
ON A DISCRIMINANT INEQUALITY 

L. J. MORDELL 

The following result has been conjectured by Dr. Birch. Let zu s2, . . • , z„ 
be any n complex numbers such that 

(1) Nil2 + M2 + . . . + \zn\2 = n. 
Then 

(2) A = n i*r - ^ 
r>s>l 

attains its greatest value when the z are at the vertices of a regular n-sided polygon 
inscribed in the circle \z\ = 1. 

It seems to be difficult to prove this but Dr. Birch informs me that some 
work by Mullholland1 shows that the result is false for large n. I can, however, 
prove that the result is true for n = 3, and then A < 27. The suggested 
general result would be A < nn. 

I show first that the maximum value of A arises from values of z satisfying 
either the equation 

(3) Z — z — = h n - I K , (r = 1, 2, . . . , n), 
s = l Zr Zs L 

where zT denotes the conjugate of zr; or the equations typified by zn = 0 and 

1 n~1 1 1 
(4) r + I r - = n ( » - * ( r = l , 2 , . . . , » - l ) . 

Zr s=i Zr Zs L 

The conjectured result is then proved for n = 3. It is also proved that the 
result is true if we impose the condition that the zs lie on the circle \z\ = 1. 
In the original version of this paper, this result was used to prove the result 
for n = 3. This led to a very interesting maximum problem in two variables, 
namely, 

Problem. To find the maximum value when x2 + y2 < 1, x > 0, y > 0, of 

(5) fix, y) = (x2 + y2 - kxy) (1 - x2) (1 - y2). 

Though the deduction of the conjectured result for n = 3 is not short, it 
seems worth-while reproducing the original proof since the ideas involved 
may be of further use. I think the method may give the greatest value of 
A for n = 4, but this I leave to others. 

The general problem was brought to my notice by Dr. J. H. H. Chalk, 
who after reading the original version of my paper, informed me that the 
conjecture was false for n > 6. His counter example is given by 

Received April 13, 1959. 
lilInequalities between the geometric mean difference and the polar moments of a plane 

distribution," Journal of the London Mathematical Society, 33 (1958) 260-269. 

699 

https://doi.org/10.4153/CJM-1960-063-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-063-5


700 L. J. MORDELL 

( n y ( 2irir \ 
zn = 0 and zr = \^ZT\) e x P\^~Z~ï / (r = 1, 2, . . . , n - 1). 

The equation (3) (but not (4)) was communicated to me by Dr. Birch 
after I had written the original version of this paper. He did not give the 
factor \{n — 1) in (3). 

For the general case, write 

2i = riel6\ ... ,Zn = rn e
l6n, n > 0, . . . , rn > 0. 

Then 
(6) A = n(f!2 + rl - 2rir2 cos (d1 - 02)), 
where 

2 , 2 , , 2 

T\ + r2 + . . . + rn = «. 
Suppose first that no r is zero. Then we can apply Lagrange's method of 

undetermined multipliers. Hence we have two sets of equations, one typified 
by the two 
n\ V n - r,cos(0i - 0,) > n 
(7) h ÂTr] -"2^^(07=1^ ""Xfl " °' 
(8) ± -^2^-^2-^~,-T " ̂  = 0, 

l^i r2 + rs - 2r2rs cos(02 - 0,) 
5^2 

where X is an undetermined multiplier, and the other typified by 
(Q\ Y" firssin(0i - 0,) = 
W &r\ + r\ - 2r1rs cos(0x - 0s)

 U* 
Multiply the equations (7), (8), . . ., by ri, r2.. ., and add. Then X = \{n — 1). 

Multiply (9) by -i/n and add to (7). Then 
71 1 

S ; —=ïT*T=TO = M" - l)ri. 

Hence 

(10) £ - - 1 — = \(n - l)ix. 
s=2 S i — JSg 

Adding the equations typified by (10), we find 

(ii) £ zs = o. 
5 = 1 

Suppose next that some r are zero. Clearly at most one can be zero, say 
rn = 0. Then we have 

A = r\r\ . . . rl-Jl{rl + r\ - 2rlr2 cos(0i - 02)), 
where the product is extended over ri, r2, . . . , rn-\. Lagrange's method now 
gives 

(12) — + 2^ "2~.—2 Ô 72» iTT ~~ ̂ r i = ^, 
n Ir i ri + r, — 2rirs cos (0i - 0S) 

m \ V ^ sin(0i - 0,) = 
1 j £2 rî + r* - 2rifs cos(0i - 0.) 
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On multiplying the equations typified by (12) by rh r2l . . . , and adding, we 
have 

n - 1 + \{n - 1) {n - 2) - /m = 0, 

or 

/* = * ( » - 1). 

