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Abstract

Let F be a non-archimedean local field of characteristic different from 2 and resid-
ual characteristic p. This paper concerns the �-modular representations of a connected
reductive group G distinguished by a Galois involution, with � an odd prime dif-
ferent from p. We start by proving a general theorem allowing to lift supercuspidal
F�-representations of GLn(F ) distinguished by an arbitrary closed subgroup H to a
distinguished supercuspidal Q�-representation. Given a quadratic field extension E/F
and an irreducible F�-representation π of GLn(E), we verify the Jacquet conjecture in
the modular setting that if the Langlands parameter φπ is irreducible and conjugate-
selfdual, then π is either GLn(F )-distinguished or (GLn(F ), ωE/F )-distinguished (where
ωE/F is the quadratic character of F× associated to the quadratic field extension E/F
by the local class field theory), but not both, which extends one result of Sécherre
to the case p = 2. We give another application of our lifting theorem for supercuspi-
dal representations distinguished by a unitary involution, extending one result of Zou
to p = 2. After that, we give a complete classification of the GL2(F )-distinguished
representations of GL2(E). Using this classification we discuss a modular version
of the Prasad conjecture for PGL2. We show that the ‘classical’ Prasad conjecture
fails in the modular setting. We propose a solution using non-nilpotent Weil–Deligne
representations. Finally, we apply the restriction method of Anandavardhanan and
Prasad to classify the SL2(F )-distinguished modular representations of SL2(E).
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1. Introduction

Let F be a non-archimedean local field of characteristic different from 2 and residual character-
istic p and G the F -points of a reductive group defined over F . Let R be an algebraically closed
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field of characteristic different from p. A representation π of a group G, with coefficients in R, is
said to be distinguished with respect to a subgroup H of G if it admits a non-trivial H-invariant
linear form. More generally, if χ is a character of H, we will say that π is (H,χ)-distinguished if
there exists a non-trivial linear functional on the space of π on which H acts via χ, i.e. f : π → R
such that

f(π(h)v) = χ(h)f(v)

for all h ∈ H and v ∈ π.
Distinguished representations are central objects in the study of the relative Langlands

program. The distinction problem is closely related to the Langlands functorial conjectures and
it should be possible to characterize the (H,χ)-distinguished representations as the images with
respect to a functorial transfer to G from a third group G′ in many cases. There exists a rich
literature, such as [AP03, SaVe17, Lu18, Lu20], trying to classify all H-distinguished complex
representations of G. Furthermore, when θ is the Galois involution of order 2 and H = Gθ,
Prasad [Pra15] constructs χH a quadratic character of H and gives a precise conjecture for the
multiplicity dimC HomH(π, χH) in terms of the enhanced Langlands parameter of π.

More recently, mathematicians have been interested in modular representations of p-adic
groups, which are smooth representations with coefficients in F�, with � �= p. The theory of
�-modular representations has been initiated by Vignéras in [Vig96]. These works are motivated
by a modular local Langlands program and studying congruences between automorphic forms
(which have been used to prove many remarkable theorems of arithmetic geometry).

For modular representations, much remains to be done for the distinction problems. Sécherre
and Venketasubramanian have examined the pair (G,H) = (GLn(F ),GLn−1(F )) in [SéVe17].
Sécherre [Séc19] also investigated the pair (GLn(E),GLn(F )) for supercuspidal representations
with p odd, where E is a quadratic extension of F . Ongoing work by Kurinczuk, Matringe
and Sécherre aims at extending the results of the pair (GLn(E),GLn(F )) to all representations
(see [KMS23]).

In this paper, we consider a quadratic field extension E/F of locally compact non-
archimedean local fields of characteristic different from 2 and residual characteristic p. Denote
by qF (respectively, qE) the cardinality of the residue field of F (respectively, E). Let �
be an odd prime different from p. We are interested in the distinction problems for the
pairs (GLn(E),GLn(F )) and (SL2(E),SL2(F )). We also give a modular version of the Prasad
conjecture for PGL2.

We would like to point out that the ongoing work [KMS23] of Kurinczuk, Matringe and
Sécherre also gives a classification of all irreducible GL2(F )-distinguished representations of
GL2(E) (at least for p �= 2). However, our methods and theirs are completely different. They use
the gamma factors and the epsilon factors whereas in this article we use Mackey theory.

1.1 Distinguished supercuspidal representations of GLn

A Q�-representation (π̃, Ṽ ) of a p-adic group G is said to be �-integral if it admits a free
Z�-submodule L of Ṽ , stable by G, such that L⊗Z�

Q� = Ṽ . If (π, V ) is an irreducible �-integral
Q�-representation and L is a Z�[G]-lattice of V of finite type, then the semi-simplification
of L⊗Z�

F� does not depend on the choice of L and is called the reduction modulo � of π
(we refer to [Vig96] for more details). If π is an F�-representation of G, an �-integral irreducible
Q�-representation π̃ is called a Q�-lift of π if its reduction modulo � is π.

Our first result, discussed in § 3, is the following.
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Theorem 1.1 (Theorem 3.4). Let H be a closed subgroup of GLn(F ). Let π be a supercuspidal
F�-representation of GLn(F ) which is H-distinguished. Then there exists a Q�-lift π̃ of π such
that it is supercuspidal and distinguished by H.

Remark 1.2. Theorem 1.1 is valid even for F of characteristic 2.

The proof depends on the type theory and the existence of a projective envelope for super-
cuspidal types. This is a very general result allowing us to transfer the problem from modular
representations to complex representations. As an immediate consequence, we get the following.

Corollary 1.3 (Corollary 3.5). There is no supercuspidal F�-representation of GL2n(F )
distinguished by Sp2n(F ).

We also give two other applications. The first is to study supercuspidal representations of
GLn(E) distinguished by a Galois involution. For � �= 2, we prove the dichotomy theorem and
the disjunction theorem. Let ωE/F be the quadratic character of F× associated to the field
extension E/F by the local class field theory and let σ be the non-trivial F -automorphism
of E. A representation π of GLn(E) is said σ-selfdual if π∨ � πσ, where π∨ is the contragredient
representation of π.

Theorem 1.4 (Theorem 3.14). Let π be a supercuspidal F�-representation of GLn(E). Then
π is σ-selfdual if and only if it is distinguished or ωE/F -distinguished by GLn(F ). Moreover, π
cannot be both distinguished and ωE/F -distinguished by GLn(F ).

For the complex representations, it is called the Jacquet conjecture proved by Kable in
[Kab04]. We first show that one can lift σ-selfdual supercuspidal F�-representations to σ-selfdual
supercuspidal Q�-representations. This follows from the fact that since � is odd, the number
of inertial classes of such lifts is odd, hence has a fixed point under σ-duality. Then we prove
that all these supercuspidal lifts share the same sign due to Schur’s lemma. Combining with
Theorem 1.1, this allows us to deduce the Jacquet conjecture for modular representations from
complex representations.

Remark 1.5. When p �= 2, the distinguished supercuspidal representations were studied by
Sécherre in [Séc19] (with no restriction on �). Our method is different from that used in [Séc19]
and works for � �= 2 but for any p. Therefore, combining the results in this paper and in [Séc19]
gives the complete result for distinguished supercuspidal representations for all � and p with
� �= p.

We also have a characterization using the local Langlands correspondence of Vignéras.

Proposition 1.6 (Proposition 3.15). Let π be a σ-selfdual supercuspidal F�-representation
of GLn(E) and ϕ its Langlands parameter. Then π is distinguished (respectively, ωE/F -
distinguished) by GLn(F ) if and only if ϕπ is conjugate-orthogonal (respectively, conjugate-
symplectic).

The last application, is for representations distinguished by a unitary involution. Let � �= 2
and ς be a unitary involution of GLn(E), that is ς(g) = εσ(tg−1)ε−1 where ε is a hermitian
matrix in Mn(E).

Theorem 1.7 (Theorem 3.17). Let π be a supercuspidal F�-representation of GLn(E) and ς a
unitary involution of G. Then π is distinguished by GLn(E)ς if and only if πσ � π.

This extends the result of [Zou22] to the case p = 2 when F has characteristic zero.
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1.2 Modular distinguished representations for (GL2(E), GL2(F ))
In § 4, we complete the classification of all representations of GL2(E) distinguished by GL2(F ).

Let χ1, χ2 be two characters of E×. We use Mackey theory to show that the principal series
representation π(χ1, χ2) is distinguished by GL2(F ) if and only if either χ1χ

σ
2 = 1 or χ1|F× =

χ2|F× = 1 with χ1 �= χ2. (See Lemma 4.3 for more details.)
To get a complete classification, we are just missing irreducible subquotients of non-

irreducible principal series. Denote by ν1/2 the unramified character of E× sending a uniformizer
to q1/2

E where the square root q1/2
E of qE is fixed. Let χ be a character of E×. When qE �≡ −1

(mod �), we denote by Stχ the twisted Steinberg representation, that is the unique generic irre-
ducible subquotient of π(χν−1/2, χν1/2). In the case qE ≡ −1 (mod �), the generic irreducible
subquotient of π(χν−1/2, χν1/2) is the special representation, denoted by Spχ.

Theorem 1.8 (Theorem 4.6). Let χ be a character of E×.

(i) If � � q2E − 1, then Stχ is GL2(F )-distinguished if and only if χ|F× = ωE/F .
(ii) If � | qE + 1, then Spχ is GL2(F )-distinguished if and only if � | qF + 1 and χ|F× = ωE/F or

ν
1/2
|F× .

(iii) If � | qE − 1, then Stχ is GL2(F )-distinguished if and only if χ|F× = ωE/F or χ|F× = 1 with
� | qF − 1.

Remark 1.9. From Theorem 1.8, we would like to highlight the fact that we have in the modular
case new phenomena that do not appear in the complex setting.

– When qF ≡ 1 (mod �), the Steinberg representation St is both GL2(F )-distinguished and
(GL2(F ), ωE/F )-distinguished.

– When qE ≡ −1 (mod �) and E/F is unramified (that is, q2F ≡ −1 (mod �) and so qF �≡ −1
(mod �)) the special representation Sp is neither GL2(F )-distinguished nor (GL2(F ), ωE/F )-
distinguished. This has been mentioned by Sécherre in [Séc19, Remark 2.8].

– When qE ≡ −1 (mod �) and E/F is ramified (that is, qF ≡ −1 (mod �)) the special
representation Sp is (GL2(F ), ωE/F )-distinguished and is also (GL2(F ), ν1/2

|F×)-distinguished.

1.3 The modulo � Prasad conjecture
In § 5, we discuss the Prasad conjecture for modular representations. In [Pra15], Prasad proposed
a conjecture for the multiplicity dimC HomG(F )(π, χG) under the local Langlands conjecture,
where G is a quasi-split reductive group defined over F , π is an irreducible smooth represen-
tation of G(E) lying in a generic L-packet and χG is a quadratic character depending on G
and the quadratic extension E/F . Since the local Langlands correspondence for the �-modular
representations of G(F ) has not been set up in general, except for G = GLn, we are concerned
only with the simplest case where G = PGL2.

The modulo � local Langlands correspondence for GL2 has been defined by Vignéras in
[Vig01a], and is a map V : IrrR(GL2(E)) → NilpR(WE ,GL2), where NilpR(WE ,GL2) denotes
the set of isomorphism classes of nilpotent semisimple Weil–Deligne representations. Let π be an
irreducible representation of GL2(E) with central character ωπ. Since detV (π) = ωπ as characters
of WE , it induces a map

PV : IrrR(PGL2(E)) → NilpR(WE ,SL2).

Using this correspondence, the Prasad conjecture is not valid for �-modular representations
(at least in the non-banal case). Actually, it does not work for any map L : IrrR(PGL2(E)) →
NilpR(WE ,SL2) having the same semisimple part as PV (see § 5.2).
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In order to propose a solution for �-modular representations, we will consider non-
nilpotent Weil–Deligne representations as in [KM21]. Let WDRepR(WE ,GL2) denote the set
of isomorphism classes of semisimple Weil–Deligne representation of GL2. Kurinczuk and
Matringe define in [KM21] an equivalence relation ∼ on WDRepR(WE ,GL2), and we denote
by [WDRepR(WE ,GL2)] the quotient set.

Then we define an injection from NilpF�
(WE ,SL2) to [WDRepF�

(WE ,SL2)] (which is not
the trivial one in the non-banal case) in the following way. Let χ be a quadratic character
of E×. If � | qE − 1, we denote by ΨSt,χ ∈ NilpF�

(WE ,SL2), the Weil–Deligne representation
ΨSt,χ = (χν−1/2 ⊕ χν−1/2, N) with N =

(
0 1
0 0

)
. If � | qE + 1, let ΨSp,χ := (χν−1/2 ⊕ χν1/2, 0). We

define an injection

P : NilpF�
(WE ,SL2) ↪→ [WDRepF�

(WE ,SL2)]

by

P (Ψ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
χν−1/2 ⊕ χν−1/2,

(
0 1
1 0

)]
if � | qE − 1 and Ψ = ΨSt,χ,[

χν−1/2 ⊕ χν1/2,

(
0 1
1 0

)]
if � | qE + 1 and Ψ = ΨSp,χ,

[Ψ] otherwise.

Then we prove a modulo � version of the Prasad conjecture, using our modified injection P .

Theorem 1.10 (Theorem 5.14). Let π be an irreducible generic F�-representation of PGL2(E).
Then π is ωE/F -distinguished by PGL2(F ) if and only if there exists ΨF ∈ WDRepF�

(WF ,SL2)
such that ΨF |WE

∼ P ◦ PV (π).

Remark 1.11. (i) In the banal case, i.e. � � q2E − 1, [WDRepF�
(WE ,SL2)] = NilpF�

(WE ,SL2) and
P is the trivial injection, so we found the ‘classical’ Prasad conjecture.

(ii) When � | qE + 1, � | qF + 1 and π = Spχ for a quadratic character χ of E× such

that χ|F× = ωE/F ν
1/2
|F× , then the representation ΨF is not the Langlands parameter of any

representation of PGL2(F ) (nor it is in the image of P ).

1.4 Modular distinguished representations for (SL2(E), SL2(F ))
In the last part, § 6, we use our classification of GL2(F )-distinguished representation of GL2(E)
and the restriction method of [AP03] to classify SL2(F )-distinguished representations for SL2(E)
in the modular setting.

Let π be an irreducible F�-representation of GL2(E). Denote by lg(π) the length of π|SL2(E)

and by lg+(π) the length of π|GL+
2 (E), where GL+

2 (E) is the subgroup of GL2(E), consisting of
elements whose determinants belong to F×E×2. Let pE be a uniformizer of E, and oE be the
ring of integers of E. We fix an F�-character ψ0 of E, which is non-trivial on oE and is trivial
on both pE and F .

For supercuspidal representations, we will adapt the methods of [AP03] to prove the following
theorems.

