and JH(σ(τw)

ss
) contains exactly one Serre weight in W (rw(1))

[EGS15, Proposition 3.5.1]. This is possible by our assumption (d) and (the proof of)
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[EGS15, Proposition 3.5.1]. Let σ◦(τw) be an O×
Bw

-stable O-lattice in σ(τw) and

σvp := ⊗w∈Σp\{v}σ
◦(τw)d. (5.1)

For w a finite place of F , let Rw denote the universal framed deformation ring of rw over O.
Let Rψε

−1

w denote the quotient of Rw corresponding to liftings with determinant (ψ|F×
w

)ε−1. If

w ∈ S \ Σp, R
ψε−1

w is a formal power series ring in 3-variables over O by our assumption (b). If
w | p, w �= v, let Rψε

−1

w ((−1, 0)κ, τw) denote the reduced p-torsion-free quotient of Rψε
−1

w corre-
sponding to potentially crystalline (framed) deformations of inertial type τw and Hodge–Tate
weights (−1, 0) for all embeddings κ : Fw ↪→ E. By the choice of τw, Rψε

−1

w ((−1, 0)κ, τw) is a
formal power series ring in (3 + [Fw : Qp])-variables over O (see [EGS15, Theorem 7.2.1]). Let

RS := ⊗̂w∈SRψε−1

w

and

Rloc := Rψε
−1

v ⊗̂(⊗̂w | p,w 
=vRψε
−1

w ((−1, 0)κ, τw))⊗̂(⊗̂w∈S\ΣpRψε
−1

w ).

Let R�,ψε−1

r,S (respectively, Rψε
−1

r,S ) be the framed (respectively, universal) deformation ring of r
parametrizing liftings (respectively, deformations) of r which are unramified outside S with deter-
minant ψε−1 as in [GK14, § 5.4.1]. Let runiv denote the universal deformation of r over Rψε

−1

r,S .

Define R�,ψε−1,loc
r,S := R�,ψε−1

r,S ⊗̂RSRloc. Let Rψε
−1,loc

r,S denote the image of Rψε
−1

r,S in R�,ψε−1,loc
r,S .

By [DDT97, Lemma 4.11], there is a finite place w1 /∈ S with the following properties:

– qw1 �≡ 1 (mod p);
– the ratio of the eigenvalues of r(Frobw1) is not equal to q±1

w1
;

– the residue characteristic of w1 is sufficiently large such that for any nontrivial root of unity
ζ in a quadratic extension of F , w1 does not divide ζ + ζ−1 − 2.

Let U =
∏
w Uw ⊂ (B ⊗F AF,f )× be a compact open subgroup satisfying:

– Uw = O×
Bw

for w /∈ S ∪ {w1};
– Uw1 is contained in the subgroup of (OB)×w1

= GL2(OFw1
) consisting of matrices that are

upper-triangular and unipotent modulo �w1 ;
– for places over p, Uw = 1 +�wM2(OFw) if w | p, w �= v; Uv is the subgroup U1

Bv
defined in

(2.2).

By the choice of Uw1 , U is sufficiently small in the sense of [CHT08, § 3.3].
[CEG+16] and [Scho18] extend the Taylor–Wiles–Kisin method to construct the big patched

modules. The detailed construction for Shimura curves in the minimal case is given in [DL21, § 6].
By the arguments of [DL21], replacing Kv in [DL21] by Uv, the representation V =

⊗
w∈S,w 
=v Vw

of Kv in [DL21] by the representation σvp of Uv, forgetting the Hecke operators Tw at places
w ∈ S′, and allowing B possibly ramifies at some places above p, the same patching arguments
produce a ‘big’ patched module MB∞ with the following data. (Let j := 4#S − 1 and let g, q be
positive integers such that q = g + [F : Q]−#S + 1.)

• A formal power series ring in q-variables O[[z1, . . . , zq]] with a homomorphism

O[[z1, . . . , zq]]→ Rψε
−1,loc

r,S

which extends to a homomorphism from S∞ := O[[z1, . . . , zq, y1, . . . , yj ]] to R�,ψε−1,loc
r,S .
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• There is a surjective homomorphism

Rψε
−1

∞ � R�,ψε−1,loc
r,S ,

where Rψε
−1

∞ := Rloc[[x1, . . . , xg]]. Let m∞ be the maximal ideal of Rψε
−1

∞ .
• An O-algebra homomorphism S∞ → Rψε

−1

∞ such that

Rψε
−1

∞ /a∞ ∼= Rψε
−1,loc

r,S ,

where a∞ denotes the ideal (z1, . . . , zq, y1, . . . , yj) of S∞.
• A finitely generated Cohen–Macaulay S∞[[O×

Bv
]]-module MB∞ equipped with an action

of Rψε
−1

∞ , so that the action of S∞ factors through Rψε
−1

∞ . The module MB∞ is also
Cohen–Macaulay over Rψε

−1

∞ [[O×
Bv

]] by [GN22, Corollary A29]. Moreover, MB∞ is projective
in the category CO×

Bv
,ψ(S∞). Note that projectivity in the case where B ramifies at v follows

from the proof of [CEG+16, Proposition 2.10] using [New13, Proposition 5.6]. Let mr be the
maximal ideal of the abstract Hecke algebra associated to r as in [Scho18, § 5]. We have

MB
∞/a∞ =

{
H̃0,B
σvp ,ψ

(Uv,O)dmr if B is definite,

HomT(Uv)mr [GF ](rm, H̃
1,B
σvp ,ψ

(Uv,O)mr)
d if B is indefinite,

(5.2)

where T(Uv)mr denotes the Hecke algebra defined in the paragraph before [Scho18,
Proposition 5.7] (by taking p = v and m = mr in [Scho18]), and rm denotes the composite

GF
runiv−→ GL2(R

ψε−1

r,S )→ GL2(T(Uv)mr).

Remark 5.2. In the indefinite case, there is a variant of MB∞ denoted by NB∞, which is obtained
by patching H̃1,B

σvp ,ψ
(Uv,O/�s)mr but without factorizing out runiv. Namely, we have

NB
∞/a∞ ∼= (H̃1,B

σvp ,ψ
(Uv,O)mr)

d.

Let Modfin
O×
Bv
,ψ

denote the category of finite O-modules with a continuous action of O×
Bv

such

that the O×
Bv

-action has central character ψ|F×
v

. Define a functor MB∞(−) from Modfin
O×
Bv
,ψ

to the

category of finitely generated Rψε
−1

∞ -modules by letting

MB
∞(σ) := Homcont

O×
Bv

(MB
∞, σ

∨)∨. (5.3)

By the projectivity of MB∞ in CO×
Bv
,ψ(O), MB∞(−) is an exact functor. Define

πB(r) := (MB
∞/m∞)∨. (5.4)

By definition, we have
(MB

∞(σ)/m∞)∨ ∼= HomO×
Bv

(σ, πB(r)). (5.5)

At the place v, let τv : IFv → GL2(E) be an inertial type and w = (aκ, bκ)κ:Fv ↪→E be a Hodge
type with aκ < bκ for all κ. Assume τv is a discrete series inertial type if B ramifies at v. Let
Rψε

−1

v (w, τv) (respectively, Rψε
−1,cr

v (w, τv)) denote the reduced p-torsion-free quotient of Rψε
−1

v

which parametrizes potentially semistable (respectively, potentially crystalline) liftings of rv of
Galois type τv and Hodge–Tate weights w. Following [GG15] let Rψε

−1,ds
v (w, τv) denote the maxi-

mal reduced p-torsion-free quotient of Rψε
−1

v (w, τv) which is supported on the irreducible compo-
nents where the associated Weil–Deligne representation is generically of discrete series type. Let
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Rψε
−1

∞ (w, τv) := Rψε
−1

v (w, τv)⊗̂
Rψε

−1
v

Rψε
−1

∞ , Rψε
−1,cr∞ (w, τv) := Rψε

−1,cr
v (w, τv)⊗̂

Rψε
−1

v
Rψε

−1

∞ and

Rψε
−1,ds∞ (w, τv) := Rψε

−1,ds
v (w, τv)⊗̂

Rψε
−1

v
Rψε

−1

∞ .

Lemma 5.3. (i) If τv is a supercuspidal inertial type, then Rψε
−1,ds

v (w, τv) = Rψε
−1

v (w, τv) =
Rψε

−1,cr
v (w, τv).

(ii) If τv is a scalar type, then Rψε
−1,ds

v (w, τv) corresponds to the closure of potentially semistable

but not potentially crystalline points in SpecRψε
−1

v (w, τv).

Proof. See [GG15, § 5]. �

We assume B ramifies at v and Fv = Qp for the rest of this section. Let τv be supercuspidal
and w = (a, b) be as above satisfying

εb+a−1|IFv det(τv)|IFv ∼ ψ|IFv . (5.6)

We have a natural action of B×
v on Symb−a−1E2 ⊗ deta as follows: we fix an embedding B×

v ↪→
GL2(Qp2). ThenB×

v acts by the composite B×
v ↪→ GL2(Qp2) ↪→ GL2(E). Let Θ be anyO×

Bv
-stable

O-lattice in

σBv(w, τ) := σBv(τv)⊗ Symb−a−1E2 ⊗ deta.

The homomorphism Rψε
−1

∞ → End(MB∞(Θ)) factors through Rψε
−1,ds∞ (w, τv), which is

Rψε
−1

∞ (w, τv) by Lemma 5.3(i), by the global Jacquet–Langlands correspondence and local–global
compatibility. Since S∞ and Rψε

−1

∞ (w, τv) have the same Krull dimension, MB∞(Θ) is max-
imal Cohen–Macaulay over Rψε

−1

∞ (w, τv) by the same argument of the proof of [CEG+16,
Lemma 4.18].

Let δ : F× \ A×
F,f → O× be a continuous character trivial on Uv ∩ A×

F,f and trivial mod �.
Sending a lifting rw of rw with determinant ε−1ψ|F×

w
to rw ⊗ δ|F×

w
gives an isomorphism

twδ|
F×
w

: Rψδ
2ε−1

w
∼−→ Rψε

−1

w . We hence have an isomorphism twδ := ⊗wtwδ|
F×
w

: Rψδ
2ε−1

∞
∼−→ Rψε

−1

∞ .
We have the following analogue of Corollary 4.6.

Lemma 5.4. Let (w, τv) be as above satisfying εb+a−1|IFv det(τv)|IFv ∼ (ψδ2)|IFv . Let Θ be any

O×
Bv

-stable O-lattice in σBv(w, τv)⊗ (δ|F×
v
◦Nrd)−1. Then Rψε

−1

∞ /Ann
Rψε

−1
∞

(MB∞(Θ)) is equal

to twδ(R
ψδ2ε−1

∞ (w, τv)) if Rψδ
2ε−1

∞ (w, τv) is an integral domain.

Proof. Note that MB,δ−1

∞ := MB∞ ⊗ δ−1 ◦Nrd is a ‘big’ patched module, which is finitely gener-
ated and Cohen–Macaulay over S∞[[O×

Bv
]] equipped with a compatible action of Rψδ

2ε−1

∞ . This
is because δ is trivial mod �, and when B is definite, the map f 
→ [g 
→ f(g)(δ ◦Nrd)−1(g)]
induces an isomorphism

H̃0,B
σvp ,ψδ

2(U(N)v,O) ∼= H̃0,B
σvp ,ψ

(U(N)v,O)⊗ δ ◦Nrd, (5.7)

which is compatible with the action of the Hecke algebra. Here U(N)v denotes the group U(N)p

in the proof of [DPS23, Theorem 8.10]. The isomorphism similar to (5.7) in the indefinite case
follows from the proof of [BDJ10, Lemma 2.3]. Since Θ⊗ δ|F×

v
◦Nrd is an O×

Bv
-stable lattice in

the locally algebraic representation σBv(w, τv), the action of Rψδ
2ε−1

∞ on MB,δ−1

∞ (Θ⊗ δ|F×
v
◦Nrd)
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factors through Rψδ
2ε−1

∞ (w, τv). Then the Rψδ
2ε−1

∞ (w, τv)-module

MB,δ−1

∞ (Θ⊗ δ|F×
v
◦Nrd) = MB

∞(Θ)⊗ δ−1|F×
v
◦Nrd

is supported on a union of irreducible components of Spec(Rψδ
2ε−1

∞ (w, τv)), which is all of
Spec(Rψδ

2ε−1

∞ (w, τv)) if Rψδ
2ε−1

∞ (w, τv) is an integral domain. The construction of the ‘big’
patched module and the relation with the associated Galois representation imply that the
quotient ring Rψε

−1

∞ /Ann
Rψε

−1
∞

(MB∞(Θ)) is equal to twδ(R
ψδ2ε−1

∞ (w, τv)). �

6. The Gelfand–Kirillov dimension of πB(r)

In this section, we maintain the assumptions made in § 5. In particular, B and r satisfy the
compatibility condition (H0) of [BD14], which implies that πB(r) �= 0 by [BD14, Corollaire 3.2.3].
Since our main applications are for the quaternion algebra over Qp, we assume further that
Fv ∼= Qp, where v is the unique place over p at which B is ramified. We denote by D := Bv the
quaternion algebra over Qp. We prove our main results on the Gelfand–Kirillov dimension of
πB(r) which is defined by (5.4). Assume p ≥ 5.

