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Some Remarks Concerning the Topological
Characterization of Limit Sets for Surface
Flows

Habib Marzougui

Abstract. We give some extension to theorems of Jiménez López and Soler López concerning the topo-

logical characterization for limit sets of continuous flows on closed orientable surfaces.

1 Introduction

Let M be a closed orientable connected surface. A continuous flow φ on M will be a

continuous map φ : R × M → M with the properties:

(i) φ
(

(t + s), x
)

= φ
(

t, φ(s, x)
)

for every t, s ∈ R and x ∈ M,

(ii) φ(0, x) = x for every x ∈ M.

Given a point x ∈ M, we define the map φx : R → M by φx(t) = φ(t, x), t ∈ R. We

call Lx = φx(R) the orbit of x. We say that x is a singular point (or a singularity) of φ

if φx is constant. Denote by:

• sing(φ) the set of singular points of φ.
• M⋆

= M \ sing(φ).
• M1 the union of all orbits of φ which are closed in M⋆.
• U1 = M⋆ \ M1.

A subset A of M is called invariant if φ(R × A) = A, that is, A is a union of orbits.

For every orbit L of φ and x ∈ L, we call

L+
x = {φx(t); t ∈ R+} (resp. L−

x = {φx(t); t ∈ R−})

the positive (resp. negative) semi-orbit of x. The set

ΩL =
⋂

x∈L

L+
x (resp. AL =

⋂

x∈L

L−
x )

is called the ω-limit (resp. α-limit) set of L, and lim L = ΩL ∪AL is called the limit set

of L. A point y ∈ ΩL (resp. y ∈ AL) means that there exists a sequence tn 7→ +∞

(resp. tn 7→ −∞) such that limn→∞ φ(tn, x) = y. We have lim L = L \ L if L is a

non-periodic orbit. If L is a periodic orbit, ΩL = AL = L. The set ΩL (resp. AL) is

closed, connected, invariant, and non-empty.
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We say that an orbit L of φ is proper if L \ L is closed in M. For example, a closed

orbit in M⋆, is proper. In particular, if L is a periodic orbit, it is called trivial recurrent.

A non-proper orbit L is called non-trivial recurrent, that is, either locally dense if L has

non-empty interior, or exceptional if L is nowhere dense. For non-trivial recurrent

orbits L, we have one of the following types: ω-recurrent if L = ΩL; α-recurrent if

L = AL; or both ω-recurrent and α-recurrent if ΩL = AL = L. If L is proper and

non-periodic, then lim L = L \ L. Otherwise, lim L = L. In particular, if L is a

non-proper orbit then L = ΩL or L = AL.

A subset E of M is called a minimal set of φ if E is closed in M, non-empty, φ-

invariant and has no proper subset with these properties. This is equivalent to saying

that for every orbit L contained in E, we have L = E. In particular, a closed orbit in

M is a minimal set of φ.

We call the class of an orbit L of φ the union cl(L) of orbits G of φ such that G = L.

We note that orbits which are in the same class are either all proper or locally dense

or exceptional. In particular, if L is proper, cl(L) = L.

We call the lower structure of an orbit L of φ the subset SI(L) = L \ cl(L). In the

case where L is proper, SI(L) = L \ L is always closed in M.

We call the higher structure of an orbit L of φ the union SS(L) of orbits G of φ such

that L ⊂ G with G 6= L.

For a subset A of M, int(A), bd(A) = A \ int(A) will denote respectively, the

interior and the boundary of A.

We call a regular cylinder an open connected set of M which is homeomorphic to

an open annulus and its boundary has two connected components.

In [6], the problem of the topological characterization of limit sets of flows on

closed surfaces has partially answered by Jiménez López and Soler López.

For ω (resp. α)-limit sets which has empty interior, their result can be paraphrased

as follows:

Theorem 1.1 (Jiménez López and Soler López [6]) Let φ be a continuous flow on a

closed orientable surface M and let L be an orbit of φ. Assume that L is proper or that

int(ΩL) = ∅ and M \ ΩL has a finite number of components. Then ΩL is a boundary

component of a regular cylinder in M. Conversely, if Ω is a boundary component of a

regular cylinder in M then there are a smooth flow on M and an orbit of this flow such

that Ω = ΩL.