Theorem 1.12 (Theorem 6.14). Let π be an irreducible supercuspidal F�-representation of
GL2(E) distinguished by SL2(F ), and π+ the unique irreducible component of π|GL+

2 (E) that is

ψ0-generic. Then π+ is distinguished by SL2(F ). Furthermore, let τ be an irreducible component
of π|SL2(E), distinguished by SL2(F ). Then τ is an irreducible component of π+|SL2(E).
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Theorem 1.13 (Theorem 6.15). Let π be an irreducible supercuspidal F�-representation of
GL2(E), and τ an irreducible component of π|SL2(E). Suppose τ is distinguished by SL2(F ).
Then,

dimHomSL2(F )(τ,1) =

⎧⎪⎪⎨⎪⎪⎩
1 if π|SL2(E)

∼= τ,

1 if lg+(π) = 2 and lg(π) = 4,
2 if lg+(π) = lg(π) = 2,
4 if lg+(π) = lg(π) = 4.

The first case and the last case arise only when p = 2.

We also have a criterion for principal series representations. See Theorem 6.16 for more
details.

Along the way, we prove the existence of a good lift for supercuspidal representations of
SL2(E). Let τ be an irreducible cuspidal F�-representation of SL2(E), and τ̃ an irreducible
cuspidal Q�-representation of SL2(E), which is �-integral. We say that τ̃ is a good Q�-lift of τ ,
if the reduction modulo � of τ̃ is irreducible and isomorphic to τ . We prove in Proposition 6.7
that any supercuspidal representation of SL2(E) always admits a good Q�-lift.

2. Notation

Let E/F be a quadratic extension of locally compact non-archimedean local fields of characteris-
tic different from 2 and residual characteristic p. Denote by qF (respectively, qE) the cardinality
of the residue field of F (respectively, E). Let WF be the Weil group of F . We denote by σ the
non-trivial F -automorphism of E.

Denote by ωE/F the quadratic character of F× associated to the quadratic field extension
E/F by the local class field theory. We may identify the characters of WF and the characters of
F× by the local class field theory. Let NmE/F be the norm from E to F .

For n ≥ 1, we denote by GLn the general linear group, and by SLn the special linear group.
Denote the standard Borel subgroup of GLn by Bn. Let πi (i = 1, 2) be an irreducible represen-
tation of GLni(F ). Denote by π1 � π2 the tensor product representation of GLn1(F ) × GLn2(F ).
For a character χ of F×, we will also denote by χ the character χ ◦ det of GLn(F ). The trivial
character will be denoted by 1. Let νn be the character g �→ |det(g)| of GLn(F ).

Let H be a subgroup of G. Let π be an irreducible representation of G. We say that π
is H-distinguished if HomH(π,1) �= 0. In case that the subgroup H is clear, we say that π is
distinguished sometimes.

In this article, � is an odd prime number different from p (except for § 3.1, where � = 2 is
also allowed).

Remark 2.1. This paper is written for F of characteristic different from 2. However, our main
theorem, Theorem 3.4, which allows lifting �-modular supercuspidal distinguished representa-
tions to �-adic distinguished representations works without any assumption on the characteristic.
Therefore, in § 3.1 only, no assumption on the characteristic of F will be made. After that, we
always assume the characteristic to be different from 2 because we use results from the theory of
complex representations which are only written with this assumption. For instance, the Jacquet
conjecture follows from [Kab04], written in characteristic zero, but which also works for positive
odd characteristic by [AKMSS21, Appendix A] (or [Jo23]).
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3. Distinguished supercuspidal representations of GLn

In this section, we study the distinguished supercuspidal representation of GLn. First, we
prove a lifting theorem for supercuspidal representations distinguished by an arbitrary closed
subgroup H. This theorem allows us to study the supercuspidal representations of GLn(E) dis-
tinguished by a Galois involution, and extend the result of [Séc19] to the case p = 2. We also
give an application to supercuspidal representations of GLn(E) distinguished by unitary groups.

3.1 Lifting of modular distinguished representation
In this section, G = GLn(F ) and H is an arbitrary closed subgroup of G. In this part only, F
could be of any characteristic and we do not require the prime � to be odd, just � �= p. We want
to prove that a supercuspidal H-distinguished F�-representation can be lifted to a supercuspidal
H-distinguished Q�-representation. This allows bringing the modular distinction problems to the
complex setting. To do that, we use type theory and the existence of a projective envelope.

We start with a few lemmas. Let K be a finite field extension of F . We denote by �K

(respectively, �F ) a uniformizer of K (respectively, F ). Let OK be the ring of integers of K, and
for an integer i ≥ 1, we denote by U i

K the subgroup of O×
K defined by U i

K := {1 +�i
Ku, u ∈ OK}.

Lemma 3.1. Let i ≥ 1 and x ∈ U i
K . Then xp ∈ U i+1

K .

Proof. Let us write x = 1 +�i
Ku, with u ∈ OK . The binomial expansion gives us xp = 1 +

p�i
Ku+�2i

Ku
′, with u′ ∈ OK . But �K divides p in OK so xp ∈ U i+1

K . �
Lemma 3.2. LetN ∈ N∗. Then there exist two integersm ≥ 1 and s ≥ 1 such that�m

K ∈ �s
FU

N
K .

Proof. Let e be the ramification index ofK over F . Then�e
K = �Fu, with u ∈ O×

K . Now O×
K/U

1
K

is isomorphic to k×K the residue field of K of cardinal qK − 1. Therefore, x := uqK−1 ∈ U1
K and

from Lemma 3.1, xpN ∈ UN
K . We get the result with m = e(qK − 1)pN and s = (qK − 1)pN . �

Let G := GLn(F ). Let π be a supercuspidal F�-representation of G. Let us write π =
c-IndG

J (Λ) (compact induction), for an extended maximal simple type (J,Λ) (for the definition
see § 3.1 [MS14] in which it is called ‘un type simple maximal étendu’). Let J0 be the unique
maximal compact subgroup of J , J1 its maximal normal pro-p-subgroup. There exists a field
extension K of F , such that J = K×J0 = 〈�K , J

0〉. The restricted representation λ := Λ|J0 is
irreducible, and the pair (J0, λ) is a maximal simple type. In particular, we have an isomorphism
λ ∼= κ⊗ ρ, where κ is an irreducible representation of J0 with some technical conditions and ρ
is inflated from an irreducible supercuspidal representation of J0/J1.

Since F× is central in J , �F acts on Λ as a scalar ᾱ ∈ F×
� . For R = F� or Z� and β ∈ R×,

we denote by Repβ
R(J) the category1 of smooth R-representations of J such that �F acts as the

scalar β.

Proposition 3.3. (i) The representation Λ admits a projective envelope P in Repᾱ
F�

(J).

(ii) Let α ∈ Z� be a lift of ᾱ. Then there exists a unique (up to isomorphism) projective object
P in Repα

Z�
(J) such that P ⊗ F� = P.

Proof. (i) We apply a similar strategy as in [DS23, § 4]. Let η be a character of J , trivial on J0

such that η(�F ) = ᾱ. Let Σ := Λη−1 such that �F acts trivially on Σ.
Since Σ is smooth and J0 is compact, there exists an open subgroup H2 of J1 such that

H2 ⊂ ker(Σ|J0) and J0/H2 is finite. Since H2 is open in J0, there exists an integer N ≥ 1 such

1 The category Repβ
R(J) is the subcategory of the category of smooth representations of J , which contains a full

subcategory composed of smooth representations of J with a fixed central character on F×.
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that UN
K ⊂ H2. By Lemma 3.2, there exist m,n ≥ 1 such that �m

K ∈ �s
FU

N
K . We define a group

Q by
Q = J/〈H2, �F 〉.

The group Q is finite. Moreover, since �m
K ∈ �s

FH
2, we have that 〈H2, �m

K〉 = 〈H2, �s
F 〉.

Therefore, Σ is trivial on 〈H2, �F 〉 and we can consider Σ as a representation of Q.
Since Q is a finite group, by [Ser77, Proposition 41] we can consider the projective envelope

of Σ in the category of F�[Q]-modules, denoted by P. We can regard P as a representation of
J by inflation. Let

Q1 = J/〈�F 〉,

which is compact and Q is a quotient of Q1. Since H2 is pro-p, a projective object of Q remains
projective as a representation of Q1. Now we show that P is projective in Rep1

F�
(J). It is due

to the fact that Rep1
F�

(J) is equivalent to the category of smooth F�-representations of Q1. For
arbitrary ᾱ, it follows from the fact that Rep1

F�
(J) and Repᾱ

F�
(J) are equivalent via twisting

η with each object in Rep1
F�

(J).

(ii) By [Ser77, Proposition 42], there is a unique projective Z�[Q]-module P such that P ⊗
F� = P. Like in the first part, P can be lifted to a projective object in Repα

Z�
(J). If P ′ is another

projective in Repα
Z�

(J) with the same properties, then, by projectivity, any isomorphism from

P to P ′ ⊗ F� can be lifted to an isomorphism from P to P ′. �

Using this projective envelope, we can prove the desired theorem.

Theorem 3.4. Let F be a non-archimedean local field. Let H be a closed subgroup of GLn(F ).
Let π be a supercuspidal F�-representation of GLn(F ) which is H-distinguished. Then there
exists a Q�-lift π̃ of π such that it is supercuspidal and distinguished by H.

Proof. We write π = c-IndG
J (Λ), for an extended maximal simple type (J,Λ). We have Λ ∈

Repᾱ
F�

(J) for ᾱ ∈ F×
� . Let χ̄ be an F�-character of F× such that χ̄ is trivial on O×

F and χ̄(�F ) = ᾱ.
Frobenius reciprocity and Mackey formula give us

0 �= HomH(π,1) �
∏

g∈J\G/H

HomJg∩H(Λg,1).

Thus, there exists a g ∈ G such that HomJg∩H(Λg,1) �= 0. Let H ′ := Hg−1
such that Jg ∩H =

(J ∩H ′)g. Therefore,

0 �= HomJg∩H(Λg,1) � HomJ∩H′(Λ,1).

Define I = 〈J ∩H ′, �F 〉 and so 〈�F 〉 ⊂ I ⊂ J. Applying Frobenius reciprocity, we have

HomJ∩H′(Λ,1) ∼= HomI(Λ, IndI
J∩H′ 1).

Let φ be a non-trivial element in HomI(Λ, IndI
J∩H′ 1). Let V be the representation space of Λ.

Taking the restriction to 〈�F 〉, we have

0 �= φ ∈ Hom〈
F 〉(Λ, IndI
J∩H′ 1).

Since 〈�F 〉 acts as the character χ̄ on Λ, φ(V ) is contained in the χ̄-socle of resI
〈
F 〉 IndI

J∩H′ 1,
which is the maximal subrepresentation where 〈�F 〉 acts as a multiple of χ̄. Meanwhile,

IndI
J∩H′ 1 ⊂ Ind〈
F 〉

{1} 1.
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By Frobenius reciprocity, dim Hom〈
F 〉(χ̄, Ind〈
F 〉
{1} 1) = 1. On the other hand, J ∩H ′ acts triv-

ially on IndI
J∩H′ 1. Since Λ is J ∩H ′-distinguished, one can inflate χ̄ to a character of I, still

denoted by χ̄. Then the χ̄-socle of IndI
J∩H′ 1 is equivalent to χ̄. Hence,

φ ∈ HomI(Λ, χ̄) �= 0.

By Frobenius reciprocity and the fact that J/I is compact, we have

0 �= HomI(Λ, χ̄) ∼= HomJ(Λ, c-IndJ
I χ̄), (3.1)

where c-IndJ
I χ̄ ∈ Repᾱ

F�
(J) is admissible.

Let α be a root of unity in Z� whose image (after modulo �) in F� is equal to ᾱ, and denote
by χ a Z�-lift of χ̄ such that χ maps �F to α. Set χ̃ = χ⊗Z�

Q�. From Proposition 3.3, let P
be the projective envelope of Λ in Repᾱ

F�
(J) and P a projective object in Repα

Z�
(J) such that

P ⊗ F� = P. Set Λ|J0 = κ⊗ ρ. Since ρ corresponds to a supercuspidal representation of J0/J1,
a similar argument to [Vig96, Chapitre III, 2.9] gives us the structure of the projective envelope.
Let us give some more details. From the structure of the projective envelope for finite groups,
we see that if δ is an irreducible integral Q�-representation of J , then the multiplicity of δ in
P ⊗ Q� is equal to the multiplicity of Λ in r�(δ) (see [DS23, Proposition 4.9]). Moreover, if Λ′ is a
subquotient of P ⊗ F�, then [DS23, Lemma 4.13] says that there exists δ an irreducible integral
Q�-representation of J such that its modulo � reduction contains Λ and Λ′. We show that Λ ∼= Λ′

by proving that δ is an extended maximal simple type and that Λ = r�(δ). In fact, there is an
irreducible component δ0 of δ|J0 , such that κ⊗ ρ is a subquotient of r�(δ0). Let κ̃ be a Q�-lift
of κ as in [Vig96, Chapitre III, 4.20]. Denote by η̃ the restriction κ̃|J1 . Since the η̃-isotypic part
of δ0 is non-trivial, by taking κ̃-restriction as defined in [Vig01b, Definition 8.1 (c)], there is an
irreducible Q�-representation ρ̃ of J0/J1 such that δ0 ∼= κ̃⊗ ρ̃. Then ρ is a subquotient of r�(ρ̃).
Since ρ is supercuspidal, by [Hel16, Proposition 5.7] we know ρ̃ is supercuspidal and ρ = r�(ρ̃),
which implies that δ0 is a maximal simple type and r�(δ0) = κ⊗ ρ. Hence, δ is an extended
maximal simple type. We conclude that r�(δ) = Λ. Therefore, we have the following structure
of P:

(i) P = P ⊗Z�
F� is indecomposable of finite length, with each irreducible component isomor-

phic to Λ;
(ii) let P̃ := P ⊗Z�

Q� be a Q�-lift of P, then P̃ is isomorphic to the direct sum of extended
maximal simple types, which are all the Q�-lifts of Λ.

By part (i) and (3.1), we get that

HomF�[J ](P, c-IndJ
I χ̄) �= 0. (3.2)

By § I,9.3,(viii) of [Vig96], c-IndJ
I χ is a Z�[J ]-lattice of c-IndJ

I χ̃, and the reduction modulo-�
gives a surjective morphism from c-IndJ

I χ to c-IndJ
I χ̄. By the projectivity of P, (3.2) implies

that
HomJ(P, c-IndJ

I χ) �= 0.
Hence, by tensoring with Q� on both sides,

0 �= HomJ(P ⊗ Q�, c-IndJ
I χ̃) ⊂ HomJ(P ⊗ Q�, IndJ

J∩H′ 1). (3.3)

From part (ii) and (3.3) there exists a Q�-lifts Λ̃ of Λ such that HomQ�[J ](Λ̃, IndJ
J∩H′ 1) �= 0.

Hence, HomJ∩H′(Λ̃,1) �= 0.
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Let π̃ := c-IndG
J (Λ̃), where Λ̃ is a Q�-extended maximal simple type (the discussion before

about δ shows that Λ̃ is an extended maximal simple type). Hence, π̃ is irreducible and
supercuspidal. Since the reduction modulo � commutes with c-Ind, we deduce that the
representation π̃ is a Q�-lift of π. We are left to prove that it is H-distinguished. As before

HomJg∩H(Λ̃g,1) � HomJ∩H′(Λ̃,1) �= 0

and Mackey formula and Frobenius reciprocity give us that π̃ is H-distinguished. �
The following corollary is an immediate consequence of Theorem 3.4.

Corollary 3.5. When the characteristic of F is different from 2, there is no supercuspidal
F�-representation of GL2n(F ) distinguished by Sp2n(F ).