6.1 Serre weights for quaternion algebras
Let WB(r) denote the set of modular quaternionic Serre weights at v defined in [BD14, § 3.1].
Recall that an irreducible smooth representation of O×

D over F, equivalently a smooth character
χ : O×

D → F×, is in WB(r) if
HomO×

D
(χ, πB(r)) �= 0,

equivalently MB∞(χ) �= 0 by (5.5). Moreover, dimF HomO×
D
(χ, πB(r)) = dimFM

B∞(χ)/m∞.
Let ρ := rv(1). Note that by our assumption ρ is a two-dimensional continuous representation

of GQp . We recall the definition of WD(ρ), the set of predicted quaternionic Serre weights for
ρ, which is denoted by W ?(ρ) in [GS11, Definition 3.4]. A character ψ : O×

D � F×
p2
→ F× is in

WD(ρ) if and only if ρ has a potentially Barsotti–Tate lift of type [ψ]⊕ [ψ]p if ψ �= ψp, and ρ
has a potentially semistable lift of Hodge–Tate weights (0, 1) and type [ψ]⊕ [ψ] which is not
potentially crystalline if ψ = ψp.

We have the following description of the set WD(ρ).

Proposition 6.1. Recall ξ : F×
p2
↪→ F× the character introduced in § 3.2. Let ζ denote the

character ξp+1, and let α denote the character ξp−1.

(i) Assume ρ is in case 1 of § 4.1.1. We have the following.
(a) If r �=0, p− 1 then χ∈WD(ρ) if and only if χ ∈ {ξrζs+1, ξprζs+1, ξrα−1ζs+1, ξprαζs+1}.
(b) If r = 0 or p− 1, then χ ∈WD(ρ) if and only if χ ∈ {α−1ζs+1, αζs+1}.

(ii) Assume ρ is in case 2 of § 4.1.1. We have the following.
(a) If r = 0, unr1 = unr2 and ρ is très ramifié, then χ ∈WD(ρ) if and only if χ = ζs+1.
(b) If r = 0, unr1 = unr2 and ρ is peu ramifié, then χ ∈WD(ρ) if and only if χ ∈
{ζs+1, α−1ζs+1, αζs+1}.

(c) For other ρ, χ ∈WD(ρ) if and only if χ ∈ {ξrα−1ζs+1, ξprαζs+1}.
(iii) Assume ρ is in case 3 of § 4.1.1. We have the following.

(a) If r = 0 and unr1 = unr2, then χ ∈WD(ρ) if and only if χ ∈ {ζs+1, α−1ζs+1, αζs+1}.
(b) For other ρ, χ ∈WD(ρ) if and only if χ ∈ {ξrα−1ζs+1, ξprαζs+1}.

Proof. This follows from the definition of WD(ρ). More precisely, the Breuil–Mézard conjecture
[BM02], proved in [Kis09, Paš15, HT15, San16], states exactly when the involved deformation
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rings are nonzero in terms of W (ρ) (cf. § 4.1.1). We take the case (ii)(b) as an example, so that
W (ρ) = {σ0,s+1, σp−1,s+1}. Up to twist we may assume s = 0. It follows from the Breuil–Mézard
conjecture and Proposition 3.6(ii) that ρ has a potentially Barsotti–Tate lift of type [ξ2]⊕ [ξ2p], so
we obtain α−1ζ, αζ ∈WD(ρ). On the other hand, ρ has a potentially semistable lift of Hodge–Tate
weights (0, 1) and type [ζ]⊕ [ζ] which is not potentially crystalline (see [BM02, Théorème 1.2]),
which gives ζ ∈WD(ρ). Conversely, using the Breuil–Mézard conjecture again one checks that
these exhaust all the Serre weights in WD(ρ). �

Proposition 6.2. We have WB(r) = WD(ρ).

Proof. The inclusion WB(r) ⊆WD(ρ) follows from [GS11, Lemma 3.3]. Note that [GS11] works
only with definite B which ramifies at all places above p, but the argument also works in our
case. By [GS11, Theorem 8.3], the two sets WB(r) and WD(ρ) are identical in most cases with
exception possibly when ρ is an unramified twist of

(
ω ∗
0 1

)⊗ ωs+1 and χ = ζs+1 ∈WD(ρ). In this
exceptional case, ρ has a potentially semistable lift of type [χ]⊕ [χ] which is not potentially
crystalline. Applying [BD14, Théorème 3.2.2] (by taking [rv, Nv] = [[χ]⊕ [χ], Nv �= 0] there),
there is a Hilbert modular form over F of parallel weight (2, . . . , 2) special at v which gives
r. By global Jacquet–Langlands correspondence, as in the proof of [GS11, Lemma 3.3], we have
χ ∈WB(r). �

Remark 6.3. The question of determining the quaternionic Serre weights is first studied by
Khare [Kha01]. More precisely, [Kha01, Theorem 7] proves that if B0 denotes the definite
quaternion algebra over Q which is ramified exactly at p and ∞, then WB0(r) = WD(ρ).

6.2 Lattices in some locally algebraic representations of O×
D

Let χ be any character of O×
D over F. Recall that Wχ,n denotes (ProjF[[O×

D/Z
1
D]] χ)/m3

D for n ≥ 1,
where mD denotes the maximal ideal of the Iwasawa algebra F[[U1

D/Z
1
D]]. We construct suitable

lattices L in locally algebraic representations of O×
D over E so that L/pL is a quotient of Wχ,3 =

(ProjF[[O×
D/Z

1
D]] χ)/m3

D. The construction of these lattices is much easier than the case considered
in § 3.

Recall that O×
D embeds into GL2(Zp2) and then embeds into GL2(O) via the embedding

GL2(Zp2) ⊂ GL2(O). An explicit embedding is given by (cf. (2.1))

�D 
→
(

0 1
p 0

)
, a 
→

(
a 0
0 σ(a)

)
, a ∈ Qp2 .

Let O×
D act on Sym1O2 and Sym1E2 via the above embedding. Precisely, for a, b ∈ Zp2 ,

(a+�Db) ·X = aX + pσ(b)Y, (a+�Db) · Y = bX + σ(a)Y. (6.1)

Equipped with this action, Sym1O2 and Sym1E2 are continuous representations of O×
D. Let

pr : Q×
p → 1 + pZp denote the projection sending p to 1. Let Sym1O2 (respectively, Sym1E2)

denote the continuous O×
D-module Sym1O2 ⊗ (pr ◦NrdD)−1/2 (respectively, Sym1E2 ⊗ (pr ◦

NrdD)−1/2), where NrdD : D× → Q×
p is the reduced norm. One checks that Z1

D acts trivially on
Sym1E2. Note that (Sym1O2)/p ∼= Sym1F2 with semisimplification (Sym1F2)ss = χ1 ⊕ χ2, where
χ1, χ2 are characters of O×

D determined by χ1(t) = t, χ2(t) = tp for all t ∈ F×
p2

. In particular,
χ1 = χ2α

−1. By Proposition 2.13 we have

dimF Ext1O×
D/Z

1
D
(χ1, χ2) = dimF Ext1O×

D/Z
1
D
(χ2, χ1) = 1,

so there exist (up to isomorphism) unique nonsplit extensions (χ1 — χ2) and (χ2 — χ1).
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Lemma 6.4. There exist O×
D-stable O-lattices L,L′ in Sym1E2 such that:

(a) pL ⊂ L′ ⊂ L;
(b) L/pL ∼= (χ1 — χ2) and L′/pL′ ∼= (χ2 — χ1).

Proof. We take L = Sym1O2 = O(Y ⊗ 1)⊕O(X ⊗ 1) and L′ = O(X ⊗ 1)⊕ pO(Y ⊗ 1). The
properties are easily checked using (6.1). �

Let χ : O×
D → F× be a character. Then there exist integers −2 ≤ a ≤ p− 2, b ∈ Z such that

[χ] = [ξ]a+2+(p+1)b,

where [−] denotes the Teichmüller lift. We write

ψ1 := [χ] = [ξ]a+2+(p+1)b, ψ2 := [ξ]a+3+(p+1)(b−1), ψ3 := [ξ]a+1+(p+1)b. (6.2)

Let Θ1 := ψ1, viewed as an O×
D-stable lattice in V1 := ψ1 ⊗O E. For i = 2, 3, let

Vi := Sym1E2 ⊗ ψi. (6.3)

Note that ZD ∩ O×
D acts on Vi by the same character [χ]. The O×

D-representations Vi, 1 ≤ i ≤ 3
are irreducible and

V1 = χ, V2
ss = χ⊕ χα−1, V3

ss = χ⊕ χα.

An analogue of Proposition 3.7 implies that there exists a unique (up to homothety) O×
D-stable

O-lattice in Vi, say Θi, such that cosocO×
D
(Θi/pΘi) = χ for i = 2, 3. We have surjective maps

r1 : Θ1 � Θ1/pΘ1
∼= χ,

ri : Θi � Θi/pΘi � cosoc(Θi/pΘi) ∼= χ, i = 2, 3.

Let Θ′
i := Ker(ri) for i = 2, 3. Then by Lemma 6.4 we have

Θ′
2/pΘ

′
2
∼= (χ — χα−1), Θ′

3/pΘ
′
3
∼= (χ — χα).

Since every irreducible representation of O×
D over F is one-dimensional, Θ1/pΘ1 is killed by mD,

while Θi/pΘi and Θ′
i/pΘ

′
i are killed by m2

D for i = 2, 3. By construction, Θ1, Θ2 and Θ3 are
quotients of ProjO[[O×

D/Z
1
D]] χ.

We now glue the three lattices Θ1, Θ2 and Θ3. We first glue Θ1 and Θ2 along χ, namely
define Θ by the short exact sequence

0→ Θ→ Θ1 ⊕Θ2
r1 − r2−→ χ→ 0. (6.4)

Proposition 6.5. (i) There is a short exact sequence 0→ Θ′
2/pΘ

′
2 → Θ/pΘ→ χ→ 0.

(ii) The cosocle of Θ/pΘ is isomorphic to χ. Moreover, the cosocle filtration of Θ/pΘ is

χ — χα−1 — χ.

Proof. Clearly, Lemmas 3.3 and 3.4 remain true if we are considering O×
D-representations instead

of GL2(Zp)-representations. The results follow from them. �

Let r denote the map Θ � Θ/pΘ � χ where the second map is as in Proposition 6.5(i).
Denote by Θ̃ the lattice in V1 ⊕ V2 ⊕ V3 obtained by gluing Θ and Θ3 along χ. Namely, Θ̃ is
defined by the following short exact sequence

0→ Θ̃→ Θ⊕Θ3
r − r3−→ χ→ 0. (6.5)
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Proposition 6.6. (i) The cosocle of Θ̃/pΘ̃ is isomorphic to χ.
(ii) We have that Θ̃/pΘ̃ is a quotient of Wχ,3. More precisely, Θ̃/pΘ̃ is isomorphic to Wχ,3 :=

Wχ,3/(χα2 ⊕ χα−2).

Proof. (i) Note that the cosocle of Ker(r) is χ⊕ χα−1, while that of Ker(r3) is χα, so the result
follows from Lemma 3.4.

(ii) It follows from Lemma 3.3 that there are short exact sequences

0→ Ker(r)/pKer(r)→ Θ̃/pΘ̃→ Θ3/pΘ3 → 0,

0→ Θ′
3/pΘ

′
3 → Θ̃/pΘ̃→ Θ/pΘ→ 0.

Using Proposition 6.5(ii), we deduce that Θ̃/pΘ̃ admits both the nonsplit extensions (χα−1 — χ)
and (χα — χ) as quotients. Combining with part (i), this implies that Θ̃/pΘ̃ admits a quo-
tient isomorphic to Wχ,2; let Ker be the corresponding kernel. Comparing the Jordan–Hölder
factors, we have (Ker)ss ∼= χ⊕ χ. However, we know Ext1O×

D/Z
1
D

(χ, χ) = 0 by Proposition 2.13,

hence Ker ∼= χ⊕ χ. In particular, Θ̃/pΘ̃ is killed by m3
D. The last statement is a consequence of

Corollary 2.11. �

6.3 The Gelfand–Kirillov dimension
Assume ρ := rv(1) is of the form (C1) or (C2) in § 4.3. Recall that for any character χ : O×

D →
F×, we have constructed L ∈ {Θ1,Θ2,Θ3,Θ, Θ̃} such that cosoc(L/pL) = χ. The construction
depends on the choice of (a, b) in (6.2). From now on, we assume χ ∈WD(ρ), and make our
choice of (a, b) as follows:⎧⎪⎪⎨⎪⎪⎩

(a, b) = (r, s) if χ = ξrα−1ζs+1;
(a, b) = (p− 3− r, r + s+ 1) if χ = ξprαζs+1;
(a, b) = (r − 2, s+ 1) if χ = ξrζs+1;
(a, b) = (p− 1− r, r + s) if χ = ξprζs+1.

Let ψi be given by (6.2) for i = 0, 1, 2. Then one may check directly that ψi �= ψpi . Let τi
be a tame supercuspidal inertial type so that σ(τi) = Θ(ψi). Let ψ : F× \ A×

F,f → O× be a

continuous character as in § 5 satisfying ψ|ZD∩O×
D

= ψ1|ZD∩O×
D
. For L ∈ {Θ1,Θ2,Θ3,Θ, Θ̃}, let

IL := Ann
Rψε

−1
∞

(MB∞(L)) denote the annihilator of MB∞(L) in Rψε
−1

∞ .
Let R be any commutative ring and M be an R-module. Following [BHHMS23, § 8.2] we say

M is free of rank m over its scheme-theoretic support if it is isomorphic to (R/AnnR(M))m.

Proposition 6.7. Assume χ ∈WB(r). Let m := dimF HomO×
D
(χ, πB(r)). Then the Rψε

−1

∞ -

module MB∞(Θ1) (respectively, MB∞(Θ2), respectively, MB∞(Θ3)) is free of rank m over its

scheme-theoretic support. In particular, IΘ1 = IR1R
ψε−1

∞ , IΘ2 = IR2R
ψε−1

∞ and IΘ3 = IR3R
ψε−1

∞ ,
where IR1 , IR2 and IR3 are given in (4.4).