Hence proceeding as before, we have the equation (4). 
We now prove the conjecture for n = 3. The equation (3) gives 

(14) _ ! _ + _±_= g . 
Z\ — Z2 Z\ — Zz 

From (11), z\ + Zi + z% = 0, and so (14) gives 

3Zi = Zi(Z! — Z2) (Zi — 2 3 ) . 

Hence 
3*1 = 2 ! ( i i - Z2) (2i - Z3), 

and so on multiplying these together, 

\Zi — Z2\ \Zi — Z3| = 3 . 

Clearly 
\zi — z2| = |z2 — zs| = |z3 — zi\ = 3*, 

and so Si, 22, 23 are at the vertices of an equilateral triangle whose side is of 
length 3*. Also the incentre of the triangle is at the origin. Clearly A = 27. 

Suppose next that z3 = 0. The equation (4) gives 

1 , 1 - 1 , 1 
Z\ Z\ — Z2 Z2 Z2 — Z\ 

Add these and take also the conjugate equation. Then on multiplying these 
together, we find either 

z\ + z2 = 0, or \zi z2\ = 1. 

Zl2 + Z22 = g l 2 + ^ 2 = 3 > 

Since 

we find either 

|Z l | = \Z2\ = \â) ° r \Zl\ = Ô lS2| 

Then 

= (1) or |2l| 5*d= 1 
2 

2 2 / N 2 
= Z\Z2\Z\ — Z2) 

27 

5* T 1 

Hence these values of the z do not give the greatest value of A. 
We now prove the general conjecture when we impose the condition that 

the z lie on the circle \z\ = 1. The equation (7) is true independently of 
Lagrange's method when X = \{n — 1) since now the r's are equal to 1. The 
equation (9) with the r's equal to 1 still arises by Lagrange's method applied 
to the 6. Hence (10) is still true and now Z\ = 1/zi; and so the z satisfy equa­
tions typified by 
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Let z = Z1ÎJS2, 
(15) gives 

and so 

(16) 

for z = Zi, 3 2 , • 

in z. Hence 

71 1 1 1 
(15) £ — — - = 5 (» - 1) - . 

, zK be the roots of the polynomial equation f(z) = 0. Then 

/'M = *-± 
?(*) 2 -

2 / " ( 2 ) - ( W - l ) / ' ( 2 ) = 0 

, zn. Since (16) is of degree n — 1 in 2, (16) holds identically 

log(/'(z)) = (» - 1) log2 + logci 

f(z) = cz^1 

f(z)=^zn + c2, n 
where ci, Ci are arbitrary constants. Hence the result. 

Since \z\ = 1, the equation f{z) = 0 must be equivalent to zn — e2iria/n = 0 
where a is real. This shows that zi, Z<L, . . . ,zra are at the vertices of a regular 
w-sided polygon inscribed in the circle \z\ — 1. To find A, there is no loss of 
generality in taking a = 0. Then the vertices are at zr = e2Tir/n, (r = 0, 
1, . . . , n — 1). Then for these z, 

A = Ur^s(2 - 2 cos(0r - 6S)) 

= n r 5 , s 4 ^ - 1 ) s i n 2 ( ^ - = - ^ ) =nn 

follows from 

rr1 • (rA n 

This is deduced from 
w - l 

cos(nd) - 1 = 2W_1 n ( cos 6 - cos —T 

on dividing by cos 0 — 1 and putting 6 = 0. Then obviously 

Il s i n 2 ( - ^ ) = (n/T-y. 

I now give the original proof of the general conjecture when n = 3 found 
by using the result above. Write 

A = U(rl + r\ - 2rlr2 cos(0i - 02)), 
where 

(18) r\ + r2
2 + r2 = 3. 

The greatest value of A cannot arise when r3 = 0, since then r{2 + r2
2 = 3 

and 
A<r?f2

2(ri + r 2 ) 2 < 2 7 / 2 . 
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Suppose first that all the cosines are < 0. If cos 6 < 0, then 

(19) x2 + y2 - 2xy cos 6 < 2 sin2 (\6) (x2 + y2) 

since 

(x — y)2cosd < 6. 

Hence 

A < 87r0i + r2
2)n sin2(0! - 02) < 8-8-27/64 < 27 

from (18) and (17), equality arising only when rx = r2 = r3 = 1; and this 
is the case of the equilateral triangle. 