Proof. There is no complex supercuspidal representation of GL2n(F ) distinguished by Sp2n(F ).
When the field F has characteristic zero, this follows from [HR90, Theorem 3.2.2]; and when the
field F is of characteristic p with p �= 2, it follows from [Pra19, Theorem 1] (see [Pra19, § 8]).
Therefore, the result follows from Theorem 3.4. �

3.2 The Langlands correspondence modulo � for GLn

In the rest of this paper we will use the modulo � local Langlands correspondence to study
distinguished representations. We recall in this section some important results about it.

The first step to define a modulo � local Langlands correspondence for GLn is to define the
correspondence for supercuspidal representations. The supercuspidal representations correspond
to irreducible representations of the Weil group. This bijection is defined in the modulo � case
using the modulo � reduction. This leads to the semisimple Langlands correspondence using the
supercuspidal support of a smooth representation.

Let R be an algebraically closed field of characteristic different from p. We denote by
IrrR(GLn(F )) the set of isomorphism classes of smooth irreducible representations of GLn(F )
over R and by ScuspR(GLn(F )) the subset of supercuspidal R-representations. Let IrrR(GLF ) :=
∪n≥1 IrrR(GLn(F )) and ScuspR(GLF ) := ∪n≥1 ScuspR(GLn(F )).

Let WF be the Weil group of F . It is the subgroup of Gal(F/F ), where F is a separable
algebraic closure of F , generated by the inertia subgroup IF and a geometric Frobenius element
Frob. Its topology is such that IF has the topology induced from Gal(F/F ), IF is open and the
multiplication by Frob is a homeomorphism. Let IrrR(WF )(n) be the set of isomorphism classes
of smooth irreducible R-representations of WF of dimension n. Finally, we denote by ModR(WF )
the set of isomorphism classes of semisimple smooth R-representations of WF of finite dimension.

In [Vig01a] Vignéras defines a bijection using the modulo � reduction of the local Langlands
correspondence over Q�.

Theorem 3.6 [Vig01a, Corollary 2.5]. There exist unique Langlands bijections on F�

ScuspF�
(GLn(F )) ↔ IrrF�

(WF )(n)

which are compatible with modulo � reduction.

Let MScuspF�
(GLF ) be the set of formal finite sums π1 + · · · + πr of elements of

ScuspF�
(GLF ). The previous bijections induce a bijection

MScuspF�
(GLF ) → ModF�

(WF ).

Let π ∈ IrrF�
(GLn(F )). Then π appears as a subquotient of the parabolic induction of a rep-

resentation π1 � · · · � πr, where πi ∈ ScuspF�
(GLni(F )) and

∑
ni = n. This defines a surjective
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map with finite fibers, called the supercuspidal support,

sc : IrrF�
(GLF ) → MScuspF�

(GLF )

by sc(π) = π1 + · · · + πr.
Combining the supercuspidal support and the previous bijections (see [Vig01a, Theorem 1.6])

we get a map, that we call the semisimple Langlands correspondence modulo �,

Vss : IrrF�
(GLF ) → ModF�

(WF ).

The previous map Vss is a surjection but not a bijection. To get a bijection one needs to
introduce Weil–Deligne representations.

Let us start by recalling the definition of Weil–Deligne representations. Let ν : WF → R×

be the unique character trivial on the inertia subgroup of WF , sending a geometric Frobenius
element to q−1

F .

Definition 3.7. We call a semisimple Weil–Deligne representation of GLn over R a couple
(ϕ,N) with:

(i) ϕ : WF → GLn(R) a smooth representation with image composed of semisimple elements;
(ii) N ∈Mn(R) is a matrix such for all w ∈WF , ϕ(w)N = ν(w)Nϕ(w).

A morphism of Weil–Deligne representations from (ϕ,N) to (ϕ′, N ′) is a morphism of
WF -representation f ∈ HomWF

(ϕ,ϕ′) such that f ◦N = N ′ ◦ f . It is an isomorphism if f is an
isomorphism of WF -representations. We denote by WDRepR(WF ,GLn) the set of isomorphism
classes of semisimple Weil–Deligne representation of GLn. When R = Q�, every N as above is
nilpotent. However, this is not the case when R = F�. Therefore, we denote by NilpR(WF ,GLn)
the subset composed of the elements (φ,N) with N nilpotent.

Theorem 3.8 [Vig01a, Theorem 1.8.2]. Let ϕ ∈ ModF�
(WF ). The set consisting of π ∈

IrrF�
(GLF ) such that Vss(π) = ϕ is in bijection with the nilpotent endomorphisms N of π, up to

conjugation by an isomorphism of ϕ, such that ϕ(w)N = ν(w)Nϕ(w), for all w ∈WF .

Hence, we get a bijection IrrR(GLF ) → NilpR(WF ,GL). Vignéras defines the ‘Langlands’
bijection in [Vig01a, § 1.8] using modulo � reduction (in a non-naive way), and we call this
bijection the V correspondence:

V : IrrR(GLF ) → NilpR(WF ,GL).

3.3 Supercuspidal representations of GLn(E) distinguished by a Galois involution
Let E/F be a quadratic extension of locally compact non-archimedean local fields of character-
istic different from 2 and residual characteristic p. In this section we are interested in GLn(F )-
distinguished supercuspidal �-modular representations of GLn(E). A GLn(F )-distinguished
supercuspidal representation is σ-selfdual, that is π∨ � πσ (see [Séc19, Theorem 4.1]). Let us
assume that � �= 2 and let π be a σ-selfdual supercuspidal representation. The main goal of this
section is to prove the dichotomy theorem that π is either distinguished or ωE/F -distinguished,
and the disjunction theorem that π cannot be both distinguished and ωE/F -distinguished. We call
it the Jacquet conjecture in the modular setting. For p �= 2 this is proved in [Séc19, Theorem 10.8].
Using Theorem 3.4, when � �= 2, we will give a different proof of this result that also works for
p = 2 when F has characteristic zero.

Remark 3.9. In this section we assume � �= 2. When � = 2, then p �= 2 and the distinguished
supercuspidal representations are studied in [Séc19]. Therefore, combining the results of this
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section and of [Séc19] gives a complete result for supercuspidal distinguished representations for
all � and p with � �= p in characteristic zero.

With Theorem 3.4, we know that we can find a distinguished Q�-lift of a distinguished
supercuspidal F�-representation whose Langlands parameter is conjugate-orthogonal in the sense
of [GGP12, § 7]. With the following lemma, we will show that all the σ-selfdual Q�-lift of a
σ-selfdual supercuspidal representations are either all distinguished or all ωE/F -distinguished.

Lemma 3.10. Let π be a σ-selfdual irreducible supercuspidal F�-representation of GLn(E).
Suppose that π̃1 and π̃2 are two σ-selfdual irreducible supercuspidal Q�-representations of
GLn(E) such that both π̃i have modulo � reduction isomorphic to π. Then π̃1 and π̃2 share
the same sign, i.e. π̃1 and π̃2 are either conjugate-symplectic or conjugate-orthogonal at the
same time, but not both.

Proof. Let us denote by ϕ (respectively, ϕ̃i) the Langlands parameter of π (respectively, π̃i). For
i ∈ {1, 2}, since π̃2 is σ-selfdual, ϕ̃i is either conjugate-symplectic or conjugate-orthogonal, and
let us denote by Bi the associated bilinear form. We also denote by bi the sign of Bi. Let us denote
by Vi the space of ϕ̃i and by V the space of ϕ. The non-degenerate bilinear form Bi : Vi × Vi → Q�

induces an isomorphism of WE representation fi : V s
i → V ∨

i , where s ∈WF \WE .
Since ϕ̃i is a Q�-lift of ϕ, there exists an Z�-lattice Li of Vi such that Li ⊗ Q� � Vi and

Li ⊗ F� � V (as WE representations). Let Mi be the Z�-lattice of Vi such that fi induces an
isomorphism Ls

i →M∨
i . The modulo � reduction does not depend on the lattice, so we also

have Mi ⊗ Q� � Vi and Mi ⊗ F� � V . Let Bi,Z�
be the restriction of Bi to Li ×Mi. Its image

is a Z�-lattice of Q�. In addition, by the definition of Li and Mi it is non-degenerate as a
Z�-bilinear form. Therefore, its modulo � reduction gives a non-degenerate bilinear form B̄i

on V . As � �= 2 the sign bi is preserved by reduction modulo �, and is the sign of B̄i. Moreover,
π is supercuspidal, so ϕ is irreducible. Schur’s lemma implies that the sign of a bilinear form on
V is unique. Therefore, b1 = b2 and this concludes the proof. �

Theorem 3.4 and Lemma 3.10 imply the following proposition.

Proposition 3.11. Let π be a supercuspidal F�-representation of GLn(E). Then the following
assertions are equivalent:

(i) π is distinguished;
(ii) there exists a Q�-lift π̃ of π which is distinguished.

Moreover, when these conditions are satisfied, then all the σ-selfdual Q�-lifts π̃ of π are
distinguished.

Proof. The implication (i) ⇒ (ii) is given by Theorem 3.4 applied with GLn(E) and H =
GLn(F ). The other direction (ii) ⇒ (i) follows from an argument of reduction of invariant linear
forms as in [KM20, Theorem 3.4].

To conclude, when F has characteristic zero, if π is distinguished, then all the σ-selfdual
Q�-lifts of π are distinguished by Lemma 3.10. For F of positive characteristic, this follows from
[Séc19, Theorem 10.11]. �

We can now prove the disjunction theorem.

Proposition 3.12. Let π be a supercuspidal F�-representation of GLn(E) distinguished by
GLn(F ). Then

dim HomGLn(F )(π, ωE/F ) = 0.
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Proof. We prove the result by contradiction. Let us assume that π is ωE/F -distinguished. Let
χ be a character of E× extending ωE/F . Let π′ := π(χ−1 ◦ det). Then π′ is a supercuspidal
representation and is distinguished since π is ωE/F -distinguished. Applying Theorem 3.4 to π′

we find a lift π̃ of π which is ω̃E/F -distinguished, where ω̃E/F is the canonical �-adic lift of ωE/F ,
that is the Q�-character of F× of kernel NmE/F (F×).

With Theorem 3.4 we also have a distinguished supercuspidal Q�-lift of π. Thanks to
Proposition 3.11, all σ-selfdual Q�-lifts are distinguished by GLn(F ). In particular, π̃ is GLn(F )-
distinguished, which contradicts the fact that a σ-selfdual supercuspidal Q�-representation
cannot be both distinguished and ωE/F -distinguished. �

We are left to prove the dichotomy theorem. To do that, we need a theorem analogous to
Theorem 3.4 but for σ-selfdual representations.

Proposition 3.13. Let π be a σ-selfdual supercuspidal representation of GLn(E) over F�. Then
there exists a Q�-lift π̃ of π which is σ-selfdual.

Proof. Let us denote by δ the action of σ-duality on R-representations, that is V δ = (V σ)∨.
A representation is σ-selfdual if and only if it is δ invariant.

Let [π] be the inertial class of π. Let I be the set of inertial classes of supercuspidal Q�-lifts
of π. This is a finite set of cardinal a power of � (see [MS17, Proposition 1.3]). In particular, since
� �= 2, this cardinal is odd. The action of δ induces an action on inertial classes of representations
and since π is δ-invariant, δ induces an action on I. But the cardinal of I is odd and δ is an
involution, therefore there exists an inertial class which is δ-invariant, that is there exists π̃
a supercuspidal Q�-lift of π such that [π̃δ] = [π̃]. Let χ̃ be an unramified character such that
π̃σ = π̃∨ ⊗ χ̃.

Since χ̃ is unramified, it is trivial on the kernel of the norm map, that is χ̃ = χ̃σ. Therefore,
there exists an unramified character η̃ such that χ̃ = η̃η̃σ = η̃2. Since π̃ is �-integral, χ̃ is also
�-integral and so is η̃. Let π̃′ := π̃ ⊗ η̃−1 such that π̃′ is σ-selfdual. Let us denote by π′ = π ⊗ η−1

its reduction modulo � where η is the reduction modulo � of η̃. Since π̃′ is σ-selfdual so is π′.
The representations π and π′ = π ⊗ η−1 are both σ-selfdual. Thus π = π ⊗ η−2.

Let Xu(π) be the set of unramified characters ξ such that π = π ⊗ ξ. It is contained in the
cyclic group of order n composed of the character ξ such that ξn = 1 and is characterized by
its order f(π). Let o(η) be the order of η. We have o(η) | 2f(π). Let ρ̃ be the canonical Q�-lift
of η. In particular o(ρ̃) = o(η) | 2f(π). Let π̃′′ := π̃′ ⊗ ρ̃. It is a supercuspidal Q�-lift of π. To
finish the proof, we are left to prove that it is σ-selfdual. The representation π̃′ being σ-selfdual,
we just need to prove that π̃′′ = π̃′′ ⊗ ρ̃2, that is that o(ρ̃) | 2f(π̃′). The explicit formulas for f(π̃′)
and f(π) show that f(π̃′) = f(π)�k for some integer k (see, for instance, [MS14, Remark 3.21]).
Thus 2f(π) | 2f(π̃′) and so o(ρ̃) | 2f(π̃′). Therefore, π̃′′ is σ-selfdual. �

Theorem 3.14. Let π be a supercuspidal F�-representation of GLn(E). Then π is σ-selfdual if
and only if it is distinguished or ωE/F -distinguished by GLn(F ). Moreover, π cannot be both
distinguished and ωE/F -distinguished by GLn(F ).

Proof. Assume that π is σ-selfdual. Then there exists a σ-selfdual lift π̃ by Proposition 3.13.
From the dichotomy theorem in the complex case (see [Kab04] in characteristic zero and
[AKMSS21, Theorem A.2] in positive characteristic, or [Jo23]), π̃ is either distinguished or ω̃E/F -
distinguished. Since the reduction modulo � preserves distinction (see [KM20, Theorem 3.4]),
it is also true for π. The disjunction is Proposition 3.12 and the reciprocity follows from
Theorem 4.1. �
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Proposition 3.15. Let π be a σ-selfdual supercuspidal F�-representation of GLn(E) and ϕπ

its Langlands parameter. Then π is distinguished if and only if ϕπ is conjugate-orthogonal and
π is ωE/F -distinguished if and only if ϕπ is conjugate-symplectic.

Proof. A σ-selfdual supercuspidal F�-representation is either distinguished or ωE/F -distinguished
by Theorem 3.14. By Proposition 3.11 we can lift a distinguished representation to a distinguished
representation. Hence, the result follows from the complex case in [Kab04] (the results of [Kab04]
are still valid in positive characteristic by [AKMSS21, Appendix A] or [Jo23]). �

3.4 Supercuspidal representations of GLn(E) distinguished by unitary groups
Another example of application of Theorem 3.4 is for supercuspidal representations distinguished
by a unitary involution. Let G = GLn(E) and assume � �= 2. Let ε be an hermitian matrix in
Mn(E) (σ(tε) = ε). We denote by ς the unitary involution on G defined by ς(g) = εσ(tg−1)ε−1.
In this section, we are interested in supercuspidal F�-representations of G distinguished by Gς .
In particular, we are going to prove that a supercuspidal representation π of G is distinguished
by Gς if and only if it is σ-invariant. When p �= 2, this is proved by Zou in [Zou22].