Proof. Twisting by the cyclotomic character and taking into account the framed variables, we
have an isomorphism

Rψε
−1

v ((−1, 0), τ1(−1)) ∼= Rψερ ((0, 1), τ1)[[X1, X2, X3]],

where Rψερ ((0, 1), τ1) is a regular local ring by Proposition 4.13. Hence, Rψε
−1

∞ ((−1, 0), τ1(−1)), as

a formal power series ring over Rψε
−1

v ((−1, 0), τ1(−1)), is also a regular local ring. Since MB∞(Θ1)
is finite maximal Cohen–Macaulay over Rψε

−1

∞ ((−1, 0), τ1(−1)), the Auslander–Buchsbaum
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formula implies that MB∞(Θ1) is finite free over Rψε
−1

∞ ((−1, 0), τ1(−1)) of rank m and, hence,
IΘ1 = IR1R

ψε−1

∞ .
Assume L ∈ {Θ2,Θ3}. Let δ : Q×

p → O× be the character sending x ∈ Q×
p 
→ pr(x)1/2 ∈ 1 +

pZp, viewed also as a character of F× \ A×
F,f . We also view δ as a character of GQp , via the

local class field theory. Then (L ⊗ δ ◦Nrd)[1/p] is a locally algebraic representation of O×
Bv

. By

Theorem 4.15 and Lemma 5.4, Rψε
−1

∞ /IL is a regular local ring. We show as above that MB∞(L)
is finite free over Rψε

−1

∞ /IL of some rank n. It follows from Lemma 5.4 and Corollary 4.6 that
IL has the description as in the statement of the proposition. We are left to prove n = m.

If JH(L/pL) ∩WD(ρ) = {χ}, then

MB
∞(L/pL) ∼−→MB

∞(χ),

which is free of rank m over its scheme-theoretic support. Hence, n = m.
Now assume both Jordan–Hölder factors of L/pL are in WD(ρ). By Proposition 6.1 this can

only happen when ρ is absolutely irreducible. We assume χ = ξrα−1ζs+1 and L = Θ3, the other
cases can be handled in the same way. Since δ ≡ 1 (mod �) and the following discussion only
involves F-representations, the twisting by δ will not change anything.

Since

Θ3/pΘ3 = (ξrζs+1 — ξrα−1ζs+1).

Applying the patching functor MB∞(−), we obtain a short exact sequence

0→MB
∞(ξrζs+1)→MB

∞(Θ3/pΘ3)→MB
∞(ξrα−1ζs+1)→ 0, (6.6)

where all the modules in the sequence are finite free over their scheme-theoretic support. We
must show the modules have the same rank. For this, we use the knowledge on GL2-side to study
their support.

According to Proposition 3.11, there exists a K-stable O-lattice L in Sym1E2 ⊗Θ(ψ3) such
that L/pL is a nonsplit extension of (σp−3−r,r+s+2 — σr,s+1) by (σp−1−r,r+s+1 — σr−2,s+2). Let
σ◦(τ1) denote the unique (up to homothety)K-stableO-lattice in Θ(ψ1) so that σ◦(τ1)/pσ◦(τ1) =
(σp−3−r,r+s+2 — σr,s+1). Let τ be a tame supercuspidal inertial type so that there is a K-
stable O-lattice σ◦(τ) of σ(τ) satisfying σ◦(τ)/pσ◦(τ) = (σp−1−r,r+s+1 — σr−2,s+2). Applying
Paškūnas’ functor M(−) in § 4.2.1, we obtain a short exact sequence

0→M(σ◦(τ)/pσ◦(τ))→M(L/pL)→M(σ◦(τ1)/pσ◦(τ1))→ 0. (6.7)

Note that the three Rψερ -modules in the above short exact sequence are all cyclic by Lemma 4.7
and Remark 4.10. Then by Theorem 4.5 we obtain the following short exact sequence:

0→ Rψερ ((0, 1), τ)⊗O F→ Rψερ ((0, 2), τ3)⊗O F→ Rψερ ((0, 1), τ1)⊗O F→ 0. (6.8)

On the other hand, σr−2,s+2, σp−3−r,r+s+2 /∈W (ρ) and the extension (σp−1−r,r+s+1 — σr,s+1)
occurs in L/pL by Proposition 3.11. Let τ ′ denote a tame inertial type so that σ(τ ′) is isomorphic
to the principal series tame type I([x]s+1, [x]r+s+1) defined in Proposition 3.6. Let σ◦(τ ′) be the
unique (up to homothety) K-stable O-lattice in I([x]s+1, [x]r+s+1) such that σ◦(τ ′)/pσ◦(τ ′) =
(σp−1−r,r+s+1 — σr,s+1). Then the short exact sequence (6.7) can be identified with the following
short exact sequence:

0→M(σp−1−r,r+s+1)→M(σ◦(τ ′)/pσ◦(τ ′))→M(σr,s+1)→ 0. (6.9)
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The short exact sequence (6.8) becomes

0→ Rψε,crρ ((r + s+ 1, p+ s+ 1),1)⊗O F→ Rψερ ((0, 1), τ ′)

⊗O F→ Rψε,crρ ((s+ 1, r + s+ 2),1)⊗O F→ 0. (6.10)

By [EGS15, Theorem 7.2.1] Rψερ ((0, 1), τ ′)⊗O F is isomorphic to a formal power series ring
over F[[X,Y ]]/(XY ), and Rψε,crρ ((r + s+ 1, p+ s+ 1),1)⊗ F (respectively, Rψε,crρ ((s+ 1, r +
s+ 2),1)⊗O F) is the quotient of Rψερ ((0, 1), τ ′)⊗O F by X (respectively, Y ). Therefore,
Spec(Rψερ ((0, 2), τ3)⊗O F) has two irreducible components. By Lemma 5.4 and Corollary 4.6,

Spec((Rψε
−1

∞ /IΘ3)⊗O F) also has two irreducible components.
Back to the short exact sequence (6.6). By the discussion of the first paragraph of the

proof, MB∞(ξrζs+1) and MB∞(ξrα−1ζs+1) are supported on Spec(Rψε
−1

∞ ((−1, 0), τ(−1))⊗O F) and
Spec(Rψε

−1

∞ ((−1, 0), τ1(−1))⊗O F), respectively. Hence, MB∞(ξrζs+1) and MB∞(ξrα−1ζs+1) are
supported on different irreducible components of Spec((Rψε

−1

∞ /IΘ3)⊗O F). We deduce that

rank
Rψε

−1
∞ ((−1,0),τ1(−1))⊗OF

(MB
∞(ξrα−1ζs+1)) = rank

Rψε
−1

∞ ((−1,0),τ(−1))⊗OF
(MB

∞(ξrζs+1))

= rank
(Rψε

−1
∞ /IΘ3

)⊗OF
(MB

∞(Θ3/pΘ3)). (6.11)

Consequently m = n. �
Corollary 6.8. For any χ1, χ2 ∈WD(ρ), we have

dimF HomO×
D
(χ1, π

B(r)) = dimF HomO×
D
(χ2, π

B(r)).

Proof. In view of (6.11), it remains to treat the case χ2 = χp1, equivalently χ2 is equal to the
conjugation of χ1 by �D. But this is clear since πB(r) is a representation of D×, hence is
stable under taking the conjugation by �D. See also [GS11, Lemma 2.3] which is based on an
observation of Serre. �
Theorem 6.9. The Rψε

−1

∞ -module MB∞(Θ̃) is free of rank m over its scheme-theoretic support
with I

Θ̃
= IΘ1 ∩ IΘ2 ∩ IΘ3 .

Proof. We first prove MB∞(Θ) is free of rank m over its scheme-theoretic support with IΘ =
IΘ1 ∩ IΘ2 . By the short exact sequence (6.4) and the exactness of the functor MB∞(−), we have

MB
∞(Θ) ∼−→MB

∞(Θ1)×MB∞(Θ1/pΘ1) M
B
∞(Θ2).

As for a commutative ring A and two ideals I1, I2 ⊂ A,

A/I1 ∩ I2 ∼= A/I1 ×A/(I1+I2) A/I2,

by Proposition 6.7 we are reduced to checking

IΘ1 + IΘ2 = (p, IΘ1) = Ann
Rψε

−1
∞

(MB
∞(Θ1/pΘ1)).

Using Corollary 4.11(i) and Proposition 6.7 again, we have

IΘ1 + IΘ2 = (IR1 + IR2)R
ψε−1

∞ = (p, IR1)R
ψε−1

∞ = (p, IΘ1) = Ann
Rψε

−1
∞

(MB
∞(Θ1/pΘ1)).

In particular, we obtain

IΘ = IΘ1 ∩ IΘ2 = IR1R
ψε−1

∞ ∩ IR2R
ψε−1

∞ = (IR1 ∩ IR2)R
ψε−1

∞ = IRR
ψε−1

∞ , (6.12)

where the third equality holds by [Mat89, Theorem 7.4(ii)] because Rψε
−1

∞ is flat over Rψερ .
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Now we prove MB∞(Θ̃) is free of rank m over its scheme-theoretic support. Using (6.5) we
have similarly

MB
∞(Θ̃) ∼−→MB

∞(Θ)×MB∞(Θ1/pΘ1) M
B
∞(Θ3)

and it suffices to check

IΘ + IΘ3 = Ann
Rψε

−1
∞

(MB
∞(Θ1/pΘ1)) = (p, IΘ1).

This easily follows from (6.12) and Corollary 4.11(ii). �
Corollary 6.10. For any χ ∈WD(ρ), the natural inclusion

HomO×
D
(χ, πB(r)) ↪→ HomO×

D
(Wχ,3, π

B(r)) (6.13)

is an isomorphism, where the structure of Wχ,3 is given in Proposition 6.6.

Proof. The mod p reduction of the lattice Θ̃ is isomorphic to Wχ,3 by Proposition 6.6. The result
then follows from Theorem 6.9. �

The main result of this section is the following.

Theorem 6.11. Maintain all the assumptions we have made on F , B, and r. Assume ρ = rv(1)
satisfies (C1) or (C2) in § 4.3. Then dimO×

D
(πB(r)) = 1.

Proof. Since πB(r) is of infinite dimension over F by [BD14, Corollary 3.2.4] (or [Scho18,
Theorem 7.8]), dimO×

D
(πB(r)) is at least one. The other inequality follows from Corollaries 6.10

and 2.12. �
Remark 6.12. Although we have excluded the case r = 0 in (C2), this case (at least when B is
indefinite) can be deduced from the case r = p− 3. The proof uses Scholze’s functor introduced
in [Scho18] and the mod p local–global compatibility (à la Emerton), see Corollary 7.9.

6.4 The graded module gr(πB(r)∨)
Following [BHHMS21, § 3.1], we consider the category C of admissible smooth representations
π of D× over F with a central character and such that there exists a good filtration on the π∨

such that the gr F[[U1
D/Z

1
D]]-module gr(π∨) is annihilated by some power of the ideal (yz, zy),

where y = y0, z = z0 are as in § 2.3.6 It is clear that C is an abelian category and is stable under
subquotients and extensions.

Definition 6.13. For each χ ∈WD(ρ), we define an ideal a(χ) of F[y, z] as follows.

• If χα−1 ∈WD(ρ), then a(χ) := (y); if χα ∈WD(ρ), then a(χ) := (z).
• If neither of χα, χα−1 lies in WD(ρ), then a(χ) := (yz).

Theorem 6.14. Maintain all the assumptions we have made on F , B and r. Assume rv satisfies
(C1) or (C2) in § 4.3. Then there exists a surjective graded morphism( ⊕

χ∈WD(ρ)

χ∨ ⊗ F[y, z]/a(χ)
)⊕m

� gr(πB(r)∨),

where the integer m is as in Proposition 6.7.

Proof. This is an easy consequence of Corollary 6.10. �

6 This category C is not exactly the one considered in [BHHMS21], but compare with [BHHMS21, Proposi-
tion 3.1.2.11].
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7. Application to Scholze’s functor

7.1 Results of Scholze and Paškūnas
Let L be a finite extension of Qp, G := GLn(L) and GL = Gal(L/L). LetD be the central division
algebra over L of dimension n2 and invariant 1/n. To any π ∈ Modadm

G (O), Scholze [Scho18]
associated a Weil-equivariant sheaf Fπ on the étale site of the adic space Pn−1

Cp
. We collect some

results of Scholze [Scho18] and Paškūnas [Paš22].

Theorem 7.1. Let π ∈ Modadm
G (O).

(i) For any i ≥ 0 the étale cohomology group H i
ét(P

n−1
Cp

,Fπ) carries a continuous GL ×
D×-action. Moreover, the restriction of H i

ét(P
n−1
Cp

,Fπ) to D× is an admissible smooth

representation of D×.
(ii) We have H i

ét(P
n−1
Cp

,Fπ) = 0 for i > 2(n− 1).
(iii) Assume π admits central character ψ : ZG → F×. If π is injective in Modadm

GLn(OL),ψ(O), then

H i
ét(P

n−1
Cp

,Fπ) = 0 for i > n− 1.

(iv) The natural map

H0
ét(P

n−1
Cp

,FπSLn(L)) ↪→ H0
ét(P

n−1
Cp

,Fπ)
is an isomorphism. In particular, if πSLn(L) = 0, then H0

ét(P
n−1
Cp

,Fπ) = 0.

(v) If π = 1G is the trivial representation of G over F, then

H i
ét(P

n−1
Cp

,F1G) =
{
ω−i/2 ⊗ 1D× if i is even and 0 ≤ i ≤ 2(n− 1);
0 if i is odd.

