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Abstract
Motion and constraint identification are the fundamental issue throughout the development of parallel mechanisms.
Aiming at meaningful result with heuristic and visualizable process, this paper proposes a machine learning-based
method for motions and constraints modeling and further develops the automatic software for mobility analysis.
As a preliminary, topology of parallel mechanism is characterized by recognizable symbols and mapped to the
motion of component limb through programming algorithm. A predictive model for motion and constraint with
their nature meanings is constructed based on neural network. An increase in accuracy is obtained by the novel
loss function, which combines the errors of network and physical equation. Based on the predictive model, an
automatic framework for mobility analysis of parallel mechanisms is constructed. A software is developed with
WebGL interface, providing the result of mobility analysis as well as the visualizing process particularly. Finally,
five typical parallel mechanisms are taken as examples to verify the approach and its software. The method facilitates
to attain motion/constraint and mobility of parallel mechanisms with both numerical and geometric features.

1. Introduction
Parallel robot consists of a fixed platform and a moving platform that are connected by several limbs. This
leads to a compact structure and high potential stiffness; however, it also results in a complex relationship
between motions and constraints. In fact, motions and constraints are crucial factors in kinematic and
stiffness modeling. Moreover, the number and properties of mobility can be determined by considering
motion and constraints. Hence, analyzing motion and constraints automatically by programming is a
fundamental task in computer-assisted mobility analysis and performance modeling.

In screw theory [1–2], if a wrench acts on a rigid body in such a way that it produces no work on its
infinitesimal twist, the two screws are referred to as reciprocal. The reciprocal product is an algebraic
operation defined as a scalar product based on the virtual power of a wrench on a twist. This product
is zero between motion and its constraints [1]. So far, solving for motion and constraint has been a null
space problem that has been well studied in mathematics. The null space can be found using various
numerical methods, such as Gauss–Seidel elimination [3], Gram–Schmidt orthogonalization [4], and an
affine augmentation method [5]. However, it is noted that there are multiple solutions when the screw
system is lower than five-dimensional, making it difficult to select solutions with explicit physical mean-
ings. Although any selected solution would result in the correct number of degrees of freedom (DoF), it
may lead to incorrect properties and confused results in performance modeling. Nevertheless, in auto-
matically solving motion and constraints [6], it is necessary but difficult to generate initial motion axis
screws in algebraic format relative to a same coordinate system.

The observation method is an alternative approach that investigates the kinematic features of some
typical joints and branches to determine the constraints. Hunt discussed the relationship between three-
dimensional geometry and spatial mechanisms in the context of a simplified screw system [2]. An
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analytical approach to determine the bases of three unknown twist and wrench subspaces of lower mobil-
ity serial kinematic chains was presented, stemming from the reciprocal product of screw theory [7].
Thanks to progress made in recent years, the typical geometric conditions for motion and constraints
have been determined. These conditions are as follows: the translational motion axis should be perpen-
dicular to the constraint force, and the rotational motion axis should intersect with the force constraint
and be perpendicular to the couple constraint. Building on these ideas, Yu proposed a graphical approach
that visualizes motion and constraints [8]. Additionally, a geometric algebra approach was presented to
determine the motion, constraint, mobility, and singularity of parallel mechanisms [9]. The observation
method involves several rules that can be realized through reasoning, such as the “IF. . .THEN. . .” type.
However, this automatic manner can only be applied to simple cases where only one rule is involved.
Alternatively, Liu subsequently deposits the frequently used results of serial kinematic chains from
observation and proposed an automatic approach for identifying the natural reciprocal screw systems
based on the invariance properties of topology [10]. But for the cases out of these templates, it is hard
to achieve the solution.

When carrying out automatic constraint and motion analysis, we always translate the known formu-
las, rules, or cases into computer language. However, this “translating manner” is limited to mechanisms
within the known ones. In fact, constraint and motion analysis involves learning and reasoning, which
are not independent of the experience and intelligence of people and cannot be realized by programming
alone. Machine learning, on the other hand, is known for its reasoning abilities and can perform these
thinking processes, making it well suited to automatic motion and constraint analysis. If the explicit
meanings of the reciprocity between twist and wrench are learned by machine learning, constraint prob-
lems can be quickly and visually solved. Currently, machine learning is closely related to robotics, but it
is mostly used for trajectory planning, cognition, control algorithms, and some fields of structural opti-
mization [11–13]. In this case, a dataset indicating explicit meanings of the reciprocity will be collected
and used to train a prediction model for motion and constraint. However, due to the limited dataset, how
to improve the accuracy of the predictive model remains a major issue.

