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Yongquan Hu® and Haoran Wang

ABSTRACT

Let F' be a totally real field in which p is unramified and let B be a quaternion algebra
over F' which splits at at most one infinite place. Let 7 : Gal(F/F) — GLa(F,) be a
modular Galois representation which satisfies the Taylor—Wiles hypotheses. Assume
that for some fixed place v|p, B ramifies at v and F, is isomorphic to Q, and 7 is
generic at v. We prove that the admissible smooth representations of the quaternion
algebra over QQ, coming from mod p cohomology of Shimura varieties associated to
B have Gelfand—Kirillov dimension 1. As an application we prove that the degree-
two Scholze’s functor (which is defined by Scholze [On the p-adic cohomology of the
Lubin-Tate tower, Ann. Sci. Ec. Norm. Supér. (4) 51 (2018), 811-863]) vanishes on
generic supersingular representations of GL2(Q,). We also prove some finer structure
theorems about the image of Scholze’s functor in the reducible case.
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1. Introduction

Let p be a prime number. The mod p (and p-adic) Langlands program has been emerged starting
from the fundamental work of Breuil [Bre03]. Up to present, the correspondence in the case of
GL2(Qp) has been well-understood in various aspects, by the work of [Bre03, Coll0, Emell,
Pas13]. Recently, there have been significant progress towards a mod p Langlands correspondence
for GLa(L), when L is a finite unramified extension of Q, (see [BHHMS23, HW22, BHHMS21]).
However, a mod p Jacquet—Langlands correspondence is still largely unknown, even in the case
of GL2(Qp).

Inspired by the local-global compatibility results [Emell, BDJ10], it is natural to search for
the correspondence in the cohomology of Shimura curves. To explain this, let F' be a totally
real extension of Q in which p is unramified. Let B be a quaternion algebra over F, which
we assume to be split at only one infinite place in this introduction (in the text, we will also
treat the case where B is definite). If U is a compact open subgroup of (B ®r Ap )™, let Xy
be the associated smooth projective Shimura curve over F. Let 7 : Gal(F/F) — GLo(F,) be a
continuous absolutely irreducible representation. Fix a place v above p and a compact open
subgroup UY C (B ®p A{Flj})x, where Agjj]; denotes the ring of finite adeles of F' outside v. We
define

o (7) = lim Hom oy 7 ) (T Hg(Xuou, xp F,Fy),

Uy

where U, runs over compact open subgroups of B, := (B ®p F,)*. In this way, we obtain an
admissible smooth representation of B,‘. We assume that B ramifies at v from now on.
Assume that 72 (7) is nonzero, i.e. 7 is modular for B and U"; we also need to impose some
extra assumptions on 7, see §5 for details. Then it is known that ﬂf (7) is infinite-dimensional
(cf. [BD14, Corollary 3.5.4] and [Schol8, Theorem 1.4]). On the other hand, since B is compact
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modulo its centre, irreducible smooth mod p representations of B (with a fixed central charac-
ter) are easy to classify. Actually, such a representation always has dimension < 2 and there are
only finitely many isomorphism classes. This implies that 72 (7) is necessarily of infinite length,
and is built out by infinitely many pieces of a finite number of isomorphism classes of irreducible
representations of B, in a highly non-semisimple way. A natural way to study such a represen-
tation is to look at its socle filtration. More conceptually, there is a standard invariant which
measures the growth of the dimension of this socle filtration, called Gelfand—Kirillov dimension
(cf. §1.1).

In this paper, we study the Gelfand—Kirillov dimension of 77 (7) in the case F, = Q,. We
make this assumption and assume p > 5 from now on; the reason for this restriction will be
explained below after more notation is introduced.

Let p :=7,(1). We make the following assumption on p.

(H1) Assume that p has one of the following forms:
r+1
e 7 is absolutely irreducible and up to twist ﬁ‘[(@ 1Q,) ™ (w20 p((fﬂ) ), with 2 <r <p—3,
P w2
where wo is Serre’s fundamental character of niveau 2;
e p is reducible nonsplit and up to twist ﬁ‘](@ /Q,) ™~ (WB“ T), with 0 < r < p— 3, where
p

w is the mod p cyclotomic character of Gal(Q,/Qp).
The following is our main result.

THEOREM 1.1. Keep the above assumptions on F, B and 7. Then w5 (F) has Gelfand-Kirillov
dimension 1.

An analogue of Theorem 1.1 was previously proved by Paskunas [Pas22] when 7 is reducible,
using Scholze’s functor (introduced in [Schol8]) and a result of Ludwig [Lud17]. Combining with
some argument of [Pag22], Theorem 1.1 implies some vanishing result on Scholze’s functor, see
Theorem 1.2 below.

The proof of Theorem 1.1 follows the innovative method of [BHHMS23] (which treats the case
of GLy over an unramified extension of QQ,), but has several differences in technique. To explain
this, recall that one key step in [BHHMS23] is to compare some potentially crystalline deforma-
tion rings of p of different (tame) types, and use it to gain information about the first three steps
of the socle filtration of certain F,-representations of GLy with respect to the Iwahori subgroup.
In [BHHMS23], the relevant deformation rings are explicitly worked out by complicated com-
putations, but unfortunately in doing this a stronger genericity condition on p is imposed, for
example 12 < r < p — 15 when p is reducible. One may wonder, assuming this stronger genericity
condition, if (the analogue of) Theorem 1.1 remains true when F), is an unramified extension of
Qp, namely if 75 (7) has Gelfand-Kirillov dimension equal to [F, : Q,]. We believe this should
be true and provable using the method of [BHHMS23]. In fact, we do give a criterion for control-
ling the Gelfand-Kirillov dimension in this generality, see Corollary 2.12 (which is an analogue
of [BHHMS23, Corollary 5.3.5]). However, we caution that using only the deformation rings
computed in [BHHMS23] may not be enough to prove this statement, because by the clas-
sical Jacquet—Langlands correspondence only those involving discrete series inertial types are
useful to obtain information about 77 (7). Namely, to check the condition of Corollary 2.12,
one possibly needs to compute extra deformation rings (of discrete series inertial type), even
when F, = Q,.

For the above reason and also with the wish to weaken as much as possible the genericity
condition in Theorem 1.1, we have chosen to restrict to the case I, = Q,. The point is that in
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this case there is an alternative construction of Kisin’s potentially semistable deformation rings,
due to Paskunas [Pasl5]. This construction works only for two-dimensional representations of
Gal(@p /Qp) and, in general, does not allow us to determine the explicit form of these rings, but
it fits perfectly with our aim for the following two reasons.

— First, to carry out the strategy in [BHHMS23], we do not really need the explicit form of
these deformation rings, but only certain congruence relations between them (cf. [ BHHMS23,
Proposition 4.3.3]). In Pasktnas’ construction, these congruence relations can be proved by
congruence relations between suitably chosen integral lattices inside the corresponding types.

— Second, this construction closely relates the structure of the deformation rings to the structure
of m(p), the admissible smooth representation of GL2(Q)) associated to p by the mod p local
Langlands correspondence (see §4.2 for the precise definition). Thus, we may make use of
the results of [BL94, Bre03, Morll, Morl7] on 7(p) to study these deformation rings; see
Theorem 4.15 for such an example.

In addition, in [BHHMS23] they use potentially crystalline deformation rings of Hodge-Tate
weights (—1,2) (and of (0,1)), while we use deformation rings of Hodge-Tate weights (0, 2). This
also allows a further (minor) improvement on the genericity condition.

Theorem 1.1 can be applied to study Scholze’s functors. Let L be a finite extension of Q,
(not necessarily unramified). Let D be the central division algebra over L of dimension n? and
invariant 1/n, Scholze [Schol8] has constructed a cohomological covariant -functor {S¢,i > 0}
from the category of admissible smooth representations of GL, (L) over F, to admissible smooth
representations of D* which carry a continuous and commuting action of Gal(L/L). If 7 is
an admissible smooth representation of GL,(L) over F,, then S¢(7) is defined as the cohomol-
ogy group H; : (IP’” L Fy ), where F is a certain Weil-equivariant sheaf on the adic space IP’" L
His construction is expected to realize both p-adic local Langlands and Jacquet—Langlands cor-
respondences. In general, these cohomology groups seem very difficult to compute, but Scholze
has computed SY(7) and showed that S(w) vanishes whenever i > 2(n — 1). Specializing to
n =2, the case we are interested in, we have S(—) =0 for i > 2. Later on, Ludwig proved
that S%(m) = 0 if either 7 is principal series or special series of GL2(Q,), using the geometry of
perfectoid modular curves [Lud17]. Since it is easy to compute S?(7) if 7 is one-dimensional,
this leaves only the case of supersingular representations for S2.

By Breuil’s classification [Bre03], any supersingular representation of GL2(Q)) with a central
character is up to twist isomorphic to

GL2(Qp) s
(c-Ind” gz SYm F,)/T,

where 0 < r < p — 1 and T is a certain Hecke operator [BL94]. As an application of Theorem 1.1,
we have the following result.

THEOREM 1.2. Let m be a supersingular representation of GL2(Q)) as above and assume 2 <
r <p—3. Then §*(r) = 0.

Our proof of Theorem 1.2 is inspired by Paskiinas’ work [Pas22], where he has used Ludwig’s
vanishing result of S? to prove Theorem 1.1 in the case p is reducible. We observe that his
argument can actually go in reverse direction, namely the vanishing of S? on supersingular
7 can be deduced from the Gelfand—Kirillov dimension of S!(7) (see Proposition 7.4). Thus,
Theorem 1.2 follows from Theorem 1.1 and a local-global compatibility result & la Emerton
[Emell, DLB17].
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Another reason for focusing on the case of GL2(Q,) is that we can prove some finer results
on the structure of S'(7(p)). We put

om w8 (n(p it~ (X ¥
B N (3 o)

Homg, (b ® w™t, 8Y(7(p))) otherwise.
THEOREM 1.3. Let p be as in (HI).

(i) Assumep = (§ ., ) for any character x. Then 8'(7(p)) = (p ® w™') ® JL(p) as representa-
tions of Gal(Q,/Qp) x BY.
(ii) Assume p is reducible. Denote by p* the semisimplification of p.
(a) Assume p* » x @ xw for any x. Then JL(p) depends only on p**.
(b) Let py ~ (‘(‘)’ *{) and py ~ ((1) :;) be nonsplit extensions. Then there exists an admissible
[F)-representation V' of B such that

0—1px — JL(p;) =V — 0,
0—V = JL(p,y) — (1px)¥? = 0.

It may look surprising that the representation JL(p) does not determine p, but only 7%,
in case (a) of Theorem 1.3(ii); see Remark 8.13 for an explanation. It would be interesting to
describe the precise structure of JL(p). We plan to come back to this question in future work.

We now give a brief overview of the contents of each section. In §2, we study the structure
of the p-adic group B, and prove a criterion for controlling the Gelfand—Kirillov dimension
of its representations (analogous to [BHHMS23, §5]). In §3 we study the structure of integral
lattices in various locally algebraic types of GL2(Zy). In §4, we use Paskunas’ technique to
study potentially crystalline deformation rings of tame type and Hodge—Tate weights (0,2). In
§85 and 6, we carry out the gluing process for B -representations and prove our main result,
Theorem 1.1. Finally, we study Scholze’s functors, and prove Theorem 1.2 in § 7 and Theorem 1.3
in §8.

1.1 Notation

We fix a prime number p > 5. Let £ C @p be a finite unramified extension of Q,, with ring of
integers O and residue field F. We will assume without further comment that F is sufficiently
large.

If F is a field, let G := Gal(F/F) denote its absolute Galois group. Let € denote the p-adic
cyclotomic character of G, and w the mod p cyclotomic character.

If F' is a p-adic field, V is a de Rham p-adic representation of Gg over E, and k: F — E,
then we will write HT (V') for the multiset of Hodge—Tate Weighﬁs of V with respect to x. By
definition, HT (V) consists of —i with multiplicity dimg(V ®, r F(i))9F, e.g. HTx(¢) = {1} at
all embedding k.

If G is a p-adic analytic group, we denote by Modg"(O) the category of smooth repre-
sentations of G on O-torsion modules. Let Mod:4™(O) (respectively, Mod%™(0)) denote the
full subcategory of locally admissible (respectively, admissible) representations. If ¢ : Zg — O*
is a continuous character of the centre of G, then we denote by Modg-(O) (respectively,
Modlgfgm((’)), respectively, Mod%‘%?(@)) the full subcategory of Mod*(O) consisting of smooth
(respectively, locally admissible, respectively, admissible) representations on which Z¢ acts by the
character (.
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The Pontryagin duality M +— MY := Hom{™ (M, E/O) induces an anti-equivalence between
the category of discrete O-modules and the category of pseudo-compact O-modules. Under
this duality the category Mody"(O) is anti-equivalent to the category of profinite augmented
G-representations over O which is denoted by Mod°(O). Let €5 (O) (respectively, €¢ (O))
denote the full subcategory of Mod%°(0) which is anti-equivalent to Modg™ (O) (respectively,
Modlc‘f‘ém((’))) under the Pontryagin duality. Note that on an object in €g ¢(O) the centre is
acting by ¢71.

Let (R,m) be a complete noetherian local commutative O-algebra with residue field F.
We define the category Mod3"(R) of smooth R[G]-modules, and the category Mod:4™(R) of
locally admissible smooth R[G]-modules as in [Pas13, §2]|. Let €5 (R) be the dual category of
Modl(‘;adm(R) under the Pontryagin duality. If  : Zg — O is a continuous character of the centre
of G, we can similarly define Modléfm(R) and its dual category €q ¢(R).

If M is a torsion-free linear-topological O-module, M9 denotes its Schikhof dual
Hom™ (M, ©). The functor M +— M induces an anti-equivalence of categories between the cat-
egory of pseudo-compact torsion-free linear-topological O-modules and the category of w-adically
complete and separated torsion-free O-modules.

If R is aring and M is a left R-module, we denote by socr(M) (respectively, cosocr(M)) the
socle (respectively, cosocle) of M. Inductively, we define the socle (respectively, cosocle) filtration
of M. If M has finite length, we denote by JH(M) the set of Jordan-Holder factors of M.

The grade jr(M) of M over R is defined by

jr(M) = inf{i € N| Ext’ (M, R) # 0}.

Assume R is noetherian. The ring R is called Auslander—Gorenstein if it has finite left and
right injective dimension and the following Auslander condition holds: for any R-module
M, any integer m >0 and any R-submodule N of Ext% (M, R), we have jr(N)>m. An
Auslander—Gorenstein ring is called Auslander regular if it has finite global dimension. If R
is an Auslander regular ring and M is a finitely generated R-module, define the dimension

Op(M) = gld(R) — jr(M),

where gld(R) is the global dimension of R.

Let Gy be a compact p-adic analytic group. The ring-theoretic properties of O[Gy] are
established by the fundamental works of Lazard [Laz65] and Venjakob [Ven02]. In particular, if
Go has no element of order p, then O[Go] is an Auslander regular ring of dimension 1 + dimg, Go,
where dimg, Gy is the dimension of Gy as a p-adic analytic group. If M is nonzero, we have

0 < jora,) (M) < 1+ dimg, Go,

and dpg,(M) = 1+ dimg, Go — jo[g,](M)- If G is a p-adic analytic group with a fixed open
compact subgroup Go C G and M is a finitely generated O[Go]-module equipped with a com-
patible G-action, we define jg (M) (respectively, 6c(M)) as joga,](M) (respectively, dopa,(M));
this does not depend on the choice of Gj.

If 7 is an admissible smooth representation of G over [F, then 7" is finitely generated over
O[Go]. The Gelfand-Kirillov dimension of 7 is defined by (see [BHHMS23, Remark 5.1.1])

Vv

dimg(m) := dg(7").
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2. The p-adic Lie group DX

2.1 Results of Kohlhaase
We recall and extend some results of [Koh13].

Let L = Q,s be the unramified extension of degree f over Q. Let D be the unique central
division algebra of dimension 4 over L. For a € D, define vp(a) := vp(Nrdp(a)), where v, is the
p-adic valuation on L normalized so that v,(p) =1, and Nrdp : D — L is the reduced norm
map; this gives a non-archimedean valuation on D. Let Op := {a € D |vp(a) > 0} be the ring
of integers and pp := {a € D |vp(a) > 1} the maximal ideal, which can be generated by a uni-
formizer wp. The residue field kp := Op/pp is isomorphic to F 2, where q := pf. Let L’ be the
unramified quadratic extension of L in Q,. We denote by ¢ : L' — L' a lift of the Frobenius map
z+ 29 on Fpe. Let L'(X) denote the non-commutative polynomial ring in one variable over L'
satisfying the relation Xa = o(a)X, Va € L’. Then the homomorphism L'(X) — D, X — wp
induces an isomorphism of L-algebras

L'(X)/(X*-p)=D. (2.1)

Let D* (respectively, OF) denote the group of invertible elements of D (respectively, Op)
and

Up =14+wpOp, n>1, (2.2)

which are compact open normal (pro-p) subgroups of D*. We have
D* = Op xwh, Op/Uh=FJ.
Let Zp denote the centre of D* which is isomorphic to L*. Then ZpOJ is of index 2 in D*.
Let Z}, = Zp N U},
Assume p > 5. Let w : UL\{1} — (0, 00) be the map defined by w(g) := fvp(g — 1), and set

w(1) := 0o. As in [Schnll, Example 23.2], one shows that w is a p-valuation on U}, in the sense
of Lazard [Laz65, I11.2.1.2]. For any real number v > 0, let

(Ub)w :={g€Uplwlg) > v}, (Up)s :={g€Upluwlg)>v}.
We set

gr UE = @(UE)V/(UL%)V+-
v>0

It is easy to see that U}, = (U%))i/g and ULt = (Ub)(i/2)+» so we have
U = D Ub/U
i>1

We say a nonzero homogeneous element ¢ € gr U 11) is of degree 7 if t € U}f) / U]i;l.

As explained in [Schnll, §25], gr U} is a graded Lie algebra over the polynomial ring F,[e]
by setting

UL g UL = gg'g g UL, g e U, ¢ €U,
and
e(gUR™) = g’U?, g€ Up.
Note that U /Ut = (F42,+) is an [Fg-vector space by setting
A1+ wha) Ut = (14 @b [Na) UL,

where [\ € Of, is the Teichmiiller lift of A € F,. One checks that the Lie bracket on grU}, is
F-bilinear, hence gr U 117 becomes a graded Lie algebra over the polynomial ring F,[e].
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PROPOSITION 2.1. The natural map Fgle] ®r, (UL/UR & U3 /UY) — gr U}, is an isomorphism
of Fy[e]-modules.

Proof. The proof of [Koh13, Lemma 3.12] (when L = Q) extends to the general case. O

Let grU}, = grU}, ®r,[¢] Fq where the map Fy[e] — F, sends ¢ to 0. We first determine the

Lie algebra structure of gr U},. Fix £ € Fy2 \ Fy and set

mi=1+wp, m:=1+wpll], w:=mrn n, wu=1+p,
where [¢] € Oy is the Teichmiiller lift of £. We have w(y1) = w(y2) = 1/2 and w(y3) = w(yy) = 1.1
Let 7,,7%, € UL, /U be the images of 1 and v and let 73,7, € U3 /U3 be the images of y3 and
Y4. Then 7y, Fa, 3, 74 form an Fy-basis of U} /U?% & U3 /U3, hence also an Fy-basis of gr U},

They satisfy (in gr U}, i.e. after modulo ¢)

172l =73 (1,73 = (2, Vsl = (a1l = (Va, 72l = 74,73 = 0, (2.3)
see the discussion after [Koh13, Remark 3.15].
Passing to the quotient group U} /Z}, we can consider grUL/ZL = gr U}, /Z}, ®r, ] Fo»

with the induced filtration on U},/Z},. Then grU}/Z% is isomorphic to grUL/(7,) as graded

Lie algebras over Fy, where () := F,7¥, is the sub-Lie algebra of gr U}, generated by 7.
Let gr, = Fpe ® Fpf © Fph be the graded Lie algebra of dimension 3 over IF;,, with e and f
in degree 1, h in degree 2 and satisfying the relations

e, /=", [he]=[h,f]=0.
From (2.3) we easily deduce the following result.

COROLLARY 2.2. The graded Lie algebra gr UZ')/Z]% is isomorphic to gr, := Fy ®F, gF, -

Remark 2.3. One can also deduce the structure of the Lie algebra gr U}, /Z} = gr U}, /(74) from
the results of [BHHMS23, §5.3] by comparing with the pro-p-Iwahori subgroup of GLy over Oy,.

2.2 The graded group algebra

Let Z,[UL] = @iz L Zp[U L /U%] be the Iwasawa algebra of U}, over Z,. It is a pseudo-compact
local Z,-algebra. For v > 0, let .J, denote the smallest closed Z,-submodule of Z,[U4] which
contains all elements of the form p‘(hy — 1) --- (hs — 1) with £,5 >0, hy,..., hs € U}, and

C4w(hy) + -+ w(hs) > v.

Let J,4 = Jyr. Let

v'>v

gry Zp[[Ub]] = @ v/ Juts
v>0

which is an associative graded algebra over grZ, := @@, pin / piHZp. It naturally has a graded
Lie algebra structure. -

The homomorphism of abelian groups L, :gr, Up, — J,/Jus, g(Up)vs — (g—1) + ot
extends to a homomorphism of graded F,[¢]-Lie algebras £ : gr UL, — gr Z,[U4], where the F,[¢]-
algebra structure on gr Z,[U})] is given through the isomorphism Fyle] = grZ,, € — p + p?Z, €
grt Z,. Let U, [ (er U L) be the universal enveloping algebra of gr U}, over F[e]. By the universal

! One checks that v3 = 1 + p([¢] — [€]?) (mod U3).
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property of U, (grU ll)), we have a homomorphism of associative gr Z,-algebras
L: Ur, ¢ (gr Up) — gr; Zy[Up]. (2.4)

By [Schnll, Theorem 28.3], £ is an isomorphism.

In practice, we will consider the Iwasawa algebra associated to the quotient group U 11) /Zb.
Let Z,[Uh/Z}] (respectively, F,[UL/Z}]) be the Iwasawa algebra of U} /Z} over Z, (over
F,). We have Fp[U}L/Z}] = Z,[U}/Z}] @z, Fp. The filtration {J,,v > 0} induces a filtration
on Zy[U},/Z}] and on F,[UL/Z}]. On the other hand, letting mp denote the maximal ideal of
Fo[U}/ZL], we may consider the mp-adic filtration on F,[U}/Z}]. The following result shows
that these two filtrations coincide up to rescaling indices.

LEMMA 2.4. Denote by J, the image of J,, in F,[UL/Z}]. Then ji/Q =m¢, for any i > 0.
Proof. The proof of [Koh13, Lemma 3.13] (when L = Q,) extends to the general case. O

One checks that J, # J,4 exactly when v =i/2 for some ¢ > 0. Thus, by Lemma 2.4 the
graded algebra

8y, (U /2] = @D iy /mi ! (2.5)
i>0
is identical to €D, Ju /Ty
PROPOSITION 2.5. There is an isomorphism of graded IFj-algebras
8wy, FplUD/Zp] = U, (gr,)-
Proof. By the above discussion, the result is a direct consequence of Corollary 2.2 via (2.4). O

Let IF be a finite extension of I, such that F, embeds into F. Let J denote the set of
embeddings F, < F and fix oy € J. We label the embeddings o; = 0 o ¢/, so that J is identified
with {0,..., f — 1}. Let g; := F ®r, o, gr,.- We then have F @, gr, = @f;& g;. Let ej, fj,hj € g;
denote 1 ®e, 1® f, 1®h € F@quaj gr,-

We again denote by mp the maximal ideal of F[U}L/Z}] =F ®r, Fp[UL/Z}]. Then
Proposition 2.5 implies that

8tmp, FUp/Zp] = F @, (8rm, FolUp/Zp]) = Us(F &, gr,) = Q) Ur(g))- (2.6)

In particular, we have gri, F[U}/Z}] = EB;:& (Fe; @ Ffj).

THEOREM 2.6. (i) The graded ring gr, F[U}/Z}] is Auslander regular.

(i) The sequence (hy, ..., hy_1) is a regular sequence of central elements of gr,  F[U}/Z}]. The
quotient gry, . FlUYL/Z51/ (ho, - -, hy—1) is commutative and is isomorphic to the polynomial
ring Fle;, £ 0< ] < [ —1].

Proof. The proof is the same as that of [BHHMS23, Theorem 5.3.4]. d

Theorem 2.6 is not enough for the application to Gelfand—Kirillov dimension, namely
Corollary 2.12 below. We shall find eigenbases of F ®p, gr, for the ]F';2—action in the next
subsection.

2.3 Gelfand—Kirillov dimension

We regard qug as a subgroup of (’)E, via the Teichmiiller lifting map, and then as a subgroup

of OF via the fixed embedding L' < D. It normalizes U,%), thus acts on grU}, and on or,-
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In practice, we need a basis of F ®p, gr, consisting of eigenvectors for the action of FqXQ. Note
that e; and f; are only eigenvectors for the action of F;¢, but not for IFqXQ.