Proof. Parts (i) and (ii) are proved in [Scho18, Theorem 3.2].
For part (iii),7 it is proved in [Scho18, Theorem 3.2] that if π ∈ Modadm

G (O) such that
π|GLn(OL) is injective, then H i

ét(P
n−1
Cp

,Fπ) = 0 for i > n− 1. We need to prove a similar result
for π which admits a central character. Twisting by a character, we may assume the central
character of π is trivial. Examining the proof of [Scho18, Theorem 3.2], it suffices to show that
M∞/L× is a perfectoid space, where M∞ is the infinite level Lubin–Tate space. Passing to
the connected components, it suffices to show that M(0)

∞ /O×
L is a perfectoid space, where M(0)

∞
is the perfectoid space denoted by M(0)

1 in [JLH21, § 4.1]. We will deduce this from [JLH21,
Proposition 4.1.1] which proves that M(0)

∞ /P (OL) is a perfectoid space, where P ⊂ GLn is the
parabolic subgroup of block form (n− 1, 1).

We use freely the notation of [JLH21, § 4.1]. Note that M∞ is denoted by M1 in [JLH21,
§ 4.1]. Let H ⊆ GLn(OL) be a closed subgroup. As in [JLH21, § 4.1], we set

M(0)
H := lim←−

U⊇H
(M(0)

U )♦,

where U ranges over open subgroups of GLn(OL) containing H. By [JLH21, Proposition 4.1.1],
M(0)

P (OL) is the quotient M(0)
∞ /P (OL) in Huber’s category V, and is a perfectoid space. Now

assume H ⊂ GLn(OL) is a closed subgroup contained in P (OL). The same argument as in the
proof of [JLH21, Proposition 3.2.1] shows that M(0)

H is a perfectoid space. More precisely, if H
is of finite index in P (OL), then M(0)

H is finite étale over M(0)
P (OL), and the result then follows.

In general, M(0)
H = lim←−H′M(0)

H′ where H ′ ranges over closed subgroups with H ⊆ H ′ ⊆ P (OL)

7 We thank J. Ludwig for her help with the proof.
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and H ′ ⊆ P (OL) has finite index, and the result follows. We can then argue as in the proof
of [JLH21, Lemma 3.3.4] to prove that M(0)

∞ is an H-torsor over M(0)
H . Finally, it follows from

[JLH21, Lemma 3.3.5] that M(0)
H is the quotient M(0)

∞ /H in Huber’s category V. We finish the
proof by taking H = O×

L .
Part (iv) is proved in [Scho18, Proposition 4.7]. For part (v), we note that F1G is the trivial

local system on Pn−1
Cp

. It follows from [Hub96, Theorem 3.8.1] that the cohomology of Pn−1
Cp

(with the Galois action) is as in the classical case. As D× acts on Pn−1
Cp

via an embedding
D× ↪→ GLn(Lun), D× acts trivially on the cohomology. �

Let π be a locally admissible O-torsion representation of G. The construction of the sheaf
Fπ in [Scho18, Proposition 3.1] extends to such π. Write π = lim−→π′ π

′, where the limit is taken
over all admissible subrepresentations of π. By [Paš22, (9)], we have

H i
ét(P

n−1
Cp

,Fπ) = lim−→
π′
H i

ét(P
n−1
Cp

,Fπ′).

We denote by Si the cohomological covariant δ-functor

Si : Modl.adm
G (O)→ Modl.adm

GL×D×(O), π 
→ H i
ét(P

1
Cp ,Fπ),

where Modl.adm
GL×D×(O) is the category of locally admissible representations of D× on O-torsion

modules equipped with a continuous commuting GL-action. As in [Paš22], it is more convenient
to work on pseudo-compact modules rather than smooth representations via the Pontryagin
duality. Namely, we consider the covariant homological δ-functor {Ši}i≥0 defined by

Ši : CG(O)→ CGL×D×(O), M 
→ H i
ét(P

1
Cp ,FM∨)∨.

If R is a complete local noetherian O-algebra with residue field F, we extend the δ-functor Ši to
CG(R) (defined in § 4.4) in a similar way.

7.2 Local–global compatibility (à la Scholze)
From now on, we follow the notation of § 5. Let B be an indefinite quaternion algebra over
the totally field F such that B is ramified at the fixed place v above p. Let B′ be the definite
quaternion algebra over F which splits at v and has the same ramification behavior as B at
all the other finite places. Fix an isomorphism B×(Av

F,f ) ∼= B′×(Av
F,f ). Fix an open compact

subgroup Uv ⊂ B×(Av
F,f ) ∼= B′×(Av

F,f ). Let r : GF → GL2(F) be a modular Galois representation
and let mr be the non-Eisenstein maximal ideal associated to r as in § 5. Let σvp be the finite
O[[Uv]]-module as in (5.1). If A is a topological O-algebra, let

S̃σvp ,ψ(Uv, A) := H̃0,B′
σvp ,ψ

(Uv,O)⊗O A,

H̃ i
σvp ,ψ

(Uv, A) := H̃ i,B
σvp ,ψ

(Uv,O)⊗O A, i ≥ 0.

The Hecke algebra T(Uv)mr acts faithfully and continuously on S̃σvp ,ψ(Uv,O)mr and
H̃ i
σvp ,ψ

(Uv,O)mr (see [Scho18, Corollary 7.3]).

Let M∞ denote the big patched module MB′
∞ in § 5, so that

M∞/a∞ ∼= S̃σvp ,ψ(Uv,O)dmr and M∞/m∞ ∼= S̃σvp ,ψ(Uv,F)[mr]∨,

where a∞ denotes the ideal (z1, . . . , zq, y1, . . . , yj) of S∞ and m∞ denotes the maximal ideal of
Rψε

−1

∞ .
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On the other hand, let N∞ be the variant of MB∞ which is obtained by the same patching
process as MB∞, but without ‘factorizing out’ the Galois representation, see Remark 5.2. Similarly
to (5.2) we have

N∞/a∞ = H̃1
σvp ,ψ

(Uv,O)dmr , N∞/m∞ ∼= H̃1
σvp ,ψ

(Uv,F)[mr]∨.

Theorem 7.2. Denote the restriction of ψ to F×
v again by ψ. Let G := GL2(Fv).

(i) We have that S̃σvp ,ψ(Uv, E/O)mr lies in Modadm
G,ψ (O), and its restriction to K := GL2(OFv)

is injective in Modsm
K,ψ(O). Equivalently by taking dual, S̃σvp ,ψ(Uv,O)dmr is finitely generated

over O[[K]] and is projective in Modpro
K,ψ(O).

(ii) We have that H̃1
σvp ,ψ

(Uv, E/O)mr lies in Modadm
D×,ψ(O), and its restriction to O×

D is injective

in Modsm
O×
D,ψ

(O). Equivalently, H̃1
σvp ,ψ

(Uv,O)dmr is a finitely generated O[[O×
D]]-module and is

projective in Modpro

O×
D,ψ

(O).

(iii) For 0 ≤ i ≤ 2, there is a canonical isomorphism of T(Uv)mr [GFv ×D×]-modules

Ši(S̃σvp ,ψ(Uv,O)dmr)
∼= H̃ i

σvp ,ψ
(Uv,O)dmr .

(iv) There is a canonical Rψε
−1

∞ [GFv ×D×]-equivariant isomorphism

Š1(M∞) = N∞.

Proof. Part (i) is [Paš22, Lemma 5.3, Proposition 5.4]. Part (ii) is proved in [New13,
Proposition 5.6] and [Paš22, Proposition 6.4]. Part (iii) is [Paš22, Proposition 6.3]. Part (iv)
follows from (the proof of) [Scho18, Corollary 9.3], see [DPS23, Theorem 8.10 (4)] for details. �

Lemma 7.3. We have Š0(S̃σvp ,ψ(Uv,O)dmr) = 0 and Š0(M∞) = 0.

Proof. The first statement is a direct consequence of Theorem 7.2(iii) because H̃0
σvp ,ψ

(Uv,O)dmr =
0 (as mr is non-Eisenstein). The second statement follows from this and the patching construction
(cf. [Scho18, Corollary 9.3]). �

Define

πB
′
(r) := (M∞/m∞)∨, πB(r) := HomGF (r, (N∞/m∞)∨).

Note that (N∞/m∞)∨ is r-typic, so we have a GF ×D×-equivariant isomorphism (N∞/m∞)∨ ∼=
r ⊗ πB(r). The following result is motivated by [Paš22, Propositions 3.7, 4.1].

Proposition 7.4. Assume that Rψε
−1

v is formally smooth and that dimK(πB
′
(r)) = [Fv : Qp].

Then M∞ is a flat Rψε
−1

∞ -module. Moreover, the following statements are equivalent:

(i) dimO×
D
(πB(r)) = [Fv : Qp];

(ii) N∞ is flat over Rψε
−1

∞ ;
(iii) S2(πB

′
(r)) = 0.

Proof. Since Rψε
−1

v is formally smooth by assumption, it is isomorphic to a power series ring in
(3 + 3[Fv : Qp])-variables over O. Consequently, Rψε

−1

∞ is a regular local ring of Krull dimension
equal to dimS∞ + 2[Fv : Qp].

Since M∞ is finite projective over S∞[[K/Z1]], where Z1 is the centre of K1,
δS∞[[K]](M∞) = dimS∞ + dimQp(K/Z1) by [GN22, Lemma A.15], see § 1.1 for the notation.
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Since dimQp(K/Z1) = 3[Fv : Qp] and dimK(πB
′
(r)) = [Fv : Qp] by assumption, we deduce

dimK(πB
′
(r)) + dimRψε

−1

∞ = δS∞[[K]](M∞).

It follows from the miracle flatness criterion [GN22, Proposition A.30] that M∞ is flat over
Rψε

−1

∞ .
Now we prove the equivalence between the three statements. The equivalence (i) ⇔ (ii) is

proved as above by replacing K/Z1 by O×
D/Z

1
D and noting that dimQp O×

D/Z
1
D = 3[Fv : Qp].

We prove part (ii) implies part (iii). Since Rψε
−1

∞ is regular, we may choose a regular system
of parameters of m∞, say s. Since M∞ is flat over Rψε

−1

∞ , the Koszul complex K•(s,M∞) gives
a resolution of πB

′
(r)∨ = M∞/m∞:

· · · → K2(s,M∞) d2−→ K1(s,M∞) d1−→ K0(s,M∞) d0−→M∞/m∞ → 0.

It follows from Lemma 7.3(ii) that Š0(Ki(s,M∞)) = 0 for any i, hence Š0(Im(di)) = 0 as well.
It is then easy to deduce that the sequence

Š1(K2(s,M∞))→ Š1(K1(s,M∞))→ Š1(Q)→ 0 (7.1)

is exact, where Q := Im(d1) = Ker(d0). On the other hand, the functor Š1 is Rψε
−1

∞ -equivariant,
so the complex Š1(K•(s,M∞)) is isomorphic to K•(s, Š1(M∞)), the Koszul complex with
respect to s and Š1(M∞). Since Š1(M∞) ∼= N∞ is flat over Rψε

−1

∞ by part (ii), the complex
Š1(K•(s,M∞)) is again exact. Together with (7.1) this implies that the map

Š1(Q)→ Š1(K0(s,M∞)) (7.2)

is injective.
The short exact sequence 0→ Q→ K0(s,M∞) d0−→M∞/m∞ → 0 induces an exact sequence

Š2(K0(s,M∞))→ Š2(M∞/m∞)→ Š1(Q)→ Š1(K0(s,M∞))

in which the first morphism is surjective by the injectivity of (7.2). Since M∨∞|K is injective in
Modsm

K,ψ(O), Theorem 7.1(iii) implies Š2(K0(s,M∞)) = 0, thus Š2(M∞/m∞) = 0 as required.
We prove part (iii) implies part (ii). This essentially follows from the above argument. Indeed,

we deduce from part (iii) the injectivity of (7.2), which together with (7.1) implies the exactness
of

Š1(K2(s,M∞))→ Š1(K1(s,M∞))→ Š1(K0(s,M∞)).

In other words, the Koszul complex Š1(K•(s,M∞)) is exact at degree 1, thus s is N∞-regular
by a standard argument. �
Remark 7.5. Under some (stronger) genericity condition on r|GFv , the assumption on
dimK(πB

′
(r)) of Proposition 7.4 is verified in [BHHMS23, HW22].

We recall the following important result of Scholze.

Proposition 7.6. There is a GQp ×D×-equivariant inclusion

S1(πB
′
(r)) ⊂ (r|GFv )⊗ πB(r),

whose cokernel is annihilated by (O×
D)1, where (O×

D)1 denotes the reduced norm 1 elements
of O×

D. As a consequence, the cokernel is finite-dimensional over F and dimO×
D
S1(πB

′
(r)) =

dimO×
D
πB(r).

Proof. The first assertion is a restatement of [Scho18, Proposition 7.7] and [Paš22, Lemma 6.1].
The second assertion follows from the first (note that we have fixed the central character). �
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7.3 Local–global compatibility (à la Emerton)
In this subsection, we assume Fv ∼= Qp. Assume EndGQp

(ρ) = F where ρ = rv(1), and let π(ρ) be
the admissible smooth representation of G = GL2(Qp) attached to ρ (cf. § 4.2).

Theorem 7.7. We have πB
′
(r) ∼= π(ρ)⊕d for some d ≥ 1.