For ω (resp. α)-limit sets with non-empty interior, there were also characterized:

Theorem 1.2 (Jiménez López and Soler López [5]) Let φ be a continuous flow on a

closed orientable surface M and let L be an orbit of φ. Assume that int(ΩL) 6= ∅. Then

ΩL = O where O = int(ΩL) and M is not homeomorphic to the sphere S2.

Conversely, if O ⊂ M is an open set not homeomorphic to a subset of the sphere S2

then there are a smooth flow Φ on M and an orbit L of Φ such that ΩL = O.

The problem remains open in the case of an ω (resp. α)-limit set which, simulta-

neously, is the limit set of one of its orbits, has empty interior, and whose complement

has an infinite number of components.
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The aim of this note is to extend the above works by characterizing ω (resp. α)-

limit sets of surface flow orbits; we show that the assumption: “M \ ΩL has a finite

number of components” in Theorem 1.1 is unnecessary provided the flow has a fi-

nite number of singularities, or that L is a non-trivial minimal set. Moreover, for

non-empty interior limit set, we give a precise description of its topological charac-

terization.

Our main results can be stated as follows.

Theorem 1.3 Let φ be a continuous flow on a closed orientable surface M and let L

be an orbit of φ such that int(ΩL) = ∅. Then ΩL is a boundary component of a regular

cylinder in M if one of the following conditions hold:

(i) φ has finitely many singularities.

(ii) L is an exceptional orbit with L does not contain singular points.

In the case of flows with finitely many singularities, the set U1 is open in M [4,

Theorem, p. 386] and we have precisely the following.

Proposition 1.4 Let φ be a continuous flow with finitely many singularities on a closed

orientable surface M and let L be an orbit of φ such that int(ΩL) 6= ∅. Then

(i) ΩL is the closure of the connected component V of U1 containing L;

(ii) the flow φ|V is minimal (every orbit of φ|V is dense in V ).

Notice that we have the same statements as for Theorem 1.3 and Proposition 1.4

for α-limit sets.

Remark (1) In condition (i) of Theorem 1.3, a flow without singularities or with

finitely many singularities may admit ω-limit sets with empty interior and having

infinitely many components in its complementary. Informally speaking the con-

struction of such flow consists of making the suspension of an homeomorphism

f : S1 → S1 obtained by blowing up infinitely many orbits of the irrational rota-

tion on S1. This is the procedure usually used to obtain the Denjoy flow, but for that

case only one orbit is blowing up.

Following [1, Theorem 2.5, p. 208] there exist a homeomorphism f : S1 → S1

and a continuous increasing surjective map h : S1 → S1 semi-conjugating f to the

irrational rotation Rα of angle α. Moreover there exist countable many orbits of Rα

(Rn
α(xi)n∈Z)i∈N such that χ =

⋃

n∈Z
{Rn

α(xi) : i ∈ N} is the set of point x ∈ S1 for

which h−1(x) contains more than one point. Now it suffices of defining the flow Φ as

the suspension of f , see e.g., [1, p. 16]. It is easy to verify that Φ satisfies the desired

property and the following ones:

(i) There exists a set Ω such that int(Ω) = ∅ and Ω = ΩL = AL for every orbit L.

(ii) Φ admits proper and non-proper orbits.

(iii) Φ has no singularities nor periodic orbits.

(2) Flows having infinitely many singularities and admitting an ω-limit set with

empty interior and with infinitely many components in its complementary also exist.

Moreover, this ω-limit set is not boundary of any regular cylinder, see [7].
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2 Some Results

In the following, we give some properties for the dynamics of recurrent orbits.

Proposition 2.1 ([8, Proposition 2.1]) Let φ be a continuous flow on a closed ori-

entable surface M and suppose that sing(φ) is a compact totally disconnected set on M.

Then, if L is a non-proper orbit of φ then every orbit contained in SI(L) is closed in M⋆.

Proposition 2.2 Under the hypothesis of Proposition 2.1, if L is an orbit of φ such that

L contains a periodic orbit γ then L is proper.

Proof Suppose that L is a non-proper orbit, then L is one of its limit set, say L = ΩL.

By [3, Proposition 7.11], we will have ΩL = γ thus γ = L, which is impossible.