Choose an embedding F,2 — F which extends the fixed embedding o : F; — F; we again
denote it by o¢ and let 0; = o0go ¢’ for 0 <7 <2f — 1.

For 0 < j < 2f — 1, define the following elements in F[[Ub/Zb]]:

Y= > ;N7 (1 + @A),
AGJFIZ

where the term 1+ wp[\] is considered as an element in the group U}/Z%. Since
ZAE[% o;j(A)71 =0, we have Y; € mp. If u € IFqX2, then one checks that
q

oYy = WYy = ag(p)Y; (2.7)
where a; : Of, — F* denotes the character defined by
ozj(x) = O'j(f)qfl. (28)
Note that o = af = aj_l.

For 0 <j <2f—1,let y; :=Y; +m}, € gry, F[UL/Z}].
LEMMA 2.7. (i) The elements {Y;,0 < j < 2f — 1} generate the ideal mp.
(ii) The elements {y;,0 < j < 2f — 1} form a basis of gri, | F[U}/Z}].

Proof. (i) This is equivalent to checking that the images of Y in mp/ m% are linearly independent
(over F). This is proved by a standard technique; see the proof of [Schr15, Proposition 2.13] for
a similar argument.

(ii) This is clear, because gry, F[UL/Z}] has dimension 2f (with a basis {e;, f;,0 < j <

f=1}).
LEMMA 2.8. For g € Ub /(UL N Zh) and h € U}, /(U3 N Z}), we have

gh—1=(g—1)+ (h—1) mod m’.

O

Proof. Using Lemma 2.4, this is a consequence of the equality (g —1)(h—1) = (gh—1) —
(g—1)—(h—1). O

For t € ]FqXQ, write
g = 1+pt] € UL/ Z},. (2.9)

Note that w(g:) =1, so gt —1 € m% by Lemma 2.4. Let u; denote the image of g — 1 in

g, FIUL/ZD]-

PROPOSITION 2.9. (i) We have [y;,y;] = 0 for any pair (i,j) withi—j # f (in Z/2fZ).

(ii) Set b} :=[y;,ys+5] for 0 <j < f —1. Then {h}, 0 < j < f — 1} are linearly independent in
gr?nD F[U}/ZL] and they span the same subspace as {h;,0 < j < f —1}.

Proof. A direct computation shows

vy = 3 o) o) (1 + mp N + wolu] + pATa).
)x,,uE]F:Q

We may write (in U})

1+ @p[A +@wplu] + pAp] = (1 + @p[A] + @p[u)) (1 + p[A'u] + z)
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with x € @w?Op and note that (1 + p[Au] + ) — 1 has the same image as (1 + p[A%u]) — 1 in
gr?nD F[UL/ZL] by Lemma 2.8. Using Lemma 2.8 again, we have
(1 -+ @IN] + wpla] + pATH) — 1= (i — 1) + (gau — 1) mod m,
where hy , := 1+ wp[A] + wpp] and gye, is defined by (2.9). Similarly, we have
iz 3 o) oy (0) (g — 1) + (gape — 1)) mod mh
)\7/LEF;<2

and so

Vi vii= > oA oi()  ((gaeu — 1) = (gape — 1)) mod m,.
)\,MEFZQ

Taking the image in gr2  F[U}/Z}] and noting that o;(\) = o;— (%), we obtain

oi (A _
lyi, yj] = Z Cf‘J((Az’)JJ()‘qM) Hunay — wns)-
AueR, =7

The map
ng X ng - F;m ()‘7/1) = >‘q/~L

is surjective and each fibre is bijective to IFqXQ (by projecting to the second component), thus

oi(A\? _
[yi7yj] = Z < Z 7.]( )q >‘O’j(t) 1(ut—utq).
X X O-Z_f()\ )
teF>, ~ AeF%,

q q
If i — j # f, then Z)\eFXQ (0j(A9)/oi—§(A?)) = 0 and so [y;, y;] = 0, proving part (i). If i — j = f,
then the last sum equalqs to —1, and so

Wi+ 95l = — E o (t) " (ur — uga).
teIF:Q

To prove part (ii), one could argue as in Lemma 2.7, but this needs to make explicit the h;.
Nonetheless, we can conclude by the following observation: since y; lies in @OS i< fﬁl(Fej ®Ff;),
[yi, y;] lies in the subspace spanned by h; = [ej, f;] (recall [e;, e;] = [es, f;] = [fi, f;] = 0 whenever
i # j), and vice versa by part (i) and Lemma 2.7(ii). O

To make the notation more transparent, we write z; := y; 4y for 0 <7 < f — 1. Lemma 2.7
and Proposition 2.9 imply that the Lie algebra F ®p, gr, has another basis over F given by
{y, 2, h;-; 0<j<f—1}, with y; and z; in degree 1, h;- in degree 2 and satisfying the relations

Wy =lyj, 2zl [yizl =0 ifi#3,  [yi,y] = [2i, 2] = [yi, )] = [z, h)] = 0.
Let Ip be the left ideal of gr,, F[U L/Z%] generated by the degree-two elements y;2; and h;- for
all 0 < j < f — 1. The ideal Ip is, in fact, a two-sided ideal of gr,,  F[U},/Z}]; it is also the left
ideal generated by (y;z;,hj; 0 < j < f —1) by Proposition 2.9(ii).

COROLLARY 2.10. (i) The sequence (hg,...,h;_;) is a regular sequence of central elements
of gro, FIUL/Zp). The quotient gro, F[UL/Zpl/(hp,... B} ) is commutative and is
isomorphic to the polynomial ring Fy;, z;;0 < j < f —1].
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(ii) The quotient gr, F[UL/Zpl/Ip is isomorphic to Fly;,z;;0 <j < f—1]/(yjz;0 < j
<f-1.
Proof. The proof of [BHHMS23, Theorem 5.3.4] goes through by the above discussion. ([l

Let x : Of — F* be a smooth character. Let ProjF[OE/Z}J]] x denote the projective envelope
of x in the category of F[O}/Z}]-modules. For n > 1, let

It is clear that W, ,, = x ® Wy, where 1 denotes the trivial character. The module W, 3 is of
particular importance to us.

COROLLARY 2.11. The module Wy 3 has the following graded structure:
f—1
g Wiz =T, g'Wiz= @Fai ®Fa;l,
i=0
gr? Wiz = F% o EB Foo; @ EB Fozl-_laj_l P @ Faiaj_l,
0<i<j<f-1 0<i<j<f-1 0<izj<f-1

where oj : Oy — F* is the character defined in (2.8).
Proof. 1t follows from Corollary 2.10 using (2.7); cf. [BHHMS23, (44)]. O

We have the following criterion which allows us to control the Gelfand—Kirillov dimen-
sion of an admissible smooth F-representation of OF/Z},. It is an analogue of [BHHMS23,
Corollary 5.3.5]. Let WXB denote the quotient of W, 3 by the sum of characters which occur in
gr? Wy 3 and non-isomorphic to x. For example, if L = Q,, then dimg Wx,i% =5 and has a socle
filtration as follows (with a = ay):

(x®x) — (xa®xa ") —x.

COROLLARY 2.12. Let 7 be an admissible smooth representation of OF,/Z}, over F. Assume for
each character x such that Hom,x (x, ) # 0, the natural injection
D

Homog (x,m) — HomoE(WX,g, ) (2.11)
is an isomorphism. Then dimog (m) < f, where dimog (m) is the Gelfand-Kirillov dimension of
7 over OF,.

Proof. The Pontryagin dual 7V is naturally a finitely generated module over F[U}/Z5] as
is admissible, so the graded module gr,, (w") is finitely generated over gr,, F[U}/Zp]. The
condition (2.11) implies that grﬂlD (m¥) is killed by y,2; and h; (for 1 <j < f —1), hence also by
Ip. The result then follows from Corollary 2.10; see [BHHMS23, Corollary 5.3.5] for details. [

2.4 Ext® groups when L = Qp
We assume L = Q, with p > 5. We write a = .

PROPOSITION 2.13. Let v, x : Of, — F* be two smooth characters. Then Extéx/zl (¢, x) Is
D D

nonzero if and only if {) = ya or ¢ = ya~!. Moreover,

. 1 _ 1 -1 _
dimp EXtij/Zb (xa, x) = dimp EXt(Dg/Z]g (xa ,x) =1
Proof. This is a consequence of Corollary 2.11. U
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PROPOSITION 2.14. Let 11,70 be finite-dimensional smooth representations of le) /Z}). Then
. . . i ~ 3—4 .
there is an isomorphism Ext%;/zb (11, 72) & Extog/z}j (12, 71)Y for 0 < i < 3.
Proof. First, we have isomorphisms
i ~ Trogi v ~ (% J7l oV ~ ppi(r7l jl v F%
Extos sz, (112 72) S Bt 0 (110 @ 72) & H(Op/Zp, i’ @ 72) = H'(Up/Zp, 7' © 72) .
Second, since U}, /Z}, is a Poincaré group of dimension three (cf. [Ser02, § 4.5]), Poincaré duality
induces an isomorphism

Hi(UY/Zh, 7) = B (U2, 7)Y

for 0 <i < 3 and any finite-dimensional representation 7. The result easily follows. O

3. Lattices in some locally algebraic representations of GL2(Zy)

Let K := GLy(Zp), I := GLy(F)), and K; := Ker(K — I'). Let I (respectively, I1) denote the
upper Iwahori (respectively, pro-p Iwahori) subgroup of K. Let Z denote the centre of G, Z; :=

Z N K. Let
{8 g) ses)

Let a: H — F* be the character of H sending ([g] [2}) to ad~!. By abuse of notation we also

denote the image of H in I'" by the same letter. If x is a character of H, we denote by x* the

character sending h to x(shs), where s := ((1) é) We regard a character of H as a character of 1

via the quotient map I — H; note that any smooth F-valued character of I arises in this way.
For m,n € N, we denote

Omm = Sym™F? @ det”

which are naturally representations of I over [F. We also regard them as representations of K via
the natural projection K — I". Up to isomorphism the set {opp, 0 <m <p—1,0<n <p-—2}
forms a complete list of irreducible representations of I' (and of K') over F.

We choose the standard basis of oy, 5, to be {XiYm*i; 0 <i < m}, with the action of I" given
by

<Z Z) XY™ = (aX 4 V) (bX +dY)™ "

It is well-known that aﬁ}hn is one-dimensional (spanned by X™), on which H acts via the character

sending ( [g] [g} ) to a™*"d", which we denote by Xm,n- Similarly, the space of coinvariants (o, n) 1,
is one-dimensional on which H acts via x3, ,-

Recall E := W(F)[1/p], where O := W(F) is the ring of Witt vectors in F. If V' is a finite-
dimensional representation of K over E, then V° will denote a K-stable O-lattice in V and V°
its reduction modulo p. We will write V" for the semisimplification of V°. Following [EGS15],
we say V is residually multiplicity free if any of the Jordan-Holder factors of V™ occurs with
multiplicity one. In this section, a lattice always means a K-stable O-lattice.

3.1 Preliminaries
Denote by U(Z,) (respectively, B(Zy)) the (upper) unipotent (respectively, Borel) subgroup
of K. Note that H normalizes U(Zy).
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PROPOSITION 3.1. Let W be a finite-dimensional F-representation of B(Z,), of dimension > 2.
(i) Assume that WU (Zp) is one-dimensional and isomorphic to x as an H-representation. Then
(Sym1F2 Q W)U(Zp) = xx1,0 @ XXiO'

(ii) Assume that Wy (z,) Is one-dimensional and isomorphic to x as an H-representation. Then
(Sym'F? @ W)y z,) = xx1,0 © XXi 0-

Proof. (i) Let Wy := WU Zs) =y We first prove that (W/Wy)YZ») is one-dimensional and iso-
morphic to ya~! as an H-representation. Since dimg W > 2 by assumption, W/Wj is nonzero,
hence (W/Wy)Y (%) is also nonzero because U(Z,) is a pro-p-group. On the other hand, we have
an H-equivariant injection

0 — (W/Wo)" (&) — H'(U(Zy), W),

1

which is actually an isomorphism because H(U(Z,),x) = xa~! is one-dimensional (see,

e.g., [Pas10, Lemma 5.5]). This proves the claim.
Any element w € Sym'F? @ W can be written as Y ® wy + X @ w; for (unique) wo, w; € W.
Let g = (§%) € U(Zp). Then

gw=(FX+Y)Rgwy+ X @ gu1 =Y ® gwg + X @ (t - gwo + gwy).
Hence, w is fixed by U(Z,) if and only if

{gwo = wo,
gqwi = w1 — tgqwy.

We have two cases.

(a) If wy = 0, then the above condition becomes guw, = wy, i.e. wi € Wy.

(b) Ifwp # 0, then wy € Wy and wy € (W/Wp)V %), Moreover, (W/Wy)V%») is one-dimensional
as seen above and the condition gw; = wy — twy determines uniquely w; (whenever wg # 0
is fixed).

The result easily follows.
(ii) This follows from part (i) via the fact that (Wy(z,))" = (W)U (Zs) and similarly for

Sym'F? @ W. O
COROLLARY 3.2. Let V = Ind¥ x for some smooth character x : I — F*. Then
(Sym'F? @ V)V %) 22 x1 6 @ X*xi 0 @ XX1.0,
(Sym'F? @ Vuz,) = X°X1,0 D X°X1,0 D XX 0-

Proof. Mackey’s decomposition theorem gives an isomorphism V|; = x & V', where V' :=
IndélK1 x°. It is easy to see that V' has dimension p, and V'V(%) =~ V(}(ZP) = \*. Thus,

Proposition 3.1 applies to Sym!F? ® V'. The results then follow by noting that (Sym!'F? ®
)V%) 2 FX @ x and (Sym'F? ® Xuz,) =FY ®x. O

Consider the following situation: Vi, Vo are two irreducible locally algebraic representations
of K, and L; C V; is a lattice for ¢ = 1,2. Assume that we are given an F[K]-module W together
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with K-equivariant morphisms 7; : L; — W. Let L be the fibered product of 1 and r9, namely
0—>L—>L1@L2r:;2W (3.1)

Then L is a lattice in V; @ V5. We also call L the gluing lattice of L1 and Lo along W. We remark
that, if either r; or ro is surjective, then so is r; — 79.

LEMMA 3.3. Assume that r1 is surjective.
(i) There exists a short exact sequence
0 — Ker(r1)/pKer(r1) — L/pL — La/pLs — 0.

(ii) Let ry, denote the composite morphism L — L/pL — Lo/pLa, where the second map is as
in part (i). Then Ker(ry) = Ker(r1) + pL and

Ker(ry)/pKer(ry) = Ker(r1)/pKer(ry) ® pLa/p*Lo.
Proof. (i) We have the following commutative diagram.

T1

0 — Ker(ry) Ly %% 0
J Jid@o H
r1—T2
0 L Li®dLy — W —= 0

By the snake lemma, it induces a short exact sequence 0 — Ker(r;) — L — Ly — 0. We obtain
the result by taking mod p reduction (as Ly is O-flat).
(ii) It is clear from part (i) that Ker(ry) = Ker(r;) 4+ pL, so we have a short exact sequence

0 — Ker(ry) NpL — Ker(ry) ® pL — Ker(rz) — 0.

Taking mod p reduction and noting that Ker(r1) N pL = pKer(r1) by part (i), we obtain an exact
sequence

0 — pKer(ry)/p* Ker(r1) — Ker(r1)/pKer(ry) ® pL/p*L — Ker(rr)/pKer(ry) — 0.

But the map pKer(r1)/p? Ker(r1) — Ker(r1)/pKer(rq) is identically zero, so the result follows
from part (i). O

LEMMA 3.4. Assume that both r1 and ro are surjective. Assume moreover that:

(a) cosoc(Ly) = cosoc(W);
(b) cosoc(Ker(r1)) and cosoc(Ker(rz)) do not admit common Jordan—Holder factors.

Then cosoc(L) = cosoc(Ls).
Proof. We need to show that the natural map
Hompjg(L2,0) — Hompg (L, o)

is an isomorphism for any Serre weight o. By applying Hompx](—, o) to (3.1) we obtain a long
exact sequence

0 — Hom(W, o) — Hom(L1,0) ® Hom(Ly,0) — Hom(L, o)
— Ext!(W,0) — Ext'(L1,0) @ Ext!(Ls, o).

By assumption (a), the surjection 71 :L; — W induces an isomorphism Hom(W,o) =
Hom(L1,0). To conclude we need to show that the morphism

Ext!(W,0) — Ext!(L1,0) @ Ext!(Ls, o)
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is injective. For this, it is enough to prove that either Hom(Ker(r1),o) or Hom(Ker(rsy), o)
vanishes, which is a consequence of assumption (b). ]

Finally, we record a result which will be used later on.

ProproSITION 3.5. Let V be an irreducible smooth representation of K over E. Then the K-
representation Sym!'E? @ V is again irreducible.

Proof. This is [STPO1, Proposition 3.4]. O

3.2 Lattices in tame types
We consider the following representations of I over F, and view them as smooth representations
of K via the projection K — T'.

e Let x1,x2 : F; — E* be two characters. Let I(x1, x2) denote the principal series represen-
tation Indg(Fp) X1 ® X2, where B(IF,) is the (upper) Borel subgroup of I'. It is well-known
that I(x1,x2) is irreducible if x; # x2. If x1 = x2 = X, then

I(x,x) = (xodet) & (sp® x odet),
where sp denotes the Steinberg representation.

o Let y: ]F;2 — E* be a character which does not factor through the norm map ]F;2 — Fy.
This is equivalent to requiring ¢ # ¢P. There is an irreducible (p — 1)-dimensional repre-
sentation O(v) characterized by the isomorphism O(¢)) ® sp & Indﬁf 2(Fp) ¥, where IF;Q —

p2
GLy(FF,) is a fixed group embedding. For two such characters v,¢’, O(¢) = O(¢') if and
only if ¥/ € {1, 47}.
The Jordan—Holder factors of the reduction mod p of any lattice in the above representations
are determined in [Dia07]. We recall the results in the next proposition.
Let z : F, — F denote the natural embedding and [z] : F, — O be the Teichmiiller lift of

x which will be viewed as a multiplicative character of F). Let § : Fj2 — I be an embedding

extending z. Let &' := &P and ¢ := £’ Let [£] : F2 — O be the Teichmiiller lift of £ which will

be viewed as a multiplicative character of F;z. We have [z]P~! =1 and [¢]PH! = [z].

PROPOSITION 3.6. (i) Let 0<a<p—1and 0<b<p—2. Then

S
I(['r]b> [x]b—Hl) = Ja,b @ Gp—l—a,a-ﬁ-b'

(i) Let ¢ :FY% — EX with ¢ # 4P, Write ¢ = []*TH PP with 0 <a <p—1 and 0 <b <
p — 2. Then

————ss
CIONES Oa—1,b+1 D Op—2—a,a+b+1,

with the convention that o_y 5 = 0.
(iii) The representations I([z]’, [x]*+?) and ©(x)) are residually multiplicity free.
Proof. Part (i) follows from [Dia07, Proposition 1.1]; part (ii) follows from [Dia07,
Proposition 1.3]. Part (iii) follows directly from parts (i) and (ii). O
We recall Lemma 4.1.1 of [EGS15] on the lattices of finite-dimensional irreducible residually
multiplicity-free E-representations of K.

PROPOSITION 3.7 [EGS15]. Let V be a finite-dimensional irreducible representation of K over
E which is residually multiplicity free. Let o be a Jordan—Holder factor of V. Then there is up
to homothety a unique lattice V.° in V such that the socle of V2 is o. Similarly, there is up to
homothety a unique lattice V7 in V such that the cosocle of V°¢ is o.
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3.3 Lattices in Sym'E? ® O (v)
Let pr: Q; — 1+ pZ, denote the projection sending p to 1. As p > 2, we can define the square
root on 1 + pZ, by the usual binomial formula. Define

Sym!E? := Sym'E? @ (pro det)_l/z. (3.2)

The reason to introduce the twist is to make the central character of Sym'E? to be trivial on

Zy. Note that the mod p reduction of Sym'©? := Sym!'0? @ (pr o det)_l/2 still gives Sym!F2.
Let 1 : F;Q — E* be a character with ¢ # ¢?. Write ¢ = [¢]*H P with 0 <a<p—1

and 0 < b < p — 2. By Proposition 3.6, O(v)) ® is multiplicity free and has two (respectively, one)
Jordan—Hoélder factors if 1 < a < p — 2 (respectively, if a € {0,p — 1}).

Assume first 1 < a < p — 2. By Propositions 3.6 and 3.7, there are two lattices T, T" in O (1))
such that

0— Op—2—a,a+b+1 T/pT 7 Oa—1,b+1 — 0, (33)
0— Oa—1,b+1 — T//pT/ — Op—2—a,a+b+1 — 0, (34)

where both extensions are nonsplit. Note that T'/pT and T’ /pT" are I'-representations as © (1))
itself is. Moreover, if we fix T and normalize T” (by a scalar) so that 7" C T' and T" ¢ pT’, then
by [EGS15, Proposition 5.2.3(1)] we have

pT' cT CT. (3.5)

LEMMA 3.8. (i) We have (T/pT)"" 2 xp—9—qatbr1 and (T'/pT" )0 22 x41p41-
(i) We have (T/pT)r, = Xg_1p41 and (T"/pT") 15, = Xp_9_q.q4b41-

Proof. (i) We only give the proof in the case of T'//pT. Using (3.3) we obtain an exact sequence
0 = (0p-2-a,a+b+1)" = (T/pT) = (Ga-1,441)"
Assume for a contradiction that (7'/pT)" is two-dimensional. Then we would obtain
(T/pT)"™ = Xp—2-a.atbt1 D Xa—1,b+15

and consequently an I-equivariant injection Xq—1p4+1 < 7/pT. By Frobenius reciprocity, we
would get a nonzero K-equivariant map

Indf Xa-1,611 — T/pT.

By comparing the Jordan—Hdlder factors, this map cannot be injective and must have image
isomorphic to 0,1 p+1 (see [BP12, Lemma 2.3]). This gives a contradiction because the sequence
(3.3) is nonsplit.

(ii) This is proved in a similar way as part (i). Alternatively, it can be deduced from part (i)
by taking dual. O

Recall that E is unramified over Q,. Consider Sym!O? := OY @ OX, the standard lattice
in Sym'E? and set

L:=Sym'0?®o T, (3.6)
L' :=Sym'0*@o T'. (3.7)
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Then we have?
L/pL = Sym'F? @ T/pT,
L'/pL’ = Sym'F* @ T /pT",
and (3.5) implies pL C L' C L.
LEMMA 3.9. The group K acts trivially on L/pL and L' /pL’.
Proof. This is because K acts trivially on both Sym'F? and ©(¢)). O

LEMMA 3.10. (i) We have (L/pL)" 2 X 1 a.atb+1 D Xp—3—aarbr2 and (L' /pL' ) 22 x4 pi1 @
Xa—2,b+2-
(i) We have (L/pL)1, = Xg 541 D Xo_2pi2 a0d (L'/PL) 1 Z X5 1 4 aivr1 @ Xy 3-a.atbro-

Proof. By Lemma 3.9, we have (L/pL)" = (L/pL)V®») and (L/pL);, = (L/pL)y(z,), so the
results follow from Proposition 3.1 and Lemma 3.8. O

PROPOSITION 3.11. Assume 1 < a <p—2.
(i) We have that L/pL is multiplicity free and has a two-step socle (and cosocle) filtration
(0p—3-aatbr2 © Op-1-aatbr1) — (Tapr1 D Ta—2p42) (3.8)
(with the convention o_j p1 = 0_1 42 = 0). Moreover, the following nonsplit extensions
E1 = (0p_3-aatb+2 — Tapt1)s
Ey = (0p—1—aatbr1 — Ta—2,p+2),
E3 = (0p—1—a,atb+1 — Tabs1)
occur in L/pL as subquotients, with the exception that E; (respectively, Fy) does not exist
if a = p — 2 (respectively, a = 1).
(ii) We have that L' /pL’ is multiplicity free and has a two-step socle (and cosocle) filtration
(Tapt1 ® Oa—2p4+2) — (Op—3—aatb+2 B Op—1—aatb+1)-
(with the convention o_j p1 = 0_1 p42 = 0). Moreover, the following nonsplit extensions
By = (Capt1 — Op-3—a,a+b+2):
Ey = (0a—2p12 — Op—1—a,atb+1)s
Ey = (0apt1 — Op-1-aatbil)
occur in L' /pL’ as subquotients, with the exception that E} (respectively, EY) does not exist
if a = p — 2 (respectively, a = 1).
Proof. Tt suffices to prove part (i). Recall the following facts (see [BP12, Lemma 3.8])
Sym'F2 ® 041 p1+1 = Capr1 ® Ta—2pr2,
Sym'F? ® 0p_2-g,atb41 = Op_1-a,atb+1 B Op—3—a,atbr2,

with the convention o_1 41 = 0_1 42 = 0. Using (3.3) this implies that L/pL = Sym!'F? ® T/pT
has a two-step filtration as claimed in (3.8), and is multiplicity free. By Lemma 3.10, the filtration
gives exactly the socle (and cosocle) filtration. This also completes the proof if a € {1,p — 2}.