Proposition 3.16. Let π be a σ-invariant supercuspidal representation of GLn(E) over F�.
Then there exists a Q�-lift π̃ of π which is σ-invariant.

Proof. We start with the same argument as in the proof of Proposition 3.13. The number of
inertial classes of supercuspidal Q�-lifts of π is a power of �, hence is odd. The involution σ
permutes its elements, so there exists an inertial class [π̃] which is σ-invariant. Let χ̃ be an
unramified character such that π̃σ = π̃ ⊗ χ̃.

Let us prove that π̃ is, in fact, σ-invariant. As in the proof of Proposition 3.13, let
Xu(π̃) (respectively, Xu(π)) be the set of unramified Q�-characters ξ̃ (respectively, unramified
F�-characters ξ) such that π̃ = π̃ ⊗ ξ̃ (respectively, π = π ⊗ ξ). It is characterized by its order
f(π̃) (respectively, f(π)). Let o(χ̃) be the order of χ̃. To finish the proof, we need to prove that
o(χ̃) divides f(π̃). Indeed, this implies that χ̃ ∈ Xu(π̃) and π̃σ � π̃ ⊗ χ̃ � π̃.

Let χ be the modulo � reduction of χ̃ of order o(χ). By taking the modulo � reduction we have
that π � π ⊗ χ, thus χ ∈ Xu(π) and o(χ) | f(π). In addition, there exists an integer a ∈ N such
that o(χ̃) = o(χ)�a. The explicit formulas for f(π̃) and f(π) show that there exists an integer
b ∈ N such that f(π̃) = f(π)�b and f(π) is prime to �.

Since χ̃ is unramified, it is trivial on the kernel of the norm map and χ̃ = χ̃σ. In particular,
π̃ � (π̃ ⊗ χ̃)σ � π̃ ⊗ χ̃2 and o(χ̃) | 2f(π̃). Since � is odd, we get that a ≤ b. At the end, o(χ) | f(π)
and �a | �b thus o(χ̃) | f(π̃) and this finishes the proof. �

Theorem 3.17. Let π be a supercuspidal F�-representation of G = GLn(E) and ς a unitary
involution of G. Then π is distinguished by Gς if and only if πσ � π.

Proof. When E has characteristic zero, since the modulo � reduction preserves σ-invariance and
the property of being distinguished for supercuspidal representations [KM20, Theorem 3.4], the
result follows from the complex case (see [HM02, § 4, Corollary] and [FLO12, Theorem 0.2])
by Theorem 3.4 and Proposition 3.16. For a field E of positive characteristic this follows from
[Zou22, Theorem 1.1]. �

Remark 3.18. The implication, π distinguished by Gς implies π-invariant, is also proved in
[Zou22, Theorem 4.1] similarly.
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4. The GL2(F )-distinguished representations

This section is devoted to the study of GL2(F )-distinguished �-modular representations of
GL2(E), with � �= 2. The case of supercuspidal representations has been dealt with in § 3.3.
Using Mackey theory, we will describe non-supercuspidal distinguished representations, hence
giving a complete classification of all GL2(F )-distinguished representations.

Before we start, let us recall a result of Sécherre about �-modular GL2(F )-distinguished
representations of GL2(E). Denote by 12 the trivial character of GL2(F ).

Theorem 4.1 [Séc19, Theorem 4.1]. Let π be a distinguished irreducible �-modular represen-
tation of GL2(E). Then:

(i) the central character of π is trivial on F×;
(ii) the contragredient representation π∨ is distinguished;
(iii) the space HomGL2(F )(π,12) has dimension 1;
(iv) the representation π is σ-selfdual, that is π∨ � πσ.

For the complex supercuspidal representations, it was proved by Hakim [Hak94] and
Prasad [Pra92].

4.1 Non-supercuspidal representations
In § 3.3, we studied when supercuspidal representations are distinguished. In this section, we will
deal with non-supercuspidal representations including the principal series representations.

Let us start with an easy lemma that is needed for the rest of this section.

Lemma 4.2. Let χ be a character of E×. Then χχσ = 1 if and only if χ|F× = 1 or χ|F× = ωE/F .

Proof. The condition χχσ = 1 is equivalent to χ|F× being trivial on the norm group NmE/F (E×).
By the local class field theory the only two characters of F× trivial on NmE/F (E×) are 1 and
ωE/F . �

Let χ1, χ2 be two characters of E×. Denote by π(χ1, χ2) the principal series representation of
GL2(E) induced from (χ1, χ2), that is, π(χ1, χ2) is the normalized parabolic induction of χ1 � χ2

from the standard Borel subgroup to GL2(E).

Lemma 4.3. Let π = π(χ1, χ2) be a principal series representation of GL2(E). Then π is
distinguished by GL2(F ) if and only if either χ1χ

σ
2 = 1 or χ1|F× = χ2|F× = 1 with χ1 �= χ2.

Moreover, when π is distinguished by GL2(F ) we have

dim HomGL2(F )(π,12) =

{
2 if � | qF − 1, χ1 = χ2 and χ1|F× = 1,
1 otherwise.

Proof. Recall that B2(E) is the standard Borel subgroup of GL2(E). Note that GL2(E) =
B2(E) GL2(F ) �B2(E)ηGL2(F ) with η =

(
1 δ
1 −δ

)
and E = F [δ]. Denote by S(X) the Schwartz

space of X consisting of locally constant functions defined on X. There is a short exact sequence

0 → S(B2(E)ηGL2(F )) → S(GL2(E)) → S(B2(E) GL2(F )) → 0

of GL2(F )-modules and π can be embedded inside S(GL2(E)). Due to the geometric lemma,
one has a short exact sequence

0 → c-IndGL2(F )
E× χ1χ

σ
2 → π → IndGL2(F )

B2(F ) δ
1/2
B2(E)δ

−1/2
B2(F )(χ1 � χ2) → 0
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with δ1/2
B2(E) = δB2(F ). Applying the functor HomGL2(F )(−,12),

0 → HomF××F×(χ1 � χ2,1) → HomGL2(F )(π,12) → HomE×(χ1χ
σ
2 ,1) → Ext1F××F×(χ1 � χ2,1),

where Ext1F××F× denotes the Ext functor in the category of the finite-dimensional representations
of F× × F×. Thanks to [DS23, Proposition 8.4] that Ext1F×(χ,1) �= 0 if and only if χ is trivial,
one has that HomGL2(F )(π,1) �= 0 if and only if χ1χ

σ
2 = 1 or χ1|F× = χ2|F× = 1. If χ1χ

σ
2 = 1

and χ1|F× = χ2|F× = 1, then χ1 = χ2. Thus, π is distinguished by GL2(F ) if and only if either
χ1χ

σ
2 = 1 or χ1|F× = χ2|F× = 1 with χ1 �= χ2.
Now, let us assume that π is distinguished by GL2(F ), that is χ1χ

σ
2 = 1 or χ1|F× =

χ2|F× = 1.
If χ1 �= χ2, only one of the conditions χ1χ

σ
2 = 1 or χ1|F× = χ2|F× = 1 can be true. We

then see from the previous exact sequence that HomGL2(F )(π,12) = HomF××F×(χ1 � χ2,1) or
HomGL2(F )(π,12) = HomE×(χ1χ

σ
2 ,1). Therefore,

dim HomGL2(F )(π,12) = 1.

We are left to study the case χ1 = χ2 with χ1|F× = 1. Let χ := χ1 = χ2. Note that if qE �≡ 1
(mod �) then π(χ, χ) is irreducible. Thus, by Theorem 4.1, dim HomGL2(F )(π(χ, χ),12) = 1.
Thus, we assume that qE ≡ 1 (mod �). We have two cases.

(i) Suppose qF ≡ −1 (mod �). In this case (ν−1/2)|F× �= 1. The representation π(χ, χ) is a direct
sum of two irreducible representations: the character (χν−1/2) ◦ det and a twisted Steinberg
Stχν−1/2 (see for instance [Vig89, Theorem 3]). As dim HomGL2(F )((χν−1/2) ◦ det,12) = 0
and

dim HomGL2(F )(Stχν−1/2 ,12) ≤ 1

by Theorem 4.1, we get that dim HomGL2(F )(π(χ, χ),12) = 1.
(ii) Suppose qF ≡ 1 (mod �). This time (ν−1/2)|F× = 1. Therefore,

dim HomGL2(F )(π(χ, χ),12) = dim HomGL2(F )(V (1,1),12)

where V (1,1) denotes the non-normalized induction.

Recall that
GL2(E) = B2(E) GL2(F ) �B2(E)ηGL2(F )

where η represents the open orbit in double coset B2(E)\GL2(E)/GL2(F ). There is a short
exact sequence

0 → c-IndGL2(F )
E× 1 → V (1,1) → IndGL2(F )

B2(F ) δ
1/2
B2(E)δ

−1/2
B2(F ) → 0.

Let f1 be a linear functional defined on a subset consisting of functions in V (1,1) supported on
the closed orbit B2(E) GL2(F ) given by

f1(ϕ) =
∫

B2(F )\GL2(F )
ϕ(x) dx

for ϕ ∈ V (1,1) supported on B2(E) GL2(F ). There is a natural extension of f1 to the whole
space V (1,1), still denoted by f1, due to the embedding

0 → HomGL2(F )(IndGL2(F )
B2(F ) (δ1/2

B2(F )),12) → HomGL2(F )(V (1,1),12).

Then f1 gives a GL2(F )-invariant linear functional on π with support B2(E) GL2(F ). Note
that there is a GL2(E)-invariant distribution on P 1(E) = B2(E)\GL2(E) if and only if
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δB(E) = 1, i.e. qE ≡ 1 (mod �) (see [Bou04, Chapter VII.6, Theorem 3]). Denote by dμ the
GL2(E)-invariant measure on P 1(E) and so it is GL2(F )-invariant. Then the restriction of dμ
on P 1(F ) = B2(F )\GL2(F ) is zero since P 1(F ) has measure zero with respect to dμ.
Therefore dμ and f1 generate two different GL2(F )-invariant linear functionals on V (1,1).
Thus, dim HomGL2(F )(V (1,1),12) = 2 (the dimension is bounded by 2 by the exact sequence
at the beginning of the proof). �

Let us come back to the criterion for being distinguished for irreducible non-supercuspidal
representations. By Lemma 4.3, we have the result for all irreducible principal series. We refer
to [Vig89] or [Vig96] for the following facts about π(χ1, χ2). Note that π(χ1, χ2) is reducible if
and only if χ1 = νχ2 or χ2 = νχ1. Hence, let χ be a character of E× and we are left to study
the irreducible subquotients of π(χν−1/2, χν1/2). If qE �≡ −1 (mod �), then π(χν−1/2, χν1/2) has
length 2 with irreducible subquotients χ and Stχ. If qE ≡ −1 (mod �), the length is 3 and the
subquotients are χ, χν2 and Spχ.

Lemma 4.4. Let χ be a quadratic character of F×. Then Ext1GL2(F )(12, χ ◦ det) = 0 where

Ext1GL2(F ) is the Ext functor in the category of the smooth representations of GL2(F ) with
trivial central character.

Proof. Let M be an extension of 12 by χ ◦ det in the category of the smooth representations of
GL2(F ) with trivial central character. The representation M has the form

g �→
(
χ(det(g)) α(g)

0 1

)
for g ∈ GL2(F ). If g1, g2 ∈ GL2(F ), then α(g1g2) = α(g1) + χ(det(g1))α(g2). Since M has trivial
central character, α(z) = 0 for every element z in the center of GL2(F ). It is obvious that
α(g) = 0 for all g in SL2(F ) since SL2(F ) is a perfect group. Let g ∈ GL2(F ) and t = det(g) ∈
F×. By writing g = g1g2 with g1 =

(
t 0
0 1

)
and g2 = g−1

1 g ∈ SL2(F ) we see that α(g) = α(g1).
Let ᾱ : F× → F� be defined by ᾱ(t) = α

((
t 0
0 1

))
. Then for all g ∈ GL2(F ), α(g) = ᾱ(det(g)).

Moreover, ᾱ is a cocycle satisfying ᾱ(t1t2) = ᾱ(t1) + χ(t1)ᾱ(t2), for t1, t2 ∈ F×.
Let t1, t2 ∈ F×. The equality ᾱ(t1t2) = ᾱ(t2t1) gives us that ᾱ(t1) + χ(t1)ᾱ(t2) = ᾱ(t2) +

χ(t2)ᾱ(t1). If χ �= 1, then there exists t1 such that χ(t1) �= 1. Therefore, for all t2 ∈ F×, we
have ᾱ(t2) = c(χ(t2) − 1) where c = ᾱ(t1)/(χ(t1) − 1) is a constant. Thus, for all g ∈ GL2(F ),
α(g) = c · (χ(det(g)) − 1) is a coboundary and the extension M splits.

We are left with the case χ = 1. In this case ᾱ : F× → F� is a morphism of group. Moreover,
α is trivial on the center of GL2(F ) so the morphism ᾱ is trivial on F×2 the subgroup of F×

of square elements. Since F×/F×2 is a 2-group and � �= 2, we get that ᾱ is trivial, and M also
splits. �
Remark 4.5. (i) If � = 2, then Lemma 4.4 does not hold any more.

(ii) If there is no restriction for the central character, one can easily find the non-trivial
extension of 12 by 12, which is of the form

g �→
(

1 ln |det(g)|
0 1

)
,

where ln is the natural logarithm function defined on the multiplicative group consisting of
positive real numbers.

Theorem 4.6. Let χ be a character of E×.

(i) If q2E �≡ 1 (mod �), then Stχ is distinguished if and only if χ|F× = ωE/F .
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(ii) If qE ≡ −1 (mod �), then Spχ is distinguished if and only if qF ≡ −1 (mod �) and χ|F× =

ωE/F or ν
1/2
|F× .

(iii) If qE ≡ 1 (mod �), then Stχ is distinguished if and only if χ|F× = ωE/F or χ|F× = 1 with
qF ≡ 1 (mod �).

Proof. Suppose that qE ≡ −1 (mod �). If Spχ is distinguished, then by Theorem 4.1(ii), Spχ has
trivial central character and so χ2

|F× = 1. Thus, we may assume that χ2
|F× = 1. The principal

series π(χν1/2, χν−1/2) has length 3. There are two exact sequences

0 → Jχ → π(χν1/2, χν−1/2) → χ ◦ det → 0

and
0 → (χ ◦ det)ν2 → Jχ → Spχ → 0

of GL2(E)-modules. Taking the functor HomGL2(F )(−,12), we have the following exact sequence

0 → HomGL2(F )(χ ◦ det,12) → HomGL2(F )(π(χν1/2, χν−1/2),12)

→ HomGL2(F )(Jχ,12) → Ext1GL2(F )(χ ◦ det,12),

where Ext1GL2(F ) is the Ext functor in the category of the smooth representations of GL2(F )
with trivial central character. By Lemma 4.4

Ext1GL2(F )(12, χ ◦ det) = 0.

If HomGL2(F )(π(χν1/2, χν−1/2),12) = 0, then HomGL2(F )(Jχ,12) = 0 and HomGL2(F )(Spχ,
12) = 0. Hence, Spχ is not distinguished.