This paper intends to propose a machine learning-based method that can rapidly and accurately iden-
tify motion and constraints, resulting in the precise constraint of limbs and motion of moving platform
with explicit physical meanings. The proposed method can be applied to solve the mobility of paral-
lel mechanisms automatically. In contrast to existing methods of automatic mobility analysis [14–21],
which require complex algorithms such as motion intersection operation, the proposed method is more
programming-friendly and does not require such consideration. The primary contributions of this paper
are as follows: (1) A highly accurate predictive model for reciprocal screws is constructed using lim-
ited database, resulting in precise constraints and motions with both natural meanings and numerical
properties. (2) An automatic methodology for motion/constraint and mobility analysis is addressed, and
web-based visualization software is developed.

The paper is organized as follows: Section 2 defines the topology and motion matrix of compo-
nent limbs as preliminary. Section 3 constructs a predictive model for constraints and motion based on
machine learning. Section 4 addresses the automatic mobility algorithm, and Section 5 develops soft-
ware equipped with an interface. Section 6 provides five typical examples to verify the method and
software. Conclusions are drawn in Section 7.

2. Preliminary
An automatic mobility analysis process begins with topology sketching. Based upon the authors’ and
other scholars’ previous work [9, 22], geometric conditions of one-DoF joint axis play important roles
in the automatic recognition of parallel robotic topology. Then the twist of component limb is generated
according to the topology characters by algorithm, which is the foundation for constraint and motion
solving of moving platform. (To enable constraint and motion solving of a moving platform, an algorithm
generates twist for each limb component based on its topology. This is achieved by using a motion screw,
which serves as the foundation for the platform’s movement.)
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Table I. Topology character of jth kinematic joint.

Symbol Description
Zj Axis of the jth joint is perpendicular to the fixed platform

Axis direction xj Axis of the jth joint is parallel with the fixed platform
uj Axis of the jth joint is obliquely intersecting to the fixed platform

Axis position Nk The kth marked point
Joint type R/P/H Type of the kth joint (R, P, and H are rotational joint, prismatic joint,

and helical joint, respectively)
Connection | Separator between two joints
Examples xjNkRNk Rotational joint parallel to the fixed platform passing through point Nk

xjNkRNk+1 Rotational joint parallel to the fixed platform passing through two
marked points Nk and Nk+1

xjxjP Prismatic joint parallel to the fixed platform
NkNk+1P Prismatic joint with axis direction as NkNk+1

xjNkHNk Helical joint parallel to the fixed platform with one marked point Nk

2.1. Recognizable representation of parallel mechanism
Parallel robotic mechanism consists of fixed platform, moving platform, and several component limbs.
The topology of a parallel mechanism involves its number and kinematic types of limbs, as well as the
adjacency and incidence of joints [23], which are considered as motion generators. To specify all the
information of topology, rotational joint and helical joint are defined in the format as “axis direction-
axis position 1-joint type-axis position 2,” where the axis position is denoted by the points marked on
the axis. With free position, prismatic joint is described as “axis direction (double same elements)-
joint type,” where sometimes the axis direction is determined by two marked points. The definition of
topology character is given in Table I.

In this manner, component limb could be obtained by depicting the joints sequentially, beginning
from the one connecting with fixed platform. Two adjacent joints are separated by “|”. All of the
characters of limbs consist of topology features of parallel mechanism. For example, 3-CRR parallel
mechanism recorded in ref. [24] has three identical CRR limbs. Herein, R is the rotational joint and
C is the cylindrical joint, which could be considered as the combination of a rotational joint and pris-
matic joint with the same motion axis. The three limbs are symmetrical assembled, and also the first
joint of each limb is intersecting at one point and perpendicular to each other. Referring to Table I,
3-CRR could be characterized as⎧⎪⎨