2 To remind ourselves of the distinguished role of Sym'F?, here and below we write Sym'F? instead of o1 0.
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Assume 2 < a < p — 3 in the rest of the proof. For a Serre weight o, denote by Injp(o) the
injective envelope of ¢ in the category of F[I']-modules; we remark that Injp (o) is also projective.
Let W1 denote the image of the unique (up to scalar) nonzero map Injr(oq—2p+2) — L/pL. Since
Op—3—a,a+b+2 is not a Jordan-Hélder factor of Injr(04—2p+2) (see [BP12, Lemma 3.2]), Wi does
not admit o,_3_4 ¢+p+2 as a subquotient. Since cosoc(W1) =2 0,2 p+2 by construction, we deduce
from (3.8) that

Wl = (Up—l—a,a+b+1 - Ga—2,b+2)7

i.e. the nonsplit extension Ey occurs in L/pL. Consequently, the cokernel of the inclusion W; —
L/pL, denoted by Wa, has {0qp+1,0p—3-a,at+b4+2} as the set of Jordan-Hdlder factors, hence is
isomorphic to the nonsplit extension Ey = (0p_3_qat+b+2 — Tap+1) because op_3_q q+p42 does
not occur in the cosocle of W by (3.8).

We are left to show that L/pL is a nonsplit extension of Wy by Wi (this implies that E3 occurs
in L/pL). Assume for a contradiction that L/pL = W; @& Ws. Let V' denote the principal series
Ind¥ Xg+1, Which is isomorphic to the (unique) nonsplit extension (4416 — Tp—2-a,at+b+1)-
By [BP12, § 3], there exists a short exact sequence

0 — T/pT — Injp(0p—2-aatbt1) — V — 0,
which induces a short exact sequence
0 — L/pL — Sym'F? @ Injp(0p_2_aarvr1) — Sym'F2 @V — 0.
By Lemma 3.12 below, if 2 < a < p — 4, then
Sym'F* @ Injp(op-2-aa+b+1) = Mir(0p-1-aatv+1) ® Ijr(0p-3-a,a+b+2)-

Comparing the socles, it is clear that Wa N Injp(0p—1—g,a+5+1) =0, thus Wa —Injr(op—3-_a,a+b+2)-
Moreover, we have

L/pL N Injrop_3_aatbr2 = Wo,
which induces a (nonzero) morphism
Injr(0p—3—a,atbr2)/Wa — Sym'F> @ V.
However, by [BP12, § 3] we have
Injp(0p-3-a,atbr2)/Wa = Indp e ) Xp3-a,atb+2;
so by Frobenius reciprocity we obtain a nonzero I-equivariant morphism
Xp—3—aatbiz — Sym'F2 @ V.

But this contradicts Corollary 3.2, by which (Sym!'F? @ V)1 =~ Xa+2,b D Xap+1 D Xp—1—a,a+b+1-
The case a = p — 3 is a little subtle. By Lemma 3.12 below we have

Sym'F? ® Injp(o1,4-1) = Injp(02,—1) ® Injr(00,) B 0p1.p-
Comparing the socles, one checks that W5 embeds into Injp(ogp) and actually
L/pL N InjF(O'O,b) = Whs.

Hence, we obtain a nonzero morphism from Injp(oq)/Wa = 0¢ 4 to Sym'F2 ® V. On the other
hand, 0,1 also occurs in SymlIF2 ® V and, in fact, is a direct summand because o,_1 is an
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injective F[I']-module. Thus, there exists an embedding
00,6 D Op—1,p — SymlIF'2 ®V.

However, by Corollary 3.2 we have (SymlIE*‘2 ® V)I1 = Xp—1,6 D Xp—3,b+1 © X2,b—1, in which the
character x,—15 (= Xo,) occurs only once. This gives a contradiction and finishes the proof. [

Recall the following facts (see [BP12, §3]): Injp(o,) is of dimension 2p if 1 <a <p—2;
Injp(op—1p) = 0p—1, is of dimension p; Injr(ogp) = (0o — Op—3p+1 — 0op) is of dimension p.

LEMMA 3.12. (i) Ifa =1, then Sym'F? ® Injp(01,) = Injp(02p) B Injr(00,541) @ Op_1,p+1-

(ii) Ifa=p—2, then Sym'F? @ Injp(0p—2p) L op_1 D 0p—1 D Injp(0p-35+1)-

(i) 100 < a < p— Landa ¢ {1.p — 2}, then Sym!F2 @ Injp(73) = Injp(014) ® Injp (0u-11)
with the convention Injp(o_1 p11) = Injr(opp) = 0.

Proof. Using the fact that Sym'F? ® Injpo is an injective object in the category of F[T']-modules,
the results can be easily deduced from [BP12, Lemma 3.8]. O

Finally, we treat the case a € {0,p — 1}.
PROPOSITION 3.13. Assume a € {0,p — 1}. There are two lattices (unique up to homothety)
L, L' of Sym'E? ® ©(¢) such that pL C L' C L and
L/pL = 0p_1p11 D 0p—3p+2,
L'/pL' = (0p—1p11 — Op_3p12)-

The lattice pL is then identified with the kernel of the natural projection L' — op_3pi2.
Moreover, (L' /pL' )k, = 0p—3 p+2-

Proof. Let T be any lattice in ©(v)) and L:=Sym!O?®T. Then T/pT = 0p_2p41 by
Proposition 3.6, and consequently L/pL = 01441 D 0p_3p4+2 by [BP12, Lemma 3.8]. Let L’

. p
be the kernel of the composition L — L/pL % 0p—1,p+1. Then pL C L' C L. Moreover, we have
a short exact sequence

0— pL/pL’ — L'/pL’ — 0p_3p12 — 0. (3.9)

We claim that (3.9) induces an isomorphism (L'/pL’) ¢, = 0pp—3p+2; this will imply that L' /pL’
is a nonsplit extension of 0,3 12 by 0p—1 p41-
The proof of Proposition 3.1 shows that there exist wp,w; € T/pT such that X ® wy and
Y ® Wo + X ®@w; span (L/pL)"*. Comparing the H-action, we must have
(0p-1511)" =F(X @T0), (0p-3p+2)" =F(Y @ W + X @ w1).

Let wg,w; € T be a lift of wp, w1, respectively. From the definition of L’ we see that Y ® wg +
X ®@wy € L. As K; acts trivially on T, we have

((é ]19> _1>(Y®w0+X®w1):(pX)®wo e pL.

Since (pX) ® wy generates pL/pL’, the claim follows.
The uniqueness of L' (up to homothety) follows from Proposition 3.7. Since pL is identified
with the kernel of the natural projection L' — 0,,_3 512, the uniqueness of L follows. O

3.3.1 Sublattices in L. In this subsection we specify some sublattices in L in the case 1 <
a < p— 2. Recall that 0_1 p41 = 0_1 342 = 0 by our convention.
Let Ly := Ker(L - L/pL — 04_2p+2). It is clear that pL C L; C L.
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PropPOSITION 3.14. The following nonsplit extensions
(Upf3fa,a+b+2 - Ua,b+1)7
(Up—l—a,a+b+1 - 0a,b+1)u
(%—2,b+2 - Up—l—a,a+b+1)
occur in L1 /pL; as subquotients. Consequently, L1 /pLy has a cosocle filtration
Oaq—2,b+2 — (Up—l—a,a+b+1 D Up—3—a,a+b+2) — Oab+1

and Ly is the unique (up to homothety) lattice in Sym'E? ® © (1)) whose reduction has cosocle
Oap+1. Moreover, we have

(Ll/le)K1 = (Jp—l—a,a+b+1 @ Up—3—a,a+b+2) — Oagb+1-

Proof. By construction, we have pL CL; and L;i/pL=ZKer(L/pL — 04,-2p+2). By
Proposition 3.11(i), the cosocle filtration of L;/pL is

(Jp—l—a,a+b+1 D Up—3—a,a+b+2) — Oab+1>

thus the nonsplit extensions (0p—3—qat+b+2 — Tapt1) and (Op_1_gatbt1 — Oapt+1) OCCUr in
Ly /pL, hence also in Ly /pL;.
We need to show that the nonsplit extension (o4—2p+2 — Op—i—aa+bt1) also occurs in

Li/pLy. For this we note that pLy C L' C Ly, where L’ is defined in (3.7). Consequently, L'/pL;
is a subrepresentation of L;/pL1, and it is easy to see that

JH(LI/le) = {Ua—2,6+27 Op—1—a,a+b+1, Up—3—a,a+b+2}-

As a quotient of L'/pL’, L' /pL; admits the nonsplit extension (64—2p+2 — Op_1—qgatbt1) aS a
subquotient, see Proposition 3.11(ii). The structure of (Li/pL1)xk, and other statements easily
follow. O

Let L} := Ker(L' - L' /pL’ — 0p_3_qa+b+2), where L' is defined in (3.7). Then pL’ C L} C
L’. Alternatively, L} is characterized by the following exact sequence:

0—pL— Ly — 0p-1-aatbi1 — 0. (3.10)

In a similar way to Proposition 3.14, we have the following result.
PRroOPOSITION 3.15. The nonsplit extensions

(Op—3—a,a+b+2 — Tabs1);

(Capt1 — Op—1-aatbil)

(Ca—2pt2 — Op_1-aatbil)
occur in L) /pL}. Consequently, L /pL} has a cosocle filtration

Op—3—a,atb+2 — (Ta—2p42 B Tapt1) — Op—1—a,atb+1

and L'} is the unique (up to homothety) lattice in Sym' E? ® ©(v)) whose reduction has cosocle
Op—1—a,at+b+1- Moreover, we have

( Il/lel)Kl = (Ua—2,b+2 S Ua,b—l—l) — Op—1l—a,a+b+1-

Let Ly := Ker(L — L/pL — (0p—3—a,a+b+2 — Tap+1)). Then pL C Ly C L and there is a
short exact sequence

0—pL— Ly— (Up—l—a,a+b+1 - Ua—2,b+2) — 0. (311)
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PROPOSITION 3.16. Assume 2 < a < p — 2. Then the nonsplit extensions
(Up73fa,a+b+2 - Ua,b+1>7
(Ua,b+1 - O'pflfa,aerJrl)v
(O'p—l—a,a—i-b—‘rl - O'a—2,b+2)

occur in Lo /pLy. Consequently, La/pLo has a cosocle filtration

Op—3—a,a+b+2 — Oab+1 = Op—l—a,a+b+1 — Oa—2,b+2,

and Ly is the unique (up to homothety) lattice in Sym'E? ® © (1)) whose reduction has cosocle
0a—2,p+2- Moreover, we have

(L2/pL2) Kk, = (Op—1—a,atbrl — Ta—2b42)-

Proof. Since Ly/pLs is an extension of Lo/pL by pL/pLo, it suffices to show that the nonsplit
extension (0q p+1 — Op—1—a,atbt1) OCCUrs in Lo/pLo.
It follows from (3.10) and (3.11) that pL C L} C Lo and there is a short exact sequence

0— L} — Ly — 0q—2p42 — 0.
This implies that
1/pLa = (L3 /pLy)/(0a—2+2),

and the nonsplit extension (04 p41 — Op—1—q,a+b+1) OCcurs in L} /pLy by Proposition 3.15. Since
L /pLs embeds in Ls/pLs, this nonsplit extension also occurs in Ly /pLs. O

The sublattices L1 and Le of L satisfy the following property.

PROPOSITION 3.17. Assume 3 < a <p—2. Fix i € {1,2}. Then for every x € pL, there exist
reN, ki,....,k- € Ky, y1,...,Yyr € L;, such that

r=(k—Dy1+-+ (b — Dy,.

The proof of Proposition 3.17 requires a technique introduced in [BHHMS23, § 7], so we first
recall some notation. Let slo g, be the Lie algebra consisting of trace-zero 2 x 2 matrices with
coefficients in IF,,. It is a three-dimensional vector space over I, with a basis

0 1 00 1 0
=(o0) =(10) (0 )
subject to the Lie bracket relations
[67 f] = h’ [hv 6] = 265 [h7 f] = 72f

Let (V, p) be a continuous finite-dimensional representation of K/Z; over E. Assume that V° is
a K-stable O-lattice in V' such that K acts trivially on V°/pV°. Breuil et al. [BHHMS23, §7.1]
defined a Lie algebra action of slor, on V°/pV°, which induces an F-linear map

Bve s slor, @, (V°/pV) = V°/pV®

sending z ® v to p~!(p(exp(pZ))v — v) (mod pV°), where T € slyz, is a trace-zero 2 x 2 matrix
with coefficients in Z, lifting x € slar,, and v € V° is alift of v € V°/pV°. The definition does not

depend on the choice of the lifts. Moreover, letting K act on sly g, by conjugation k - z := Tk
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(for k € K and k — k € GLo(F,)), Bve is K-equivariant. Indeed,

Byo (k(z ®v)) = Byo(kak @ kv) = p~ (p(exp(pkTh )k — k7)  (mod pV°)
=p~(p(kexp(pz))o — ko) (mod pV°)
= kfyo(z @v).
In the special case V = SyimlE2 and V° = Syiml(’)z, we easily check that the map /Bsymloz :
slyp, ® Sym'F? — Sym?F? is given by
Bsymioz (@ @ U(X,Y)) = l(an X + anY,a12X —anY) (3.12)

for v = (a1 “a2,) € slor, and £(X,Y) € Sym'F?.

a1 —aii
Proof of Proposition 3.17. We only give the proof for Ly (which will be used in the proof of
Proposition 3.19). Take V = Sym'E? ® ©(y) and V° = L = Sym'O? ® T in the above discus-
sion. Since K7 acts trivially on 7', the map £ : sloy, ® Sym!'F? @ T/pT — Sym'F? @ T/pT is
given by (cf. [BHHMS23, Remark 7.1.3])

Let W1 = (0p—1—a,a+b+1 — Oa—2,b+2) be the subrepresentation of L/pL defined in the proof
of Proposition 3.11. Then Lo is exactly the preimage of Wy in L under the surjection L —»
L/pL. Taking W =W, (and V° = L) in [BHHMS23, Lemma 7.1.4], we obtain the following
commutative diagram in which both rows are exact.

ﬁLls[z]Fp@Wl

p
slar, ® W1 L/pL — (La/p*L)k, Wi 0

[ [ |

p
slyp, ® L/pL —— L/pL — (L/p*L)g, —> L/pL — 0

To prove the proposition, it suffices to check that the dotted map ¢, which is the composite

¢ :slor, @ Wi < sby, @ L/pL 2% L/pL, (3.14)
is surjective, since this implies that the images of pL and p?L in (L3)g, coincide. Recall that
T /pT fits into a short exact sequence

0— op—2—aatbt1 = 1T/PT — 04—1p41 — 0

and W1 N (Sym'F? Op—2—aat+b+1) = Op—1—aa+b+1 (See the proof of Proposition 3.11). Using
(3.13), we see that ¢ sends slar, ® 0p_1-qatbr1 tO Sym'F? @ Op—2—a,a+b+1, 5O that ¢ induces a
K-equivariant map

_ 12 12
P :slop, ®04 2p12 — slop, @ Sym F* @ 04141 — Sym F” ® 04-1p41,

By Proposition 3.11(i), cosoc(L/pL) =

SymlIE‘2 ® 04—1,p+1. Hence, to prove ¢ is surjective it suffices to prove ¥ is surjective.
We prove that @ is surjective by a direct computation (analogous to [BHHMS23,
Lemma 7.2.1]). Fix a nonzero element v € (04_1441)Y%). Then (04_14+1)Y?%) =Fv and

the group H = {([g] [2}), a,d € F)'} acts on v by xa—1p+1. Recall that there is a natural

where the second map is given by Sg 102 @ Ids, -

action of slyp, on 04_1p41 and the set {v, f(v),..., f* }(v)} forms an F-basis of 041441,
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see [Pas04, §4.2.1]. By construction, we have e(v) = 0 and h(v) = (a — 1)v. Consider the following
nonzero elements of Sym'F? ® Oa—1,b4+1"

1
ll::X®?}, l2:Y®U—ﬁX®f(U)

It is easy to see that H acts on [; (respectively, l2) by xept+1 (respectively, xq—2p+2)-
Moreover, using the fact ef(v) = fe(v) + h(v) = (a — 1)v, one checks that e(l1) = e(l2) =0, so
that {; and Iy are fixed by U(Z,). Since Sym'F? @ Oa—1p+1 = O pr1 D 0q—2p42, we deduce that
li € (Gapr1)V ) and s € (04-2p12)Y %) under this decomposition. In particular, Sym!'F? ®
Oa—1,+1 is generated by /1 and I3 as a K-representation.

Since p is K-equivariant, to finish the proof it suffices to prove that both [y and Is lie in the
image of g. We let (recall a > 3)

wyi=e®ly, wo:=—-hQly—

a_2€®f(l2)

be elements of slo F, ® 04212 and claim that p(w;) = l;,7 = 1,2. Indeed, as ﬁSyml(Q?(e 2 X) =0
and fgypi02(e @ Y) = X by (3.12),

wn) = sute ot =1 (ea (Yo ixesw))

1
= ﬁSym1(92(6®Y) ®v— ajﬁSyml(’)Q(e@X) ®f(1)) =X®uv=10.

Similarly, @(w2) = BrL(—h @12 — (2/(a — 2))e ® f(l2)). We have
flia) = f (Y Gv-——X@ f(v))

—Y ® f(v) — Til(f(X)@)f(v)—i—X@fQ(U))

L2V @ () - X ® ),

hence
Ble® F12) = * = Bymion (6 ® V) © f() ~ ——Bemionle ® X) ® (1)
= Z:TX ® f(v).

As h(X) = X and h(Y) = =Y by (3.12), we obtain

2 a—2
a—2 a—1

Plun) =~ (e (You- LX) - X ® f(v)

1 2
=Y —X -—X = ls.
®v+ —SX@f(v) - —7 X f(v) =l
This proves the claim and finishes the proof of the proposition. O

3.4 Gluing lattices
Assume 1 < a < p — 3. Consider the following three characters of IF;Q:

I e L R e R e T R A (3.15)
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In this subsection, we construct a lattice Rin
O(¢1) & (Sym'E® @ O(1)2)) @ (Sym' E* ® ©(v3))

such that R/pR is killed by m%ﬁ and cosoc(R/pR) = 0q4,b+1- We divide the construction into two
cases: 1 <a<p—4anda=p-—3.

3.4.1 The case 1 <a<p— 4. Denote by W the nonsplit I'-extension (0—3—q,q+b+2 — Tab+1)-

(1) Let Ry be the unique (up to homothety) lattice in ©(¢1) such that cosoc(R1/pR1) = 04 p+1-
Then Ry/pRy = W. Let r1 denote the composite

r R1 — Rl/pRl = W.
(2) By Proposition 3.6 and [BP12, Lem. 3.8], we have

JH(Sym1E2 ® 9(7#2) ) = {O-a,b-l—l, Op—3—a,a+b+250a+2,b, O'p—5—a7a+b+3}
with the convention o_1, =0. Let Ry C Sym!E? @ ©(12) be the unique (up to homo-
thety) lattice such that cosoc(R2/pR2) = 0gpt+1. The structure of Rp/pRy is given by
Proposition 3.16, i.e.

R2/pR2 = (Up—5—a,a+b+3 — Oa+2b — Op—3—a,a+b+2 — Ua,b+l)' (316)

(3) By Proposition 3.6 and [BP12, Lemma 3.8], we have

JH(Sym1E2 & @(w?)) ) = {Ua,b+1a Op—3—a,a+b+159a—2,b+2; Upflfa,a+b+1}

with the convention o_j 449 = 0. Let R3 C Sym!E? ® ©(13) be the unique (up to homo-
thety) lattice such that cosoc(R3) = 04 4+1. By Proposition 3.14, R3/pR3 has a cosocle
filtration

Oaq—2,b+2 — (Jp—l—a,a+b+1 @ O'p—3—a,a+b+2) — Oab+1- (317)

Note that there exists a surjection Ry — W which we denote by rg; let R, := Ker(ry). The
structure of R, /pRY is determined in Proposition 3.11(i). Precisely, it has a two-step socle and
cosocle filtration

(Up—S—a,a+b+2 D Up—5—a,a+b+3) — (Ua+2,b S5 Ua,b+1) (318)

and all possible extensions do occur.
Similarly, there exists a surjection Rs — W which we denote by r3; let R} := Ker(rs). The
structure of Rf/pRY is also determined in Proposition 3.11(i). Precisely, it has a cosocle filtration

Op—3—a,a+b+2 — (Ua,b+l S O—a72,b+2) — Op—1l—a,a+b+1 (319)

and all possible extensions do occur.

3.4.2 Glue Ry and Ry (1 <a <p—4). Let R be the lattice in O(z)1) ® (Sym'E? ® O(¢))
obtained by gluing R; and Ry along W, i.e. R is given by the short exact sequence

0—>R— R &R —W —0. (3.20)

Let rr denote the composition R - R/pR — Ry /pR; = W.
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LEMMA 3.18. We have that:
(i) rr induces a short exact sequence
0 — RL/pRy — R/pR — W — 0; (3.21)

in particular, R/pR is killed by mgﬁ;
(ii) Ker(rr) = Ry + pR and

Ker(rg)/pKer(rr) = Ry/pRy & W.
Proof. This is a special case of Lemma 3.3 applied to Ly = Ry and Ly = Rj. U

PROPOSITION 3.19. The short exact sequence (3.21) induces an isomorphism (R/pR)k, = W.
In particular, cosoc(R/pR) = 0qpy1-

Proof. By Lemma 3.18(i), it suffices to show that for any = € RY, there exist r € N, ky,...,k, €
Ky, v1,...,v € R such that = (k1 — 1)vy + - - + (k, — 1)v,. By Proposition 3.17 (applied to
L=p 'R, and Ly = Ry), there exist r € N, ky,..., k. € K1, y1,...,yr € Ry such that

x= (ki — Ly +--+ (b — D)y,

For 1 < i <r, choose z € Ry such that (%) = r2(y;) and let v; = (2;,y;) € R. Since K, acts
trivially on R;, we have

T T T

(0.0) = (D00 = D2 Y00~ 1) = D00 — Dy

=1 =1 =1

giving the result. U

3.4.3 Glue R and R (1 < a <p—4). We define R to be the lattice in ©(1;) ® (Sym'E? ®
O(1h2)) ® (Sym' E? ® ©(¢)3)) obtained by gluing R and Rj along W, i.e.
0—R—R®Rs"“3*W —0. (3.22)
PROPOSITION 3.20. (i) There exists a short exact sequence
0 — Ker(rg)/pKer(rg) — R/pR — R3/pRs — 0.
(ii) We have cosoc(R/pR) = Ta,btl-

Proof. (i) This is a special case of Lemma 3.3.
(ii) This is a special case of Lemma 3.4, with L; = R and Ly = R3. First, condition (a) in
Lemma 3.4 holds by Proposition 3.19. Second, we have

cosoc(Ker(rg)) = cosoc(W) @ cosoc(R)) = 0apt1 D Tapt1 P Oatap
by (3.18) and Lemma 3.18(ii), and
cosoc(Ker(73)) = 0p—1-g,a+b+1
by (3.19), hence condition (b) in Lemma 3.4 also holds. O

PROPOSITION 3.21. Let V denote the quotient of R3/pR3 by 0q_2p42 via (3.17). Then there
exists a short exact sequence

0— Ry/pRy® W @ 04_ap12 — R/pR— V — 0. (3.23)

In particular, E/ pR is killed by m%ﬁ.
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Proof. By definition, we have
0 — 04—2p42 — R3/pR3 — V — 0.

Note that o,_2312 has no nontrivial extensions with any Jordan-Holder factor of W and
of Ry/pRy, using [BP12, Corollary 5.6] and Lemma 3.22 below. The result easily follows by
Proposition 3.20. 0

LEMMA 3.22. Assume 2 < a < p — 2. Then Ext}((aa_27b+2, Tapt1) =0.
Proof. We have a short exact sequence 0 — 0py1—gat4b — Indf{ Xa—2,p+2 — Oq—2,p+2 — 0. Since
Ext}((apH_a,aer, 0ap+1) = 0 by [BP12, Corollary 5.6], we are reduced to proving

EXt}((Indf( Xa—2,6+25Oap+1) = 0,

equivalently Ext}(Xq_2p12,0apr1) = 0 by Frobenius reciprocity.