Therefore, we can assume that π(χν1/2, χν−1/2) is distinguished. By Lemma 4.3 we get that
χχσ = 1 (that is χ|F× = 1 or χ|F× = ωE/F by Lemma 4.2) or χ|F×ν

1/2
|F× = χ|F×ν

−1/2
|F× = 1 (which

can only happen if ν|F× = 1, that is if qF ≡ −1 (mod �)). Moreover, in this case, Lemma 4.3
gives us

dim HomGL2(F )(π(χν1/2, χν−1/2),12) = 1.

We have three cases to study.

– Suppose χ|F× = 1. In this case dim HomGL2(F )(Jχ,12) = 0 and so Spχ is not distinguished.
– Suppose χ|F× = ωE/F . Now HomGL2(F )(χ ◦ det,12) = 0 and so dim HomGL2(F )(Jχ,12) = 1. If
qF ≡ −1 (mod �), then ν2|GL2(F ) = 12. Furthermore, the exact sequence

0 → HomGL2(F )(Spχ,12) → HomGL2(F )(Jχ,12) → HomGL2(F )((χ ◦ det)ν2,12) = 0

implies that dim HomGL2(F )(Spχ,12) = dim HomGL2(F )(Jχ,12) = 1. If q2F ≡ −1 (mod �), i.e.
E/F is unramified, then ν2|GL2(F ) = ωE/F . In this case dim HomGL2(F )((χ ◦ det)ν2,12) = 1
and so HomGL2(F )(Sp, ωE/F ) = 0.

– Suppose χ|F× = ν
1/2
|F× and qF ≡ −1 (mod �). In the same way, HomGL2(F )(χ ◦ det,12) = 0

and so dim HomGL2(F )(Jχ,12) = 1. Since HomGL2(F )((χ ◦ det)ν2,12) = 0 we get that Spχ is
distinguished.

Suppose qE ≡ 1 (mod �). In this case π(χν−1/2, χν−1/2) is reducible and semisimple:
π(χν−1/2, χν−1/2) = (χ ◦ det) ⊕ Stχ. If Stχ is distinguished, then so is π(χν−1/2, χν−1/2). By
Lemma 4.3, χχσ = 1 so χ|F× = 1 or χ|F× = ωE/F (Lemma 4.2). If χ|F× = ωE/F , then
dim HomGL2(F )(χ ◦ det,12)=0. Thanks to Lemma 4.3 dim HomGL2(F )(π(χν−1/2, χν−1/2),12)≥1
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and so Stχ is distinguished. Now if χ|F× = 1, dim HomGL2(F )(χ ◦ det,12) = 1 and from
Lemma 4.3

dim HomGL2(F )(π(χν−1/2, χν−1/2),12) =

{
2, if qF ≡ 1 (mod �);
1, if qF ≡ −1 (mod �).

Thus, Stχ is distinguished if and only if qF ≡ 1 (mod �).
The last case is q2E �≡ 1 (mod �). We will do a similar argument as qE ≡ −1 (mod �). We

have an exact sequence

0 → Stχ → π(χν1/2, χν−1/2) → χ ◦ det → 0

of GL2(E)-modules. If Stχ is distinguished then so is π(χν−1/2, χν1/2), so χ|F× = 1 or χ|F× =
ωE/F . Taking the functor HomGL2(F )(−,12), in the category of the smooth representations of
GL2(F ) with trivial central character, we have

0 → HomGL2(F )(χ ◦ det,12) → HomGL2(F )(π(χν1/2, χν−1/2),12)

→ HomGL2(F )(Stχ,12) → Ext1GL2(F )(χ ◦ det,12).

By Lemma 4.4 Ext1GL2(F )(12, χ ◦ det) = 0. By Lemma 4.3 dim HomGL2(F )(π(χν1/2, χν−1/2),
12) = 1. Therefore, Stχ is distinguished if and only if χ|F× = ωE/F . �
Remark 4.7. It can be seen from Theorem 4.6 that there are in the modular case new phenomena
that do not appear in the complex setting.

– When qF ≡ 1 (mod �), the Steinberg representation St is both GL2(F )-distinguished and
(GL2(F ), ωE/F )-distinguished.

– When qE ≡ −1 (mod �) and E/F is unramified (that is, q2F ≡ −1 (mod �) and so qF �≡ −1
(mod �)) the special representation Sp is neither GL2(F )-distinguished nor (GL2(F ), ωE/F )-
distinguished. This has been mentioned by Sécherre in [Séc19, Remark 2.8].

– When qE ≡ −1 (mod �) and E/F is ramified (and so qF ≡ −1 (mod �)) the special represen-
tation Sp is (GL2(F ), ωE/F )-distinguished and is also (GL2(F ), ν1/2

|F×)-distinguished.

5. The Prasad conjecture for �-modular representations of PGL2

In [Pra15], Prasad proposed a conjecture for the multiplicity dim HomG(F )(π, χG) under the local
Langlands conjecture, where G is a quasi-split reductive group defined over F , π is an irreducible
smooth representation of G(E) lying inside a generic L-package and χG is a quadratic character
depending on G and the quadratic extension E/F . Let us recall briefly the Prasad conjecture for
GLn, which has been verified for the complex representations due to the work of Flicker, Prasad,
Kable, Matringe and so on.

Theorem 5.1 (The Prasad conjecture for GLn). Let π be a generic irreducible complex repre-
sentation of GLn(E) with Langlands parameter φπ. Let χG = ωn+1

E/F . Let Un,E/F be the quasi-split

unitary group. If HomGLn(F )(π, χG) is non-zero, then:

(i) π∨ ∼= πσ;
(ii) there exists a parameter φ̃ of Un,E/F such that φ̃|WDE

= φπ;
(iii) dimC HomGLn(F )(π, χG) = |F (φπ)| where

F (φπ) :=
{
φ̃ : WDF → LUn,E/F

∣∣φ̃|WDE
= φπ

}
and |F (φπ)| denotes its cardinality.
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Conversely, if there exists a parameter φ̃ of Un,E/F such that φ̃|WDE
= φπ, then

HomGLn(F )(π, χG) is non-zero.

Since the local Langlands correspondence for the �-modular representations of G(F ) has not
been set up in general, except for G = GLn, we are concerned only with the simplest case where
G = PGL2.

Theorem 5.2 (The Prasad conjecture for PGL2). Let π be an irreducible generic complex
representation of PGL2(E) with Langlands parameter φπ. Then HomPGL2(F )(π, ωE/F ) is non-zero

if and only if there exists a parameter φ̃ of PGL2(F ) such that φ̃|WDF
= φπ.

First, we will show that the Prasad conjecture is not valid in the �-modular setting (when
� is non-banal), i.e. there exists a parameter φ̃ of PGL2(F ) such that φ̃|WDF

= φπ, however the
generic representation π is not ωE/F -distinguished by PGL2(F ). Then, we provide a potential
solution. To do that we define a non-trivial injection P from nilpotent Weil–Deligne repre-
sentations NilpF�

(WE ,SL2) to equivalence classes of non-nilpotent one [WDRepF�
(WE ,SL2)].

Composing the local Langlands correspondence of Vignéras PV with P gives us a modu-
lar version of the Prasad conjecture. That is, an irreducible generic F�-representation π of
PGL2(E) is ωE/F -distinguished if and only if there exists ΨF ∈ WDRepF�

(WF ,SL2) such that
ΨF |WE

∼ P ◦ PV (π).

5.1 The Langlands correspondence for PGL2

First, we recall how to get a Langlands correspondence for PGL2 using the correspondence
for GL2.

Let R = Q� or F�. We denote by WDRepR(WE ,SL2) the subset of WDRepR(WE ,GL2) com-
posed of the elements (ϕ,N) such that Im(ϕ) ⊂ SL2(R) and tr(N) = 0. Let NilpR(WE ,SL2) :=
WDRepR(WE ,SL2) ∩ NilpR(WE ,GL2).

Remark 5.3. Let (ϕ1, N1) and (ϕ2, N2) be two semisimple Weil–Deligne representations with
Im(ϕ1) ⊂ SL2(R) and Im(ϕ2) ⊂ SL2(R). If (ϕ1, N1) and (ϕ2, N2) are isomorphic in GL2,
then they are also isomorphic in SL2. Indeed, let A ∈ GL2(R) such that A−1ϕ1A = ϕ2 and
A−1N1A = N2. Since R is algebraically closed, let α ∈ R such that α2 = det(A)−1. Let
B := αA. Then B ∈ SL2(R) and B−1ϕ1B = ϕ2, B−1N1B = N2.

Let L be any map
L : IrrR(GL2(E)) → NilpR(WE ,GL2)

such that L sends the central character to the determinant (that is, if π ∈ IrrR(GL2(E)) and ωπ

is the central character of π, then ωπ corresponds to det(L(π)) via local class field theory). Then
L induces a map

PL : IrrR(PGL2(E)) → NilpR(WE ,SL2)

making the following diagram commute

IrrR(PGL2(E))

��

PL �� NilpR(WE ,SL2)

��
IrrR(GL2(E))

L �� NilpR(WE ,GL2)

where the vertical map on the left-hand side is given by the projection GL2(E) → PGL2(E) and
the vertical map on the right-hand side is the inclusion NilpR(WE ,SL2) ⊂ NilpR(WE ,GL2).
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In particular, since the V correspondence sends the central character to the determinant
[KM21, Lemma 6.4], we get a map PV : IrrR(PGL2(E)) → NilpR(WE ,SL2).

5.2 Problem with the modular Prasad Conjecture
We shall show that the Prasad conjecture does not hold for �-modular representations with the
V correspondence. One may think that it might work with a different choice of bijection in
Theorem 3.8. We will show in this subsection that such kind of bijection does not exist; see
Corollary 5.5.

Let L be a map

L : IrrF�
(PGL2(E)) → NilpF�

(WE ,SL2)

such that the semisimple part is given by Vss.
When qE ≡ −1 (mod �), the image under L of the special representation Sp, has ν−1/2 ⊕ ν1/2

for the semisimple part.

Lemma 5.4. Let E be a quadratic extension of F . Let us assume that qE ≡ −1 (mod �). Then
there exists ΦF ∈ NilpF�

(WF ,SL2) such that ΦF |WE
= L(Sp).

Proof. There are three elements in NilpF�
(WE ,SL2) with semisimple part ν−1/2 ⊕ ν1/2 : (ν−1/2 ⊕

ν1/2, 0), (ν−1/2 ⊕ ν1/2, N) and (ν1/2 ⊕ ν3/2, N), with N =
(

0 1
0 0

)
. Let νF be a lift of ν. The fol-

lowing Weil–Deligne representations in NilpF�
(WF ,SL2), (ν−1/2

F ⊕ ν
1/2
F , 0), (ν−1/2

F ⊕ ν
1/2
F , N) and

(ν1/2
F ⊕ ν

3/2
F , N) are respective lifts of the previous three elements of NilpF�

(WE ,SL2). Hence,
one of them is a lift of L(Sp). �

Corollary 5.5. In the non-banal case, the Prasad conjecture is not true for any map L as
above.

Proof. If qE ≡ −1 (mod �) and E/F is unramified, then by Theorem 4.6, the special represen-
tation Sp is not ωE/F -distinguished. However, the semisimple part of L(Sp) is ν−1/2 ⊕ ν1/2.
By Lemma 5.4 the Langlands parameter L(Sp) of Sp can be lifted to WF . �

5.3 Non-nilpotent Weil–Deligne representations
To fix the issue with the Prasad conjecture in the modular setting discussed in the previous
paragraph, we want to modify the V correspondence. In [KM21], Kurinczuk and Matringe modify
the local Langlands of Vignéras using non-nilpotent Weil–Deligne representations. We will do
something similar to solve our problem.

Kurinczuk and Matringe [KM21, Definition 4.8] defined an equivalence relation ∼ on
WDRepR(WE ,GL2). We recall the definition here. Let (Φ, U) and (Φ′, U ′) be two Weil–Deligne
representations (up to isomorphism) in WDRepR(WE ,GL2). Then we have the following.

(i) If (Φ, U) and (Φ′, U ′) are indecomposable (as Weil–Deligne representations), we say that
(Φ, U) ∼ (Φ′, U ′) if there exists λ ∈ R× such that

(Φ′, U ′) � (Φ, λU).

(ii) In the general case, (Φ, U) ∼ (Φ′, U ′) if one can decompose (Φ, U) =
⊕r

i=1(Φi, Ui) and
(Φ′, U ′) =

⊕r
i=1(Φ

′
i, U

′
i) with indecomposable summands such that (Φi, Ui) ∼ (Φ′

i, U
′
i).

We denote by [(Φ, U)] the equivalence class of (Φ, U) and by

[WDRepR(WE ,GL2)] := WDRepR(WE ,GL2)/∼.
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We define also an equivalence relation ∼ on WDRepR(WE ,SL2) through the inclusion
WDRepR(WE ,SL2) ⊂ WDRepR(WE ,GL2) and we use the notation [WDRepR(WE ,SL2)] :=
WDRepR(WE ,SL2)/∼.

Let χ be a quadratic character of E×. If � | qE − 1, we denote by ΨSt,χ ∈ NilpF�
(WE ,SL2),

the Weil–Deligne representation ΨSt,χ = (χν−1/2 ⊕ χν−1/2, N) with N =
(

0 1
0 0

)
. In addition,

if � | qE + 1, we denote by ΨSp,χ ∈ NilpF�
(WE ,SL2), the Weil–Deligne representation ΨSp,χ =

(χν−1/2 ⊕ χν1/2, 0). We define an injection

P : NilpF�
(WE ,SL2) ↪→ [WDRepF�

(WE ,SL2)]
by

P (Ψ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
χν−1/2 ⊕ χν−1/2,

(
0 1
1 0

)]
if � | qE − 1 and Ψ = ΨSt,χ,[

χν−1/2 ⊕ χν1/2,

(
0 1
1 0

)]
if � | qE + 1 and Ψ = ΨSp,χ,

[Ψ] otherwise.

Since NilpF�
(WE ,SL2) = [NilpF�

(WE ,SL2)] due to [KM21, Proposition 4.11], P is clearly an
injection.

Remark 5.6. (i) When � is banal, that is � � q2E − 1, P is just the identity, as we have
[WDRepF�

(WE ,SL2)] = NilpF�
(WE ,SL2).

(ii) The map P is not exactly the CV map of [KM21]. The image is different for non-banal
supercuspidal representation and the Steinberg representation when � | qE − 1.

5.4 Lifting for non-irreducible Weil–Deligne representations
In § 4.1 we have described which of the non-supercuspidal irreducible representations are
distinguished. To prove the Prasad conjecture, we also need to inquire when Weil–Deligne
representations of WE can be lifted to WF . This is what we do in this section.

We begin by giving a criterion to lift the semisimple part of a Weil–Deligne representation.

Lemma 5.7. Let χ be a character of E×. Let Ψ : WE → SL2(F�) defined by Ψ = χν−1/2 ⊕
χ−1ν1/2. Then there exists a semisimple ΨF : WF → SL2(F�) such that ΨF |WE

= Ψ if and only

if χ = χσ or χ �= χσ and χ|F× = ωE/F ν
1/2
|F× .

Moreover, if χ = χσ then ΨF = ην−1/2 ⊕ η−1ν1/2, with η a character of F× such that χ =
η ◦ NmE/F . In addition, if χ �= χσ and χ|F× = ωE/F ν

1/2
|F× , then ΨF = IndWF

WE
(χν−1/2) (which is

irreducible).