⎪⎩
x1x1P | x1N1RN1 | x1N2RN2 | x1N3RN3

x2x2P | x2N1RN1 | x2N4RN4 | x2N5RN5

z1z1P | z1N1RN1 | z1N6RN6 | z1N7RN7

⎫⎪⎬
⎪⎭ (2a)

It is noted that in some cases, the relationship between joint motion axes would be changed resulting
from moving. For example, UPU limb is composed of two universal joints (two rotational joints with
intersecting axes), connected by a prismatic joint. At the initial pose, assuming that motion axes of the
first and the fifth rotational joints are parallel, but once the second or the fourth joints rotated, their
parallel relationship would disappear. The motion and constraints are also changed. In this paper, the
last rotational joint in UPU limb is defined as a “distal” joint, which should be in discussed in Section 4.

2.2. Motion modeling of component limb
For the sake of visualization, all the modeling would be carried out in framework O-xyz located at the
center O of fixed platform, with x-axis along with the first joint of the first limb and z-axis perpendicular
with the fixed platform.
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Table II. Motion of the kth joint under different geometric conditions with the jth joint.

Geometric relationships sj rj

xjNjRNj | xjNkRNk (Parallel) (aj, bj, cj) (lk, mk, nk)
xjNjRNj | xjNjRNj (Collinear) (aj, bj, cj) (lj, mj, nj)
xjNjRNj | xkNkRNk (Perpendicular) (ak, bk, −(ajak + bjbk)/cj) (lk, mk, nk)
ujNjRNj | ukNjRNj (Intersecting) (ak, bk, ck) (lj, mj, nj)
xjNjRNj | xkNkRNk (Any) (ak, bk, ck) (lk, mk, nk)
xjNjRNj | ukNjRNj (Orthogonal) (ak, bk, −(ajak + bjbk)/cj) (lj, mj, nj)

Different from the well-known twist screw system, the motion of limb is defined in the format as

mi =
⎡
⎢⎣

si,1 ri,1 hi,1

...
...

...

0 si,mi hi,mi

⎤
⎥⎦ , 2 ≤ i ≤ n (2b)

where n is the number of limbs. si,j = [ai,j, bi,j, ci,j] (1 ≤ j ≤ Ni) and ri,j = [li,j, mi,j, ni,j] are the direction
and position vectors of jth motion axis in ith limb, respectively, which could be formulated subject-
ing to topology characters. ai,j, bi,j, ci,j and li,j, mi,j, ni,j are the elements of vectors. hi,j ∈N is an element
to identify the type of joint, and when hi,j �= 0, it indicates the helical joint. Motion matrix could be
considered as a source of screw format. The motion screw of the jth joint could be described as

$t =
(
si,j ri,j × si,j + hi,jsi,j

)
(2c)

Compared with screw format, motion matrix in Eq. (2b) provides complete information such as the
marked point, which are important geometric items for constraint solving.

The motion matrix of limb could be derived from its topology character since the joints are serially
connected. For the first joint, si,1 and ri,j are formulated in the general format si,1 = [ai,1, bi,1, ci,1] and
ri,1 = [li,1, mi,1, ni,1]. In some special cases, they would be simplified for programming. For example,
when the topology of the first joint is “x1x1P”, si,1 turns to si,1 = [ai,1, bi,1, 0]. For two adjacent joints j
and k, the motion axis of one joint would be deducted according to that of another one. Assuming the
direction and position vectors of jth motion axis are assigned as si,j = [ai,j, bi,j, ci,j] and ri,j = [li,j, mi,j, ni,j],
the motion of the kth joint could be described as Table II.

Having the topology characters of mechanism at hand, algorithm 1 is presented to construct the
motion matrix of limb. Three dictionaries are defined as x_index, n_index and h_index to store direction
vectors, position vectors, and pitch, respectively. The motion matrix would be filled as Table II.