Proof. If ρ �
( χ ∗

0 χω

)
for any character χ, the result is essentially a consequence of [Eme11] (which

treats the case of GL2/Q). In the definite quaternion algebra setting, the proof is carried out in
[DLB17, Appendix]. Note that in [DLB17] the quaternion algebra is assumed to be over Q, but
the argument goes through in our setting, under the assumption that Fv is isomorphic to Qp.
Another assumption made in [DLB17] is that ρ is irreducible, but the only places where this
assumption is needed are as follows.

– Page 403, the proof of Lemma 13.6. In our case, the proof goes through if we replace the
vector v (in [DLB17]) by a finite-dimensional subspace which generates π(ρ) over G (compare
the proof of [Eme11, Theorem 6.3.12]).

– Page 404, the proof of Lemma 13.9. To ensure that r(p)|GQp
is absolutely irreducible for p in

a suitable set C defined before Lemma 13.8. But this can be avoided by replacing C by the
subset of ‘allowable’ points as in [Eme11, Definition 5.4.7].

– Page 405, the proof of the injectivity of

π(ρ)⊗HomG(π(ρ), S̃σvp ,ψ(Uv,F)mr)→ S̃σvp ,ψ(Uv,F)mr .

This can be proved as in the proof of [Eme11, Theorem 6.4.16] for ρ �
( χ ∗

0 χω

)
.

If ρ ∼ ( χ ∗
0 χω

)
, the result follows from [CEG+18, § 4]. We remark that a multiplicity one

assumption is made in [CEG+18, § 4], but the necessary modification is given in [GN22, § 5]. �

Remark 7.8. In fact, [CEG+18, Theorem 4.32] and its generalization [GN22, Corollary 5.3.2]
prove a much stronger statement than Theorem 7.7. Namely, assuming moreover that ρ �

( χω ∗
0 χ

)
for any character χ, there is an isomorphism in CG,ψ(Rψε

−1

∞ )

M∞ ∼= Rψε
−1

∞ ⊗̂
Rψερ

N⊕d,

where N := Nψ ∈ CG,ψ(O) is the object attached to ρ in § 4.2.1, and d is the integer in
Theorem 7.7.

Corollary 7.9. Maintain the global assumptions we have made in Theorem 6.11, and assume
up to twist ρ ∼ ( unr1ω ∗

0 unr2

)
. Then dimO×

D
(πB(r)) = 1.

Proof. As in the proof of Theorem 6.11, it suffices to prove dimO×
D
(πB(r)) ≤ 1. We reduce the

result to a situation covered by Theorem 6.11.
Let ρ′ ∼ ( unr2 ∗

0 unr1ω

)
with ∗ �= 0. Choose a global setup, namely a totally real field F̃ , an indef-

inite quaternion algebra B̃ over F̃ which is ramified at v, and a modular absolutely irreducible
Galois representation r′ as in Theorem 6.11, such that ρ′ ∼= r′v(1). Then ρ′ satisfies (C2) in § 4.3,
and so dimO×

D
(πB̃(r′)) = 1 by Theorem 6.11(ii). Combining Theorem 7.7 and Proposition 7.6,

we deduce that dimO×
D
S1(π(ρ′)) ≤ 1. The structure of π(ρ′) is recalled in § 4.2. In particular, the

set JH(π(ρ′)) consists of non-supersingular representations. Using Theorem 7.1(iv) and Ludwig’s
result [Lud17], we have

dimO×
D
S0(π) = dimO×

D
S2(π) = 0 (7.3)
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for any non-supersingular irreducible representation π of G. We deduce that dimO×
D
S1(π) ≤ 1

for any π ∈ JH(π(ρ′)). It is clear from the definition of π(ρ) (see § 4.2 or Proposition 8.14) that
JH(π(ρ)) differs from JH(π(ρ′)) by at most one-dimensional representations. Hence, using (7.3)
we obtain

dimO×
D
S1(π(ρ)) ≤ 1.

By Theorem 7.7 and Proposition 7.6 again, this implies dimO×
D
(πB(r)) ≤ 1. �

7.4 Vanishing for supersingular representations
Ludwig [Lud17] has proved that S2(π) = 0 if π is a principal series of GL2(Qp). Together with
Theorem 6.11, we deduce the following vanishing result when π is supersingular.

Corollary 7.10. Assume that π = π(ρ) is supersingular with 2 ≤ r ≤ p− 3 in the notation
of (C1) in § 4.3. Then S2(π) = 0. Moreover, we have dimO×

D
S1(π) = 1.

Proof. As ρ is irreducible, the ring Rψε
−1

v is formally smooth. It is proved in [Paš22, Lemma 5.16]
that dimK(π) = 1, so the assumptions of Proposition 7.4 hold via Theorem 7.7. The existence
of a suitable B′ and r is well-known; see, for example, [DT94]. Thus, the vanishing of S2(π)
follows from this and Proposition 7.4. Finally, Theorem 6.11 and Proposition 7.6 imply that
dimO×

D
S1(πB

′
(r)) = 1, hence also dimO×

D
S1(π) = 1 via Theorem 7.7 again. �

8. Further studies on Scholze’s functor

In this section, we study the behavior of Si on some non-supersingular representations of
GL2(Qp). Recall that p ≥ 5.

8.1 Preparations
8.1.1 Some definitions. Recall that D is the nonsplit quaternion algebra over Qp and U1

D =
1 + pD.

Definition 8.1. Given an admissible smooth F-representation V of D×, let Vfd be the largest
finite-dimensional quotient of V .

Remark 8.2. That Vfd is well-defined can be seen as follows. Let V ∨ be the Pontryagin dual
of V . Then by the general theory of finitely generated modules over F[[U1

D]] (see, e.g., [Ven02,
§ 3.1]), V ∨ has a largest submodule of δ-dimension 0 (i.e. finite dimensional over F). Clearly this
submodule is D×-stable because V ∨ carries a compatible action of D×. Taking the dual back
gives Vfd in Definition 8.1.

We give some basic properties of (·)fd. For i ≥ 0 and M a finitely generated F[[U1
D]]-module,

set

Ei(−) := ExtiF[[U1
D]](−,F[[U1

D]]).

Note that Ei(−) = 0 for i ≥ 5, as F[[U1
D]] is an Auslander regular ring of global dimension 4. Also

recall that M (when it is nonzero) is called Cohen–Macaulay if there exists exactly one i such
that Ei(M) �= 0; in this case i equals to the grade of M .

Lemma 8.3. Let V be an admissible smooth F-representation of D×. If V is infinite-dimensional
(as an F-vector space) and V ∨ is Cohen–Macaulay as an F[[U1

D]]-module, then Vfd = 0.
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Proof. By assumption, V ∨ is Cohen–Macaulay with dimO×
D
(V ) ≥ 1, thus E4(V ∨) = 0. If Vfd �= 0,

then the inclusion (Vfd)∨ ↪→ V ∨ induces a surjection

E4(V ∨)→ E4((Vfd)∨)→ 0.

This gives a contradiction as E4((Vfd)∨) �= 0. �
Lemma 8.4. If 0→ V ′ → V → V ′′ → 0 is a short exact sequence of admissible smooth F-
representations of D×, then (V ′)fd → Vfd → (V ′′)fd → 0 is exact. If, moreover, V ′′ is finite-
dimensional over F, then

0→ (V ′)fd → Vfd → (V ′′)fd → 0

is exact.

Proof. It is obvious from Definition 8.1. �
Lemma 8.5. Let V be an admissible smooth F-representation of D×. Assume that V carries an
F-linear continuous action of GQp which commutes with the action of D×. Then Vfd is also stable
under GQp .

Proof. Consider the Pontryagin dual V ∨, so that (Vfd)∨ is identified with the largest finite-
dimensional submodule of V ∨, see Remark 8.2. It suffices to prove the following statement: if
x ∈ V ∨ such that 〈D×.x〉 is finite-dimensional, then so is 〈D×.(gx)〉 for any g ∈ GQp . This is
clear because the actions of GQp and of D× commute. �

We now recall the notion of being σ-typic from [Scho18, Definition 5.2], adapted to our
situation. Let G be a group, σ : G→ GLn(F) be an n-dimensional representation and M an
F[G]-module. Then M is said to be σ-typic if one can write M as a tensor product

M = σ ⊗F M0,

such that G acts on σ ⊗F M0 through its action on σ.

Lemma 8.6. Assume that EndF[G](σ) = F.

(i) If M is σ-typic, then M0
∼= HomF[G](σ,M).

(ii) Let M ′ ⊂M be F[G]-modules and assume that M ′ is a direct summand of M . If M is
σ-typic, then so is M ′.

Proof. (i) This follows from the same proof of [Scho18, Proposition 5.3]. In [Scho18,
Proposition 5.3] σ is assumed to be absolutely irreducible, but in the proof only the assumption
EndF[G](σ) = F is needed.

(ii) Since M is σ-typic by assumption, the natural map σ ⊗HomF[G](σ,M)→M is an
isomorphism. Since M ′ is a direct summand of M , the map

σ ⊗HomF[G](σ,M
′)→M ′

is also an isomorphism by functoriality. �

8.1.2 Complements on Scholze’s functor. Keep the notation from § 7 and assume Fv ∼= Qp.
To simplify notation we write

S̃(Uv,F) = S̃σvp ,ψ(Uv,F), H̃1(Uv,F) = H̃1
σvp ,ψ

(Uv,F).

It is a consequence of [Scho18, Proposition 5.8] that H̃1(Uv,F)[mr] is r-typic, so

H̃1(Uv,F)[mr] ∼= r ⊗HomGF (r, H̃1(Uv,F)[mr]). (8.1)
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It is proved in [Scho18, Proposition 7.7] and [Paš22, Lemma 6.1] that there is a GQp ×D×-
equivariant inclusion

S1(S̃(Uv,F)[mr]) ⊂ H̃1(Uv,F)[mr], (8.2)

whose cokernel is finite-dimensional over F, cf. Proposition 7.6.

Corollary 8.7. If (H̃1(Uv,F)[mr])∨ is a Cohen–Macaulay F[[U1
D]]-module, then (8.2) becomes

an equality.

Proof. Since H̃1(Uv,F)[mr] is always infinite-dimensional, see [BD14, Corollary 3.2.4] or [Scho18,
Theorem 7.8], the assumption implies that (H̃1(Uv,F)[mr])fd = 0 by Lemma 8.3. The result
follows. �
Remark 8.8. Paškūnas [Paš22, Lemma 6.1] also proves a criterion for (8.2) to be an equality.
Corollary 8.7 can be viewed as a complement to it.

Proposition 8.9. Assume that Rψε
−1

v is formally smooth and

dimO×
D
(H̃1(Uv,F)[mr]) = 1.

Then (H̃1(Uv,O)mr)
d is a faithfully flat T(Uv)mr -module, and (H̃1(Uv,F)[mr])∨ is a

Cohen–Macaulay F[[U1
D]]-module. In particular, (8.2) becomes an equality. Moreover,

S2(S̃(Uv,F)[mr]) = 0.

Proof. The faithful flatness is proved by the same argument of [GN22, Theorem B(3)].
Since N∞ is a projective object in CO×

D,ψ
(S∞), it is a Cohen–Macaulay S∞[[U1

D]]-module,
thus is also Cohen–Macaulay over R∞[[U1

D]] by [GN22, Lemma A.29]. The formal smoothness
of Rψε

−1

v ensures that R∞ is formally smooth, namely its maximal ideal m∞ is generated
by a regular sequence. By the proof of [GN22, Proposition A.30], (H̃1(Uv,F)[mr])∨ ∼= N∞/m∞
is a Cohen–Macaulay F[[U1

D]]-module.
The last assertion follows from Proposition 7.4. �
For simplicity and clarity we make the following assumption in §§ 8.2 and 8.3 below.

The general case will be treated in § 8.4.

(H) Assume d = 1 in Theorem 7.7, i.e. S̃(Uv,F)[mr] ∼= π(ρ).

For notational convenience, we make the following definition. Let ρ := rv(1).

Definition 8.10. We define

JL(ρ) := HomGF (r, H̃1(Uv,F)[mr]), (8.3)

which is an admissible smooth F-representation of D×. Then (8.1) restricts to a GQp ×D×-
isomorphism

H̃1(Uv,F)[mr] ∼= ρ(−1)⊗ JL(ρ). (8.4)

Finally we recall the following important results which will be repeatedly used later on.

Theorem 8.11. Let π be an admissible smooth F-representation of G.

(i) The natural morphism S0(πSL2(Qp))→ S0(π) is an isomorphism.
(ii) If π ∼= IndGB(Qp)

χ is a principal series (for some smooth character χ : B(Qp)→ F×), then

S2(π) = 0.

Proof. Part (i) is a special case of Theorem 7.1(iv) and part (ii) is [Lud17, Theorem 4.6]. �
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8.2 The generic case in the minimal case
In this subsection, we assume ρ ∼ ( χ1 ∗

0 χ2

)
is reducible nonsplit such that χ1χ

−1
2 �= 1, ω±1.

Theorem 8.12. Let ρ be as above. Then JL(ρ) depends only on ρss.