Proposition 2.3 ([9, Theorem 2.2]) Let φ be a continuous flow on a closed orientable

surface M with finitely many singularities. If L is an exceptional orbit then V = SS(L)∪
cl(L) is open in M.

Proposition 2.4 ([2, Theorem 1.1]) Let φ be a continuous flow on an orientable

surface M. Let E ⊂ M be a non-trivial compact minimal set. Then, there exists a

connected, open, φ-invariant neighborhood U of E with the following property:

• if L ⊂ U is an orbit, then ΩL ∪ AL ⊂ E ∪ bd(U ) and ΩL = E or AL = E.

In particular, Proposition 2.4 holds for E = L if L does not contain singular point

and L is an exceptional orbit (since in this case L is non-trivial compact minimal set).

3 Proof of Theorem 1.3 and Proposition 1.4

3.1 Proof of Theorem 1.3

Lemma 3.1 Let φ be a continuous flow on a closed orientable surface M and let L be

an exceptional orbit. Suppose that φ has finitely many singularities or that L does not

contain singular point. If (W j) j∈ J are the connected components of M \ L then there

exists m ∈ J such that L = bd(Wm).

Proof The inclusion bd(Wm) ⊂ L is clear since bd(Wm) is closed in M \ L. To prove

the other inclusion L ⊂ bd(Wm), suppose the contrary; that is for every j ∈ J, we

have L ⊂ M \W j .

If φ has finitely many singularities then by Proposition 2.3, the set V = SS(L) ∪
cl(L) is open in M. Then (since M \ W j is φ-invariant), for every orbit G ⊂ V ,

we have G ⊂ M \ W j . Therefore, V ⊂ M \ W j for every j ∈ J. It follows that

M \ L ⊂ M \V and then int(L) 6= ∅, a contradiction.

If L does not contain singular point then E = L is an exceptional compact minimal

set. Hence, by Proposition 2.4, there exists a connected neighborhood U of E such

that for every orbit G ⊂ U , we have E ⊂ G so G ⊂ M\W j . Therefore, U ⊂ M\W j for

every j ∈ J. It follows that M \L ⊂ M \U and then int(L) 6= ∅, a contradiction.

Proof of Theorem 1.3 Let L be an orbit of φ such that int(ΩL) = ∅. If L is periodic,

obviously L is a boundary of a regular cylinder. Now, suppose that L is non-periodic.

We distinguish two cases.
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If L ⊂ M \ ΩL then decompose U = M \ ΩL into its connected components by

U = ∪ j∈ JW j and define Wm the component containing L. It is easy to check that

bd(Wm) = ΩL for some m.

If L ⊂ ΩL that is L = ΩL ; then L is an exceptional orbit. By Lemma 3.1, there

exists m ∈ J such that ΩL = L = bd(Wm).

The reminder of the proof, that is Wm is homeomorphic to a regular cylinder, is

similar to that of the proof of Lemma 3.3 in [7].

3.2 Proof of Proposition 1.4

Lemma 3.2 Let φ be a continuous flow with finitely many singularities on a closed

orientable surface M. If L is a non-proper orbit of φ then cl(L) = L ∩U1. In particular,

if L is locally dense then cl(L) is the connected component of U1 containing L.

Proof Let L be a non-proper orbit. If G ⊂ L∩U1 is an orbit of φ then G is non-closed

in M⋆. From Proposition 2.1, we have G = L. So, G ⊂ cl(L) and cl(L) = L∩U1. Now,

let V be the connected component of U1 containing L. We also have L ∩ V = cl(L).

Suppose that L is locally dense; that is int(L) 6= ∅. We have L ⊂ int(L) and therefore

cl(L) ⊂ int(L). It follows that cl(L) = L ∩ V = int(L) ∩ V thus, cl(L) is open and

closed in V . As V is connected, we have cl(L) = V .

Proof of Proposition 1.4 Let L be an orbit such that int(ΩL) 6= ∅. Then L is locally

dense and we have L = ΩL. By Lemma 3.2, if V is the connected component of

U1 containing L then cl(L) = V . Thus, L = V = ΩL and assertion (i) follows.

Assertion (ii) is clear since cl(L) = V .
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