Suppose secondly that all the cosines are > 0. Then 

A <7r(r1
2 + r2

2) < 8. 

Suppose thirdly that only two of the cosines are > 0, say cos (0i — 62) < 0. 
Then 

A < (f2 + rl - 2rir2 cos(0i - 62){r\ + r\)(r\ + r\), 
< 2(n2 + rl){r\ + rl)(rt + rl) < 16. 

Suppose finally that only one of the cosines > 0, say cos (0i — 62) > 0. Then 
from (19) 

A < 4( (fi - r2)2 + 4rir2 sin2( — — - J ) 

Ky ( 2 , 2 w 2 , 2N • 2( 02 — #31 • 2( #3 ~ #1 \ 

X (fi + r3) (r3 + f2) sin ^ — - — I sin I — - — I 

< 4(fj - f2)2(ri + r3
2)(r^ + r3

2) + 16rir2(rî + r2
2)(rf + r3

2)27/64 

on noting (17). Hence since rx
2 + r3

2 = 3 — r2
2, etc., 

4A < (3 - r2)(3 - r2
2)(16r2 - brlr2 + 16r2

2). 

We require the maximum value of the right-hand side where Y\2 + r2
2 < 3. 

On putting r\2 = 3x2, r2
2 = 3y2, we are led to the 

Problem. To find the maximum value M of 

(20) / = / (x,y) = (x2 + y2 - kxy) (1 - x2) (1 - y2) 

when x2 + y2 < 1, x > 0, y > 0. 

Clearly ikf > J on taking x2 = | , 3> = 0. We prove in particular that when 
k = ~, then M = \ arising from x2 = y2 = | or from x;y = 0, x2 + 3>2 = \. 
These give 4A < 108. We note that xy = 0 does not lead to a maximum value 
of A. 

Write 

x = \/r cos 6, y = \/r sin 6, s = sin 6 cos 0, 

and so 
0 < r < 1,0 < ^ < | . 
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Then 
(21) / ( * , y) = g{r, s) = r ( l - ib) (1 - r + r2 s2). 

Several cases mus t be considered, and so we denote by Mi, M\, . . . , possible 
values among which M mus t be found. We first investigate possible maximum 
values of g{r, s) arising from the boundary values of r, s. 

W e begin with the boundary values of s. 

First , 5 = 0. Then g = r ( l — r) and so Mi = J when r = | . Then x = 1 / V 2 , 
y = 0, or x = 0, y = 1 / V 2 . 

Secondly, 5 = J. Then 

4-l*>M)' 
We need only consider k < 2. Then the maximum Af2 arises when r = 2 /3 
giving M 2 = 4(2 - fe)/27. We can reject this unless 4(2 - &)/27 > i or 
& < 5/16. Hence if jfe < 5/16, M2 = 4 (2 - &)/27 arising from x = y = 1 / V 3 . 
When jfe = |g, M2 = M1 = \. 

We need only take the boundary value r = 1. Then g = (1 — &s)s2 and the 
extremal value arises from 5 = 2/3fe. This satisfies 0 < 5 < i only if & > 4 / 3 . 
Then g = 4/27£2 < J. Hence if k < 4 / 3 , a possible maximum may arise from 
5 = i and then 7kf3 = (2 - ife)/8 > \ only if jfe < 0. Clearly M 3 < M2. 

T o summarize, the boundary values give possible maxima Mi = \ for 
k > 5/16, and M2 = 4(2 - ife)/27 when k < 5/16. 

We now consider non-boundary values of r, s. We pu t 

? = °' ? = o. 
dr ds 

Hence 
1 - 2r + 3r2 s2 = 0, - k + kr - 3kr2s2 + 2r2s = 0. 

Mult iply the first equat ion by k and add to the second. T h e n — kr + 2r25 = 0, 
and so 2rs = k since we need not consider r = 0. T h e solutions arising are 
certainly not admissible unless 0 < k < 1 since we have excluded 5 = 0. 
Clearly 1 - 2r + 3&2/4 = 0, and so 

3k2 + 4 4£ 
8 ' 3fe" + 4 ' 

These mus t satisfy r < 1 which is obvious, and 5 < | which requires 
3&2 + 4 - Sk > 0 or k > 2 / 3 . Bu t then 

(Sk2 + 4 Y 4 - &2 V 1 3&2 + 4 , &2\ 

= 14 - k2f 1 
64 ^ 4 ' 

Hence the maximum value of g arises from the boundary values. Then 
M = 4(2 - Jfe)/27 or \ according as k < 5/16 or k > 5/16. 

This disposes of the problem. 
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