Proof. Write ρ1 (respectively, ρ2) for the nonsplit extension
( χ1 ∗

0 χ2

)
(respectively,

( χ2 ∗
0 χ1

)
). Com-

bining Theorem 7.7 and [Paš22, Proposition 6.7],8 we see that dimO×
D
S1(S̃(Uv,F)[mr]) = 1,

hence
dimO×

D
(H̃1(Uv,F)[mr]) = 1

by (8.2). By Proposition 8.9, (8.4) and assumption (H), we obtain for i ∈ {0, 1, 2}
S1(π(ρi)) = ρi(−1)⊗ JL(ρi). (8.5)

Recall from § 4.2 that there exist exact sequences

0→ π1 → π(ρ1)→ π2 → 0,

0→ π2 → π(ρ2)→ π1 → 0,

where π1 := IndGB(Qp)
χ2 ⊗ χ1ω

−1 and π2 := IndGB(Qp)
χ1 ⊗ χ2ω

−1. Note that S0(πi) = S2(πi) = 0
for i ∈ {1, 2}, by Theorem 8.11. Hence, by applying the functor Si and using (8.5), we
obtain

0→ S1(π1)
ι1→ ρ1(−1)⊗ JL(ρ1)→ S1(π2)→ 0, (8.6)

0→ S1(π2)
ι2→ ρ2(−1)⊗ JL(ρ2)→ S1(π1)→ 0. (8.7)

Since ρ1 is nonsplit, we have

HomGQp
(χ2, ρ1 ⊗ JL(ρ1)) = 0.

As a consequence, HomGQp
(χ2ω

−1,S1(π1)) = 0 by (8.6) and applying HomGQp
(χ2ω

−1,−) to (8.7)
gives isomorphisms

HomGQp
(χ2ω

−1,S1(π2)) ∼= HomGQp
(χ2ω

−1, ρ2(−1)⊗ JL(ρ2)) ∼= JL(ρ2),

where the last isomorphism follows from the definition of ρ2. This gives a GQp ⊗D×-equivariant
embedding

χ2ω
−1 ⊗ JL(ρ2) ↪→ S1(π2). (8.8)

One checks that its composition with ι2 (in (8.7)) coincides with the morphism obtained by
tensoring the inclusion χ2ω

−1 ↪→ ρ2(−1) with JL(ρ2). Combining with the short exact sequence

0→ χ2ω
−1 ⊗ JL(ρ2)→ ρ2(−1)⊗ JL(ρ2)→ χ1ω

−1 ⊗ JL(ρ2)→ 0,

a diagram chasing gives a surjection

χ1ω
−1 ⊗ JL(ρ2) � S1(π1). (8.9)

In particular, when restricted to GQp , S1(π1) is semisimple and any irreducible subquotient of
S1(π1) is isomorphic to χ1ω

−1.
On the other hand, the same argument as above implies an embedding (analogous to (8.8))

χ1ω
−1 ⊗ JL(ρ1) ↪→ S1(π1). (8.10)

8 We can also apply Theorem 6.11 if ρ satisfies (C2).
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We claim that (8.10) is an isomorphism. Indeed, ι1 in (8.6) induces a GQp ×D×-equivariant
embedding

S1(π1)/(χ1ω
−1 ⊗ JL(ρ1)) ↪→ (ρ1(−1)⊗ JL(ρ1))/(χ1ω

−1 ⊗ JL(ρ1)) ∼= χ2ω
−1 ⊗ JL(ρ1).

However, as shown in the last paragraph, S1(π1) admits only χ1ω
−1 as irreducible subquotient

(when restricted to GQp), while χ2ω
−1 ⊗ JL(ρ1) admits only χ2ω

−1 as irreducible subquotients.
Since χ1 �= χ2, this forces S1(π1)/(χ1ω

−1 ⊗ JL(ρ1)) = 0, proving the claim. In a similar way, the
embedding (8.8) is also an isomorphism and consequently (8.9) is an isomorphism.

In summary, we have proven that

χ1ω
−1 ⊗ JL(ρ2)

(8.9)∼= S1(π1)
(8.10)∼= χ1ω

−1 ⊗ JL(ρ1).

Hence, by applying HomGQp
(χ1ω

−1,−) we obtain a D×-equivariant isomorphism JL(ρ1) ∼=
JL(ρ2). �
Remark 8.13. It might be strange that JL(ρi) only carries the information of ρss. This can be
explained as follows. On the one hand, since S1(π(ρi)) = ρi(−1)⊗ JL(ρi), the information of ρi
is indeed caught by the functor S1. On the other hand, comparing the quaternionic Serre weights
(cf. Propositions 6.1 and 6.2), JL(ρ1) and JL(ρ2) have the same set of quaternionic Serre weights.
However, we do not expect this phenomenon happens once L �= Qp.

8.3 The non-generic case in the minimal case
In this subsection, we extend the result in § 8.2 to the case ρss ∼ ω ⊕ 1 (up to twist). In the
following, we will denote by 1GQp

, 1G and 1D× the trivial representation of GQp , G and D×,
respectively; sometimes we will omit the subscript if no confusion is caused.

Let ρ1 ∼
(
ω ∗
0 1

)
be a nonsplit extension of 1 by ω; we do not make assumptions on the

extension type of ρ1 (i.e. peu ramifié or très ramifié). On the other hand, Ext1GQp
(ω,1) is

one-dimensional; let ρ2 ∼
(

1 ∗
0 ω

)
be the unique nonsplit extension of ω by 1.

Let τ1 be the universal extension of 1⊕2
G by Sp, i.e.

0→ Sp→ τ1 → 1⊕2
G → 0 (8.11)

with socG τ1 = Sp. Recall from § 4.2 that there is a short exact sequence

0→ πα → π(ρ2)→ τ1 → 0,

where πα := IndGB(Qp)
(ω ⊗ ω−1).

It is shown in [Paš13, § 10.1] that dimF Ext1G/ZG(πα,1G) = 1. Thus, there exists a unique (up
to isomorphism) nonsplit extension

0→ 1G → κ→ πα → 0. (8.12)

On the other hand, there is a natural isomorphism Ext1G/ZG(1G,Sp) ∼= Hom(Q×
p ,F) by [Col10,

Theorem VII.4.18]; we denote by Eφ the extension corresponding to φ ∈ Hom(Q×
p ,F). The next

result gives the structure of π(ρ1).

Proposition 8.14. We have socG π(ρ1) ∼= Sp and there exist nonsplit extensions

0→ Eφ → π(ρ1)→ πα → 0,

0→ Sp→ π(ρ1)→ κ→ 0.

Proof. See [Paš15, Lemma 6.7]. �
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Proposition 8.15. The following statements hold:

(i) S0(1G) ∼= 1GQp
⊗ 1D× , S1(1G) = 0, S2(1G) ∼= ω−1 ⊗ 1D× ;

(ii) S0(Sp) = S2(Sp) = 0;
(iii) S0(πα) = S2(πα) = 0.

Proof. Statement (i) follows from Theorem 7.1(v). Statements (ii) and (iii) are special cases of
Theorem 8.11, except for S2(Sp) which is [Lud17, Corollary 4.7]. �

Corollary 8.16. Let π ∈ Modl.adm
G/Z (O). Assume that each of the irreducible subquotients of

π lies in {Sp,1G, πα}. Then S0(π) (respectively, S2(π)) admits only 1GQp
(respectively, ω−1) as

subquotients when restricted to GQp .

Proof. This is a direct consequence of Proposition 8.15. �

Proposition 8.17. (i) We have that JL(ρ1)∨ is a Cohen–Macaulay F[[U1
D]]-module.

(ii) We have S1(π(ρ1)) = ρ1(−1)⊗ JL(ρ1) and S2(π(ρ1)) = 0.

Proof. Since Rψερ1 is formally smooth, the assertions follow from Corollary 7.9 and Proposition 8.9.
�

Corollary 8.18. We have S0(κ) ∼= 1GQp
⊗ 1D× and S2(κ) = 0.

Proof. Since S0(πα) = 0, the first assertion is a direct consequence of Proposition 8.15(i) via
(8.12). Since κ is a quotient of π(ρ1), the second assertion is a consequence of Proposition 8.17(ii).

�

By Propositions 8.15 and 8.17 and Corollary 8.18, the sequence 0→ Sp→ π(ρ1)→ κ→ 0
(see Proposition 8.14) induces an exact sequence

0→ 1GQp
⊗ 1D× → S1(Sp)→ ρ1(−1)⊗ JL(ρ1)→ S1(κ)→ 0. (8.13)

Similarly, the sequence 0→ Eφ → π(ρ1)→ πα → 0 induces an exact sequence

0→ S1(Eφ)→ ρ1(−1)⊗ JL(ρ1)→ S1(πα)→ ω−1 ⊗ 1D× → 0. (8.14)

Lemma 8.19. We have HomGQp
(ω−1,S1(Sp)) = 0, and HomGQp

(ω−1,S1(τ1)) is finite-
dimensional.

Proof. As ρ1 ∼
(
ω ∗
0 1

)
is assumed to be nonsplit, we have HomGQp

(ω−1, ρ1(−1)⊗ JL(ρ1)) = 0,
which implies the first assertion via (8.13). For the second assertion, we note that the short
exact sequence 0→ Sp→ τ1 → (1G)⊕2 → 0 induces an exact sequence

0→ (1GQp
⊗ 1D×)⊕2 → S1(Sp)→ S1(τ1)→ 0 (8.15)

by Proposition 8.15(i). By applying HomGQp
(ω−1,−) to (8.15), we obtain

0 = HomGQp
(ω−1,S1(Sp))→ HomGQp

(ω−1,S1(τ1))→ Ext1GQp
(ω−1,1⊕2

GQp
)

from which the result easily follows. �

Proposition 8.20. There exists a short exact sequence

0→ S1(π(ρ2))→ ρ2(−1)⊗ JL(ρ2)→ (1GQp
⊗ 1D×)⊕2 → 0. (8.16)

As a consequence, HomGQp
(ω−1,S1(π(ρ2))) ∼= JL(ρ2).
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Proof. We need to show that the cokernel of (8.2) is isomorphic to (1GQp
⊗ 1D×)⊕2. For this

we need a refined version of [Scho18, Proposition 7.7], which we put separately in Lemma 8.21
below. In our situation with A = T(Uv)mr , I = mr and P := (S̃(Uv,O)mr)

d, we are left to show

Tor
T(Uv)mr
1 (T(Uv)mr/mr, P ) ∼= (1∨

G)⊕2 (8.17)

by Proposition 8.15(i) (here we use [Paš22, Proposition 5.4] to ensure that P satisfies assumption
(c) of Lemma 8.21). This is a consequence of [Hu21, Proposition 3.30], as we explain below. After
enlarging F, we may assume T(Uv)mr/mr

∼= F.
To be able to apply [Hu21, Proposition 3.30], we need to relate P with N , where N is

the object introduced in § 4.2.1 for ρ2. We do this by passing to M∞. On the one hand, by
Remark 7.8 and assumption (H) we have M∞ ∼= Rψε

−1

∞ ⊗̂
Rψερ2

N . Since Rψε
−1

∞ is flat over Rψερ2 ,

we deduce

Tor
Rψερ2
1 (F, N) ∼= TorR

ψε−1

∞
1 (F,M∞). (8.18)

On the other hand, Rψε
−1

∞ acts on P via the isomorphism (5.2) M∞/a∞ ∼= P , and the action
factors through

Rψε
−1

∞ � Rψε
−1

∞ /a∞ ∼= Rψε
−1

r,S � T(Uv)mr .

Recall that a∞ is generated by an M∞-regular sequence z1, . . . , zq, y1, . . . , yj . By
Proposition 4.21, this sequence is also Rψε

−1

∞ -regular and Rψε
−1

∞ /a∞ acts faithfully on P .
But T(Uv)mr also acts faithfully on P , so the surjection Rψε

−1

∞ /a∞ � T(Uv)mr is actually an
isomorphism.9 Consequently,

TorR
ψε−1

∞
1 (F,M∞) ∼= Tor

T(Uv)mr
1 (F, P ).

Combining this with (8.18), we deduce (8.17) from [Hu21, Proposition 3.30]. �
Lemma 8.21. Let (A,m) be a complete noetherian local O-algebra with A/m ∼= F and P ∈
CG/ZG(A). Assume that:

(a) P is projective in the category of pseudo-compact O[[K/Z1]]-modules;
(b) PSL2(Qp) = 0;
(c) each of the irreducible subquotients of P∨ lies in {Sp,1G, πα}.

Let I be an ideal of A. Then there exists an exact sequence

0→ Š0(TorA1 (A/I, P ))→ A/I ⊗A Š1(P )→ Š1(A/I ⊗A P )→ 0.

Proof. Choose a finite free resolution of A/I: · · · → F1 → F0 → A/I → 0. By applying −⊗A P
to it, we obtain a chain complex

· · · d2→ F1 ⊗A P d1→ F0 ⊗A P d0→ A/I ⊗A P → 0 (8.19)

whose homology computes TorAi (A/I, P ). Since each Fi is a finite free A-module (for i ≥ 0),
assumption (a) implies that each Fi ⊗A P is projective when restricted to K, hence Š2(Fi ⊗A
P ) = 0 by Theorem 7.1(iii). Assumption (b) implies that Š0(Fi ⊗A P ) = 0 by Theorem 7.1(iv).
As a consequence, Š0(Im(di)) = 0 for any i ≥ 0. On the other hand, since Š3(−) = 0, we have
Š2(Im(di)) = 0 for i ≥ 1.

9 This gives a ‘big R = T’ result, as mentioned in Remark 4.22.
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We may split (part of) the complex (8.19) as

0→ Im(d1)→ F0 ⊗A P → A/I ⊗A P → 0, 0→ Ker(d1)→ F1 ⊗A P → Im(d1)→ 0

from which we deduce long exact sequences

0→ Š2(A/I ⊗A P )→ Š1(Im(d1))
f→ Š1(F0 ⊗A P )→ Š1(A/I ⊗A P )→ 0,

0→ Š1(Ker(d1))→ Š1(F1 ⊗A P )
g→ Š1(Im(d1))→ Š0(Ker(d1))→ 0.