Consider an I-extension 0 — g pi1]r — € — Xa—2,6+2 — 0. We first prove that it splits as
U(Z,)-representation. Since o,p41 is a cyclic F[U(Z,)]-module, we have HY(U(Zy), 04 p+1) =
Hl(U(Zp),X;bH), where X, is identified with the U(Zy)-cosocle of g 1. As seen in the
proof of Proposition 3.1, we get

Hl(U(Zp)a Ua,b—‘rl) = Xz,b—i-lail'

As 2 < a < p— 2, this implies x,—2p1+2 # X27b+101_17 and so EthU(Zp)(Xa_Q’b_i_Q, Oabt1) = 0.

As a consequence, we may choose v € £ which is fixed by U(Z,) and on which H acts via
Xa—2,b+2- Next, as in the proof of [Pasl0, Proposition 7.2], we show that v is actually fixed by
11, showing that &£ splits as I-representation. This finishes the proof. ]

We obtain the following corollary.
COROLLARY 3.23. We have that E/pﬁ has cosocle 0,541 and is a quotient of
(Projox/z,] Tab+1)/ M,

3.4.4 The case a = p — 3. In this case, we need to slightly modify the above construction.
We only sketch the construction and leave the detail to the reader.

(1) Let Ry be the unique (up to homothety) lattice in ©(¢1) such that cosoc(Ri/pR1) =
Op—3,b+1- Then

Ri/pRi = (00 — 0p—3pt1) = W.

Let r1 denote the projection Ry — 03 p11.
(2) By Proposition 3.6 and [BP12, Lemma 3.8|, we have

JH(Syiml(QQ ® 9(7/12)») = {0p—1,b,Op—3b41}-
Let Ry be the unique lattice in Sym' E2 ® ©(1/2) such that cosoc(R2/pR2) = 0,_3p+1. Then

Ry/pRy = (0p—1p — Op—3p+1)-
Let ro denote the projection Ry — 0,311 and Rf := Ker(rz). Proposition 3.13 implies
that
5/PRY = 0 3441 ® 0p 1
(3) Let R3 and R4 be the lattices in Sym!E? ® O(13) constructed as in the case 1 <a <

p — 4. Namely, R3 has cosocle 0,,_3 311, and Rj := Ker(rs) where 3 denotes the projection
R3 —» W.
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We first glue Ry and Ry along 0p,_3 141, namely
0—=R— R &R —"0p_3p41 — 0.
Then by Lemma 3.3(i) there is a short exact sequence
0 — R,y/pRy — R/pR % W — 0.
Moreover, as in the proof of Proposition 3.19 one can show that rr induces an isomorphism

(R/pR)k, = W. In particular, cosoc(R/pR) = 0p_3p+1-
The gluing of R and Rj is exactly as in the case 1 < a < p — 4. Let R be defined by

0—>]§—>R@R3TR—_:3W—>O.
One can follow the proof of Proposition 3.21 and Corollary 3.23, to show the following result.

PROPOSITION 3.24. (i) We have that R/pR has cosocle Tp—3.bt1-
(ii) Let V denote the quotient of R3/pR3 by 0p_5p42. Then there is a short exact sequence

0— W & Ry/pRy @ 0y 510 — R/pR — V — 0. (3.24)

As a consequence, R/pR is a quotient of (Projork/z] Op—3p+1) /M -

4. Galois deformation rings

Assume p > 5. Let p: Gg, — GL2(IF) be a two-dimensional continuous representation of Gg, =
Gal(Q,/Qp). In this section, we study the congruence relation of Galois deformation rings of
different (tame) types. Our method does not allow us to determine the precise structure of the
Galois deformation rings, but is enough for application in §6.3.

4.1 Preliminaries
We collect some results on the set of Serre weights associated to p and some results of Paskunas
and of Morra. We prove in §4.2.2 a criterion for some Galois deformation rings to be regular.

4.1.1 Serre weights. Let w (respectively, wy) be the mod p cyclotomic character (respectively,
Serre’s fundamental character of niveau 2) of Gg,. Up to isomorphism, p has one of the following
forms:

r+1
Case 1. pis absolutely irreducible and p|z, ~ (WQO p(?ﬂ)) Wt 0<r<p-1,0<s<p-—2;
W

Case 2. p~ (wm”l(‘)"r+1 u;fm) ® wt! is reducible nonsplit, where unr, unrp are unramified
characters, and 0 <r <p—-2,0<s<p—2;
Case 3. p ~ (“nrlt‘)" m ur?rQ ) ® w*t! is reducible split, where unr;, unry are unramified characters,
and 0<r<p—-20<s<p-2
Let W(p) be the set of Serre weights associated to p in [BDJ10]. We have the following

explicit description of W (p).
THEOREM 4.1 [BDJ10, Theorem 3.17].

(i) Assume p is in case 1. Then W(p) = {0rs+1, Op—1—rrts+1}-

(ii) Assume p is in case 2.
(a) Ifr #0, then W(p) = {0y s41}-
(b) Ifr =0, unr; = unry and p is tres ramifié, then W (p) = {op—1,s41}-
(c) For other p, W(p) = {00,s+1, Op-1,s+1}
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(iii) Assume p is in case 3.
(a) If1 <r <p—4, then W(p) = {0541, Op—3—rrt+st2}-
(b) If r =0, then W(p) = {00754_1, Op—3,5+2; 0'p_175+1}.
(c) If r =p—3, then W(p) = {005, Op—3.s+1, Op—1,5}-
(d) Ifr =p—2, then W(p) = {op-2,5+1}-

4.2 Mod p representations of GL2(Q))
Assume that p satisfies EndGQp (p) = F. We associate to p an admissible smooth F-representation
m(p) of G := GL2(Q,) as follows.

Case 1. If p is absolutely irreducible, then 7(p) is the irreducible supersingular representation of
G associated to p by the mod p local Langlands correspondence defined in [Bre03].
Case 2. If p ~ (%1 ;2) with x1x5 L4 w*1 1, then there is an exact nonsplit sequence

L 0.

0— Indg(Qp) X2 ®@ x1w™ !t — 7(p) — Indg(Qp) X1 @ Yow™
Iftp~ (35 xz ), then there is an exact nonsplit sequence
0— Indg(Qp) xw®xw = 7(p) — 1 ® x odet — 0,

where Sp is the Steinberg representation of G' and 71 is a nonsplit extension 0 — Sp —
71 — 15% — 0 with socg(1) = Sp.

Ifp~ (%"} ), then 7(p) is the representation defined in [Pas15, Lemma 6.7] (denoted
by [ there). Its precise structure will be recalled in § 8.3.

We remark that the representation m(p) is just the representation corresponding to p in the
mod p local Langlands correspondence for GL2(Q)), except in the case p ~ ()6 xt) ), 7m(p) has one
extra copy of x o det than the usual form.

The following theorem is a consequence of results of Morra [Morl1, Morl7].

THEOREM 4.2. Assume p is either in case 1 of §4.1.1 with r ¢ {1,p — 2} or p is in case 2 of
§4.1.1 with 1 < r < p — 3.2 Then for any o € W(p), o occurs in 7(p)[m% ] with multiplicity one.

Proof. If p is absolutely irreducible, then 7(p) is the representation 7(p) in [Morll] whose K-
socle filtration is given by [Morll, Theorem 1.1]. If 5 is reducible nonsplit and p ~ (% :)) R X,
then 7(p) is equal to the representation A, (in [Morl7, Theorem 1.1]) for some A € F*. If
P~ (% :;) ® X, then m(p) has an extra copy of x o det than the representation A, . However, in
this case (x o det)|x is not a Serre weight of p. Thus, for any o € W (p) the multiplicity of o in
7(p)[m%, ] is equal to the multiplicity of o in A, z[m% ]. The K-socle filtration of A, is given
by [Morl17, Theorem 1.1] and [Morll, Theorem 1.2], from which the result follows. O

4.2.1 Results of Paskunas. Recall that p is called generic in the sense of [Pasl5] if either
p is absolutely irreducible or p ~ ()61 ;2) is reducible nonsplit with x1x5 12 w,1. We assume
p is generic, so in particular Endg, (p) =F. Let n:Gg, — O™ be a character such that 7
(mod w) = detp. Let R% denote the universal deformation ring of p with determinant # and let
"V denote the universal object over R

Let ¢ = ne~!. According to [Pas15, § 6.1], there exists N € €, (O) with a faithful continuous
action of Rg which commutes with the action of G such that:

3 The case where r = 0 may also be considered, see the footnote of [Mor17, Theorem 1.1]. But as our method
requires to exclude this case in §4.3, we choose to ignore it here.
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(NO) F®pnN is of finite length in € 4(O) and is finitely generated over O[KT;
7]

(N1) Homgr,(g,)(1e, NY) = 0; . )

(N2) Endg, ,(0)(N) = R} and V(N) is isomorphic to p"™™" as RJ[Gg,]-modules, where V is the
modified Colmez functor in [Pasl5, § 3];

(N3) N is projective in € (0O), and there exists « € R} such that N/zN is isomorphic to a
projective envelope of ® ey (50" in Modi’{r;}p((?).

Remark 4.3. Under our assumption on 7, N is just a projective envelope of F® r N in €g 4, (O).

P
Hence, (N3) follows from [Pasl5, Theorem 5.2].

PROPOSITION 4.4. Assume p is generic. Then there is an isomorphism F&® pn N = 7(p)V.
P

Proof. See the proof of [Pas15, Proposition 6.1].% O

If © (respectively, o) is a finite free O-module (respectively, F-module) equipped with a
continuous action of K, we define

M(©) := Hom%)i}tﬂ](N, 0T (resp. M(o) := Hom%){f;(]](N, a)").

Then M(O) (respectively, M (o)) is a finitely generated Rg-module by (NO).
Let w = (a,b) be a pair of integers with a < b and 7 : Ig, — GL2(E) be an inertial type,
where I, is the inertia subgroup of Gg,. Let

o(w, ) = Sym’ " 1E? @ det® @ o (),
o (w,7) := Sym’ "1 E? @ det® @ 0 (1),

where o(7) and o“(7) are finite-dimensional representations of K over E associated to 7
by the inertial local Langlands correspondence [Hen02] (see §5.1 for details). Let RJ(w,)
(respectively, R7“(w,T)) denote the reduced p-torsion-free quotient of R} which parametrizes
potentially semistable (respectively, potentially crystalline) deformations of 7 of Hodge-Tate
weights w and type 7. It is well-known that these rings are nonzero only if ne—(@+t) | Io, ™ det 7,
in which case they have Krull dimension 2. This requires, in particular, that n is locally
algebraic.
Recall the following theorem of Paskuinas.

THEOREM 4.5. Let w, T be as above. Let © be any K-stable O-lattice in o(w, T) (respectively,
o (w,T)). Then Rg/ Annpn (M (O)) is equal to Rg(w,T) (respectively, Rg’cr(w, 7)).
)

Proof. See [Pasl5, Corollary 6.5]. g

Let 0 : Gg, — O be a continuous character that is trivial modulo p, not necessarily locally
algebraic. Twisting by d induces a natural isomorphism of O-algebras

tws : R = R, (4.1)
By a similar discussion as in [CEGT18, §6.1], we have the following variant of Theorem 4.5.

COROLLARY 4.6. Assume n526_(a+b)|1Qp ~detT. Let © be any K-stable O-lattice in
o(w,7)® 5 todet (respectively, 0" (w,7) ® 1 odet). Then R;/AnnRg(M(@)) is equal to
P

tW5(Rg§2 (w,T)) (respectively, tw(;(Rng’cr(w,T))). As a consequence, we have isomorphisms of

4 We remark that in [Pa315, Proposition 6.1], the characters x1, x2 should be swapped.
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O-algebras
tws : B2 (w,m) = RI/Anng (M(O)) (4.2)
P
(respectively, for H’g‘sg’cr(w7 7))
If o is a finite-dimensional F[K]-module, by Proposition 4.4 we have

F@RgM(U) = Hompg (o, 7(p)). (4.3)

It follows from (N3) and Nakayama’s lemma that M (o) # 0 if and only if o admits at least one
Jordan—Hélder factor lying in W (p).

4.2.2 A criterion for regularity.

LEMMA 4.7. Let 0 € Mod%"(F) be of finite length. Assume that, taking into account multi-
plicities, JH(o) contains exactly one element in W(p). Then M (o) is a cyclic Rg—modu]e and
isomorphic to F[z], where z € Rg is as in (N3).

Proof. See (the end of) the proof of [Pas15, Theorem 6.6]. O
Recall that O is unramified over 7Z,,.

PROPOSITION 4.8. Let w, T be as above. Assume that there exist two K -stable O-lattices ©1, O9
in o(w,T) (respectively, o (w, 7)) such that the following conditions hold:

(a) pO1 C ©y C ©1 and dimp Homg (0;/pO;, m(p)) =1 for i =1,2;
(b) taking into account multiplicities, JH(O1/0©3) contains exactly one element in W (p).

Then R}(w,T) (respectively, R (w,T)) is a regular local ring.

Proof. We only treat the case for Rg(W,T). By Nakayama’s lemma and (4.3), condition (a)
implies that M (©1) and M (©2) are both cyclic modules over Rg. Hence, M(01) and M (O3) are
isomorphic to R;(w, 7) by Theorem 4.5.

The exact sequence 0 — Oy — O — 01/02 — 0 induces a sequence of R%—modules

0 — M(03) - M(01) — M(0,/63) — 0,

which is again exact by (N3). Since both M (©;) and M (©3) are isomorphic to Rg(w, 7), the
morphism f is equal to the multiplication by some element y € R%(W,T). On the other hand,
by Lemma 4.7, condition (b) implies that M(©;/02) is isomorphic to F[z]. This means that
R%(W, 7)/(y) is a regular local ring of Krull dimension 1. Since R%(W, 7) has Krull dimension 2,
it is also regular. O

4.3 Potentially crystalline deformation rings of tame supercuspidal inertial types
In this subsection, we assume p is of one of the following forms:

(C1) pisin case 1 of §4.1.1 with 2 <r <p—3;
(C2) pisin case 2 of §4.1.1 with 1 <r <p—3.

In particular, p is generic (see §4.2.1). We study the properties of deformation rings of tame
supercuspidal inertial types and Hodge-Tate weights (0, 1) and (0, 2) in the cases (C1) and (C2)
separately. The main result is Theorem 4.15.

Recall that given a pair of integers (a,b) with 1 < a < p — 3, we can associate:

e characters 1, 1 <i < 3, introduced in (3.15);

2615

https://doi.org/10.1112/S0010437X24007449 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007449

Y. Hu aAnD H. WANG

e tame supercuspidal inertial types 7; = v; ® ¢ satisfying o(;) = ©(¢);) (cf. Lemma 5.1);
e lattices Ry, Rg, R3, R, R introduced in §3.4 satisfying cosoc(R/pR) = o441 for any R €
{R17 R27 R37 R7 R}

We choose (a,b) as follows:

e in the case (C1), let (a,b) € {(r,s),(p—1—7r,7+9)};
e in the case (C2), let (a,b) = (r,s).

Then o411 lies in W (p) by Theorem 4.1. For R € {Ry, Ry, R3, R, E}, we denote by
Ip = Annp%(M(R)) (4.4)
the annihilator of M(R) in Rg.

PROPOSITION 4.9. We have that M(R) is a (nonzero) cyclic Rg-module for R € {R1, Ro, R3,
R, R}. As a consequence M(R) = Rg/IR.
Proof. By Nakayama’s lemma, it suffices to show M(R)/m is of dimension 1 over F, where m
denotes the maximal ideal of R}. Since o411 € W(p) is a quotient of R/pR, we always have
dimp M(R/pR)/m > 1 by (N3) of §4.2.1.

To show dimg M (R/pR)/m < 1, we note that R/pR is a quotient of (Projryx /2, O‘a’b_l,_l)/m%(l
by Lemma 3.18, Corollary 3.23 and Proposition 3.24. Hence, by (N3) of §4.2.1

dimp M (R/pR)/m < dimp M ((Projyqx/z,] Cab+1)/ Mk, )/m.

If p satisfies either case (C1) or case (C2), then by (4.3) and Theorem 4.2, we have

dimp M ((Projpyx/z,] Cabr1)/Mi, ) /m = dimg Hom g (Projpyx/z,) Oapt1)/Mic, , 7(5)) = 1.
Hence, dimp M(R/pR)/m = 1. O

Remark 4.10. For i € {2,3}, we have constructed K-stable O-lattices L, L' in Sym!'E? @ ©(¢;)
in Proposition 3.11. The cosocle of L/pL (respectively, L' /pL’) need not be irreducible, but M (L)
(respectively, M(L")) is still cyclic over R.

SS

Indeed, if JH(Sym!'E2 ® ©(¢);) ) N W (p) consists of one element, then the claim is obvi-
ous. Otherwise, p satisfies case (C1) and W (p) consists of two elements, say W (p) = {01,002} C

SS

JH(Sym!'E2 ® ©(vy;) ). By Proposition 3.11, one of the nonsplit extensions, E = (67 — o3) or
E' = (09 — 01), occurs in L/pL (respectively, L' /pL’). As in the proof of Proposition 4.9, M (E)
and M (E") are cyclic over Rg, from which the claim follows as M (o) =0 for o ¢ W (p).

COROLLARY 4.11. We have:

(i) ‘[Rl +IR2 = (p,IRl) and IR:IR1 OIRQ,'
(ii) Ip+ I, = (p,IRl) and IEZIRl NIr, NIR,.

Proof. Recall the following lemma from [HW22, Lemma 8.11]. O

LEMMA 4.12. Let (A, my4) be a commutative noetherian local ring with k = A/m 4. Let Zy,Z1, 7o
be ideals of A such that Z,,Zs C Ty C m4. Consider the natural surjective homomorphism A/Z, @
AJZy — AJZy. Then Ker(A/I; & A/Zy — AJIp) is a cyclic A-module if and only if T + Zy = Zy.

By (N3), the sequence (3.20) induces a short exact sequence
0— M(R) — M(Ry)® M(Ry) — M(Ry1/pR1) — 0.
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Since M (R) is cyclic over Rg by Proposition 4.9, we deduce part (i) using Lemma 4.12 and the

fact that®
Annpn (M (Ri/pR1)) = Annpgn (M (R1)/p) = (p, IR, )-
Similarly, we obtain part (ii) by using the short exact sequence (3.22). O

Let § : Gg, — O™ denote the character, via the local class field theory, sending = € Q; —
pr(:):)l/2 € 1+ pZy,. By Theorem 4.5 and Corollary 4.6, we have

—1

twy ! ) tw; )
RI/Ig, = RY(0,1),7), RL/Ip, = RF((0,2),m), RL/Ig, = RY ((0,2),73). (4.5)

PrOPOSITION 4.13. The ring Rg(((), 1), 1) is a regular local ring.

Proof. Recall from §3.3 that there exist two K-stable O-lattices T',T" C o(r1) such that pT' C

S

T'CT and T/T' = 04441 and cosoc(T/pT) = 04 p41. Here, if JH(o (1) ) N W (p) consists of
only one element, then we take 77 = pT'. In any case, the cosocle of T'/pT" is irreducible. Using
Theorem 4.2, it is easy to check that

dimp Homg (T /pT, 7(p)) = dimp Homg (7" /pT", 7(p)) = 1.
The result then follows from Proposition 4.8. O

Remark 4.14. If p is generic in the sense of [BP12, Definition 11.7], Proposition 4.13 is a direct
consequence of [EGS15, Theorem 7.2.1].

THEOREM 4.15. The rings Rg‘sQ((O, 2),72) and Rga2((0, 2),73) are regular local rings.

Proof. Assume p is in case (Cl). For Rg52((0,2),7'2), it is equivalent to proving that R%/ IR,
is a regular local ring by (4.5). Note that o441 is the unique Serre weight in the intersection

SS

JH(Sym'E?2 ® o(m5) ) N W (p). The assertion follows from Proposition 4.8, by choosing any K-
stable O-lattice ©; in Sym'E? ® o(72), and taking ©2 = pO; in Proposition 4.8.

We now consider Rg‘sQ((O, 2),73), equivalently Rg/ IR, via (4.5). By Proposition 3.11, there
are K-stable O-lattices L, L’ of Sym' E? ® ©(v3) such that pL C L' C L and

/
L/L =0ab+1 D Og—2p+2-

Note that oq_2p+2 ¢ W(p). Using Remark 4.10, the result follows from Proposition 4.8.
Assume p is in case (C2). Then p has only one Serre weight o441, and we conclude as in
the first paragraph. O

4.4 Endomorphism rings and faithfulness
In this subsection, we assume p is reducible nonsplit and isomorphic to ((1) y ) Let N € &gz, (0)
be as in §4.2.1. In this case N is isomorphic to a projective envelope of (Indg((@p) w®w 1) in
Q:G/ZG (O) : N

Let (A,m4) be a pseudo-compact flat local O-algebra with residue field F. Set R := A®0Rg
and

M := R®pN = AQoN.
P

®In general, if A is a commutative ring, I an ideal of A and M a finite A-module, then Anna(M)+ I C
Anna(M/IM) and their radicals coincide. In our situation, (p,le,) is a prime ideal, so we have the claimed
equality.
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Then M € €z, (R). In fact, as in [CEGT18, Lemma 4.9] we show that M"Y is admissible in
Modg"(R), and so M € &gz, (0).

LEMMA 4.16. The object M is a projective object in €g,7.,(O).

Proof. By assumption A is O-flat. Since pseudo-compact flat O-modules are projective (see, e.g.,
[Bru66, Proposition 3.1]), A is a projective O-module. By the definition of M we have

Homg,,,, (0)(M,~) = Homg, , (0)(ABoN, —) = HomE&" (4, Home,,,, (0)(N,~))  (4.6)
from which the result follows. O

LEMMA 4.17. We have Home,, , (r)(M,1¢) =0 and Extch/ZG( r (M, 1%) = 0.

Proof. The first assertion follows from (4.6) because Home,, , (o) (N,1%) =0,see (N1) in §4.2.1.
G

For the second, we work on the dual side and show Ext}z[G} (1g, M) = 0. By Lemma 4.16, M is

a projective object in €z, (0), so dually M" is an injective object in Modlc'?/dzné (O). Consider

an extension

0-M'—-E—-1a—0

in Modba/dzné (R). It must split in Modga/dzné (O), so we may find v € £ such that (O[G].v) = 1.
It suffices to show that R acts on v via the quotient R — R/mp = F. This is clear, since if
x € mp, then x-v € MV and, if it were nonzero, then it would generate a subrepresentation of
MY isomorphic to 1¢, which is not possible by the first assertion. 0

PROPOSITION 4.18. For any compact R-module m, the natural map v — (m — (v®m)) (where
v € m and m € M) induces an isomorphism

m = HOmCG/ZG(R)(M, m&rM).
Remark 4.19. Note that M is not projective in €g/z,(R) so that we cannot apply [Pas13,
Lemma 2.9].

Proof. The proof is similar to [HP19, Proposition 3.12]. As in [HP19, Proposition 3.12|, we may
assume that m is of finite length. In particular, the completed tensor product m®gzM coincides
with the usual one.

We proceed by induction on the length of m. Note that since R is a local ring, any R-module of
length 1 is isomorphic to R/mp = F. If m = F, we need to show that Hom%/ZG(R) (M,F®pr M) =
F. But any morphism M — F®@g M in €z, (R) factors through

M—>>F®RM—>IF®RM,
so the assertion is reduced to
End@G/ZG(O)(F (29573 M) = End(’:G/ZG(O)(F ®R% N) = F,

which is a direct consequence of Proposition 4.4. If the length of m is > 2, let m; C m be a
proper R-submodule such that mg := m/m; has length 1, i.e. my =2 F. We then obtain a long
exact sequence

Torf(mg, M) — m; @ M — m®p M — my @ M — 0. (4.7)
Since my = F and R is flat over Rg by construction, we have

u
P

~ R
Torf(my, M) = Torl}(F, R® 1) & Tor, 7 (F, N) = (14)%2,
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where the last isomorphism follows from [Hu2l, Proposition 3.30]. By applying
Homg,,, 2 Rr)(M, =) to (4.7) and using Lemma 4.17, we obtain the following short exact sequence

0— HOHl@G/ZG(R)(M, mi @pr M) — HOmQG/ZG(R)(M,m(X)R M) — HomGG/ZG(R)(M’ mo pr M)

By inductive hypothesis, we have m; — HomGG/Zg(R) (M,m; g M) for i € {1,2}, hence the
result using the snake lemma. O

COROLLARY 4.20. We have EndQG/ZG(R) (M) = R. In particular, R acts faithfully on M.

PROPOSITION 4.21. Let x1,...,24 € R be an M-regular sequence. Then (z1,...,z,) is also
R-regular and

End¢G/ZG(R)(M/(IL’1, .. ,x,)M) = R/(:L’l,. . ,JIZ)R

for any 1 <i <g.

Proof. The proof is analogous to [Hu21, Proposition 5.11].
Since R acts faithfully on M by Corollary 4.20 and z; is M-regular, x; is also R-regular. By
Proposition 4.18, we have

R/z1R = HomQG/ZG(R)(M, M/x1 M) = EndQ:G/ZG(R)(M/.flM).