Proof. We have two cases if there is a lift to WF : the two-dimensional representation of WF is
irreducible or it is the sum of two characters.

Let us first study when there is a lift which is the sum of two characters. In this case we can
lift χ to WF . This is equivalent to χ = η ◦ NmE/F with η a character of F× also equivalent to
χ = χσ. If this condition is satisfied, then the lift is ΨF = ην−1/2 ⊕ η−1ν1/2.

Now we deal with the case where there is an irreducible lift. Then this lift must be ΨF =
IndWF

WE
(χν−1/2). Let μ = χν−1/2. The representation ΨF is irreducible if and only if μ �= μσ if

and only if χ �= χσ. Thus, let us assume that χ �= χσ. In addition, if ΨF is a lift of Ψ, then
μσ = χ−1ν1/2, that is μμσ = 1, or by Lemma 4.2, μ|F× = 1 or ωE/F . If these conditions are
satisfied, then IndWF

WE
(μ) is an irreducible lift of ΨF in GL2(F�). We are left to prove at which

condition it is in SL2(F�). By the previous condition we already have μμσ = 1. Thus, for w ∈WE ,
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IndWF
WE

(μ)(w) ∈ SL2(F�). Let s ∈WF \WE . Then

IndWF
WE

(μ)(s) =
(

0 μ(s2)
1 0

)
.

Therefore, IndWF
WE

(μ)(s) ∈ SL2(F�) if and only if μ(s2) = −1 if and only if μ|F× = ωE/F . This
finishes the proof. �

Remark 5.8. Note that, when χ is quadratic, the case where ΨF = IndWF
WE

(χν−1/2) is irreducible
can only happen when qE ≡ qF ≡ −1 (mod �). Indeed, we have χσ = χν and χ �= χσ. Therefore,
ν �= 1 and qE �≡ 1 (mod �). In addition, since χσ = χν, we get that ν|F× = 1 and so that q2F ≡ 1
(mod �). Hence, qE ≡ qF ≡ −1 (mod �).

Now we can examine when a Weil–Deligne representation (Ψ, N) can be lifted. We will
choose N such that these representations correspond under P ◦ PV to an irreducible generic
representation of PGL2.

Lemma 5.9. Let qE ≡ −1 (mod �) and χ be a quadratic character of E×. Let Ψ ∈
[WDRepF�

(WE ,SL2)] defined by Ψ = [χν−1/2 ⊕ χν1/2, N ], with N =
(

0 1
1 0

)
. Then there exists

ΨF ∈ WDRepF�
(WF ,SL2) such that ΨF |WE

∼ Ψ in [WDRepF�
(WE ,SL2)] if and only if qF ≡ −1

(mod �) and χ|F× = 1 or ωE/F ν
1/2
|F× .

Proof. If we have a lift ΨF , then we also have a lift of the semisimple part of Ψ. By Lemma 5.7
this is possible only if χ = χσ (which is equivalent by Lemma 4.2 to χ|F× = 1 or ωE/F ) or χ �= χσ

and χ|F× = ωE/F ν
1/2
|F× .

If χ|F× = 1, then by Lemma 5.7, the semisimple part of ΨF should be ην−1/2 ⊕ η−1ν1/2,
with η a character of F× such that χ = η ◦ NmE/F . Note that χ|F× = 1 implies that η2 = 1. If
qF ≡ −1 (mod �), then we can take ΨF = [ην−1/2 ⊕ ην1/2, N ]. If qF �≡ −1 (mod �), then q2F �≡ 1
(mod �) (E is a quadratic extension of F ). In this case, [WDRepF�

(WF ,SL2)] = NilpF�
(WF ,SL2).

Since N is not nilpotent, Ψ cannot be the restriction of an element of NilpF�
(WF ,SL2).

If χ|F× = ωE/F , again by Lemma 5.7, the semisimple part of ΨF should be ην−1/2 ⊕ η−1ν1/2.
This time η2 = ωE/F �= 1. Thus, the only Weil–Deligne representation [ην−1/2 ⊕ η−1ν1/2,M ] is
with M = 0 and is not a lift of Ψ.

Suppose χ|F× = ωE/F ν
1/2
|F× . We get that ν|F× = 1 so qF ≡ −1 (mod �). This time Lemma 5.7

tells us that the semisimple part of ΨF should be IndWF
WE

(μ), with μ = χν−1/2. Let M =
(

0 1−1 0

)
.

First, let us show that ΨF := (IndWF
WE

(μ),M) ∈ WDRepF�
(WF ,SL2). Let s ∈WF \WE . For

w ∈WE , we get that IndWF
WE

(μ)(w) =
( μ(w) 0

0 μs(w)

)
. Since μσ = μν we get(

μ(w) 0
0 μs(w)

)(
0 1
−1 0

)
= ν(w)

(
0 1
−1 0

) (
μ(w) 0

0 μs(w)

)
.

Since μ(s2) = −1, we also have IndWF
WE

(μ)(s) =
(

0 −1
1 0

)
. As we are in the case where qF ≡ −1

(mod �), the extension E/F is ramified. The element s must then be in the inertia subgroup
s ∈ IF and therefore ν(s) = 1. This gives us(

0 −1
1 0

)(
0 1
−1 0

)
= ν(s)

(
0 1
−1 0

) (
0 −1
1 0

)
.
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We have checked that ΨF = (IndWF
WE

(μ),M) ∈ WDRepF�
(WF ,SL2). To finish the proof we

need to show that ΨF |WE
∼ Ψ. We have ΨF |WE

= (χν−1/2 ⊕ χν1/2,M). In addition, (χν−1/2 ⊕
χν1/2,M) ∼ Ψ by [KM21, Lemma 4.23]. �

Lemma 5.10. Let qE ≡ 1 (mod �) and χ be a quadratic character of E×. Let Ψ ∈
[WDRepF�

(WE ,SL2)] defined by Ψ = [χν−1/2 ⊕ χν−1/2, N ], with N =
(

0 1
1 0

)
. Then there exists

ΨF ∈ WDRepF�
(WF ,SL2) such that ΨF |WE

∼ Ψ if and only if χ|F× = 1 or qF ≡ 1 (mod �) and
χ|F× = ωE/F .

Proof. By Lemma 5.7 the semisimple part of Ψ can be lifted to WF if and only if χ|F× = 1 or

ωE/F (χ|F× = ωE/F ν
1/2
|F× implies that χ = χσ). Moreover, this lift is ην−1/2 ⊕ η−1ν1/2, with η a

character of F× such that χ = η ◦ NmE/F .
If χ|F× = 1, then η2 = 1. We can take ΨF = (ην−1/2 ⊕ ην1/2, N) (since ν2

F = 1) and ΨF |WE

∼ Ψ.
If χ|F× = ωE/F , this time η2 = ωE/F �= 1. If qF ≡ −1 (mod �), then νF = ωE/F . In this case,

η−1 = ηνF . Thus, ην−1/2 ⊕ η−1ν1/2 = ην−1/2 ⊕ ην−1/2. The only Weil–Deligne representation
with this semisimple part is (ην−1/2 ⊕ ην−1/2, 0) which is not a lift of Ψ. If qF ≡ 1 (mod �) let
ΨF :=

(
ην−1/2 ⊕ η−1ν1/2,

(
1 0
0 −1

))
. We are left to prove that ΨF |WE

∼ Ψ. Let us remark that
N is diagonalizable. Therefore, (χν−1/2 ⊕ χν−1/2, N) is isomorphic to (χν−1/2 ⊕ χν−1/2, N ′)
with N ′ = diag(1,−1).

Hence, ΨF |WE
∼ Ψ and we get the result. �

Lemma 5.11. Let q2E �≡ 1 (mod �) and χ be a quadratic character of E×. Let Ψ ∈
[WDRepF�

(WE ,SL2)] defined by Ψ = [χν−1/2 ⊕ χν1/2, N ], with N =
(

0 1
0 0

)
. Then there exists

ΨF ∈ WDRepF�
(WF ,SL2) such that ΨF |WE

∼ Ψ if and only if χ|F× = 1.

Proof. By Lemma 5.7 we can lift the semisimple part if and only if χ|F× = 1 or ωE/F and this
lift is ην−1/2 ⊕ η−1ν1/2, with η a character of F× such that χ = η ◦ NmE/F . If χ|F× = 1, then
η2 = 1. We can take ΨF = (ην−1/2 ⊕ ην1/2, N) and ΨF |WE

∼ Ψ. If χ|F× = ωE/F , η2 = ωE/F �= 1.
If (ην−1/2 ⊕ η−1ν1/2,M) is a Weil–Deligne representation, then M = 0 and this is not a lift
of Ψ. �

Lemma 5.12. Let χ be a character of E×. Let Ψ ∈ [WDRepF�
(WE ,SL2)] defined by Ψ =

[χν−1/2 ⊕ χ−1ν1/2, N ], with N = 0. Then there exists ΨF ∈ WDRepF�
(WF ,SL2) such that

ΨF |WE
∼ Ψ if and only if χ = χσ or χ �= χσ and χ|F× = ωE/F ν

1/2
|F× .

Proof. If χ = χσ, take η a character of F× such that χ = η ◦NmE/F . Then ΨF = [ην−1/2 ⊕
η−1ν1/2, N ] is a lift. In addition, if χ �= χσ, Lemma 5.7 tells us that if there is a lift, then
χ|F× = ωE/F ν

1/2
|F× . In this case, we can take ΨF = [IndWF

WE
(χν−1/2), N ]. �

5.5 A modulo � Prasad conjecture for PGL2

Now we can gather together all the results of the previous sections to prove a ‘modified’ Prasad
conjecture for PGL2.

Let PV be the correspondence induced by the Vignéras correspondence

PV : IrrF�
(PGL2(E)) → NilpF�

(WE ,SL2)

Let us start with the supercuspidal representations.
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Proposition 5.13. Let π be an irreducible supercuspidal representation of PGL2(E) over F�.
Then π is ωE/F -distinguished if and only if its Langlands parameter PV (π) can be lifted to WF .

Proof. Let π be an irreducible supercuspidal representation of PGL2(E) over F�. Let ϕ := PV (π)
be the Langlands parameter of WE associated to π. By Proposition 3.11 π is ωE/F -distinguished
if and only if there exists π̃ a Q�-lift of π which is supercuspidal and ω̃E/F -distinguished. By
Theorem 5.2, this happens if and only if the Langlands parameter ϕ̃ of π̃, can be extended
to WF . From the definition of the modulo � Langlands correspondence, ϕ̃ is a Q�-lift of ϕ. Thus,
ϕ̃ can be extended to WF if and only if ϕ can be extended to WF . �

Now let us examine the irreducible generic representations of PGL2(E). Let π be such a
representation and denote by PV (π) = (Ψ, N) its Langlands parameter. We can classify the
irreducible generic representations as follows:

(i) The representation π is supercuspidal. In this case, Ψ is irreducible and N = 0.
(ii) The representation π is an irreducible principal series. Here π = π(χν−1/2, χ−1ν1/2) with

χ2 �= 1. We have Ψ = χν−1/2 ⊕ χ−1ν1/2 and N = 0
(iii) Suppose that π is the unique generic subquotient of a reducible principal series. Let χ be a

quadratic character of E× such that π is a subquotient of π(χν−1/2, χν1/2).
(a) If qE �≡ 1 (mod �), then π = Stχ. In this case, Ψ = χν−1/2 ⊕ χν1/2 and N =

(
0 1
0 0

)
.

(b) If qE ≡ −1 (mod �), this time π = Spχ, Ψ = χν−1/2 ⊕ χν1/2 and N = 0.

We can summarize the previous results of this article to prove the Prasad conjecture in the
modular case.

Theorem 5.14. Let π be an irreducible generic representation of PGL2(E) over F�. Then π
is ωE/F -distinguished if and only if there exists ΨF ∈ WDRepF�

(WF ,SL2) such that ΨF |WE
∼

P ◦ PV (π).

Proof. For supercuspidal representations, the result follows from Proposition 5.13. For irre-
ducible principal series representations it follows from Lemmas 4.3 and 5.12. In addition, for the
Steinberg representations or the special representations, it follows from Theorem 4.6 and
Lemmas 5.9, 5.10 and 5.11 (depending on the order of qE modulo �). �
Remark 5.15. When qE ≡ −1 (mod �), qF ≡ −1 (mod �) and χ is a quadratic character of E×

such that χ|F× = ωE/F ν
1/2
|F× . We have proved that P ◦ PV (Spχ) admits a lift to WF which is

ΨF = (IndWF
WE

(χν−1/2),M) with M =
(

0 1−1 0

)
. The semisimple part of ΨF is irreducible and M

is non-zero, and so this lift is not the Langlands parameter of any representation of PGL2(F )
(nor it is in the image of P ).

6. The SL2(F )-distinguished representations

In this section, assuming � �= 2, we classify all the representations of SL2(E) distinguished by
SL2(F ). For supercuspidal representations, we will use the restriction method of [AP03]. Similar
to the case GL2(E), we will deal with principal series representations using Mackey theory.

6.1 Modulo � representations of SL2

We start by recalling some general facts about modulo � representations of SL2.
Recall that E/F is a quadratic extension of locally compact non-archimedean local fields

of characteristic different from 2. Let oE be the ring of integers of E, and pE be the max-
imal ideal of oE . Let π be an irreducible cuspidal F�-representation of GLn(E). Thanks to
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[Cui20, Proposition 2.35], we have that the restricted representation π|SLn(E) is semisimple with
finite length and multiplicity-free. Denote by lg(π) the length of π|SLn(E). Let

Y (π) = {χ : F�-character of E×, π ⊗ χ ◦ det ∼= π}.
We call Y (π) the twist isomorphism set of π. By Corollary 3.8 of [Cui20], the cardinality |Y (π)|
is an integer prime to �, and by Proposition 2.37 of [Cui20], π|SLn(F ) is multiplicity-free. Hence
we deduce from part 3 of Corollary 3.8 of [Cui20] that

|Y (π)| = lg(π)�′ , (6.1)

where for any positive integer m, we denote by m�′ the largest divisor of m which is coprime
to �.

Lemma 6.1. When n = 2, we have

|Y (π)| = lg(π).

Proof. By (6.1), it is sufficient to prove that the length lg(π) is coprime to �. Let ZE× be the
center of GL2(E). The length of π|ZE× SL2(E) is equal to the length lg(π), which is a divisor of
the index [GL2(E) : ZE× SL2(E)], and the latter is equal to [E× : E×2], where E×2 consists
of the elements of the form x2 for x ∈ E×. By Corollary 5.8 of [Neu99], when the characteristic
of E is different from 2, the index [E× : E×2] is equal to 22+a where a is given by 2oE = pa

E .
Hence, lg(π) is a power of 2, and we have the desired identity under our assumption � �= 2. �
Definition 6.2. Define GL+

2 (E) to be a subgroup of GL2(E), consisting of matrices whose
determinant belongs to F×E×2, where E×2 consists of the elements of the form x2 for x ∈ E×.
We have GL+

2 (E) = ZE× SL2(E) GL2(F ) where ZE× denotes the center of GL2(E).