Note that Š1(Fi ⊗A P ) ∼= Fi ⊗A Š1(P ) (as Fi is a finite free A-module), and that there is an
exact sequence

F1 ⊗A Š1(P )
f◦g−→ F0 ⊗ Š1(P )→ A/I ⊗A Š1(P )→ 0

by tensoring the sequence F1 → F0 → A/I → 0 with Š1(P ). Recall that a variant of the snake
lemma shows that there is a long exact sequence

0→ Ker(g)→ Ker(f ◦ g)→ Ker(f) ∂→ Coker(g)→ Coker(f ◦ g)→ Coker(f)→ 0.

In our situation, this gives (by considering the last four nonzero terms)

Š2(A/I ⊗A P ) ∂→ Š0(Ker(d1))→ A/I ⊗A Š1(P )→ Š1(A/I ⊗A P )→ 0.

By Corollary 8.16, assumption (c) implies that ∂ is identically zero. Hence, we are left to show

Š0(Ker(d1)) = Š0(TorA1 (A/I, P )),

which follows from the exact sequence 0→ Im(d2)→ Ker(d1)→ TorA1 (A/I, P )→ 0 (recall
Š0(Im(d2)) = 0 from the first paragraph of the proof). �

By Theorem 8.11 the short exact sequence 0→ πα → π(ρ2)→ τ1 → 0 induces an exact
sequence

0→ S1(πα)→ S1(π(ρ2))→ S1(τ1)→ 0. (8.20)

Lemma 8.22. Both S1(πα) and S1(κ) are ω−1-typic (when restricted to GQp).

Proof. We claim that HomGQp
(1GQp

,S1(πα)) = HomGQp
(1GQp

,S1(κ)) = 0. Combining (8.20)
with Proposition 8.20, we obtain an embedding

S1(πα) ↪→ ρ2(−1)⊗ JL(ρ2).

As HomGQp
(1GQp

, ρ2(−1)) = 0, we deduce that HomGQp
(1GQp

,S1(πα)) = 0, as claimed. Using
Proposition 8.15(i) and Corollary 8.18, the sequence 0→ 1G → κ→ πα → 0 induces an exact
sequence

0→ S1(κ)→ S1(πα)→ ω−1 ⊗ 1D× → 0, (8.21)

which implies the claim for S1(κ).
The claim implies that the surjection ρ1(−1)⊗ JL(ρ1) � S1(κ) in (8.13) must factor as

ρ1(−1)⊗ JL(ρ1) � ω−1 ⊗ JL(ρ1) � S1(κ),

where the first quotient map is induced by the natural projection ρ1(−1) ∼ (
1 ∗
0 ω−1

)
� ω−1. In

particular, S1(κ) is ω−1-typic. Note that, being a subrepresentation of ρ2(−1)⊗ JL(ρ2), S1(πα)
does not admit any GQp-subquotient isomorphic to a nontrivial self-extension of ω−1, so S1(πα)
is also ω−1-typic by (8.21). �
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As a consequence of (8.16), there exists a D×-equivariant surjection

JL(ρ2) � (1D×)⊕2. (8.22)

We denote its kernel by V2. Then ρ2(−1)⊗ JL(ρ2) can be filtered by subrepresentations such
that the graded pieces are isomorphic to

ω−1 ⊗ V2, (ω−1 ⊗ (1D×)⊕2)⊕ (1GQp
⊗ V2), 1GQp

⊗ (1D×)⊕2.

Using (8.16) again, we obtain the following short exact sequences:

0→ ω−1 ⊗ JL(ρ2)→ S1(π(ρ2))→ 1GQp
⊗ V2 → 0, (8.23)

0→ ω−1 ⊗ V2 → S1(π(ρ2))→ (ω−1 ⊗ 1D×)⊕2 ⊕ (1GQp
⊗ V2)→ 0. (8.24)

Recall the definition of Vfd for an admissible smooth D×-representation V from Definition 8.1,
and that taking (−)fd is right exact by Lemma 8.4.

Corollary 8.23. The following statements hold:

(i) (S1(κ))fd = 0 and (S1(πα))fd ∼= ω−1 ⊗ 1D× ;
(ii) (S1(Eφ))fd is ω−1-typic;
(iii) (S1(τ1))fd is ω−1-typic;
(iv) (V2)fd = 0.

Proof. (i) Since S1(κ) is a quotient of ρ1(−1)⊗ JL(ρ1) by (8.13) and (JL(ρ1))∨ is
Cohen–Macaulay by Proposition 8.17, we have JL(ρ1)fd = 0 by Lemma 8.3, hence (S1(κ))fd = 0
as well by the right exactness of (−)fd. The second assertion follows from this, by applying
Lemma 8.4 to (8.21).

(ii) Recall the exact sequence (8.14)

0→ S1(Eφ)→ ρ1(−1)⊗ JL(ρ1)→ S1(πα)→ ω−1 ⊗ 1D× → 0.

Since S1(πα) is ω−1-typic by Lemma 8.22, the morphism ρ1(−1)⊗ JL(ρ1)→ S1(πα) factors
through the quotient ω−1 ⊗ JL(ρ1). Let W be the admissible F-representation of D× such that

ω−1 ⊗W = Ker(ω−1 ⊗ JL(ρ1)→ S1(πα)).

Then one checks that S1(Eφ) fits in the following exact sequence:

0→ 1GQp
⊗ JL(ρ1)→ S1(Eφ)→ ω−1 ⊗W → 0. (8.25)

Since (JL(ρ1))fd = 0 as seen in part (i), we deduce

(S1(Eφ))fd = (ω−1 ⊗W )fd ∼= ω−1 ⊗Wfd.

In particular, (S1(Eφ))fd is ω−1-typic.
(iii) Note that there is a short exact sequence 0→ Eφ → τ1 → 1G → 0 by the definition of

τ1, see (8.11). By Proposition 8.15(i) it induces an exact sequence

0→ 1GQp
⊗ 1D× → S1(Eφ)→ S1(τ1)→ 0. (8.26)

The assertion then follows from part (ii) using Lemma 8.4.
(iv) We view S1(πα) as a subrepresentation of S1(π(ρ2)) via (8.20). Since S1(πα) is ω−1-typic

by Lemma 8.22, it is contained in ω−1 ⊗ JL(ρ2), see (8.23). As a consequence, the snake lemma
applied to (8.20) and (8.23) implies that 1GQp

⊗ V2 is a quotient of S1(τ1), thus (1GQp
⊗ V2)fd is a

quotient of (S1(τ1))fd. However, (S1(τ1))fd is ω−1-typic by part (iii), which forces (1GQp
⊗ V2)fd =

0 or equivalently (V2)fd = 0. �
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Corollary 8.24. We have isomorphisms S1(κ) ∼= ω−1 ⊗ V2 and

S1(τ1) ∼= (ω−1 ⊗ 1D×)⊕ (1GQp
⊗ V2).

Proof. We may identify S1(κ) with a subrepresentation of S1(π(ρ2)) via (8.20) and (8.21). As in
the proof of Corollary 8.23(iv), S1(κ) is contained in ω−1 ⊗ JL(ρ2). However, since (S1(κ))fd = 0
by Corollary 8.23(i), S1(κ) is, in fact, contained in ω−1 ⊗ V2 by the definition of V2, see (8.22).
Denote by ι the inclusion

ι : S1(κ) ↪→ ω−1 ⊗ V2.

We need to prove that ι is an isomorphism or, equivalently, Coker(ι) = 0. Since (V2)fd = 0 by
Corollary 8.23(iv), it suffices to prove that Coker(ι) is finite-dimensional.

Denote by ι̃ the embedding S1(κ) ↪→ S1(π(ρ2)). Then (8.20) and (8.21) imply

0→ ω−1 ⊗ 1D× → Coker(ι̃)→ S1(τ1)→ 0. (8.27)

Since HomGQp
(ω−1,S1(τ1)) is finite-dimensional by Lemma 8.19, so is HomGQp

(ω−1,Coker(ι̃)).
On the other hand, using (8.24) we have a commutative diagram

0 �� S1(κ)

ι

��

ι̃ �� S1(π(ρ2)) �� Coker(ι̃) ��

��

0

0 �� ω−1 ⊗ V2
�� S1(π(ρ2)) �� (ω−1 ⊗ 1D×)⊕2 ⊕ (1GQp

⊗ V2) �� 0

hence an exact sequence

0→ Coker(ι)→ Coker(ι̃)→ (ω−1 ⊗ 1D×)⊕2 ⊕ (1GQp
⊗ V2)→ 0. (8.28)

Consequently, HomGQp
(ω−1,Coker(ι)) is finite-dimensional. However, since Coker(ι) is ω−1-typic

(being a quotient of ω−1 ⊗ V2), this implies that Coker(ι) is itself finite-dimensional. As explained
in last paragraph, we deduce that ι is an isomorphism and, consequently, by (8.28)

Coker(ι̃) ∼= (ω−1 ⊗ 1D×)⊕2 ⊕ (1GQp
⊗ V2).

Finally, the second isomorphism in the corollary follows from this by using (8.27). �

We note the following consequence of the proof of Corollary 8.24.

Corollary 8.25. (i) There exists a short exact sequence of GQp ×D×-representations

0→ ω−1 ⊗ V2 → S1(πα)→ ω−1 ⊗ 1D× → 0.

(ii) There exists a GQp ×D×-equivariant surjection S1(Sp) � ω−1 ⊗ 1D× whose kernel admits
only 1GQp

as subquotients when restricted to GQp . In particular, HomGQp
(S1(Sp), ω−1) is

one-dimensional.

Proof. Part (i) follows from (8.21) and Corollary 8.24.
Part (ii) follows from (8.15) and Corollary 8.24. �

Recall from Propositions 6.1 and 6.2 that we always have 1O×
D
∈WD(ρ1) (no matter ρ1 is

peu ramifié or très ramifié), so

HomO×
D
(1O×

D
, JL(ρ1)) �= 0.
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Let W1 be the 1O×
D
-typic component of socO×

D
JL(ρ1). It is easy to see that W1 is stable under

D×. Define V1 to be the quotient

V1 := JL(ρ1)/W1. (8.29)

The main result of this subsection is the following.

Theorem 8.26. There exists a D×-equivariant isomorphism V1
∼= V2.

Proof. Recall the exact sequence (8.13)

0→ 1GQp
⊗ 1D× → S1(Sp)→ ρ1(−1)⊗ JL(ρ1)

j→ S1(κ)→ 0.

By Corollary 8.25(ii), HomGQp
(S1(Sp), ω−1) is one-dimensional over F, so the last sequence shows

that HomGQp
(Ker(j), ω−1) is also one-dimensional. Since S1(κ) is ω−1-typic by Lemma 8.22, the

surjection j factors as

ρ1(−1)⊗ JL(ρ1) � ω−1 ⊗ JL(ρ1)
j′
� S1(κ).

We clearly have a short exact sequence

0→ 1GQp
⊗ JL(ρ1)→ Ker(j)→ Ker(j′)→ 0,

which implies that HomGQp
(Ker(j′), ω−1) is also one-dimensional. Moreover, by Corollary 8.25(ii)

again, it is easy to see that the one-dimensional ω−1-typic quotient of Ker(j′) is isomorphic to
ω−1 ⊗ 1D× . But Ker(j′) is itself ω−1-typic (being a subrepresentation of ω−1 ⊗ JL(ρ1)), so Ker(j′)
is, in fact, isomorphic to ω−1 ⊗ 1D× .

On the other hand, since S1(κ) ∼= V2 as representations of D× by Corollary 8.24, we have

socO×
D
S1(κ) = socO×

D
V2 ⊂ socO×

D
JL(ρ2) ∼= (α⊕ α−1)⊕m2 , (8.30)

for some integer m2 ≥ 1, where the last isomorphism is given by Proposition 6.1, Proposition 6.2
and Corollary 6.8. Indeed, taking r = p− 3 and s = 0 in Proposition 6.1(ii)(c), we get WD(ρ2) =
{ξp−3α−1ζ, ξp(p−3)αζ} = {α, α−1}. We deduce that the composition

ω−1 ⊗W1 ↪→ ω−1 ⊗ JL(ρ1)
j′
� S1(κ)

is zero, where the first morphism is induced from the natural inclusion W1 ↪→ JL(ρ1), see (8.29).
In other words, Ker(j′) contains ω−1 ⊗W1. Combining with what has been proved in the last
paragraph, this implies Ker(j′) = ω−1 ⊗W1. In particular, W1

∼= 1D× and

S1(κ) ∼= (ω−1 ⊗ JL(ρ1))/(ω
−1 ⊗W1)

(8.29)
= ω−1 ⊗ V1.

Taking into account Corollary 8.24, we obtain

V1
∼= HomGQp

(ω−1,S1(κ)) ∼= V2

as representations of D×. �
Lemma 8.27. Let χ : O×

D → F× be a smooth character.

(i) If χ /∈WD(ρ1), then ExtiO×
D/Z

1
D

(χ, JL(ρ1)) = 0 for i ≥ 0.

(ii) If χ /∈WD(ρ2), then HomO×
D
(χ, JL(ρ2)) = Ext1O×

D/Z
1
D

(χ, JL(ρ2)) = 0.

Proof. (i) The proof is as in [HW22, Proposition 10.10(i)]. The point is that Rψερ1 is formally

smooth, so by Proposition 8.9 H̃1(Uv,O)dmr1 is flat over T(Uv)mr1
with fiber isomorphic to
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JL(ρ1)∨. Here we write r1 instead of r to indicate that we are considering the case where
rv(1) = ρ1.