This, in turn, shows that R/x; R acts faithfully on M/z1 M, hence x5 is R/x) R-regular because
it is M /x1 M-regular by assumption. We may thus continue the above argument to conclude. [

Remark 4.22. Proposition 4.21 could be used to prove a big ‘R = T’ theorem, see the proof of
Proposition 8.20 below. Such a result is proved in [GN22, Theorem B(3)] when Rg is formally
smooth, by first proving that a suitable patched module M, is faithfully flat over the patched
ring R, and then passing to the quotient. However, when p ~ ((1) :‘)) R X, Rg is not formally
smooth and the patched module M, is not flat over Roo, so the argument in [GN22] does not
apply. In addition, this case is also excluded in [Emell, Theorem 1.3], so Proposition 4.21 may
be of independent interest.

5. Automorphic forms and big patched modules

Let F' be a totally real extension of QQ in which p is unramified, and let O be its ring of integers.
Let ¥, denote the set of places of F' dividing p and let Y, denote the set of infinite places
of F. For any place v of F, let F), denote the completion of F' at v with ring of integers Op,,
uniformizer @, and residue field kf,. Let g, denote the cardinality of kr,. Let Ar s denote the
ring of finite adeles of F. If S is a finite set of finite places of F, let A}?’ f denote the ring of
finite adeles outside S. Recall Gp = Gal(F/F) and G, = Gal(F,/F,). By fixing an embedding
F — F,, G, is identified with the decomposition group at v. We let Frob, € G, denote a (lift
of the) geometric Frobenius element, and let Artp, denote the local Artin map, normalized so
that it sends w, to Frob,. The global Artin map is denoted by Artr which is compatible with
the local Artin map. We denote by rec, the local Langlands correspondence normalized as in the
introduction of [HTO01], so that if 7 is a smooth irreducible @p—representation of GLg(F}), then
rec, () is a Weil-Deligne representation of the Weil group W, defined over @p. Recall that F
is a sufficiently large finite extension of F),, O = W(F) and E = O[1/p]. We prepare the global
setup we need in this section.
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5.1 Tame types and the inertial local Langlands correspondence

Let I, be the inertia subgroup of Gp,. An inertial type at v is a two-dimensional represen-
tation 7: Ip, — GLQ(@p) with open kernel which extends to a representation of Gp,. We say
T is a discrete series inertial type if it is either scalar, or extends to an irreducible represen-
tation of Gp,. In the latter case, we call 7 supercuspidal. We say 7 is tame if it is trivial on
the wild inertia subgroup. Under Henniart’s inertial local Langlands correspondence [Hen02]
(cf. also [Kis09]), there is a unique finite-dimensional irreducible representation o(7) (respectively,
o (7)) of GL2(OF,) over @p—vector spaces, called types, satisfying if 7 is an infinite-dimensional
smooth irreducible representation of GL2(Fy), then Homgr,(oy,)(o(7),m) # 0 (respectively,
Homgr, (0, (0 (7),7) # 0) if and only if rec,(m)|r,, =7 (respectively, recy(m)|s, =7 and
the monodromy operator N on rec, () is zero), in which case the space Homgr, (o, )(o(7), 7)
(vespectively, Homgr, (o, )(0(7), 7)) is one-dimensional. We always have o(7) = o (7) except
when 7 = x @ x, in which case o(x @ x) = sp ® x o det (here sp denotes the Steinberg represen-
tation of GLy(kp,) over Q,) and o™ (x ® x) = x o det. Let ¢ : IFng — @; be a character such

that 1 # ¢®. Let ©(1)) be the irreducible cuspidal Q,-representation of GLa(kp,) associated to
¥ as in [Dia07]. A tame supercuspidal type is an irreducible @p-representation of GL2(OF,) that
arises by inflation from ©(%)) for some 1 as above.

In [GG15], Gee and Geraghty developed an analogous theory for D*, where D is the nonsplit
central quaternion algebra over F;,. Let JL denote the Jacquet—Langlands correspondence giving a
bijection from irreducible smooth representations of D* over @p to discrete series representations
of GLa(F}) over @p. Let 7 be a discrete series inertial type. By the Jacquet—Langlands correspon-
dence, there is an irreducible smooth representation mp ; of D* such that rec,(JL(7p+))|r,, =7
Since F, O} has index two in D*, WD,T\O; is either irreducible or a sum of two irreducible rep-
resentations which are conjugate under the uniformizer wp of D. Let op(7) be one of the
irreducible components of 7p ;| 0% If mp is a smooth irreducible @p—representation of D*, then
HOmOg(UD(T),ﬂ'D) # 0 if and only if rec,(JL(7p))|r,, = 7, in which case, Homog (ep(T),7D)
is one-dimensional. If 7 is a tame inertial type, then o(7) and op(7) can be defined over E once
E is taken sufficiently large (and unramified), see the proof of [EGS15, Lemma 3.1.1]. Recall the
following lemma.

LEMMA 5.1. Let : IFqX% — E* with # % Let T := ¢ @ % be the supercuspidal inertial type

associated to 1, where we denote by 1) the composition I, —» ]F;% . EX. Then o(7) = O(¥))
and 7TD,T|@B =1 Y.

Proof. The assertion on o(7) follows from Henniart’s construction in [Hen02]. The assertion on
op(7) follows from the classical Jacquet—Langlands correspondence; see, for example, [BH0G,
Chapter 13]. O

5.2 Automorphic forms, Galois representations and the big patched modules

We define the space of automorphic forms. Let B be a quaternion algebra over F'. Fix a maximal
order Op of B. Let X g be the set of primes v in F' at which B is ramified. Let cop be a fixed
infinite place of F. We say B is definite if it is ramified at all infinite places; B is indefinite
if it splits at oop and ramifies at all other infinite places. If v is a finite place of F', let (’)Ev
denote the maximal compact subgroup of B := (B ®f F,)*. For v ¢ ¥, we fix an isomorphism
B = GLy(F,) so that Oy is identified with GLa(OF,). Let ¢ : F* \ A% ; — O be a continuous
character. Via the global Artin map, v induces a continuous character Gp — O which, by abuse
of notation, is again denoted by 1. Assume, moreover, that (F, B) # (Q, GL2).
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Let U be a compact open subgroup of (B @ Af )*. We denote by Y;? the finite set B> \
(B®r Ap )™ /U if B is definite. If B is indefinite, let YL],B denote the quotient of X 5 by the action
of the finite group Af. . /(F*(Af ; NU)), where X £ is the associated Shimura curve as in [BD14],
which is the same convention used in [Emell, Schol8] but is different from the convention used
in [BDJ10).

From now on until the end of the paper, we assume that Xp and ¥, intersect at a unique
place v above p. Fix UP = Herp Uy a compact open subgroup of (B ®p A?f’f)x. For each place
w € X, \ {v}, let o, be a finite free O-module equipped with a continuous action of U,, such
that Ff N U, acts by 1/)_1|wa. Denote

Tp = Puex,\{v}Tw-

Let UY = UPU, C (B ®F A}v})x. Then o, is equipped with an action of U via the projection
UY — Uy. We extend this action to U”A}X,f by letting A;f act by ¥~ Assume that U, is
a compact open subgroup of GLy(Op,) such that Q/JIUUOO; = 1. Then o, admits an action of
U'U,AT s by letting U, act trivially.
If B is definite, set
HYE (UY,0):={f:B*\ (Bor Apg)* — oy | fis continuous and f(gu) =u"" f(g),

a’g 7’¢J

Vg € (B®@r Apy)™,Yu € UUAL ,}.

If B is indefinite, let 7,y /s be the local system over Y5 y, associated to o /w® (see [Eme06]),
and set

~1,B . .
Hag,¢(UU’ O) := limlim Hélt(Y(ﬁUU,]:U;/ws)-
s U,

Both flg;fw(U”, O) and ffiﬁp(U”, O) carry an action of (B ®p F,)*.

Let S be a set of places of F' containing all places in Y, U X U3, all places where 1) is
ramified, and all places w such that U, is not ng. Let 7 : Gp — GLy(F) be an absolutely irre-
ducible totally odd representation. Assume 7 is unramified outside S. Assume v := v (mod @)

is equal to wdet 7. Denote Fwd:ef 7TlGy, - We make the following assumptions on 7:

(a) 7 is modular in the sense of [BD14, §3.1], 7|g, D) is absolutely irreducible and, if p =5,
the image of F(GF(M)) in PGL2(F) is not isomorphic to PSLy(F5);

(b) for w € S\ X, the framed deformation ring of 7, is formally smooth over O (cf. [BHHMS23,
Remark 8.1.1]);

(c) if wtp and w € ¥, then 7, is either irreducible or a twist of an extension of the trivial
representation by €;

(d) if w|p, w # v, then 7|7, is generic in the sense of [BP12, Definition 11.7] (which is different
from the genericity used in §4.2.1).

Assumption (c) is often called the compatibility condition between B and 7. By [BDI14,
Corollaire 3.2.3], the above assumptions guarantee the non-vanishing of 75(7), where 72(7)
is defined in (5.4). For each w e X, \ {v}, we fix a tame inertial type 7, over E such

that det(ry)|r,, =¥l and JH(O’(Tw)SS) contains exactly one Serre weight in W(7,(1))
[EGS15, Proposition 3.5.1]. This is possible by our assumption (d) and (the proof of)
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[EGS15, Proposition 3.5.1]. Let 0°(7,) be an Op -stable O-lattice in o(7,) and

op = ®wegp\{v}a°(7w)d. (5.1)
For w a finite place of F, let R,, denote the universal framed deformation ring of 7,, over O.
-1
Let Ry denote the quotient of Ry, corresponding to liftings with determinant (1)) Fx ye L If

we S\ Ly, Rzﬁs_l is a formal power series ring in 3-variables over O by our assumption (b). If
w|p, w#wv, let Rﬁf1 ((—1,0),, 7w) denote the reduced p-torsion-free quotient of R;ﬁail corre-
sponding to potentially crystalline (framed) deformations of inertial type 7, and Hodge-Tate
weights (—1,0) for all embeddings k : Fy, — E. By the choice of 7, quﬁe_l((—l,())mﬂu) is a
formal power series ring in (3 + [Fy, : Qp])-variables over O (see [EGS15, Theorem 7.2.1]). Let

~ 1
RS’ = ®w€SR%€

and
1

—1 o~ , o~ - N
Rloc . qu}be ®(®w|p,w¢vRﬁg ((_17O)K,Tw))@)(@wES\EpRﬁs

-1

).

-1
Let RE ¥° (respectively, RV ) be the framed (respectively, universal) deformation ring of 7
parametrizing liftings (respectively, deformations) of 7 which are unramified outside S with deter-

minant ¢! as in [GK14, §5 4.1]. Let 7" denote the universal deformation of 7 over Rf o

Define RIS ¢ .= RIS @p R°. Let RV ' denote the image of RYS  in REYS noc
By [DDT97 Lemma 4. 11] there is a ﬁmte place wy ¢ S with the followmg propertles

~ quy Z1 (mod p);

— the ratio of the eigenvalues of 7(Frob,,, ) is not equal to ¢!;

— the residue characteristic of wy is sufficiently large such that for any nontrivial root of unity
¢ in a quadratic extension of F, w; does not divide ¢ + ¢~ — 2.

Let U =[], Uw C (B®pr Ap )™ be a compact open subgroup satisfying:

-~ Uy =0p forw¢ SU{w};

— Uy, is contained in the subgroup of (Op)y;, = GL2(OF,, ) consisting of matrices that are
upper-triangular and unipotent modulo w,,,;

— for places over p, Uy, = 1+ w,M2(OF, ) if w|p, w # v; U, is the subgroup U}% defined in
(2.2).

By the choice of Uy, , U is sufficiently small in the sense of [CHT08, §3.3].

[CEGT16] and [Scho18] extend the Taylor-Wiles-Kisin method to construct the big patched
modules. The detailed construction for Shimura curves in the minimal case is given in [DL21, § 6].
By the arguments of [DL21], replacing K" in [DL21] by U", the representation V' = @,,c g 12y Voo
of KV in [DL21] by the representation o, of U", forgetting the Hecke operators T}, at places
w € S’, and allowing B possibly ramifies at some places above p, the same patching arguments
produce a ‘big’ patched module M2 with the following data. (Let j := 4#S — 1 and let g, ¢ be
positive integers such that ¢ = g+ [F': Q] — #S + 1.)

e A formal power series ring in g-variables Oz, ..., 2] with a homomorphism

1
Olz1,...,24] — Rﬁ% loc

—1
which extends to a homomorphism from Se := O[z1,...,2q, Y1, ..., y;] to Rggpa loc,
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e There is a surjective homomorphism

)

e 1 O,pe~1 loc
RE  — R?,S

where R&E_l := Rloc [#1,...,24]. Let my be the maximal ideal of Rff_l.

e An O-algebra homomorphism S, — quoail such that
R Jase = RV,
where a,, denotes the ideal (21,...,24,91,...,¥;) of Sx.
e A finitely generated Cohen-Macaulay S[Of ]-module MZB equipped with an action

of qu’..fil, so that the action of S, factors through Rfosil. The module M£ is also
—1

Cohen—Macaulay over RYE [[OEU]] by [GN22, Corollary A29]. Moreover, MZ is projective

in the category (’log w(SOO). Note that projectivity in the case where B ramifies at v follows

from the proof of [CEG™ 16, Proposition 2.10] using [New13, Proposition 5.6]. Let ms be the
maximal ideal of the abstract Hecke algebra associated to 7 as in [Schol8, § 5]. We have

i H), (U, 0)d if B is definite,
Ao = P ~ . .
o/ Homy(goy,_(cp] (Tm, H;;Bw(U”, O)m.)? if B is indefinite,
r p?
where T(UY)m. denotes the Hecke algebra defined in the paragraph before [Schol8,
Proposition 5.7] (by taking p = v and m = mz in [Schol8]), and 7y, denotes the composite

(5.2)

univ

Gr ™% GLy(RYS ) — GLa(T(UY)umy).

Remark 5.2. In the indefinite case, there is a variant of MZE denoted by N2, which is obtained
by patching H;;Bw(U Y, O/w®)m,. but without factorizing out r"™. Namely, we have
p7

~ (7l,B v
NZ /a0 = (Ha;,q/;(U aO)m?)d-

Let Mod ™, denote the category of finite O-modules with a continuous action of OEU such

0} W
that the OF -action has central character | ,«. Define a functor M2 (—) from 1\/[0d129“X » to the
v v By’
category of finitely generated R:f’g_l—modules by letting
MEZ (o) := Homggt (MEZ oV)V. (5.3)
By the projectivity of M2 in @OEU +(0), MB () is an exact functor. Define
B (7)== (M2 Jmy)V. (5.4)
By definition, we have
(Mg(a)/moo)v = Homog (o, WB(?)). (5.5)

At the place v, let 7, : Ip, — GLy(F) be an inertial type and w = (ay, by )., be a Hodge
type with a, < b, for all k. Assume 7, is a discrete series inertial type if B ramifies at v. Let
Rfs_l(w, Tv) (respectively, Rvs_l’cr(w, Tv)) denote the reduced p-torsion-free quotient of Rfs_l
which parametrizes potentially semistable (respectively, potentially crystalline) liftings of 7, of
Galois type 7, and Hodge-Tate weights w. Following [GG15] let R}fsil’ds(w, 7») denote the maxi-

-1
mal reduced p-torsion-free quotient of Rfe (w, 7,) which is supported on the irreducible compo-
nents where the associated Weil-Deligne representation is generically of discrete series type. Let
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L RY Rw‘gil’cr(w, Tp) i= Rfail’cr(w,n) 'R and

L RYET

R&Eil(w,ﬂ,) = Rff (w, TU) R

-1
RE T B(w, 1) = R (w,7,)8

wa

RW

LemMA 5.3. (i) If 7, is a supercuspidal inertial type, then Rfail’ds(w,ﬂ,) = Rfail(w,n) =
-1
Ry (W, Ty).
-1
(ii) IfT, is a scalar type, then RY® ’ds(w, Ty) corresponds to the closure of potentially semistable

but not potentially crystalline points in Spec R}ffl (W, Ty).
Proof. See [GG15, §5]. O

We assume B ramifies at v and F;, = Q, for the rest of this section. Let 7, be supercuspidal
and w = (a,b) be as above satisfying

b+a 1| det(Tv)’IF Nw‘IFv (5'6)

We have a natural action of B} on Sym*~*"!E? @ det® as follows: we fix an embedding B —
GL2(Qy2). Then B acts by the composite B\ — GLa(Q,2) — GLa(E). Let © be any O -stable
O-lattice in

o, (W,T) = 0p, (1) ® Sym’ "' E? ® det”.

The homomorphism RE - End(MZ(©)) factors through Rff_l’ds(w,ﬂ,), which is

R?f.{1 (w, 7,) by Lemma 5.3(i), by the global Jacquet-Langlands correspondence and local-global
-1

compatibility. Since Ss and RY  (w,7,) have the same Krull dimension, M2 (0) is max-

imal Cohen—Macaulay over Rfoe_l(w,rv) by the same argument of the proof of [CEG™16,
Lemma 4.18].

Let 6 : F*\ A} F O* be a continuous character trivial on UY N A} s and trivial mod w.
Sending a lifting 7, of Fw with determinant e~11)| Fx to Tw ® 0| px gives an isomorphism
Rw62571 1) R,luzja R,époé2871 :_> Répoafl

tW5| x . We hence have an isomorphism twg := ®th5| x

We have the following analogue of Corollary 4.6.

LEMMA 5.4. Let (w,7,) be as above satisfying e®**~ 1|1, det(r)|1,, ~ (¥6%)|1,, - Let © be any
Op, -stable O-lattice in op,(W,Ty) ® (6] px © Nrd)~!. Then R@/’.f_l/Anansfl (MB(©)) is equal
to th(R£2€71(W, Tp)) if Rgg%il(w, Tp) is an integral domain.

Proof. Note that M£’671 = MPB ® 67! o Nrd is a ‘big’ patched module, which is finitely gener-

ated and Cohen—Macaulay over Sy, [[Ogvﬂ equipped with a compatible action of ngzg_l. This
is because § is trivial mod w, and when B is definite, the map f — [g — f(g)(6 o Nrd)~(g)]
induces an isomorphism

Hy e (UN)?,0) = Hyl (U(N),0) ® 6 0 Nrd, (5.7)

which is compatible with the action of the Hecke algebra. Here U (V)" denotes the group U (N )P
in the proof of [DPS23, Theorem 8.10]. The isomorphism similar to (5.7) in the indefinite case
follows from the proof of [BDJ10, Lemma 2.3]. Since © @ §|x o Nrd is an O, -stable lattice in

the locally algebraic representation op, (W, 7,), the action of ng%il on M£’571 (© ® 6| px o Nrd)
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factors through Rﬁb.g?gil(w, Tv). Then the ng%il(w, Tp)-module
ME7 (0 ® 8 ;px o Nrd) = ME(0) ® 67| px o Nrd

is supported on a union of irreducible components of Spec(Rffgfl(w,Tv)), which is all of
2.—1 2_—1

Spec(ng ©(w, ) if RY® (w,T,) is an integral domain. The construction of the ‘big’

patched module and the relation with the associated Galois representation imply that the

quotient ring Rﬂf.fil/Ann 1 (MEB(9)) is equal to th(R1£2€71(W, Tv)). O

R

6. The Gelfand—Kirillov dimension of w5 ()

In this section, we maintain the assumptions made in §5. In particular, B and 7 satisfy the
compatibility condition (HO) of [BD14], which implies that 77 (7) # 0 by [BD14, Corollaire 3.2.3].
Since our main applications are for the quaternion algebra over Q,, we assume further that
F, = Qp, where v is the unique place over p at which B is ramified. We denote by D := B, the
quaternion algebra over Q,. We prove our main results on the Gelfand-Kirillov dimension of
78 (F) which is defined by (5.4). Assume p > 5.

6.1 Serre weights for quaternion algebras
Let Wp(7) denote the set of modular quaternionic Serre weights at v defined in [BD14, §3.1].
Recall that an irreducible smooth representation of O} over F, equivalently a smooth character
x: OFf — F*, is in Wp(T) if
B/—
HOI’HO; (X?ﬂ' (7’)) 7é 07

equivalently M2 (x) # 0 by (5.5). Moreover, dimp Homog (x, 72 (7)) = dimp MZ (x) /mso.

Let p := 7,(1). Note that by our assumption 7 is a two-dimensional continuous representation
of Gg,. We recall the definition of Wp(p), the set of predicted quaternionic Serre weights for
P, which is denoted by W’(p) in [GS11, Definition 3.4]. A character 1 : OF —» JF;Q — F* is in
Wp(p) if and only if p has a potentially Barsotti-Tate lift of type [¢)] @ []P if ¢ # ¢P, and p
has a potentially semistable lift of Hodge-Tate weights (0,1) and type [¢)] ® [¢] which is not
potentially crystalline if 1 = P.

We have the following description of the set Wp(p).

ProproOSITION 6.1. Recall 5:1?;2 — F* the character introduced in §3.2. Let ( denote the
character €P*1, and let o denote the character P71,

(i) Assume p is in case 1 of §4.1.1. We have the following.
(a) Ifr#0,p — 1 then x € Wp(p) if and only if x € {£"¢5TY, €Prstl, ¢ra—1¢stL, ¢rrac¢stiy,
(b) Ifr =0 or p— 1, then x € Wp(p) if and only if x € {a 15T a¢st1}.

(ii) Assume p is in case 2 of §4.1.1. We have the following.
(a) Ifr =0, unr; = unry and p is tres ramifié, then x € Wp(p) if and only if y = ¢*T1.
(b) If r=0, unr; = unry and p is peu ramifié, then x € Wp(p) if and only if x €

{Cs—&-l’ ()é_1C8+1, OéCs-H}.

(c) For other p, x € Wp(p) if and only if x € {&"a~1¢5FL, ¢Pra¢stty.

(iii) Assume p is in case 3 of §4.1.1. We have the following.
(a) Ifr =0 and unr; = unry, then x € Wp(p) if and only if x € {¢**!, a= 13+ alstL).
(b) For other p, x € Wp(p) if and only if x € {£"a~1¢5F, €Pra¢stty).

Proof. This follows from the definition of Wp(p). More precisely, the Breuil-Mézard conjecture
[BMO02], proved in [Kis09, Pasl5, HT15, Sanl6], states exactly when the involved deformation
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rings are nonzero in terms of W (p) (cf. §4.1.1). We take the case (ii)(b) as an example, so that
W(p) = {00,541, 0p—1,5+1} Up to twist we may assume s = 0. It follows from the Breuil-Mézard
conjecture and Proposition 3.6(ii) that p has a potentially Barsotti-Tate lift of type [£2] @ [£2P], so
we obtain a~!¢,a¢ € Wp(p). On the other hand, p has a potentially semistable lift of Hodge-Tate
weights (0, 1) and type [¢] @ [¢] which is not potentially crystalline (see [BM02, Théoreme 1.2]),
which gives ¢ € Wp(p). Conversely, using the Breuil-Mézard conjecture again one checks that
these exhaust all the Serre weights in Wp(p). O

PROPOSITION 6.2. We have Wg(T) = Wp(p).

Proof. The inclusion Wg(7) C Wp(p) follows from [GS11, Lemma 3.3]. Note that [GS11] works
only with definite B which ramifies at all places above p, but the argument also works in our
case. By [GS11, Theorem 8.3|, the two sets Wg(7) and Wp(p) are identical in most cases with
exception possibly when 7 is an unramified twist of (§ ) ® w*™ and x = (*** € Wp(p). In this
exceptional case, p has a potentially semistable lift of type [x] @ [x] which is not potentially
crystalline. Applying [BD14, Théoreme 3.2.2] (by taking [r,, Ny] = [[x] ® [x], Nv # 0] there),

there is a Hilbert modular form over F' of parallel weight (2,...,2) special at v which gives
7. By global Jacquet—Langlands correspondence, as in the proof of [GS11, Lemma 3.3|, we have
x € Wp(T). O

Remark 6.3. The question of determining the quaternionic Serre weights is first studied by
Khare [KhaOl]. More precisely, [KhaOl, Theorem 7] proves that if By denotes the definite
quaternion algebra over Q which is ramified exactly at p and oo, then Wg, (7) = Wp(p).

6.2 Lattices in some locally algebraic representations of Og
Let x be any character of Of; over F. Recall that W, ,, denotes (ProjIF[[OE/Z}j] x)/m3, for n > 1,

where mp denotes the maximal ideal of the Iwasawa algebra F[U},/ZL]. We construct suitable
lattices £ in locally algebraic representations of O over E so that £/pL is a quotient of W, 3 =
(PrOJF[Og /7] x)/m3,. The construction of these lattices is much easier than the case considered
in §3.