Lemma 6.3. Let lg+(π) be the length of π|GL+
2 (E), and

Y+(π) = {χ : F�-character of E×, π ⊗ χ ◦ det ∼= π, χ|F× = 1}.
Then we have

lg+(π) = |Y+(π)|.
Proof. Since the direct components of π|GL+

2 (E) are GL2(E)-conjugate, they share the same
length after restricted to SL2(E). We have that lg+(π) divides lg(π), which is coprime to �
by Lemma 6.1. Hence, the Clifford theory in �-modular setting (see [Cui20, Corollary 3.8]) is
the same as the complex setting in our case. Meanwhile, since π|SL2(E) is multiplicity-free, the
restriction π|GL+

2 (E) is multiplicity-free. Then the Clifford theory gives the desired equation
lg+(π) = |Y+(π)|. �

To compute the length lg(π) we will need to use the local Langlands correspondence.

6.2 Local Langlands for supercuspidal representations of SL2

In this section, we use the local Langlands correspondence for GL2 to define a correspon-
dence modulo � for supercuspidal representations of SL2. As in the complex case, for SL2, this
correspondence is not a bijection, we give a description of the L-packet.

Let τ be a supercuspidal F�-representation of SL2(E). Let π be a lift to GL2(E) i.e.
τ ⊂ π|SL2(E). To π we associate by the local Langlands correspondence of Vignéras its Lang-
lands parameter ϕπ : WE → GL2(F�). Let γ be the projection γ : GL2(F�) → PGL2(F�). Then
we define ϕτ : WE → PGL2(F�) by ϕτ := γ ◦ ϕπ. The parameter ϕτ does not depend on the
choice of the lift π since two lifts differ by a character and so are their Langlands parameters.
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Let ϕ : WE → PGL2(F�) be the parameter of a representation of SL2(E). Denote by Sϕ :=
CPGL2(F�)

(ϕ(WE)) the centralizer in PGL2(F�) of the image of ϕ.

Proposition 6.4. Let τ (respectively, π) be a supercuspidal F�-representation of SL2(E)
(respectively, GL2(E)) and τ ⊂ π|SL2(F ). Then we have an isomorphism

Sϕτ � Y (π).

Proof. We follow the strategy of [GK82, Theorem 4.3]. To simplify the notation here, we will
simply denote ϕτ by ϕ. From the definition of ϕ, we have that ϕ = γ ◦ ϕπ. Let s ∈ Sϕ and
s̃ ∈ GL2(F�) such that γ(s̃) = s. We define a function χs : WE → GL2(F�) by

χs(w) := s̃ϕπ(w)s̃−1ϕπ(w)−1 for w ∈WF .

This definition is independent of the choice of s̃. Moreover, since γ(χs(w)) = 1, χs(w) is a scalar
times the identity. We will denote this scalar again χs(w). Hence, we have

s̃ϕπ(w)s̃−1 = χs(w)ϕπ(w).
Let w1, w2 ∈WE . Then

χs(w1w2)ϕπ(w1w2) = s̃ϕπ(w1w2)s̃−1 = s̃ϕπ(w1)ϕπ(w2)s̃−1

= s̃ϕπ(w1)s̃−1s̃ϕπ(w2)s̃−1

= χs(w1)ϕπ(w1)χs(w2)ϕπ(w2)

= χs(w1)χs(w2)ϕπ(w1)ϕπ(w2) = χs(w1)χs(w2)ϕπ(w1w2).

Thus, χs(w1w2) = χs(w1)χs(w2) and χs is a character.
Since ϕπ � χsϕπ we have π � π ⊗ (χs ◦ det) and χs ∈ Y (π). This defines a morphism Sϕ →

Y (π), s �→ χs.
This morphism is surjective. Indeed, if ω ∈ Y (π), then π � π ⊗ (ω ◦ det) and, thus, ϕπ � ωϕπ.

If Ã implements the equivalence, then Ãϕπ(w)Ã−1 = ω(w)ϕπ(w). Let A := γ(Ã). Then A ∈ Sϕ

and ω = χA.
We are left to prove that Sϕ → Y (π) is injective. Let s ∈ Sϕ such that χs = 1. This implies

that s̃ centralizes the image of ϕπ. Since ϕπ is irreducible, Schur’s lemma tells us that s̃ is a
scalar. Hence, s = 1 and we have the injectivity. �

6.3 Explicit computation of the length
By Proposition 6.4, we compute the length lg(π) by considering the cardinality of Sϕτ . The
method in [She79] can be generalised to the case when � is positive, based on which we also
obtain the existence of good lift.

Definition 6.5. Let τ be an irreducible supercuspidal F�-representation of SL2(E), and τ̃ an
irreducible supercuspidal Q�-representation of SL2(E), which is �-integral. We say:

– τ̃ is a Q�-lift of τ , if τ is a subquotient of the reduction modulo � of τ̃ ;
– τ̃ is a good Q�-lift of τ , if the reduction modulo � of τ̃ is irreducible and isomorphic to τ .

For the case of GLn(E), an irreducible supercuspidal F�-representation of GLn(E) always has
a Q�-lift, and every Q�-lift is a good Q�-lift. The latter property is not true for SL2(E). However,
we will show the existence of a good Q�-lift of an irreducible supercuspidal F�-representation of
SL2(E).

Let π be an irreducible supercuspidal F�-representation of GL2(E) with Langlands parameter
ϕπ, and τ ⊂ π|SL2(E). We say ϕπ is dihedral if the image of WE is of the form IndWE

WK
θ in GL2(F�)
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where K/E is a quadratic field extension, WK is the Weil group of K and θ is a character of
WK which is not invariant under the Gal(K/E)-action. We say ϕπ is tetrahedral (respectively,
octahedral) if the image of WE under the map WE → GL2(F�) → PGL2(F�) is the alternating
group A4 (respectively, the symmetric group S4). (See [BH06, § 42] for more details.)

Proposition 6.6. Let π be an irreducible supercuspidal F�-representation of GL2(E).

(i) When ϕπ is dihedral, the length lg(π) is 2 or 4.
(ii) When ϕπ is not dihedral, then it must be tetrahedral or octahedral, and the length lg(π)

is 1.

Proof. Let π̃ be a Q�-lift of π. Then the length lg(π̃) divides the length lg(π). Suppose |Y (π)| �= 1.
Then there exists an F�-character χ of E× such that π ⊗ χ ◦ det ∼= π. By local class field the-
ory, we identify χ with an F�-character of WE such that ϕπ⊗χ◦det

∼= χϕπ
∼= ϕπ. Considering the

central character, we have that χ has order 2. Then there exists a quadratic field extension
K/E such that ker(χ) = WK , which, by Clifford theory implies that ϕπ|WK

is a direct sum of
two characters of WK . Hence ϕπ = IndWE

WK
θ where WK is the Weil group of K and θ is an

F�-character of WK . Let s be the non-trivial element in Gal(K/E). By a same computation
as in [She79, § 11, part (ii)], we deduce that if θ/θs has order two, then |Sϕτ | = 4. When
(θ/θs)2 �= 1, then |Sϕτ | = 2. When θ ∼= θs then ϕπ is reducible which is not an L-parameter of an
irreducible supercuspidal representation of GL2(E). Then we obtain the result by applying
Lemma 6.1 and Proposition 6.4. On the other hand, let μK/E be the unique non-trivial character
on Gal(K/E), then we have μK/E ⊗ ϕπ

∼= ϕπ, hence |Y (π)| �= 1. In other words, we show that
ϕπ is dihedral if and only if |Y (π)| �= 1.

Suppose that ϕπ is not dihedral, then |Y (π)| = 1, which implies that p = 2 by [BH06, § 42].
In this case, the image of a Q�-lift π̃ under the projection from GL2(Q�) to PGL2(Q�) is either
isomorphic to S4 or A4. For the second case, since any two subgroups of PGL2(Q�) being
isomorphic to A4 are conjugate to each other, we can choose ϕπ̃ such that its image in PGL2(Q�)
will be N � C, where

N =
{(±1 0

0 1

)
,

(
0 ±1
±1 0

)}
, C =

{
I,

(
1

√−1
1 −√−1

)
,

(
1 1

−√−1
√−1

)}
.

Since � �= 2, after reduction modulo � the image of ϕπ is isomorphic to N � C ∼= S4 as well. For
the case of S4, it is isomorphic to 〈N � C,

(√−1 0
0 1

)〉. We repeat the similar argument to the case
of A4. This finishes the proof. �
Proposition 6.7. Let π be an irreducible supercuspidal F�-representation of GL2(E) and π̃ a
Q�-lift of π. Let τ be an irreducible component of π|SL2(E) and τ̃ an irreducible component of
π̃|SL2(E).

(i) Suppose that ϕπ is tetrahedral or octahedral. Then π̃|SL2(E)
∼= τ̃ is a good Q�-lift

of τ .
(ii) Suppose that ϕπ is dihedral.

(a) If the cardinality of Sϕτ̃ is 4, then the reduction modulo � of τ̃ is irreducible. In par-
ticular, there exists an irreducible component τ̃ ′ ⊂ π|SL2(E) which is a good Q�-lift
of τ .

(b) If the cardinality of Sϕτ̃ is 2, then the reduction modulo � of τ̃ may be reducible. If it is
irreducible, there exists an irreducible component τ̃ ′ ⊂ π|SL2(E) which is a good Q�-lift

of τ . If it is reducible, then there exists another Q�-lift π̃
′ of π, such that the cardinality

of Sϕπ̃′ is 4, and there exists an irreducible component τ̃ ′ ⊂ π̃′|SL2(F ) which is a good

Q�-lift of τ .
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Proof. (i) We have that ϕπ̃ is tetrahedral or octahedral, hence the reduction modulo � of π̃|SL2(E)

is irreducible and isomorphic to τ by Proposition 6.6(ii).
(ii) We have the following.

(a) We first assume that the cardinality of Sϕτ̃ is 4. We switch the order of restriction to
SL2(E) and reduction modulo �. Then by Proposition 6.6(i), we have lg(π) = lg(π̃).
Hence, every irreducible component of π̃|SL2 is �-integral and its reduction modulo � is
irreducible. The unicity of Jordan-Hölder components implies the existence of a good
Q�-lift τ̃ .

(b) Now we assume that the cardinality of Sϕτ̃ is 2. Then there exists a field extension K/E
and an �-integral Q�-quasicharacter θ̃ of K×, such that ϕπ̃

∼= IndWE
WK

θ̃, and (θ̃s/θ̃)2 �= 1,
where Gal(K/E) = 〈s〉. Let θ be the reduction modulo � of θ̃. Then ϕπ

∼= IndWE
WK

θ.
Suppose (θs/θ)2 �= 1. Then the cardinality of Sϕτ is 2 as well. In this case, we apply the
same argument as for case (a), and deduce the existence of a good lift. If (θs/θ)2 = 1,
the cardinality of Sϕτ is 4, which implies that the length of the reduction modulo � of
each irreducible component in π̃|SL2 is 2, hence none of them is a good lift of τ . Now
fix a group embedding from F×

� to Z×
� by sending an element of F×

� to its Teich-
muller representative, which gives a natural Q�-lift of θ, denoted by θ̃0. We deduce that
(θ̃s

0/θ̃0)
2 = 1. Let π̃′ be the irreducible supercuspidal Q�-representation of GL2(E) cor-

responding to ϕ0 = IndWE
WK

θ̃0, which is �-integral with reduction modulo � isomorphic
to π, and the cardinality of Y (π̃′) is 4. We apply the argument for case (a) to finish the
proof. �

6.4 Representations of GL2(E) distinguished by SL2(F )
In the remainder of this paper, we follow the restriction method of [AP03] since the main strategy
of [AP03] works for F�-representations as well. However, in the modular setting, some modifica-
tions are still needed in the proofs. For convenience, we state the results which are required for
further use.

For an irreducible F�-representation π of GL2(E), we denote by X(π) the following set

X(π) = {χ : F�-character of F×, π is (GL2(F ), χ)-distinguished}.
Proposition 6.8 [AP03, Proposition 4.1]. Let π be an irreducible F�-representation of GL2(E).
Then

dim HomSL2(F )(π,1) = |X(π)|.
Proof. Assume that π is SL2(F )-distinguished. Let ZF× be the center of GL2(F ) and Z ′

F× be
the center of SL2(F ). The group Z ′

F× is the kernel of determinant that maps ZF× into F×. The
central character ωπ of π is trivial on Z ′

F× and so there exists a character χF of F× such that
χ2

F = ωπ|ZF×. Since each smooth F�-character of F× can be extended to a smooth F�-character
of E×, we obtain that after twisting by a smooth F�-character of E×, the central character ωπ

of π is trivial on ZF×. On the other hand, if π is (GL2(F ), χ)-distinguished for an F�-character
χ of F×, then π is SL2(F )-distinguished, and ωπ is trivial on ZF× after twisting by a smooth
F�-character of E× as explained above. We obtain the fact that if ωπ is never trivial on ZF×

after twisting by a smooth F�-character of E×, then dim HomSL2(F )(π, 1) = |X(π)| = 0.
Now assume that the central character ωπ is trivial on ZF×. As in the proof of Proposition 4.1

of [AP03], we consider the F�-space HomSL2(F )(π,1), which has a GL2(F )-module structure and
F× · SL2(F ) acts trivially. Since F×/F×2 is a finite abelian group whose order is a power of
2, our assumption that � �= 2 implies that HomSL2(F )(π,1) can decompose into a direct sum of
F�-characters of F×/F×2, hence a direct sum of F�-characters of GL2(F ). In particular, from
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the definition, for an F�-character χ of GL2(F ) which appears in the direct sum above, we
have that π is χ-distinguished with respect to GL2(F ). Due to Theorem 4.1(iii), the direct
sum above is multiplicity-free as F�-representation of GL2(F ). Hence, we obtain the desired
equation. �

6.5 Supercuspidal case
This subsection focuses on the distinction problems for supercuspidal representations.

Denote by U the subgroup of GL2(E) consisting of the upper triangular matrices
(

1 x
0 1

)
. Then

U ∼= E. Fix an F�-character ψ0 of E, which is non-trivial on oE and is trivial on both pE and F .
Let π be an irreducible infinite-dimensional F�-representation of GL2(E). Then π is ψ0-generic,
and π has a unique Whittaker model W(π, ψ0).

Lemma 6.9. Let π0 be an irreducible F�-representation of GL+
2 (E) which is of infinite

dimension and distinguished by SL2(F ). Then it has a Whittaker model with respect
to ψ0.

Proof. A similar method as in [AP03, Lemma 3.1] can be applied here. We repeat the proof for
the convenience of the reader. We add some preliminaries at first.