(ii) The difference to part (i) is that Rψερ2 is not formally smooth. It is clear that
HomO×

D
(χ, JL(ρ2)) = 0 for χ /∈WD(ρ2). For the vanishing of Ext1O×

D/Z
1
D

(χ, JL(ρ2)), choose a set

of generators (f1, . . . , fm) of mr2 , then they induce an exact sequence (recall assumption (H))

0→ JL(ρ2)→ Π2 →
m∏
i=1

Π2,

where Π2 := H̃1(Uv,F)mr2
. Since HomO×

D
(χ,Π2) = 0 and since Π2 is an injective representation

of O×
D/Z

1
D by Theorem 7.2(ii), the result easily follows. �

Thanks to Theorem 8.26, we write V for V1 and V2 from now on.

Corollary 8.28. There exists a short exact sequence

0→ 1D× → JL(ρ1)→ V → 0. (8.31)

Proof. This is a direct consequence of the proof of Theorem 8.26. �
Corollary 8.29. The following statements hold:

(i) Vfd = 0 and socD×(V ) ∼= IndD
×

O×
DZD

α;

(ii) dimF Ext1D×/ZD(IndD
×

O×
DZD

α, V ) = 1;

(iii) dimF Ext1D×/ZD(1D× , V ) = 2.

Proof. (i) The first assertion is just Corollary 8.23(iv). For the second assertion, by Frobenius
reciprocity it suffices to show HomO×

D
(α, V ) has dimension 1. We take ρ1 to be très ramifié. By

Theorem 6.1, we have χ ∈WD(ρ1) if and only if χ = 1O×
D
, so that HomO×

D
(α, JL(ρ1)) = 0. Hence,

by applying HomO×
D
(α,−) to (8.31) we obtain a long exact sequence

0→ Hom(α, V )→ Ext1(α,1O×
D
)→ Ext1(α, JL(ρ1))→ Ext1(α, V )

∂−→ Ext2(α,1O×
D
)→ Ext2(α, JL(ρ1)), (8.32)

where Exti means ExtiO×
D/Z

1
D

. Since α /∈WD(ρ1), see Theorem 6.1(ii)(a), we have

Ext1(α, JL(ρ1)) = 0 by Lemma 8.27(i). The result follows as dimF Ext1(α,1O×
D
) = 1 by

Proposition 2.13.
(ii) By Frobenius reciprocity, it is equivalent to proving dimF Ext1O×

D/Z
1
D

(α, V ) = 1. Since

α /∈WD(ρ1) (again we take ρ1 to be très ramifié), Lemma 8.27(i) implies that the map ∂ in
(8.32) is an isomorphism. On the other hand, using Propositions 2.13 and 2.14 we know that
dimF Ext2O×

D/Z
1
D

(α,1O×
D
) = 1, from which the assertion follows.

(iii) Note that 1O×
D
/∈WD(ρ2), see (8.30). Using Lemma 8.27(ii) this implies

ExtiO×
D/Z

1
D
(1O×

D
, JL(ρ2)) = 0,

hence by Frobenius reciprocity ExtiD×/ZD(IndD
×

O×
DZD

1, JL(ρ2)) = 0 for i = 0, 1. Since 1D× is a

direct summand of IndD
×

O×
DZD

1 as [D× : O×
DZD] = 2 and p > 2, we deduce

HomD×(1D× , JL(ρ2)) = Ext1D×/ZD(1D× , JL(ρ2)) = 0.

Now, applying HomD×(1D× ,−) to 0→ V → JL(ρ2)→ (1D×)⊕2 → 0 gives the result. �
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Together with Theorem 6.1, we deduce the D×-socle of JL(ρi).

Corollary 8.30. (i) If ρ1 is peu ramifié, then socD× JL(ρ1) ∼= 1D× ⊕ IndD
×

O×
DZD

α; if ρ1 is très

ramifié, then socD× JL(ρ1) ∼= 1D× .

(ii) We have socD× JL(ρ2) ∼= IndD
×

O×
DZD

α.

Remark 8.31. Unlike the generic case treated in § 8.2, we see that JL(ρ1) detects the extension
type of ρ1.

We also deduce from Corollary 8.30 that socO×
D

JL(ρ1) and socO×
D

JL(ρ2) are multiplicity free.
This corresponds to the fact that socK π(ρ1) and socK π(ρ2) are multiplicity free, and seems to
be a nontrivial fact.

Remark 8.32. We can show that the kernel of S1(Sp) � ω−1 ⊗ 1D× in Corollary 8.25(ii), which
we denote by U , is 1GQp

-typic, i.e. it does not admit self-extensions of 1GQp
as subquotients when

restricted to GQp . Indeed, take ρ1 to be très ramifié and ρ′1 to be peu ramifié, we obtain two
embeddings

i, i′ : 1GQp
⊗ 1D× ↪→ S1(Sp)

from (8.13). One checks that

0→ Im(i)→ U → 1GQp
⊗ JL(ρ1)→ 0,

0→ Im(i′)→ U → 1GQp
⊗ JL(ρ′1)→ 0.

As a consequence, Im(i) �= Im(i′) because JL(ρ1) and JL(ρ′1) are non-isomorphic by
Corollary 8.30(i). It is then easy to deduce that U is isomorphic to 1GQp

⊗ (JL(ρ1)×V JL(ρ′1)),
where the fibered product is taken with respect to (8.31).

8.3.1 Summary. We summarize the results proved above in the following theorem.

Theorem 8.33. We have the following:

(i) S0(1G) = 1GQp
⊗ 1D× , S1(1G) = 0, S2(1G) = ω−1 ⊗ 1D× ;

(ii) S0(Sp) = S2(Sp) = 0, and there exists a short exact sequence

0→ (1GQp
⊗ 1D×)⊕2 → S1(Sp)→ (1GQp

⊗ V )⊕ (ω−1 ⊗ 1D×)→ 0;

(iii) S0(πα) = S2(πα) = 0 and there exists a short exact sequence

0→ ω−1 ⊗ V → S1(πα)→ ω−1 ⊗ 1D× → 0;

(iv) there exist exact sequences

0→ 1D× → JL(ρ1)→ V → 0

and

0→ V → JL(ρ2)→ (1D×)⊕2 → 0;

moreover, JL(ρ2) is isomorphic to the universal extension of (1D×)⊕2 by V .

8.4 The non-minimal case
We briefly explain how to modify the arguments in §§ 8.2 and 8.3 to handle the non-minimal
case (i.e. d �= 1 in Theorem 7.7).
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Let ρ = rv(1) and assume EndGQp
(ρ) = F; in particular, ρ is allowed to be irreducible. We

put

JL(ρ) :=

{
HomGQp

(χω−1,S1(π(ρ))) if ρ ∼ ( χ ∗
0 χω

)
,

HomGQp
(ρ(−1),S1(π(ρ))) otherwise.

(8.33)

Proposition 8.34. (i) If ρ is not of the form
( χ ∗

0 χω

)
, then

H̃1(Uv,F)[mr] ∼= (ρ(−1)⊗ JL(ρ))⊕d

and S1(π(ρ)) ∼= ρ(−1)⊗ JL(ρ).
(ii) If ρ ∼ (

1 ∗
0 ω

)
, then

H̃1(Uv,F)[mr] ∼= (ρ(−1)⊗ JL(ρ))⊕d,

and there exists a short exact sequence

0→ S1(π(ρ)) f−→ ρ(−1)⊗ JL(ρ)→ (1GQp
⊗ 1D×)⊕2 → 0.

Proof. (i) We claim that S1(S̃(Uv,F)[mr]) = H̃1(Uv,F)[mr]. If ρss � χ⊕ χω, it is proved in
[Paš22, Lemma 6.1]. If ρss ∼ χ⊕ χω, then the assumption on ρ implies that Rψε

−1

ρ is formally
smooth, so we may apply Proposition 8.9 (using Corollary 7.9).

The claim implies that S1(S̃(Uv,F)[mr]) is ρ(−1)-typic. Since S̃(Uv,F)[mr] ∼= π(ρ)⊕d by
Theorem 7.7, S1(π(ρ)) is also ρ(−1)-typic by Lemma 8.6(ii). The result easily follows.

(ii) First, the proof of Proposition 8.20 shows that

0→ S1(S̃(Uv,F)[mr])
φ−→ H̃1(Uv,F)[mr]→ (1GQp

⊗ 1D×)⊕2d → 0,

which implies

HomGQp
(ω−1,S1(S̃(Uv,F)[mr]))

φ∗∼−→ HomGQp
(ω−1, H̃1(Uv,F)[mr])

� HomGQp
(ρ(−1), H̃1(Uv,F)[mr]),

where the second isomorphism holds because H̃1(Uv,F)[mr] is ρ(−1)-typic. Choose an iso-
morphism ι : π(ρ)⊕d ∼−→ S̃(Uv,F)[mr]; it induces an isomorphism

JL(ρ)⊕d
ι∗∼−→ HomGQp

(ω−1,S1(S̃(Uv,F)[mr])).

Thus, we get an isomorphism

H̃1(Uv,F)[mr] ∼= ρ(−1)⊗HomGQp
(ρ(−1), H̃1(Uv,F)[mr])

(φ∗◦ι∗)−1

∼−→ ρ(−1)⊗ JL(ρ)⊕d (8.34)

as desired. Let f ′ be the composite map

S1(π(ρ))⊕d
ι∼−→ S1(S̃(Uv,F)[mr])

φ−→ H̃1(Uv,F)[mr]
(8.34)
∼−→ ρ(−1)⊗ JL(ρ)⊕d.

Since S1(π(ρ)) is contained in H̃1(Uv,F)[mr] which is ρ(−1)-typic, we may apply Lemma 8.35
below to obtain an embedding

0→ S1(π(ρ)) f−→ ρ(−1)⊗ JL(ρ),

extending the natural embedding ω−1 ⊗ JL(ρ) ↪→ ρ(−1)⊗ JL(ρ). Moreover, f is GQp ×D×-
equivariant by construction. We are left to show Coker(f) ∼= (1GQp

⊗ 1D×)⊕2. It is clear that
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f⊕d and f ′ coincide when restricted to ω−1 ⊗ JL(ρ)⊕d, so f ′ = f⊕d by the uniqueness part
of Lemma 8.35. Since Coker(f ′) ∼= (1GQp

⊗ 1D×)⊕2d, we obtain Coker(f) ∼= (1GQp
⊗ 1D×)⊕2 as

required. �
Lemma 8.35. Let ρ ∼ ( χ1 ∗

0 χ2

)
with EndGQp

(ρ) ∼= F. If M is a ρ-typic F[GQp ]-module, then for

any submodule M ′ ⊂M there exists a unique embedding

0→M ′ → ρ⊗HomGQp
(χ1,M

′)

extending the embedding χ1 ⊗HomGQp
(χ1,M

′) ↪→ ρ⊗HomGQp
(χ1,M

′) induced from χ1 ↪→ ρ.

Proof. Since M is ρ-typic, it is naturally isomorphic to ρ⊗M0 where M0 := HomGQp
(ρ,M).

Actually, the assumption on ρ implies that M0 = HomGQp
(χ1,M). Writing M ′

0 :=
HomGQp

(χ1,M
′), we claim thatM ′ is contained in ρ⊗M ′

0, both regarded as subspaces of ρ⊗M0.

Indeed, letting M̃ ′ := M ′ + ρ⊗M ′
0, we need to prove M̃ ′ = ρ⊗M ′

0. It is clear that χ1 ⊗M ′
0 is

identified with M ′ ∩ (χ1 ⊗M0), thus M ′/(χ1 ⊗M ′
0) embeds in χ2 ⊗M0 and is χ2-typic. Using

the natural isomorphism M̃ ′/(ρ⊗M ′
0) ∼= M ′/(M ′ ∩ (ρ⊗M ′

0)), we see that M̃ ′/(ρ⊗M ′
0) is a

quotient of M ′/(χ1 ⊗M ′
0), thus

HomGQp
(χ1, M̃

′/(ρ⊗M ′
0)) = 0.

On the other hand, if M̃ ′/(ρ⊗M ′
0) is nonzero, then it embeds in ρ⊗ (M0/M

′
0) and we must

have HomGQp
(χ1, M̃

′/(ρ⊗M ′
0)) �= 0, a contradiction.

The claim implies that the given inclusion M ′ ⊂M provides an embedding required in the
lemma, so we are left to prove the uniqueness.

Consider the exact sequence

0→ χ1 ⊗M ′
0 →M ′ → Q→ 0

with Q being the quotient. As seen above, Q is χ2-typic. Applying HomGQp
(−, ρ⊗M ′

0) to it, we
obtain an exact sequence

0→ HomGQp
(Q, ρ⊗M ′

0)→ HomGQp
(M ′, ρ⊗M ′

0)
γ−→ HomGQp

(χ1 ⊗M ′
0, ρ⊗M ′

0). (8.35)

The result follows because HomGQp
(Q, ρ⊗M ′

0) = 0 (as Q is χ2-typic). �
Using Proposition 8.34, the arguments in §§ 8.2 and 8.3 when ρ is reducible with EndGQp

(ρ) =
F, taking into account multiplicities everywhere, go through and give similar results in the
non-minimal case as in Theorems 8.12, 8.26 and 8.33.

Remark 8.36. If ρ0 = χ1 ⊕ χ2 with χ1χ
−1
2 �= 1, ω±1, we put

JL(ρ0) := HomGQp
(χ1ω

−1,S1(π(ρ))).

Combining with Proposition 8.34, the proof of Theorem 8.12 shows S1(π(ρ0)) = ρ0(−1)⊗ JL(ρ0).
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Multiplicités modulaires et représentations de GL2(Zp) et de Gal(Qp/Qp) en l = p, Duke
Math. J. 115 (2002), 205–310.

Hu21 Y. Hu, Multiplicities of cohomological automorphic forms on GL2 and mod p representations
of GL2(Qp), J. Eur. Math. Soc. (JEMS) 23 (2021), 3625–3678.
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