Recall that O embeds into GLy(Z,2) and then embeds into GL2(O) via the embedding
GL2(Zy2) C GL2(0O). An explicit embedding is given by (cf. (2.1))

0 1 0
wDr—><p O>’ ar—>(g U(a)>, a € Q.

Let OF act on Sym'©? and Sym!E? via the above embedding. Precisely, for a,b € L2,
(a +wpb)- X =aX +po(d)Y, (a+wpb) Y =bX+0(a)Y. (6.1)

Equipped with this action, Sym'©? and Sym!E? are continuous representations of Of. Let
pr: Q) — 1+ pZ, denote the projection sending p to 1. Let Sym!'O? (respectively, SymlEQ)

denote the continuous Ojj-module Sym'©®? @ (pro Nrdp)~'/2 (respectively, Sym'E? ® (pro
Nrdp)~'/2), where Nrdp : D* — Qy is the reduced norm. One checks that Z}, acts trivially on
Sym!E?2. Note that (Sym!0?)/p = Sym!'F? with semisimplification (Sym!'F?)* = x; @ x2, where
X1, X2 are characters of O} determined by x1(t) =t, x2(t) =t* for all t € IFZQ. In particular,
x1 = X2 L. By Proposition 2.13 we have

. 1 I 1 —
dimp Extyyx 71 (X1, X2) = dimp Extox 1 (x2,x1) = 1,

so there exist (up to isomorphism) unique nonsplit extensions (y; — x2) and (x2 — x1)-
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LEMMA 6.4. There exist Of-stable O-lattices L, L' in Sym!E? such that:

(a) pLC L' C L;
(b) L/pL = (x1 — x2) and L' /pL" = (x2 — x1)-

Proof. We take L =Sym'0?=0(Y ®1)@O0(X®1) and L' = O(X ®1) ® pO(Y ®1). The
properties are easily checked using (6.1). O

Let x : (’)g — F* be a character. Then there exist integers —2 < a < p — 2, b € Z such that

[§]a+2+(p+l)b

X =
where [—] denotes the Teichmiiller lift. We write
1 =[x] = [£]a+2+(p+1)b’ Py 1= [5]a+3+(p+1)(b—1)7 Vg = [§]a+1+(p+1)b' (6.2)

Let ©; := 11, viewed as an Ojj-stable lattice in V; := ¢y ®o E. For i = 2,3, let
Vi = Sym'E? @ ¢;. (6.3)
Note that Zp N (’)B acts on V; by the same character [x]. The (’)B—representations Vi, 1<i<3
are irreducible and
Vi=x, Voo =xexa ', V5 =xa&xo
An analogue of Proposition 3.7 implies that there exists a unique (up to homothety) O-stable
O-lattice in V;, say ©;, such that €0SOCex (©;/pO;) = x for i = 2,3. We have surjective maps
r1: 01 = 01/pO1 = ),
T @1 - ®Z/p@z - COSOC(@Z‘/]D@Z‘) = X 1= 2, 3.
Let ©} := Ker(r;) for i = 2,3. Then by Lemma 6.4 we have
5/pOh = (x — xa™!),  ©3/pO) = (x — xa).
Since every irreducible representation of O} over F is one-dimensional, ©1/p©; is killed by mp,
while ©;/pO; and ©,/pO! are killed by m% for i = 2,3. By construction, ©1, ©2 and O3 are
quotients of PrOJOHO;/lejﬂ X-
We now glue the three lattices ©1, ©2 and ©3. We first glue ©; and O3 along x, namely
define © by the short exact sequence

050 —-0;®0, —*x—0. (6.4)

PROPOSITION 6.5. (i) There is a short exact sequence 0 — ©),/p©) — ©/p© — x — 0.
(ii) The cosocle of © /p®© is isomorphic to x. Moreover, the cosocle filtration of © /p® is

X —xa ' —x.

Proof. Clearly, Lemmas 3.3 and 3.4 remain true if we are considering O}j-representations instead
of GLy(Z,)-representations. The results follow from them. O

Let r denote the map © — ©/pO — x where the second map is as in Proposition 6.5(i).
Denote by © the lattice in V) & Vo @ V3 obtained by gluing © and O3 along x. Namely, © is
defined by the following short exact sequence

050 —-0d0; =% y—0. (6.5)
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PROPOSITION 6.6. (i) The cosocle of @/p@ is isomorphic to x.
(ii) We have that @/p@ is a quotient of W, 3. More precisely, @/p@ is isomorphic to Wy, 3 1=

Wys/(xa® & xa™?).

Proof. (i) Note that the cosocle of Ker(r) is x @ xya~!, while that of Ker(rs) is xa, so the result
follows from Lemma 3.4.
(ii) It follows from Lemma 3.3 that there are short exact sequences

0 — Ker(r) /pKer(r) — ©/p0© — ©3/pO3 — 0,
0 — ©%/pO% — 0/pO — 0/pO — 0.

Using Proposition 6.5(ii), we deduce that ©/p© admits both the nonsplit extensions (xa ' — x)

and (xa — x) as quotients. Combining with part (i), this implies that ©/p© admits a quo-
tient isomorphic to W, o; let Ker be the corresponding kernel. Comparing the Jordan-Hoélder

factors, we have (Ker)® = y @ x. However, we know EXtC)X/Zl (x,x) = 0 by Proposition 2.13,

hence Ker = x & x. In particular, 5 / p@ is killed by m? - The last statement is a consequence of
Corollary 2.11. O

6.3 The Gelfand—Kirillov dimension

Assume p := T,(1) is of the form (C1) or (C2) in §4.3. Recall that for any character x : O —
F*, we have constructed £ € {©1,04,03,0, é} such that cosoc(L/pL) = x. The construction
depends on the choice of (a,b) in (6.2). From now on, we assume x € Wp(p), and make our
choice of (a,b) as follows:

(a,b) = (r,s) if x =¢" a1t
(@,b)=(p—3—rr+s+1) if x =& aC*t
(a,b) = (r—2,s+1) if x = ¢¢ot,
(a,b) =(p—1—1r,r+5) if y = &presth,

Let v; be given by (6.2) for ¢ =0,1,2. Then one may check directly that t; # ¢Y. Let =
be a tame supercuspidal inertial type so that o(7m;) = ©(¢);). Let ¢ : F* \A;f — O* be a

continuous character as in §5 satisfying w|ZDﬂO; = ¢1]ZDOO]§. For L € {01,609, 03, @,@)}, let
Ip = Ananosq (M2 (L)) denote the annihilator of MZ (L) in RE

Let R be any commutative ring and M be an R-module. Following [BHHMS23, § 8.2] we say
M is free of rank m over its scheme-theoretic support if it is isomorphic to (R/ Anng(M))™.
PROPOSITION 6.7. Assume y € Wg(T). Let m := dimy Homoé(x,wB(F)). Then the RY -
module MB(01) (respectively, M2 (03), respectively, M2(03)) is free of rank m over its

1 -1 -1
scheme-theoretic support. In particular, lg, = IR, RY lg, = IRQRgf and g, = IRSRQQ;E ,
where Ig,, Ir, and I, are given in (4.4).

Proof. Twisting by the cyclotomic character and taking into account the framed variables, we
have an isomorphism

Ry ((—1,0), 71(=1)) = RE*((0, 1), 70)[X1, Xa, X3],

where R%E((O, 1), 1) is a regular local ring by Proposition 4.13. Hence, RE ((-1,0),71(—1)), as

a formal power series ring over Rffl ((—1,0),71(—1)), is also a regular local ring. Since M2 (01)
-1

is finite maximal Cohen-Macaulay over R% ((—1,0),71(—1)), the Auslander-Buchsbaum
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formula implies that M2 (0;) is finite free over Rggil((—l,O),n(—l)) of rank m and, hence,
_ pe
lo, = Ip,RE .
Assume L € {O2,03}. Let § : Q) — O be the character sending x € Q) — pr(z)/? e 1+
pZy, viewed also as a character of F*\ A% It We also view § as a character of Gg,, via the
local class field theory. Then (£ ® 6 o Nrd)[1/p] is a locally algebraic representation of OEU. By

Theorem 4.15 and Lemma 5.4, R‘f{l/fg is a regular local ring. We show as above that M2 (L)

is finite free over Rfoail/ I of some rank n. It follows from Lemma 5.4 and Corollary 4.6 that
I, has the description as in the statement of the proposition. We are left to prove n = m.
If JH(L/pL) N Wp(p) = {x}, then

M (L/pL) = M (),

which is free of rank m over its scheme-theoretic support. Hence, n = m.

Now assume both Jordan-Hoélder factors of £/pL are in Wp(p). By Proposition 6.1 this can
only happen when p is absolutely irreducible. We assume y = £"a~1¢*t! and £ = O3, the other
cases can be handled in the same way. Since § = 1 (mod w) and the following discussion only
involves [F-representations, the twisting by § will not change anything.

Since

@3/]7@3 — (grcs+1 o éraflgerl)‘

Applying the patching functor M2 (—), we obtain a short exact sequence
0 — MI(EC) — M(03/pO3) — MZ (') =0, (6.6)

where all the modules in the sequence are finite free over their scheme-theoretic support. We
must show the modules have the same rank. For this, we use the knowledge on GLs-side to study
their support.

According to Proposition 3.11, there exists a K-stable O-lattice L in Sym!E? ® ©(v3) such
that L/pL is a nonsplit extension of (0p—3_y 4542 — Ops+1) by (Op—1—rrts+1 — Op—2.5+2). Let
0°(71) denote the unique (up to homothety) K-stable O-lattice in ©(v1) so that o°(m)/po°(11) =
(Op—3—rrts+2 — Orst1). Let 7 be a tame supercuspidal inertial type so that there is a K-
stable O-lattice o°(7) of o(7) satisfying o°(7)/po°(7) = (0p—1—rrts+1 — Or—2,+2). Applying
Pasgkunas’ functor M(—) in §4.2.1, we obtain a short exact sequence

0 — M(o°(7)/po°(7)) — M(L/pL) — M(c®(11)/po°(11)) — 0. (6.7)

Note that the three R%’a—modules in the above short exact sequence are all cyclic by Lemma 4.7
and Remark 4.10. Then by Theorem 4.5 we obtain the following short exact sequence:

0— RY°((0,1),7) @0 F — RY°((0,2),73) ®0 F — RY°((0,1),71) @0 F — 0. (6.8)

On the other hand, o,_2 s12,0p—3—rr+s+2 € W(p) and the extension (0p—1—rytst1 — Orsi1)
occurs in L/pL by Proposition 3.11. Let 7/ denote a tame inertial type so that o(7’) is isomorphic
to the principal series tame type I([x]**!, [z]"T5*1) defined in Proposition 3.6. Let o°(7') be the
unique (up to homothety) K-stable O-lattice in I([x]**1, [2]"*5*1) such that o°(7)/po°(7) =
(Op—1—rr+s+1 — Orst1). Then the short exact sequence (6.7) can be identified with the following
short exact sequence:

0= M(op-1-rytst1) = M(o°(7')/po°(7")) = M(ovs41) — 0. (6.9)
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The short exact sequence (6.8) becomes
0— RE((r+s+1,p+s+1),1) @0 F — RE((0,1),7)
®oF — Ry ((s+ 1,7 +5+2),1) @ F —0. (6.10)

By [EGS15, Theorem 7.2.1] R%E((O, 1),7") ®o F is isomorphic to a formal power series ring
over F[X,Y]/(XY), and R%’E’Cr((r +s+1,p+s+1),1)®F (respectively, R%’E’Cr((s + 1,7+
s+2),1) ®p F) is the quotient of R%)E((O,l),T’) ®oF by X (respectively, Y). Therefore,
Spec(R%E((O, 2),73) ®o F) has two irreducible components. By Lemma 5.4 and Corollary 4.6,

Spec((Rfos_1 /Ie,) ®o F) also has two irreducible components.

Back to the short exact sequence (6.6). By the discussion of the first paragraph of the
proof, MB(¢7¢5t1) and MEZ (¢"a~1¢**!) are supported on Spec(R&E_l((—l, 0),7(—1)) ® F) and
Spec(Rgfil((—l,O),ﬁ(—l)) ®o ), respectively. Hence, M2 (¢7¢5t1) and MEB(¢7a~1¢**!) are
supported on different irreducible components of Spec((Rffof1 /Io,) ®o F). We deduce that

M€ a= M) =rank oo o (ME(ETCT)

(MZ(03/p03)).  (6.11)

K (L0 m D)o

= rank 1
(RE& ™ /Iog)®0F

Consequently m = n. O
COROLLARY 6.8. For any x1, x2 € Wp(p), we have
dimp Homolx) (x1, 72 (7)) = dimp Homoé (x2, 72 (7)).

Proof. In view of (6.11), it remains to treat the case x2 = X}, equivalently x2 is equal to the
conjugation of x1 by wp. But this is clear since 73(7) is a representation of D*, hence is
stable under taking the conjugation by wp. See also [GS11, Lemma 2.3] which is based on an
observation of Serre. 0

THEOREM 6.9. The Rff_l—module MB(©) is free of rank m over its scheme-theoretic support
with Ié =lp, Nle, Nle,.

Proof. We first prove M2(©) is free of rank m over its scheme-theoretic support with Ig =
Ie, N Io,. By the short exact sequence (6.4) and the exactness of the functor MZ(—), we have

ME(©) = ME(01) X prz (0, jp0,) ML (02).
As for a commutative ring A and two ideals I, s C A,
AN T = A/ X a4 1) Al I,
by Proposition 6.7 we are reduced to checking
Io, + 1o, = (p,Io,) = AnnRi"..f_l (MZ(©,/p6)1)).

Using Corollary 4.11(i) and Proposition 6.7 again, we have

Io, +Io, = (I, + In) RS = (0, IR = (p,Toy) = Ann g1 (MEZ(O1/pO0)).
In particular, we obtain

lo = Io, N, = Ig, RY N Ig,RY " = (Ig, NIg,)RY = IgRY (6.12)

where the third equality holds by [Mat89, Theorem 7.4(ii)] because RY ™ is flat over R%bg.
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Now we prove MZ(©) is free of rank m over its scheme-theoretic support. Using (6.5) we
have similarly

ME(©) = ME(©) x5 6, /po,) ME(Os)
and it suffices to check
Io + lo, = AnnRg,ofl (ME(©1/p©1)) = (p, Ie,).
This easily follows from (6.12) and Corollary 4.11(ii). O
COROLLARY 6.10. For any x € Wp(p), the natural inclusion
Homog(x, (7)) — Homof7 (W3, 72 (7)) (6.13)

is an isomorphism, where the structure of Wx,i% is given in Proposition 6.6.

Proof. The mod p reduction of the lattice Ois isomorphic to Wx’g by Proposition 6.6. The result
then follows from Theorem 6.9. O

The main result of this section is the following.

THEOREM 6.11. Maintain all the assumptions we have made on F, B, and F. Assume p = T, (1)
satisfies (C1) or (C2) in §4.3. Then dimgx (75 (7)) = 1.
D

Proof. Since 7P(7) is of infinite dimension over F by [BD14, Corollary 3.2.4] (or [Schol8,
Theorem 7.8]), dimog(wB (7)) is at least one. The other inequality follows from Corollaries 6.10

and 2.12. n

Remark 6.12. Although we have excluded the case r = 0 in (C2), this case (at least when B is
indefinite) can be deduced from the case r = p — 3. The proof uses Scholze’s functor introduced
in [Schol8] and the mod p local-global compatibility (a la Emerton), see Corollary 7.9.

6.4 The graded module gr(72(7)V)

Following [BHHMS21, §3.1], we consider the category C of admissible smooth representations
m of DX over F with a central character and such that there exists a good filtration on the 7V
such that the grF[U},/Z}]-module gr(r") is annihilated by some power of the ideal (yz,zy),
where y = 1o, 2 = 2o are as in §2.3. It is clear that C is an abelian category and is stable under
subquotients and extensions.

DEFINITION 6.13. For each x € Wp(p), we define an ideal a(x) of F[y, z| as follows.

o If ya=! € Wp(p), then a(x) := (y); if xa € Wp(p), then a(x) := (2).
e If neither of xa, xa ™! lies in Wp(p), then a(y) := (yz).

THEOREM 6.14. Maintain all the assumptions we have made on F';, B and 7. Assume T, satisfies
(C1) or (C2) in §4.3. Then there exists a surjective graded morphism

dm
( D wiy,z]/a(x)) = (P )Y),
XEWD ()

where the integer m is as in Proposition 6.7.

Proof. This is an easy consequence of Corollary 6.10. U

5 This category C is not exactly the one considered in [BHHMS21], but compare with [BHHMS21, Proposi-
tion 3.1.2.11].
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7. Application to Scholze’s functor

7.1 Results of Scholze and Paskuinas

Let L be a finite extension of Q,, G := GL, (L) and G, = Gal(L/L). Let D be the central division
algebra over L of dimension n? and invariant 1/n. To any 7 € Mod%™(©), Scholze [Schol§]
associated a Weil-equivariant sheaf F on the étale site of the adic space IPE;I. We collect some

results of Scholze [Schol8] and Paskunas [Pas22].
THEOREM 7.1. Let 7 € Mod&™(0).

(i) For any i >0 the étale cohomology group Hét(Pg;l, Fr) carries a continuous G X
D*-action. Moreover, the restriction of Hét(IPfClgl,fw) to D* is an admissible smooth
representation of D*.

(ii) We have Hgt(Pg;l,}}) =0 fori>2(n—1).

(iii) Assume 7 admits central character v : Zg — F*. If 7 is injective in Modédﬁ(oL%w(O), then
Hj (P, Fr) = 0 fori >n — 1.
(iv) The natural map
Hgt(nglvfﬂSLn@)) - Hgt(ngl’}—W)

is an isomorphism. In particular, if 75%(L) = 0, then HY, (P(Vé;l, Fr)=0.
(v) If m = 1¢ is the trivial representation of G over F, then

i 1 w‘i/2®1Dx ifiiseven and 0 < i < 2(n—1);
Ha(Pe, " F16) = {o if i is odd. e
Proof. Parts (i) and (ii) are proved in [Schol8, Theorem 3.2].

For part (iii),” it is proved in [Schol8, Theorem 3.2] that if 7 € Mod&™(O) such that
T|aL,(0,) is injective, then Hét(IP’fégl,fﬂ) =0 for i > n — 1. We need to prove a similar result
for m which admits a central character. Twisting by a character, we may assume the central
character of 7 is trivial. Examining the proof of [Schol8, Theorem 3.2], it suffices to show that
M /L* is a perfectoid space, where M, is the infinite level Lubin—Tate space. Passing to
the connected components, it suffices to show that ./\/l(()g) /OF is a perfectoid space, where Mé?
is the perfectoid space denoted by M(lo) in [JLH21, §4.1]. We will deduce this from [JLH21,

Proposition 4.1.1] which proves that Mg%)/ P(Or) is a perfectoid space, where P C GL,, is the
parabolic subgroup of block form (n —1,1).

We use freely the notation of [JLH21, §4.1]. Note that M, is denoted by My in [JLH21,
§4.1]. Let H C GL,,(Op) be a closed subgroup. As in [JLH21, §4.1], we set

Mg = lim (M),
UDH
where U ranges over open subgroups of GL, (Op) containing H. By [JLH21, Proposition 4.1.1],
Mgf()OL) is the quotient MY /P(Or) in Huber’s category V, and is a perfectoid space. Now
assume H C GL,(Op) is a closed subgroup contained in P(Op). The same argument as in the
proof of [JLH21, Proposition 3.2.1] shows that Mg) is a perfectoid space. More precisely, if H
is of finite index in P(Op), then ./\/lgg) is finite étale over Mﬁf()om, and the result then follows.

In general, M(I;)) = lim , Mg? where H' ranges over closed subgroups with H C H' C P(Oyp)

7 We thank J. Ludwig for her help with the proof.
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and H' C P(Or) has finite index, and the result follows. We can then argue as in the proof
of [JLH21, Lemma 3.3.4] to prove that M(()%) is an H-torsor over Mg). Finally, it follows from

[JLH21, Lemma 3.3.5] that M(Ig) is the quotient MSQ)/H in Huber’s category V. We finish the
proof by taking H = OF.

Part (iv) is proved in [Schol8, Proposition 4.7]. For part (v), we note that Fi, is the trivial
local system on Pg;l. It follows from [Hub96, Theorem 3.8.1] that the cohomology of IP’%;l

(with the Galois action) is as in the classical case. As D* acts on Pg;l via an embedding
D* — GL, (L"), D* acts trivially on the cohomology. O

Let m be a locally admissible O-torsion representation of G. The construction of the sheaf
Fr in [Schol8, Proposition 3.1] extends to such 7. Write 7 = lim_, 7/, where the limit is taken
over all admissible subrepresentations of 7. By [Pas22, (9)], we have

Hi (B!, Fr) = lim HY (P, Frr).

7T/

We denote by S? the cohomological covariant d-functor
S§': Modgi ™ (0) — Modgi . (0), 7 — Hy (P, Fr),

where Modbaffl[)x (O) is the category of locally admissible representations of D* on O-torsion
modules equipped with a continuous commuting G-action. As in [Pas22], it is more convenient
to work on pseudo-compact modules rather than smooth representations via the Pontryagin
duality. Namely, we consider the covariant homological §-functor {Si}izo defined by

Si : Q:G(O) — Q:G'LXDX (O), M — Hét(P%:p,fM\/)v.

If R is a complete local noetherian O-algebra with residue field F, we extend the §-functor S to
€ (R) (defined in §4.4) in a similar way.

7.2 Local-global compatibility (4 la Scholze)

From now on, we follow the notation of §5. Let B be an indefinite quaternion algebra over
the totally field F' such that B is ramified at the fixed place v above p. Let B’ be the definite
quaternion algebra over F' which splits at v and has the same ramification behavior as B at
all the other finite places. Fix an isomorphism B*(A% ;) & B (A% ;). Fix an open compact
subgroup U” C B* (A} ;) & B (A% ;). Let 7 : Gp — GLa(F) be a modular Galois representation
and let m7 be the non-Eisenstein maximal ideal associated to 7 as in §5. Let o be the finite
O[U"]-module as in (5.1). If A is a topological O-algebra, let

~ , I
Sopu(U*, A) = Hyy, (U, 0) @0 A,
iy y(U°, 4) = 22 (U, 0) @0 A, 20,

The Hecke algebra T(UY)y, acts faithfully and continuously on Suy (U, O)y, and

ffi.v »(UY, O)my. (see [Schol8, Corollary 7.3]).
p?
Let My denote the big patched module M(f)/ in §5, so that

Moo /800 = Syy (U, O)h and Moo /Moo = Syu (U, F)[my]”,

where a,, denotes the ideal (21,...,2q,y1,...,¥;j) of Se and my denotes the maximal ideal of
-1
RY .
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On the other hand, let N, be the variant of M2 which is obtained by the same patching
process as Mofé, but without ‘factorizing out’ the Galois representation, see Remark 5.2. Similarly
to (5.2) we have

Noo/8oo = Hyy (U, O Noo/moo = Hy, o (U°, F)[my]".
THEOREM 7.2. Denote the restriction of ¢ to F, again by ©. Let G := GLa(F).

(i) We have that ggg,w(U”, E/O)m,. lies in Mod?;%ﬁ((’)), ang its restriction to K := GLy(Op,)
is injective in Modj",,(O). Equivalently by taking dual, Sov (U", O)4,_is finitely generated
over O[K] and is projective in Mod (O).

(ii) We have that I:T;U p(UY, E/O)m,. lies in Mod%iinqp((’)), and its restriction to O} is injective

P )
in Modz“%’w((’)). Equivalently, H;;’w(Uv7 O)d,_is a finitely generated O[O}]-module and is
projective in Mod™y (O).

Ogﬂb
(iii) For 0 <1 <2, there is a canonical isomorphism of T(U")w.|GF, x D*]|-modules

S (Soyu(U", O),) = Hiw (U, O)

-
(iv) There is a canonical RY [GF, x D*]-equivariant isomorphism

S' (M) = N
Proof. Part (i) is [Pa$22, Lemma 5.3, Proposition 5.4]. Part (ii) is proved in [Newl3,
Proposition 5.6] and [Pas22, Proposition 6.4]. Part (iii) is [Pas22, Proposition 6.3]. Part (iv)
follows from (the proof of) [Schol8, Corollary 9.3], see [DPS23, Theorem 8.10 (4)] for details. [
LEMMA 7.3. We have 50(5057¢(U“, 0)4.) =0 and S%(My) = 0.

Proof. The first statement is a direct consequence of Theorem 7.2(iii) because ﬁgu w(U v, (’))\‘fk =
p?

0 (as my is non-Eisenstein). The second statement follows from this and the patching construction
(cf. [Schol8, Corollary 9.3]).
Define

7B (F) i= (Mao/ms)Y,  7P(F) := Homg, (7, (Neo /Moo ) ).

o~

Note that (Nu/Muo)V is T-typic, so we have a Gp x D*-equivariant isomorphism (Neo/meo)Y
7 @ 7B (7). The following result is motivated by [Pas22, Propositions 3.7, 4.1].
PROPOSITION 7.4. Assume that Rve_1 is formally smooth and that dimg (7% (7)) = [Fy : Qp).