Let π be an irreducible F�-representation of GL2(E) such that π|GL+
2 (E) ⊃ π0. Up to twist-

ing by an F�-character of F× on π0, we can assume that π0 is distinguished with respect
to GL2(F ). Thus, is π. Recall that ψ0 is a fixed additive F�-character of E which is trivial
on F , and denote by W(π, ψ0) the ψ0-Whittaker model of π. Let W ∈ W(π, ψ0). By [KM20,
§ 8.2] we know that the unique GL2(F )-invariant linear form can be realized as an integration
form

f(W ) =
∫

F×
W

((
a 0
0 1

))
d×a,

where d×a is a Haar measure on F×, which is non-zero (in [KM20] this integration form is
denoted by Pπ) and GL2(F )-invariant. There is a unique irreducible component of the restricted
representation π|GL+

2 (E) that is ψ0-generic. Let π1 be a non-ψ0-generic irreducible component of
W(π, ψ0)|GL+

2 (E), and W ∈ W(π, ψ0) a function belonging to π1. Given g ∈ GL+
2 (E), W (g) must

be zero. Otherwise, it will induce a non-trivial morphism from π1 to the space of ψ0-Whittaker
functions on GL+

2 (E), which contradicts the assumption that π1 is not ψ0-generic. Therefore,
the GL2(F )-invariant linear form can be non-zero only on the ψ0-generic part of π|GL+

2 (E), and
we conclude that π0 is ψ0-generic. �
Lemma 6.10. Let π be an irreducible F�-representation of GL+

2 (E). The restricted representa-
tion π|SL2(E) is semisimple with finite length and all irreducible components are conjugate to
each other under the action of GL2(F ). Hence, the dimension dim HomSL2(F )(τ,1) is independent
of the choice of irreducible component τ of π|SL2(E).

Proof. The proof of [AP03, Lemma 3.2] works for F�-representations as well. �
Proposition 6.11. Let π be an irreducible supercuspidal F�-representation of GL2(E), which
is distinguished with respect to SL2(F ). Then we have

|X(π)| = |Y+(π)|.
Assume further that π is distinguished with respect to GL2(F ). Then composition with the norm
map NE/F induces a bijection from X(π) to Y+(π).
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Proof. The strategy of [AP03, Proposition 4.2] can be applied, and we write the proof here for
the convenience of the reader. By Proposition 6.8, after twisting π by an F�-character of E×, we
assume that π is distinguished with respect to GL2(F ). As in the proof of [AP03, Proposition 4.2],
we give a bijection from X(π) to Y+(π) given by the composition with the norm map.

Recall that NmE/F is the norm map from E× to F× and χ ∈ X(π). Define a map

N : X(π) → Y+(π)

via χ �→ χ ◦ NmE/F . Indeed, let χ ∈ X(π) and χ̃ be a character of E× such that χ̃|F× = χ. By
Theorem 4.1, π and π ⊗ χ̃−1 are σ-selfdual. Therefore, π � π ⊗ χ ◦ NmE/F and χ ◦ NmE/F ∈
Y+(π).

Conversely, let μ ∈ Y+(π). Since μ2 = 1 and μ|F× = 1, by Hilbert’s theorem 90, it is trivial
on the kernel of NmE/F . Hence, there exists an F�-character η of F×, such that μ ∼= η ◦ NmE/F .
Let η̃ be an extension of η to E×. Then μ ∼= η̃ · η̃σ. Since π is distinguished with respect to
GL2(F ), we have

(π ⊗ η̃)∨ ∼= (π ⊗ η̃)σ.

On the other hand, let ZF× be the center of GL2(F ). Then ωπ⊗η̃|ZF× is trivial where ωπ⊗η̃ is the
central character of π ⊗ η̃. By Theorem 3.14, π ⊗ η̃ is either distinguished or ωE/F -distinguished
by GL2(F ) but not both. We map μ to η or η ⊗ ωE/F accordingly. This gives a map from Y+(π)
to X(π) which is the inverse of N . Hence, we complete the proof. �

Corollary 6.12. Let π be an irreducible supercuspidal F�-representation of GL2(E), distin-
guished by SL2(F ). The number of SL2(F )-invariant linear functionals on π is equal to the length
of π|GL+

2 (E) and both are lg+(π).

Proof. It follows from Lemma 6.3, Propositions 6.8 and 6.11. �

Recall that lg(π) is the length of π|SL2(E) and lg+(π) is the length of π|GL+
2 (E).

Proposition 6.13. Let π be an irreducible supercuspidal F�-representation of GL2(E) such that
lg(π) is different from 1. Suppose that π is distinguished by SL2(F ). Then lg+(π) is different
from 1, and the only irreducible component of π|GL+

2 (E) which is distinguished by SL2(F ) is the

one that is ψ0-generic (see the beginning of § 6.5 for the definition of ψ0).

Proof. The proof of Proposition 4.4 of [AP03] can be applied, and we write the proof here for
completeness. Suppose that lg+(π) = 1 and denote π|GL+

2 (E) by π+. Under this assumption, we
have that π+|SL2(E) is not irreducible. By Lemma 6.10 we have that the number of SL2(F )-
invariant linear forms is strictly bigger than one. However, by Corollary 6.12, there is only one
SL2(F )-invariant linear form, which is a contradiction. Hence, lg+(π) �= 1, and the result follows
from Lemmas 6.9 and 6.10. �

Theorem 6.14. Let π be an irreducible supercuspidal F�-representation of GL2(E) distin-
guished by SL2(F ), and π+ the unique irreducible component of π|GL+

2 (E) that is ψ0-generic.

Then π+ is distinguished by SL2(F ). Furthermore, let τ be an irreducible component of π|SL2(E),
distinguished by SL2(F ). Then τ is an irreducible component of π+|SL2(E).

Proof. It follows from Lemmas 6.9 and 6.10 directly. �
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Theorem 6.15. Let π be an irreducible supercuspidal F�-representation of GL2(E) and τ an
irreducible component of π|SL2(E). Suppose τ is distinguished by SL2(F ). Then,

dimHomSL2(F )(τ,1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if π|SL2(E)

∼= τ,

1 if lg+(π) = 2 and lg(π) = 4,
2 if lg+(π) = lg(π) = 2,
4 if lg+(π) = lg(π) = 4.

The first case and the last case arises only when p = 2.

Proof. Let π+ ⊂ π|GL+
2 (E) be irreducible and ψ0-generic. Let lg(π)′ be the length of π+|SL2(E).

Since the components of π|SL2(E) are GL2(E)-conjugate, we deduce that lg(π)′ = lg(π)/ lg+(π).
By Lemma 6.10, Corollary 6.12 and Theorem 6.14, we summarize that dimHomSL2(F )(π,1) =
lg+(π), and

dimHomSL2(F )(τ,1) = lg+(π)/ lg(π)′ = lg+(π)2/ lg(π).

We obtain the result by a direct computation.
When p is odd, E×/F×E×2 is of order 2. Since lg+(π) = |Y+(π)| and the latter is a subset

of F�-characters of E×/F×E×2, the case lg+(π) = 4 can exist only when p is equal to 2.
If π|SL2(E) is irreducible which implies that π is primitive, then p = 2. �

6.6 The principal series representations
In this subsection, we will use Mackey Theory to prove the following theorem, following [Lu18].

Theorem 6.16. Let I(χ) be a principal series representation of SL2(E).

(i) Let τ be an irreducible principal series representation of SL2(E).
(a) If τ = I(χ) with χ|F× = 1 and χ �= 1, then dim HomSL2(F )(τ,1) = 1.
(b) If τ = I(χ) with χσ = χ, then dim HomSL2(F )(τ,1) = 2.

(ii) Let τ be an irreducible subrepresentation of I(χ) distinguished by SL2(F ) with qF �≡ 1
(mod �).
(a) If χ = ν±1 and � � q2E − 1, then dim HomSL2(F )(τ,1) = 1.
(b) If χ2 = 1, χ = χF ◦ NmE/F �= 1 and � � q2E − 1, then

dim HomSL2(F )(τ,1) =

{
3 if χ2

F = 1,
1 if χ2

F = ωE/F .

(c) If � | qE + 1 and χ = ν, then τ is the trivial character and dim HomSL2(F )(τ,1) = 1.
In this case, there are two cuspidal (not supercuspidal) representations inside the
Jordan–Holder series of I(ν) which are not distinguished by SL2(F ) if E/F is unramified.
If E/F is ramified, then only one of two cuspidal representations is distinguished by
SL2(F ) with multiplicity two.

(d) If � | qE − 1 and � | qF + 1, then

dim HomSL2(F )(τ,1) =

⎧⎪⎨⎪⎩
2 if τ is the Steinberg representation,

3 if χ = χF ◦ NmE/F �= 1 with χ2
F = 1,

1 if χ = χF ◦ NmE/F with χ2
F = ωE/F .

Let B(E) be the standard Borel subgroup of SL2(E) and B(E)\SL2(E) ∼= P 1(E). Recall
that there are two F -rational GL2(F )-orbits in P 1(E) which are P 1(F ) and P 1(E) −
P 1(F ). Moreover, the open orbit P 1(E) − P 1(F ) is isomorphic to E×\GL2(F ). There is an
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exact sequence

1 → E1\SL2(F ) → E×\GL2(F ) → NmE/F E
×\F× → 1,

where E1 = {e ∈ E× : NmE/F (e) = 1}. Thus, P 1(E) decomposes into three F -rational SL2(F )-
orbits: one closed orbit P 1(F ) and two open orbits corresponding to F×/NmE/F E

× = {±1}.
Lemma 6.17. Let I(χ) be a principal series representation of SL2(E). Then HomSL2(F )(I(χ),1)
�= 0 if and only if either χ|F× = 1 or χ|E1 = 1.

Proof. Applying Mackey theory, one has an exact sequence

0 → HomF×(χ,1) → HomSL2(F )(I(χ),1) → HomE1(χ,1) ⊕ HomE1(χ−1,1) → Ext1F×(χ,1)

of F�-vector spaces. If HomSL2(F )(I(χ),1) is non-zero, then either χ|F× or χ|E1 is trivial.
Conversely, it suffices to show that χ|F× �= 1 and χ|E1 = 1 imply HomSL2(F )(I(χ),1) �= 0. Note
that Ext1F×(χ,1) = 0 if and only if χ|F× is non-trivial; see [DS23, Proposition 8.4]. By the
exact sequence, one has

dim HomSL2(F )(I(χ),1) = 2 dim HomE1(χ,1)

when χ|F× �= 1. This finishes the proof. �
Lemma 6.18. Suppose that � � qF − 1. Assume that π (respectively, τ) is a principal series
representation of GL2(E) distinguished by GL2(F ) (respectively, SL2(F )) and τ ⊂ π|SL2(E). Set
π|GL+

2 (E) = ⊕iπi. Then τ ⊂ π0|SL2(E) if and only if π0 is ψ0-generic where ψ0 is a non-degenerate

character on E/F .

Proof. Suppose that π = π(χ1, χ2) with χ1χ2 trivial on F×. Then the GL2(F )-invariant linear
functional on π, up to a constant, is given by

f(W ) =
∫

F×
W

((
a 0
0 1

))
d×a,

where W is the unique right GL2(OE)-invariant ψ0-Whittaker function on π. Since there is a
unique ψ0-Whittaker functional on the space of π, exactly one constituent of the restriction
of π to GL+

2 (E) is ψ0-generic. Thus, the GL2(F )-invariant functional can be non-zero only
on the ψ0-generic part of the restriction of π to GL+

2 (E). Therefore, τ ⊂ π0|SL2(E), i.e. π0 is
SL2(F )-distinguished if and only if π0 is ψ0-generic. �
Remark 6.19. Let �F denote the uniformizer of the ring oF of integers of F . Matringe pointed
out that when qF ≡ 1 (mod �), π is distinguished by GL2(F ) but∫

F×
W

( (
a 0
0 1

))
da =

V ol(O×
F )

(1 − χ1(�F ))(1 − χ2(�F ))
= 0.

Thus, this method does not work when we try to determine the multiplicity for the irreducible
constituent of I(χ) with χ2 = 1 when qF ≡ 1 (mod �).

Now we are ready to prove Theorem 6.16.

Proof of Theorem 6.16. (i) Note that if χ �= ν±1 and χ2 �= 1, then I(χ) is irreducible. Then
it follows from Lemma 6.17 except that χ = 1 and � � qE − 1. It is enough to show that
dim HomSL2(F )(I(1),1) = 2 when � � qE − 1. Note that π(1,1) is both GL2(F )-distinguished
and (GL2(F ), ωE/F )-distinguished with multiplicity one. Thus, dim HomSL2(F )(I(1),1) = 2 by
Proposition 6.8.
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(ii) If τ is a trivial character, then dim HomSL2(F )(τ,1) = 1. Let τ be an infinite-dimensional
subrepresentation of I(χ).

(a) If χ = ν−1, then τ is the trivial character. If χ = ν and τ is the Steinberg representation St,
then there exists a short exact sequence

0 → St → I(ν) → 1 → 0

of SL2(E)-representations. Taking the functor HomSL2(F )(−,1), one has an exact sequence

0 → HomSL2(F )(1,1) → HomSL2(F )(I(ν),1) → HomSL2(F )(St,1) → Ext1SL2(F )(1,1).

Note that Ext1SL2(F )(1,1) = 0. Thanks to Lemma 6.17, we have

dim HomSL2(F )(I(ν),1) = 2.

Therefore, dim HomSL2(F )(St,1) = 2 − 1 = 1.
(b) If χ = χF ◦ NmE/F with χ2

F = 1, then the irreducible principal series representation π(1, χ)
is distinguished by GL2(F ). Furthermore,

dim HomGL2(F )(π(1, χ), χF ) = 1 = dim HomGL2(F )(π(1, χ), χFωE/F ).

There is only one subrepresentation in I(χ) which is (U, ψ0)-generic, which implies that only
one constituent in I(χ) is distinguished by SL2(F ). Thus dim HomSL2(F )(τ,1) = 3.

If χ = χF ◦ NmE/F with χ2
F = ωE/F , then π(1, χ) is both (GL2(F ), χF )-distinguished

and (GL2(F ), χ−1
F )-distinguished. Thus,

dim HomSL2(F )(I(χ),1) = 2.

Note that two constituents in I(χ) are (U, ψ0)-generic. Thus, each one in I(χ) is distinguished
by SL2(F ) with multiplicity one.

(c) This case is trivial.
If � | qE + 1 and τ is a cuspidal non-supercuspidal representation of SL2(E), then

there is a special representation Sp of GL2(E) such that τ ⊂ Sp |SL2(E). If E/F is
unramified, then Sp is neither GL2(F )-distinguished nor (GL2(F ), ωE/F )-distinguished.
(See [Séc19, Remark 2.8].) Thus, dim HomSL2(F )(Sp |SL2(E),1) = 0 by Proposition 6.8. If
E/F is ramified, then Sp is not GL2(F )-distinguished but (GL2(F ), ωE/F )-distinguished.

It is also (GL2(F ), ν|1/2
F×)-distinguished; see Theorem 4.6(ii). Due to Proposition 6.8,

dim HomSL2(F )(Sp |SL2(E),1) = 2. Note that there is only one constituent in Sp |SL2(E) which
is (U, ψ0)-generic, denoted by τ . Thus,

dim HomSL2(F )(τ,1) = 2.

This finishes the proof.
(d) If � | qE − 1 and � | qF + 1, then E/F is an unramified field extension. In this case, I(1) =

1 ⊕ St. Thanks to Theorem 4.6(iii),

dim HomSL2(F )(St,1) = 2.

If τ ⊂ I(χF ◦ NmE/F ) with χ2
F = ωE/F or 1, this case is similar to case (b).

�
Remark 6.20. If � | qF − 1, one can still prove that St is distinguished by SL2(F ) with multiplic-
ity two due to Theorem 4.6 and that the constituents in I(χF ◦ NmE/F ) with χ2

F = ωE/F are
both distinguished by SL2(F ) with multiplicity one. But we cannot determine the situation for
τ ⊂ I(χF ◦ NmE/F ) with χ2

F = 1.
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