-1
Then M is a flat Rif -module. Moreover, the following statements are equivalent:

(i) dimes (B(7)) = [F, : Q]
(ii) Noo is flat over ng_l;
(iii) S%(xP' (7)) = 0.
Proof. Since Rffl is formally smooth by assumption, it is isomorphic to a power series ring in
-1
(3 + 3[Fy : Qp))-variables over O. Consequently, RY is a regular local ring of Krull dimension
equal to dim S + 2[F;, : Q).
Since M, is finite projective over So[K/Z1], where Z; is the centre of K,
05 [K](Moo) = dim S + dimg, (K/Z1) by [GN22, Lemma A.15], see §1.1 for the notation.
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Since dimg, (K/Z1) = 3[F, : Qp] and dimg (7P (7)) = [F, : Q] by assumption, we deduce
dim (75 (7)) + dim RE " = 0. s (Moo)-

It follows from the miracle flatness criterion [GN22, Proposition A.30] that M is flat over
RY .

Now we prove the equivalence between the three statements. The equivalence (i) < (ii) is
proved as above by replacing K/Z by O} /Z}, and noting that dimg, O} /Z}, = 3[F, : Q].

We prove part (ii) implies part (iii). Since Rff_l is regular, we may choose a regular system

—1
of parameters of m,, say s. Since M is flat over szﬁ , the Koszul complex K,(s, M) gives
a resolution of 75 (7)Y = M., /my:
e _>K2(§;Moo) i’I(l(§7]\4’oo) i>I(O(§7]\4oo) i) oo/moo — 0.

It follows from Lemma 7.3(ii) that SO(K;(s, Ms)) = 0 for any 4, hence S°(Im(d;)) = 0 as well.
It is then easy to deduce that the sequence

SH(Ka(s, Mso)) — SH(EKi(s, Meo)) — §H(Q) — 0 (7.1)
is exact, where Q := Im(d;) = Ker(dp). On the other hand, the functor S is Rgf_l-equivariant,
so the complex S1(K,(s, My)) is isomorphic to Ke(s,S'(My)), the Koszul complex with

~ ~ -1
respect to s and S'(My). Since S'(Myo) = Ny is flat over RYS by part (ii), the complex
S (K, (s, My)) is again exact. Together with (7.1) this implies that the map
SHQ) — S'(Ko(s, Meo)) (7.2)
is injective.
The short exact sequence 0 — Q — Ko(s, M) 20, Mo /Moo — 0 induces an exact sequence
82(K0(§7 Ms)) — SQ(Moo/moo) - Sl(Q) - SI(K0(§a M)

in which the first morphism is surjective by the injectivity of (7.2). Since MY |k is injective in
Mod3?,(O), Theorem 7.1(iii) implies S?(Ko(s, Moo)) = 0, thus §?(Meo/Mo) = 0 as required.

We prove part (iii) implies part (ii). This essentially follows from the above argument. Indeed,
we deduce from part (iii) the injectivity of (7.2), which together with (7.1) implies the exactness
of

S (Ka(s, Moo)) — S'(Ki(s, Me)) — §'(Ko(s, Mx)).

In other words, the Koszul complex S'(K,(s, My)) is exact at degree 1, thus s is Nuo-regular
by a standard argument. O

Remark 7.5. Under some (stronger) genericity condition on 7|g, , the assumption on
dimg (78 (7)) of Proposition 7.4 is verified in [BHHMS23, HW22].

We recall the following important result of Scholze.
PROPOSITION 7.6. There is a Gg, x D*-equivariant inclusion
s'(@P'(7) € (Play,) @ 7P (7),

whose cokernel is annihilated by (Of)1, where (Of)1 denotes the reduced norm 1 elements
of OF. As a consequence, the cokernel is finite-dimensional over F and dimog SH(xB' (7)) =

dlmog 7TB (F) .

Proof. The first assertion is a restatement of [Schol8, Proposition 7.7] and [Pas22, Lemma 6.1].
The second assertion follows from the first (note that we have fixed the central character). [

2635

https://doi.org/10.1112/S0010437X24007449 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007449

Y. Hu aAnD H. WANG

7.3 Local-global compatibility (a4 la Emerton)
In this subsection, we assume F, = Q,. Assume Endg, (p) =F where p = 7,(1), and let 7(p) be
the admissible smooth representation of G = GL2(Q,) attached to p (cf. §4.2).

THEOREM 7.7. We have 75 (7) = n(p)®¢ for some d > 1.

Proof. If p ( 0 xw) for any character x, the result is essentially a consequence of [Emel1] (which
treats the case of GLy/g). In the definite quaternion algebra setting, the proof is carried out in
[DLB17, Appendix]. Note that in [DLB17] the quaternion algebra is assumed to be over Q, but
the argument goes through in our setting, under the assumption that F, is isomorphic to Q,.
Another assumption made in [DLB17] is that p is irreducible, but the only places where this
assumption is needed are as follows.

— Page 403, the proof of Lemma 13.6. In our case, the proof goes through if we replace the
vector v (in [DLB17]) by a finite-dimensional subspace which generates 7(p) over G (compare
the proof of [Emell, Theorem 6.3.12]).

— Page 404, the proof of Lemma 13.9. To ensure that r(p)|GQp is absolutely irreducible for p in
a suitable set C defined before Lemma 13.8. But this can be avoided by replacing C by the
subset of ‘allowable’ points as in [Emell, Definition 5.4.7].

— Page 405, the proof of the injectivity of

7(5) & Homa(7(5), S (U, Flmy) — Sy (U, F
This can be proved as in the proof of [Emell, Theorem 6.4.16] for p » ( § x*w)

If p~ (% X*w)7 the result follows from [CEGT18, §4]. We remark that a multiplicity one
assumption is made in [CEGT18, §4], but the necessary modification is given in [GN22, §5]. O

Remark 7.8. In fact, [CEGT18, Theorem 4.32] and its generalization [GN22, Corollary 5.3.2]
prove a much stronger statement than Theorem 7.7. Namely, assuming moreover that p ~ (XSU ;)
for any character x, there is an isomorphism in €g 4, (Rﬁfogil)

M. = Rws ’\ N@d
o0 o0 R%Z‘

where N := Ny € €5 (0) is the object attached to p in §4.2.1, and d is the integer in
Theorem 7.7.

COROLLARY 7.9. Maintain the global assumptions we have made in Theorem 6.11, and assume
up to twist p ~ (""0" unr, ). Then dimoé (7B(7)) = 1.

unrsg

Proof. As in the proof of Theorem 6.11, it suffices to prove dimog (7B (7)) < 1. We reduce the

result to a situation covered by Theorem 6.11.
Letp/ ~ (unr2 ; ) with 7& 0. Choose a global setup, namely a totally real field F an indef-

0 unriw
inite quaternion algebra B over F which is ramified at v, and a modular absolutely irreducible
Galois representation 7 as in Theorem 6.11, such that p’ = 7, (1). Then p’ satisfies (C2) in §4.3,

and so dimox (ﬂ'é (7')) =1 by Theorem 6.11(ii). Combining Theorem 7.7 and Proposition 7.6,
we deduce that dlmox SY(w(p')) < 1. The structure of 7(p’) is recalled in §4.2. In particular, the

set JH(7(p')) consists of non-supersingular representations. Using Theorem 7.1(iv) and Ludwig’s
result [Lud17], we have

dimx SO(r) = dimx S* () =0 (7.3)
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for any non-supersingular irreducible representation 7 of G. We deduce that dimog Sl(m) <1
for any m € JH(7w(p)). It is clear from the definition of 7(p) (see §4.2 or Proposition 8.14) that
JH(7(p)) differs from JH(7(p’)) by at most one-dimensional representations. Hence, using (7.3)
we obtain

dimog St(n(p)) < 1.
By Theorem 7.7 and Proposition 7.6 again, this implies dimog (B (7)) < 1. O

7.4 Vanishing for supersingular representations
Ludwig [Lud17] has proved that S*(w) = 0 if 7 is a principal series of GL2(Q,). Together with
Theorem 6.11, we deduce the following vanishing result when 7 is supersingular.

COROLLARY 7.10. Assume that m = w(p) is supersingular with 2 <r < p — 3 in the notation
of (C1) in §4.3. Then S*() = 0. Moreover, we have dim)x Sl(m)=1.

Proof. Asp is irreducible, the ring qug_l is formally smooth. It is proved in [Pas22, Lemma 5.16]
that dimg (7) = 1, so the assumptions of Proposition 7.4 hold via Theorem 7.7. The existence
of a suitable B’ and 7 is well-known; see, for example, [DT94]. Thus, the vanishing of S?()
follows from this and Proposition 7.4. Finally, Theorem 6.11 and Proposition 7.6 imply that
dimof7 S' (7P (7)) = 1, hence also dimof7 Sl(7) = 1 via Theorem 7.7 again. O

8. Further studies on Scholze’s functor

In this section, we study the behavior of S’ on some non-supersingular representations of
GL2(Qp). Recall that p > 5.

8.1 Preparations
8.1.1 Some definitions. Recall that D is the nonsplit quaternion algebra over Q, and U é =
1+ Pp.

DEFINITION 8.1. Given an admissible smooth F-representation V of D* | let Viq be the largest
finite-dimensional quotient of V.

Remark 8.2. That Viq is well-defined can be seen as follows. Let V'V be the Pontryagin dual
of V. Then by the general theory of finitely generated modules over F[U}] (see, e.g., [Ven02,
§3.1]), V'V has a largest submodule of d-dimension 0 (i.e. finite dimensional over F). Clearly this
submodule is D*-stable because V'V carries a compatible action of D*. Taking the dual back
gives Viq in Definition 8.1.

We give some basic properties of (-)gq. For i > 0 and M a finitely generated F[U}]-module,
set

E'(-):= Extf’F[[UH(—,F[[Ujg]]).

Note that E{(—) = 0 for i > 5, as F[U}] is an Auslander regular ring of global dimension 4. Also
recall that M (when it is nonzero) is called Cohen—Macaulay if there exists exactly one i such
that E*(M) # 0; in this case i equals to the grade of M.

LEMMA 8.3. Let V be an admissible smooth F-representation of D*. If V' is infinite-dimensional
(as an F-vector space) and V" is Cohen-Macaulay as an F[U},]-module, then Viq = 0.
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Proof. By assumption, V'V is Cohen-Macaulay with dimog (V) > 1, thus E¥(VY) = 0. If Viq # 0,
then the inclusion (Viq)Y < V" induces a surjection

EY(VY) — EY((Via)¥) — 0.
This gives a contradiction as E4((V4q)Y) # 0. O

LEMMA 84. If 0= V' —V — V" — 0 is a short exact sequence of admissible smooth F-
representations of D*, then (V')gq — Vig — (V")qa — 0 is exact. If, moreover, V" is finite-
dimensional over [, then

0— (Vg — Via—= (V") — 0
is exact.
Proof. 1t is obvious from Definition 8.1. O

LEMMA 8.5. Let V' be an admissible smooth F-representation of D*. Assume that V carries an
[F-linear continuous action of G, which commutes with the action of D*. Then Vq is also stable
under Gq, .

Proof. Consider the Pontryagin dual V'V, so that (Viq)" is identified with the largest finite-
dimensional submodule of V'V, see Remark 8.2. It suffices to prove the following statement: if
x € VY such that (D*.z) is finite-dimensional, then so is (D*.(gx)) for any g € Gg,. This is
clear because the actions of G, and of D* commute. ]

We now recall the notion of being o-typic from [Schol8, Definition 5.2, adapted to our
situation. Let G be a group, o : G — GL,(F) be an n-dimensional representation and M an
F[G]-module. Then M is said to be o-typic if one can write M as a tensor product

M=c XF M(),
such that G acts on o ®p My through its action on o.
LEMMA 8.6. Assume that Endg|g)(c) = F.

(i) If M is o-typic, then My = Homg(g) (o, M).
(ii) Let M’ C M be F|G]-modules and assume that M’ is a direct summand of M. If M is
o-typic, then so is M'.

Proof. (i) This follows from the same proof of [Schol8, Proposition 5.3]. In [Schol8,
Proposition 5.3] o is assumed to be absolutely irreducible, but in the proof only the assumption
Endp(g)(0) = F is needed.

(ii) Since M is o-typic by assumption, the natural map o ® Homg(g (o, M) — M is an
isomorphism. Since M’ is a direct summand of M, the map

o ®HOH1]F[G](0', M/) — M’

is also an isomorphism by functoriality. O

8.1.2 Complements on Scholze’s functor. Keep the notation from §7 and assume F, = Q,.
To simplify notation we write

Q/TTV _Q v rrl /770 _ 77l v
S(U 7F) - SU;’/¢<U 7]F)7 H (U 7F) - Ha'g,w(U 7]F)
It is a consequence of [Schol8, Proposition 5.8] that H(U", F)[mz] is 7-typic, so
H'(U",F)[mz] = 7 ® Homg, (7, H' (U, F)[my]). (8.1)
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It is proved in [Schol8, Proposition 7.7] and [Pa$22, Lemma 6.1] that there is a Gg, x D*-
equivariant inclusion

S S, F)ms]) € H'(UY,F)[mg], (8.2)
whose cokernel is finite-dimensional over F, cf. Proposition 7.6.

COROLLARY 8.7. If (HY(U?,F)[mz])V is a Cohen—Macaulay F[U}]-module, then (8.2) becomes
an equality.

Proof. Since HY(U?,F)[mz] is always infinite-dimensional, see [BD14, Corollary 3.2.4] or [Schol8,
Theorem 7.8], the assumption implies that (H'(UY,F)[m7])qq = 0 by Lemma 8.3. The result
follows. O

Remark 8.8. Paskunas [Pas22, Lemma 6.1] also proves a criterion for (8.2) to be an equality.
Corollary 8.7 can be viewed as a complement to it.

PROPOSITION 8.9. Assume that RV is formally smooth and
dimx (HY (U, F)[mz]) = 1.
Then (HY(UY,O)y)? is a faithfully flat T(UY)m.-module, and (H (U,F)[mz])Y is a
Cohen—Macaulay F[U}]-module. In particular, (8.2) becomes an equality. Moreover,
S*(S(U”,F)[mz]) = 0.

Proof. The faithful flatness is proved by the same argument of [GN22, Theorem B(3)].

Since N is a projective object in %g »(8c), it is a Cohen-Macaulay Soo[U}]-module,
thus is also Cohen-Macaulay over Roo[Ub] by [GN22, Lemma A.29]. The formal smoothness

of R;pail ensures that R is formally smooth, namely its maximal ideal my is generated
by a regular sequence. By the proof of [GN22, Proposition A.30], (H'(UY,F)[m#])" = Nuo/Meo
is a Cohen-Macaulay F[U}]-module.

The last assertion follows from Proposition 7.4. U

For simplicity and clarity we make the following assumption in §§8.2 and 8.3 below.
The general case will be treated in §8.4.

(H) Assume d = 1 in Theorem 7.7, i.e. S(U”,F)[my] = 7 (p).
For notational convenience, we make the following definition. Let p := 7, (1).

DEFINITION 8.10. We define

JL(p) := Homgy (7, H' (U",F)[ms]), (8:3)

which is an admissible smooth F-representation of D*. Then (8.1) restricts to a Gg, x D*-
isomorphism

HY U, F)[mz] = 5(—1) ® JL(p). (8.4)

Finally we recall the following important results which will be repeatedly used later on.
THEOREM 8.11. Let m be an admissible smooth F-representation of G.

i) The natural morphism S°(75%2(@)) — SO(x) is an isomorphism.

(i) P P

(ii) If m = Indg(Qp) X is a principal series (for some smooth character x : B(Q,) — F*), then
S?(mr) = 0.

Proof. Part (i) is a special case of Theorem 7.1(iv) and part (ii) is [Lud17, Theorem 4.6]. O
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8.2 The generic case in the minimal case

In this subsection, we assume p ~ (%1 ;2) is reducible nonsplit such that x1x5 V41, w®l,
THEOREM 8.12. Let p be as above. Then JL(p) depends only on p**.

Proof. Write p; (respectively, py) for the nonsplit extension ()%1 X*2 ) (respectivelNy, (%2 ;1 )) Com-
bining Theorem 7.7 and [Pa322, Proposition 6.7],® we see that dimyx SYS(UY,F)[ms]) = 1,
hence

dimgx (HY(U?,F)[mz]) = 1
by (8.2). By Proposition 8.9, (8.4) and assumption (H), we obtain for ¢ € {0, 1,2}

S' () = pi(—1) ® IL(p,). (8.5)

Recall from §4.2 that there exist exact sequences
0—m —n(p) —m—0,
0 — m — 7w(py) — m1 — 0,

where 71 1= Indg((@p) X2 ® Xlwfl and w9 1= Indg(@p) X1 ® X2W71- Note that So(m) = 32(%‘) =0
for i € {1,2}, by Theorem 8.11. Hence, by applying the functor S’ and using (8.5), we

obtain
0 — 8'(m) = pi(=1) ® JL(py) — S'(m2) — 0, (8.6)
0 — 8'(m2) = pa(—=1) @ JL(py) — S'(m1) — 0. (8.7)

Since p; is nonsplit, we have
Homa, (x2,71 ® JL(7,)) = 0.

As a consequence, Homg,, (xaw™',S'(m1)) = 0 by (8.6) and applying Homg,, (x2w™1, =) to (8.7)
gives isomorphisms

Homg, (xaw™!, 8" (m)) = Homgy, (2w ™", pa(—1) ® JL(py)) = JL(py),

where the last isomorphism follows from the definition of p,. This gives a Gg, ® D*-equivariant
embedding

ow ! @ JL(py) «— S*(ma). (8.8)
One checks that its composition with ¢o (in (8.7)) coincides with the morphism obtained by
tensoring the inclusion xow ™! < py(—1) with JL(p,). Combining with the short exact sequence

0 = x2w ™' @ JL(pa) — Pa(—1) @ JL(p,) — x1w ™' @ JL(p3) — 0,

a diagram chasing gives a surjection

xiw ' @ JL(py) — St(m). (8.9)

In particular, when restricted to Gg,, S!(my) is semisimple and any irreducible subquotient of
S!(m) is isomorphic to yjw ™!

On the other hand, the same argument as above implies an embedding (analogous to (8.8))

yiw ' @ JL(p;) — S(m). (8.10)

8 We can also apply Theorem 6.11 if p satisfies (C2).
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We claim that (8.10) is an isomorphism. Indeed, ¢; in (8.6) induces a Gg, x D*-equivariant
embedding

S'(m)/(xaw ™ @ JL(py)) < (p1(—1) ® JL(p,))/ (xaw ™" ® JL(p1)) = xow ™" @ JL(py).

However, as shown in the last paragraph, S'(m;) admits only xjw ™! as irreducible subquotient

(when restricted to Gg,), while yow™ ® JL(p;) admits only yow ™! as irreducible subquotients.
Since x1 # X2, this forces S'(m1)/(xiw™! ® JL(p;)) = 0, proving the claim. In a similar way, the
embedding (8.8) is also an isomorphism and consequently (8.9) is an isomorphism.

In summary, we have proven that

—~
2]

. NCO (8.10) . B
xw™ ®@JL(p) = S(m) = xw  ®JL(p).

Hence, by applying HomGQP (xiw™!,—) we obtain a D*-equivariant isomorphism JL(p;) =
JL(p2)- O

Remark 8.13. It might be strange that JL(p;) only carries the information of p*. This can be
explained as follows. On the one hand, since S'(7(p;)) = p;(—1) ® JL(p;), the information of p;
is indeed caught by the functor S'. On the other hand, comparing the quaternionic Serre weights
(cf. Propositions 6.1 and 6.2), JL(p;) and JL(p,) have the same set of quaternionic Serre weights.
However, we do not expect this phenomenon happens once L # Q,.

8.3 The non-generic case in the minimal case
In this subsection, we extend the result in §8.2 to the case ™ ~w @ 1 (up to twist). In the
following, we will denote by 1G@p’ 1g and 1px the trivial representation of Gg,, G and D*,
respectively; sometimes we will omit the subscript if no confusion is caused.

Let p; ~ (%j :"[) be a nonsplit extension of 1 by w; we do not make assumptions on the
extension type of p; (i.e. peu ramifié or trés ramifié). On the other hand, Ext};Qp (w,1) is

one-dimensional; let py ~ (% :)) be the unique nonsplit extension of w by 1.
Let 71 be the universal extension of 1%2 by Sp, i.e.

0—-Sp—m—152 -0 (8.11)
with socg 71 = Sp. Recall from §4.2 that there is a short exact sequence
0— 7o — w(py) — 11 — 0,

where 7, := Indg((@p)(w Qw™h).
It is shown in [Pasl13, §10.1] that dimp Extla/ZG (T, 1g) = 1. Thus, there exists a unique (up
to isomorphism) nonsplit extension

0—1g — Kk — mq — 0. (8.12)

On the other hand, there is a natural isomorphism Exté/ZG(lg, Sp) = Hom(Q,', FF) by [Coll0,

Theorem VII.4.18]; we denote by Ej the extension corresponding to ¢ € Hom(Q,, F). The next
result gives the structure of m(p;).

PROPOSITION 8.14. We have socg m(p;) = Sp and there exist nonsplit extensions
0= By — 1(py) — 70 — 0,
0—Sp—mn(p) —k—0.
Proof. See [Paslb, Lemma 6.7]. O
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ProprosiTION 8.15. The following statements hold:
(i) $°(16) = 1g,, ®1px, S'(1e) =0, S?*(1g) Zw ! @ 1px;
(i) S°(Sp) = S*(Sp) = 0;
(iii) S%(ma) = S?(7a) = 0.
Proof. Statement (i) follows from Theorem 7.1(v). Statements (ii) and (iii) are special cases of

Theorem 8.11, except for S?(Sp) which is [Lud17, Corollary 4.7]. d

COROLLARY 8.16. Let m € Modléa}dzm((’)). Assume that each of the irreducible subquotients of
7 lies in {Sp, 1, 7o }. Then S%(w) (respectively, S%(n)) admits only 1g,, (respectively, wl) as
subquotients when restricted to G,

Proof. This is a direct consequence of Proposition 8.15. ]

PROPOSITION 8.17. (i) We have that JL(p,)" is a Cohen-Macaulay F[U}]-module.
(i) We have S'(n(py)) = p1(—1) ® JL(py) and S*(x(p;)) = 0.

Proof. Since R%’f is formally smooth, the assertions follow from Corollary 7.9 and Proposition 8.9.
O

COROLLARY 8.18. We have 8°(k) = 1, ® 1px and §*(k) = 0.

Proof. Since SY(m,) = 0, the first assertion is a direct consequence of Proposition 8.15(i) via
(8.12). Since & is a quotient of 7(pp; ), the second assertion is a consequence of Proposition 8.17(ii).
O

By Propositions 8.15 and 8.17 and Corollary 8.18, the sequence 0 — Sp — 7(p;) — k — 0
(see Proposition 8.14) induces an exact sequence

0= 1gy, ® 1px — 8'(Sp) = 7y (—1) @ JL(py) — S'(k) — 0. (8.13)
Similarly, the sequence 0 — E4 — m(p;) — mo — 0 induces an exact sequence

0— SYEy) — p1(—1) @ JIL(p) — S (ma) »w ' ®@1px — 0. (8.14)
LEMMA  8.19. We have Homg,, (w™1,8Y(Sp)) =0, and Homg,, (w™1,8Y(m1)) is finite-

dimensional.

Proof. As py ~ (¢ 1) is assumed to be nonsplit, we have Homg,, (w P (1) ® JL(p;)) = 0,
which implies the first assertion via (8.13). For the second assertion, we note that the short
exact sequence 0 — Sp — 1 — (lg)692 — 0 induces an exact sequence

0 — (Lgg, ® 1px)®* — 8'(Sp) — 8'(11) — 0 (8.15)
by Proposition 8.15(i). By applying Homg, (w™!, —) to (8.15), we obtain
0 = Homg, (w™t, 8 (Sp)) — Homgg, (W™, 8Y(m)) — EthG@p (W™t 18{2}1))
from which the result easily follows. O
PRroPOSITION 8.20. There exists a short exact sequence
0 — 8'(7(p2)) = Pa(=1) ® JL(p) — (Lgg, © 1px)®? — 0. (8.16)

As a consequence, Homg, (w87 (py))) = JL(py).
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Proof. We need to show that the cokernel of (8.2) is isomorphic to (1G@p ® 1px)®2. For this
we need a refined version of [Schol8, Proposition 7.7], which we put separately in Lemma 8.21

below. In our situation with A = T(U?)p, I = my and P := (S(UY,0)m.)¢, we are left to show
T(U" )me v ~
Tort U ((U) g frur, P) 2 (1) (8.17)

by Proposition 8.15(i) (here we use [Pas22, Proposition 5.4] to ensure that P satisfies assumption
(c) of Lemma 8.21). This is a consequence of [Hu21, Proposition 3.30], as we explain below. After
enlarging IF, we may assume T(U")q./mz = F.

To be able to apply [Hu2l, Proposition 3.30], we need to relate P with N, where N is
the object introduced in §4.2.1 for p,. We do this by passing to My. On the one hand, by
Remark 7.8 and assumption (H) we have Mo, =2 Rfofl@ pveN. Since Rgfil is flat over R%};,
we deduce "

REJE Rws_l
Tor, 2 (F,N) = Torf> (F, My,). (8.18)

On the other hand, R acts on P via the isomorphism (5.2) My /as = P, and the action
factors through

— — —1
RYE" 5 RYE o 2 RYS — T(U" ),

Recall that a. 1is generated by an My -regular sequence zi,...,zq,¥y1,...,y;. By
Proposition 4.21, this sequence is also Rgfil—regular and Rffosil /0 acts faithfully on P.

But T(U")m. also acts faithfully on P, so the surjection Rifil/aoo — T(U")m. is actually an
isomorphism.? Consequently,

—1

pe v
Tor™  (F, M) 2 Tor; " (F, P).
Combining this with (8.18), we deduce (8.17) from [Hu21, Proposition 3.30]. O

LEMMA 8.21. Let (A,m) be a complete noetherian local O-algebra with A/m =F and P €
€a/z,(A). Assume that:
(a) P is projective in the category of pseudo-compact O[K /Z;]-modules;
(b) Psry@,) = 0;
(c) each of the irreducible subquotients of PV lies in {Sp, 1, Ta}-
Let I be an ideal of A. Then there exists an exact sequence
0 — S%(Tor{(A/I,P)) — AJT ®4 SY(P) — SY(A/I ®4 P) — 0.

Proof. Choose a finite free resolution of A/I: --- — Fy — Fy — A/I — 0. By applying — ®4 P
to it, we obtain a chain complex

B R e PBE Ry o PR A/TeaP—0 (8.19)

whose homology computes Tor (A/I, P). Since each Fj is a finite free A-module (for i > 0),
assumption (a) implies that each F; ® 4 P is projective when restricted to K, hence SQ(Fi ®A
P) = 0 by Theorem 7.1(iii). Assumption (b) implies that S°(F; ® 4 P) = 0 by Theorem 7.1(iv).
As a consequence, S°(Im(d;)) = 0 for any i > 0. On the other hand, since S3(—) = 0, we have
S?(Im(d;)) =0 for i > 1.

9 This gives a ‘big R = T’ result, as mentioned in Remark 4.22.
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We may split (part of) the complex (8.19) as
0—Im(d) - Fo®4 P — A/I®s P —0, 0—Ker(d)) = F1®4 P — Im(d;) —0
from which we deduce long exact sequences
0 — S2(A/I ®4 P) — S'(Im(dy)) L S (Fy 94 P) — SHA/T @4 P) — 0,
0 — SY(Ker(dy)) — SY(FL @4 P) L S'(Im(dy)) — S°(Ker(dy)) — 0.

Note that S'(F; @4 P) = F; @4 Sl(P) (as F; is a finite free A-module), and that there is an
exact sequence

FLosSiP) L% B o dP) — A/ToaSY(P) — 0

by tensoring the sequence Fy — Fy — A/I — 0 with S'(P). Recall that a variant of the snake
lemma shows that there is a long exact sequence

0 — Ker(g) — Ker(f o g) — Ker(f) LA Coker(g) — Coker(f o g) — Coker(f) — 0.
In our situation, this gives (by considering the last four nonzero terms)
S2A/T @4 P) 2 8O (Ker(dy)) — AJT @4 SY(P) — SYA/I @4 P) — 0.
By Corollary 8.16, assumption (c) implies that 9 is identically zero. Hence, we are left to show
S°(Ker(dy)) = S°(Tor{'(A/I, P)),

which follows from the exact sequence 0 — Im(dy) — Ker(dy) — Tor{!(A/I, P) — 0 (recall
S%(Im(dy)) = 0 from the first paragraph of the proof). O

By Theorem 8.11 the short exact sequence 0 — 7, — m(py) — 71 — 0 induces an exact
sequence

0 — Sl(ny) — St(w(py)) — St(r) — 0. (8.20)
LEMMA 8.22. Both S§'(m,) and 8*(k) are w™!-typic (when restricted to Gg,).

Proof. We claim that Homg@p(lg@p,Sl(ﬂa)) = Homg,, (].GQP,Sl(H)) = 0. Combining (8.20)
with Proposition 8.20, we obtain an embedding

SH(ma) = Pa(—1) © JL(py).

As Homg, (1gg,,pa(—1)) =0, we deduce that HomGQp(ngp,Sl(wa)) =0, as claimed. Using
Proposition 8.15(i) and Corollary 8.18, the sequence 0 — 1 — k — mo, — 0 induces an exact
sequence

0— SYk) = S (ma) —w @ 1px — 0, (8.21)

which implies the claim for S*(k).
The claim implies that the surjection p;(—1) ® JL(p;) — S'(x) in (8.13) must factor as

p1(—-1) @ JL(p,) » w™' @ JL(p;) — S'(k),

where the first quotient map is induced by the natural projection p,(—1) ~ (é ot

particular, S'(k) is w™!-typic. Note that, being a subrepresentation of py(—1) ® JL(py), S* (74 )
does not admit any Gg,-subquotient isomorphic to a nontrivial self-extension of w™t so St(my)
is also w™!-typic by (8.21). O

1

—» w . In
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As a consequence of (8.16), there exists a D*-equivariant surjection
IL(By) — (1p) 2. (8.22)
We denote its kernel by Va. Then py(—1) ® JL(py) can be filtered by subrepresentations such
that the graded pieces are isomorphic to
WV, (W 1p)T) @ (lay, © V), lag, © (1px)
Using (8.16) again, we obtain the following short exact sequences:
0— w 'l ®JLE,) — SYn(py)) — lgg, ® Vo — 0, (8.23)
0—w '@V — S (r(p) = (w ' @1p )@ (1gy, @ V2) — 0. (8.24)

Recall the definition of V4 for an admissible smooth D*-representation V' from Definition 8.1,
and that taking (—)gq is right exact by Lemma 8.4.

COROLLARY 8.23. The following statements hold:
(i) (SY(K))tqa =0 and (SY (7))t 2w @ 1px;
(i) (S(Eg))ta is w™'-typic;
(iii) (S(71))tq is w™-typic;
(iv) (Va)ga = 0.
Proof. (i) Since S'(k) is a quotient of p;(—1)®JL(p;) by (8.13) and (JL(pp))Y is
Cohen—Macaulay by Proposition 8.17, we have JL(p;)tq = 0 by Lemma 8.3, hence (S'(k))tq =0
as well by the right exactness of (—)gq. The second assertion follows from this, by applying
Lemma 8.4 to (8.21).
(ii) Recall the exact sequence (8.14)
0— SY(Ey) — p1(—1) ®JIL(p) — SH(ma) »w ' ®@1px — 0.

Since S'(m,) is w™l-typic by Lemma 8.22, the morphism p,(—1) ® JL(p;) — S*(7a) factors
through the quotient w=! ® JL(p;). Let W be the admissible F-representation of D* such that
wl@W =Ker(w '@ JL(p;) — S'(7a)).

Then one checks that S'(Ey) fits in the following exact sequence:
0—1gy ®@JL(p) = S (By) »w ' @W —0. (8.25)
Since (JL(p;))ta = 0 as seen in part (i), we deduce
(Sl(E¢))fd = (w71 ®@ W) = wl® We.

In particular, (S'(Ey))s is w™!-typic.
(iii) Note that there is a short exact sequence 0 — Ey — 71 — 1g — 0 by the definition of
71, see (8.11). By Proposition 8.15(i) it induces an exact sequence

0= 1gy, ®1px — S8'(By) — 8 (1) = 0. (8.26)

The assertion then follows from part (ii) using Lemma 8.4.

(iv) We view S'(7,) as a subrepresentation of S'(7(p,)) via (8.20). Since S'(m,) is w™-typic
by Lemma 8.22, it is contained in w™! ® JL(p,), see (8.23). As a consequence, the snake lemma
applied to (8.20) and (8.23) implies that 1g, ® V5 is a quotient of S'(ry), thus (1gy, ® Va)rais a
quotient of (S1(71))tq. However, (S'(71))q is w™!-typic by part (iii), which forces (Lag, ® Vo) =
0 or equivalently (Va)¢q = 0. O
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COROLLARY 8.24. We have isomorphisms Sl(n) ~ 1@V, and
') = (W @ 1px) @ (1gy, ® Va).

Proof. We may identify S!(k) with a subrepresentation of S(7(p,)) via (8.20) and (8.21). As in
the proof of Corollary 8.23(iv), S!(k) is contained in w™! ® JL(p,). However, since (S1(k))iq = 0
by Corollary 8.23(i), S'(k) is, in fact, contained in w™! ® V4 by the definition of V5, see (8.22).
Denote by ¢ the inclusion

v SYr) = w @ .

We need to prove that ¢ is an isomorphism or, equivalently, Coker(:) = 0. Since (V2)gg = 0 by
Corollary 8.23(iv), it suffices to prove that Coker(:) is finite-dimensional.
Denote by 7 the embedding S*(x) — S*(7(py)). Then (8.20) and (8.21) imply

0 — w ' ®1px — Coker(z) — S'(m) — 0. (8.27)

Since Homgyg, (w™t,8Y(7)) is finite-dimensional by Lemma 8.19, so is Homg,, (w1, Coker(7)).
On the other hand, using (8.24) we have a commutative diagram

0 —= S'(r) ——= S'(n(py)) Coker(?) 0

] |

00— w '@V, —= Si(n(py) — W' @1p)¥ & (1gy, @ V2) —= 0

hence an exact sequence
0 — Coker() — Coker(2) — (w ' ® 1px)®? @ (1gy, ® V2) — 0. (8.28)

Consequently, Homg, (w™!, Coker(1)) is finite-dimensional. However, since Coker(¢) is w™!-typic

(being a quotient of w™! ® V4), this implies that Coker(:) is itself finite-dimensional. As explained
in last paragraph, we deduce that ¢ is an isomorphism and, consequently, by (8.28)

Coker(7) & (0™ @ 1p:)® ® (15, ® V2).
Finally, the second isomorphism in the corollary follows from this by using (8.27). U
We note the following consequence of the proof of Corollary 8.24.
COROLLARY 8.25. (i) There exists a short exact sequence of Gg, x D*-representations
0—wleaVh—8 (1) »w!®lp —0.

(ii) There exists a Gg, x D*-equivariant surjection S'(Sp) - w™! ® 1px whose kernel admits
only 1g,, as subquotients when restricted to Gq,. In particular, Homg@p (S'(Sp),w™1) is
one-dimensional.

Proof. Part (i) follows from (8.21) and Corollary 8.24.
Part (ii) follows from (8.15) and Corollary 8.24. O

Recall from Propositions 6.1 and 6.2 that we always have lox € Wp(p1) (no matter p; is
peu ramifié or tres ramifié), so

Homog(loB,JL(ﬁl)) # 0.
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Let W; be the 10E—typic component of S0Cex JL(py). It is easy to see that W is stable under
D*. Define V7 to be the quotient
Vi := JL(py)/Wh. (8.29)

The main result of this subsection is the following.
THEOREM 8.26. There exists a D> -equivariant isomorphism Vi = V5.

Proof. Recall the exact sequence (8.13)
0= 1, @ 1px — S'(Sp) = 71 (~1) ® IL(py) > S'(x) — 0.

By Corollary 8.25(ii), Homg, (S L(Sp),w™1) is one-dimensional over I, so the last sequence shows
that Homg,, (Ker(j), w~1) is also one-dimensional. Since S*(k) is w™!-typic by Lemma 8.22, the
surjection j factors as

’

_ _ _ . J
p1(~1) @ IL(p,) » w @ IL(p) > S'(k).
We clearly have a short exact sequence
0 — 1gg, ® JL(py) — Ker(j) — Ker(j') — 0,

which implies that Homg, (Ker( §'),w™1) is also one-dimensional. Moreover, by Corollary 8.25(ii)

again, it is easy to see that the one-dimensional w™!-typic quotient of Ker(j') is isomorphic to
w™t ® 1px. But Ker(j') is itself w™!-typic (being a subrepresentation of w™! ® JL(p,)), so Ker(j’)
is, in fact, isomorphic to w™' ® 1px.

On the other hand, since S'(x) = V4 as representations of D> by Corollary 8.24, we have

50Cox St(k) = 50CHx Vo C 50CoHx JL(7y) = (o @ o H)Pm2, (8.30)

for some integer mo > 1, where the last isomorphism is given by Proposition 6.1, Proposition 6.2
and Corollary 6.8. Indeed, taking r = p — 3 and s = 0 in Proposition 6.1(ii)(c), we get Wp(py) =
{er=3a1¢, ePP=3)0¢) = {a,a~'}. We deduce that the composition

W@ W = w !l ®IL(5,) > S'(k)

is zero, where the first morphism is induced from the natural inclusion W; — JL(p;), see (8.29).
In other words, Ker(j’) contains w™! ® Wj. Combining with what has been proved in the last
paragraph, this implies Ker(j') = w™! ® Wi. In particular, W; = 1« and

2 1o .

S'(k) = (™' @ JL(py))/ (W' @ W)
Taking into account Corollary 8.24, we obtain
Vi = Homg,, (w8 (r) 2 Vh
as representations of D*. ]
LEMMA 8.27. Let x : Of, — F* be a smooth character.
(i) If x ¢ Wp(py), then Extlbg/z}j(x, JL(py)) =0 fori > 0.
(i) If x ¢ Wp(py), then Homyx (x, JL(p2)) = EXt%QE/Zb(Xa JL(pz)) = 0.

Proof. (i) The proof is as in [HW22, Proposition 10.10(i)]. The point is that R%fls is formally

smooth, so by Proposition 8.9 .FITl(U”,(’))ﬁ,L?1 is flat over T(U")m, with fiber isomorphic to
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JL(p,)Y. Here we write 71 instead of 7 to indicate that we are considering the case where
To(1) =P
(ii) The difference to part (i) is that R%’; is not formally smooth. It is clear that

Hom,,x (x, JL(75)) = 0 for x ¢ Wp(p,). For the vanishing of Ext! . . (x,JL(py)), choose a set
Op O YVAN

of generators (f1,..., fm) of ms,, then they induce an exact sequence (recall assumption (H))

m
0= JL(p,) — T — [ T2,
=1

where II, := HY(U"?, F)m, . Since Homog(x, II) = 0 and since Il is an injective representation
of OF/Z}, by Theorem 7.2(ii), the result easily follows. O
Thanks to Theorem 8.26, we write V for V7 and V5 from now on.
COROLLARY 8.28. There exists a short exact sequence
0—1px — JL(p;) =V — 0. (8.31)
Proof. This is a direct consequence of the proof of Theorem 8.26. O
COROLLARY 8.29. The following statements hold:
(i) Vtq = 0 and socpx (V') & IndggZD Q;
(ii) dimp Extp.,, (Indgg 2 V) =1;
(iii) dimg Extpy , (1p<, V) = 2.

Proof. (i) The first assertion is just Corollary 8.23(iv). For the second assertion, by Frobenius
reciprocity it suffices to show Homog (a, V') has dimension 1. We take p; to be trés ramifié. By

Theorem 6.1, we have x € Wp(p,) if and only if xy = 1ox, 0 that Homog (o, JL(py)) = 0. Hence,
by applying Homog(a, —) to (8.31) we obtain a long exact sequence

0 — Hom(a, V) — Ext!(a, 10;,) — Ext!(a, JL(p,)) — Extl(a, V)

2, Ext?(a, 1ox) — Ext?(a, JL(5,)), (8.32)
where Ext’ means ExtlbX I Since o ¢ Wp(p;), see Theorem 6.1(ii)(a), we have
D D

Ext!(a,JL(p;)) =0 by Lemma 8.27(i). The result follows as dimpExt!(a, 1(9,3) =1 by
Proposition 2.13.

(ii) By Frobenius reciprocity, it is equivalent to proving dimp Exté)é iz (o, V) = 1. Since
a ¢ Wp(p;) (again we take p; to be trés ramifié), Lemma 8.27(i) implies that the map 9 in
(8.32) is an isomorphism. On the other hand, using Propositions 2.13 and 2.14 we know that
dimp Ext?QX Iz (a,1,x) =1, from which the assertion follows.

D/“D D
(iii) Note that 102 ¢ Wp(p,), see (8.30). Using Lemma 8.27(ii) this implies

EXteB/Zb (1(9;57 JL(ﬁ2)) = 07

hence by Frobenius reciprocity Ext’, 17D (Indgg Zp 1,JL(py)) =0 for i =0,1. Since 1px is a
direct summand of Indgg Zp 1as [D*: Of5Zp] =2 and p > 2, we deduce
HOHle (]_Dx s JL(ﬁQ)) = EthDX/ZD <1D>< 5 JL(EQ)) =0.

Now, applying Hompx (1px,—) to 0 — V — JL(py) — (1px)®? — 0 gives the result. O
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Together with Theorem 6.1, we deduce the D*-socle of JL(p;).

COROLLARY 8.30. (i) Ifp; is peu ramifié, then socpx JL(p;) = 1px @ Indg:ZD a; if py Is tres
D
ramifié, then socpx JL(p;) = 1px.
.. N~ DX
(ii) We have socpx JL(py) = Ind(f)gZD a.

Remark 8.31. Unlike the generic case treated in §8.2, we see that JL(p;) detects the extension

type of py.
We also deduce from Corollary 8.30 that S0CHx JL(p;) and S0Cex JL(p,) are multiplicity free.

This corresponds to the fact that sockx 7(p;) and sock m(psy) are multiplicity free, and seems to
be a nontrivial fact.

Remark 8.32. We can show that the kernel of S'(Sp) — w™! ® 1px in Corollary 8.25(ii), which
we denote by U, is 1G@p—typic, i.e. it does not admit self-extensions of lgg, as subquotients when
restricted to Gg,. Indeed, take p; to be trés ramifié and 7 to be peu ramifié, we obtain two
embeddings

i,i/ : 1GQP & 1D>< — Sl(Sp)

from (8.13). One checks that

0 —Im(i) - U — 1g,, ® JL(p;) — 0,

0—Im(') — U — lgg, ® JL(p}) — 0.
As a consequence, Im(i) # Im(i') because JL(p;) and JL(p}) are non-isomorphic by
Corollary 8.30(i). It is then easy to deduce that U is isomorphic to 1g, ® (JL(p1) xv JL(p))),
where the fibered product is taken with respect to (8.31).

8.3.1 Summary. We summarize the results proved above in the following theorem.

THEOREM 8.33. We have the following:

(1) SO(].G) = 1GQP & ].Dx, 81<1G) = 0, 82(1G) = U)_l ® 1D><,'
(i) S°(Sp) = S%(Sp) = 0, and there exists a short exact sequence

0= (1gg, ® 1p5<)® — SY(Sp) — (g, @V)® (wl®1px) — 0;
(iii) S%(ma) = 8%(7a) = 0 and there exists a short exact sequence
0—-w eV -8 (r) »w'l®1px —0;
(iv) there exist exact sequences
0—1px — JL(p) =V —0
and
0— V — JL(pp) — (1px)®* — 0;

moreover, JL(py) is isomorphic to the universal extension of (1px)®? by V.

8.4 The non-minimal case
We briefly explain how to modify the arguments in §§8.2 and 8.3 to handle the non-minimal
case (i.e. d # 1 in Theorem 7.7).
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Let p =7,(1) and assume Endg, (p) =F; in particular, p is allowed to be irreducible. We
put

om w L, SY(n if 5~ (§.0),

HomGQp (p(—1),SY(m ( ))) otherwise.

PROPOSITION 8.34. (i) If p is not of the form (§ XZ), then

H' (U, F)[ms] = (p(—1) @ JL(p))™
and S'(r(5)) = 5(~1) ® JL(p).
(i) Ifp~ (8 %), then
H'(U",F)[ms] = (p(—1) @ JL(p)) >
and there exists a short exact sequence

0— 8'(m(p)) - p(—1) @ JL(p) = (1, @ 1px)¥* — 0.

Proof. (i) We claim that SY(S(U?,F)[mz]) = H*(U",F)[mz]. If 7° = x & yw, it is proved in
[Pas22, Lemma 6.1]. If p°° ~ x @ xw, then the assumption on p implies that R%E_l is formally
smooth, so we may apply Proposition 8.9 (using Corollary 7.9).

The claim implies that S'(S(U?,F)[ms]) is p(—1)-typic. Since S(U?,F)[mz] = 7(p)®? by
Theorem 7.7, St (7 (p)) is also p(—1)-typic by Lemma 8.6(ii). The result easily follows.

(ii) First, the proof of Proposition 8.20 shows that

0 — SY S, F)[me]) — H' (U, F)[mz] — (1g,, ® 1px)** — 0,
which implies
N ¢ N
Homg,, (v, 8" (S(U",F)[m7])) = Homg, (w=', H' (U, F)[my])
= HomG@p (ﬁ(_l)v ﬁl(UUa IF) [mF]),

where the second isomorphism holds because HY(U?,F)[m;] is p(—1)-typic. Choose an iso-
morphism ¢ : 7(p)®¢ = S(U", F)[my]; it induces an isomorphism

P

JL(p)®* = Homgg, (w™', 8" (S(U", F)[ms])).
Thus, we get an isomorphism

B (¢*OL*)_1
AU, F)[me] = 5(~1) ® Homeg, (3(~1), AU, F)ime)) = 5(-1) LG (8.34)

as desired. Let f’ be the composite map

(8.34)
S'(r(p)*! = SI(S(U”JF)[W]) 5 H (U, F)[mz] = (1) @ JL(p)*"

Since S!(m(p)) is contained in H'(UY,F)[my] which is 5(—1)-typic, we may apply Lemma 8.35
below to obtain an embedding

0 — S'(x(p)) - p(-1) @ JL(p),

extending the natural embedding w™! ® JL(p) — p(—1) ® JL(p). Moreover, f is Gg, x D*-
equivariant by construction. We are left to show Coker(f) = (1g,, ® 1 px)P2. Tt is clear that
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@ and f’ coincide when restricted to w™' ® JL(p)®?, so f' = f® by the uniqueness part
of Lemma 8.35. Since Coker(f’) = (1¢,, ® 1px)®24 we obtain Coker(f) = (1gy, ® 1px)¥? as
required. ]

LEMMA 8.35. Let p~ (7 ,) with Endgy, (p) = F. If M is a p-typic F[Gq,]-module, then for

any submodule M' C M there exists a unique embedding

0—-M —-p® Homg, (x1, M")
extending the embedding x1 ® Home, (x1, M)—p® Homgg (X1, M") induced from x1 < p.
Proof. Since M is p-typic, it is naturally isomorphic to p ® My where My := Homg (p, M).
Actually, the assumption on p implies that My= Homg,, (x1,M). Writing M} :=
Homg@p (x1, M"), we claim that M’ is contained in p ® M, both regarded as subspaces of p @ M.
Indeed, letting M’ :== M’ +p ® M, we need to prove M =p® M. Tt is clear that x; ® M| is
identified with M’ N (x1 ® My), thus M'/(x1 ® M})) embeds in x2 ® My and is xo-typic. Using
the natural isomorphism M'/(p @ M) = M'/(M' N (p ® M{)), we see that M'/(p® M}) is a
quotient of M'/(x1 @ M), thus

Homgy,, (x1,M'/(p @ Mj)) = 0.

On the other hand, if M’'/(p® M{)) is nonzero, then it embeds in p ® (My/M()) and we must
have Homg, (X1, M'/(p® M})) # 0, a contradiction.

The claim implies that the given inclusion M’ C M provides an embedding required in the
lemma, so we are left to prove the uniqueness.

Consider the exact sequence

0—-x1OM,—M —Q—0
with @ being the quotient. As seen above, Q is yo-typic. Applying HomGQp (—,p® M) to it, we
obtain an exact sequence
0 — Homg, (Q.7 ® Mp) — Homg, (M',p® My) — Homg, (x1 ® My, p® Mg).  (8.35)
The result follows because Homg,, (Q,p® Mj) =0 (as Q is x2-typic). O

Using Proposition 8.34, the arguments in §§ 8.2 and 8.3 when p is reducible with EndGQp (p) =
F, taking into account multiplicities everywhere, go through and give similar results in the
non-minimal case as in Theorems 8.12, 8.26 and 8.33.

Remark 8.36. If py = x1 @ x2 with X1X2—1 # 1, w*!, we put
JL(7) = Homg, (xiw™ 8 (x(3))).
Combining with Proposition 8.34, the proof of Theorem 8.12 shows S*(7(py)) = po(—1) @ JL(py)-
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