For example, submitting the topology character of Eq. (2a) into algorithm 1 as the input, the position
and direction vectors of joints in each CRR limb could be inquired in dictionary. The motion matrix of
3-CRR mechanism could be obtained as

m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 =

⎡
⎢⎢⎢⎣

0 0 0 1 0 0 0

1 0 0 l12 m12 n12 0

1 0 0 l13 m13 n13 0

1 0 0 l14 m14 n14 0

⎤
⎥⎥⎥⎦

m2 =

⎡
⎢⎢⎢⎣

0 0 0 0 1 0 0

0 1 0 l22 m22 n22 0

0 1 0 l23 m23 n23 0

0 1 0 l24 m24 n24 0

⎤
⎥⎥⎥⎦

m3 =

⎡
⎢⎢⎢⎣

0 0 0 0 0 1 0

0 0 1 l32 m32 n32 0

0 0 1 l33 m33 n33 0

0 0 1 l34 m34 n34 0

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2d)
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Algorithm 1: Motion modeling of component limbs
Input: Characters of topology

Output: Motion matrix mi

1. Initialization:
Create direction vector dictionary: x_index, position vector dictionary: n_index, pitch dictionary:

h_index; Create final output storage motion matrix: motion_matrix, motion matrix with transformed
“distal” joint geometry: undetermined_matrix.
2 For analysis of each joint of the limb:
3 If Type of joint == R-joint or H-joint:

3 If Dictionary x_index does not contain direction xi, ui, Z i:

4 x_index adds a new direction xi, ui or Z i;

5 If Dictionary n_index does not contain marked point Nj:

6 n_index adds a new marked point Nj;

7 If Dictionary h_index does not contain marked point hj:

6 h_index adds a new marked point hj;

7 If type of kinematic joint == P-joint:

8 If Dictionary x_index does not contain direction xi, ui, Z i:

9 x_index adds a new direction xi, ui or Z i;

10 If P-joint between two rotational joints:

11 x_index adds a new location Nj+1;

12 If Dictionary h_index does not contain marked point hj:

13 h_index adds a new marked point hj;

12 End For

13 Fill motion_matrix according to Table II subjecting to the direction and position in the
dictionary: x_index, n_index and h_index;

14 If specific geometric relationships exist for “distal” joints:

15 Fill undetermined_matrix according to the new geometric relationship;

16. Output the final matrix motion_matrix and undetermined_matrix, i.e. the requested mi;

3. Predictive model of constraint/motion based on machine learning
In this section, a predictive model of constraints (motions) subjecting to the given motions (constraints)
is constructed by machine learning. Not only numerical properties but also geometric conditions between
motion and constraints are considered.

Constraints generated by component limbs would be obtained according to their motions:

� (mi) = fi (3a)

where � is the predictive model. mi and fi are the motion matrix of ith limb and its corresponding
constraint matrix. It is noted that the constraints (motion) not only need to satisfy the reciprocity product
with motion (constraint) but also expected to have the explicit meanings. To this end, machine learning
is introduced to learn and reason the relationship between motion and constraints. Because motion and
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constraint have the dual solving process, the predictive model in Eq. (3a) could be also applied for motion
solving when the constraints are known.

� (fi) = mi (3b)

3.1. Equivalent motion transformation
For some component limbs which contain rotational joints with parallel axes, the motion could be equiv-
alently transformed firstly. For example, the motion matrix of the ith CRR limb could be described
as Eq. (2d). It shows that the latter three rows are linear dependent, which could be equivalently
transformed as

mi =

⎡
⎢⎢⎢⎢⎣

ai1 bi1 0 li1 mi1 ni1 0

0 0 0 ai2 bi2 ci2 0

0 0 0 ai3 bi3 ci3 0

0 0 0 ai4 bi4 ci4 0

⎤
⎥⎥⎥⎥⎦ (3c)

Equation (3c) indicates that CRR limb has three translational motions and one rotational motion.
To simplify the inputs of machine learning network, the rotational motions with parallel axes would be

transformed as translational motions preliminarily. It would not change the resultant constraints. Taking
limbs with four-dimensional screws as example, the equivalent motion matrix is listed as Table III.

3.2. Optimal datasets with classification
To obtain the accurate constraints with explicit meanings, the geometric conditions between screw and
its null space should be satisfied. Therefore, relative position and orientation characters are derived from
motion matrix mi and taken as the input of machine learning network

input =
⎡
⎢⎣

a1 b1 c1 p1 q1

...
...

...
...

...

am bm cm pm qm

⎤
⎥⎦ (3d)

where m is the number of joints in the limb. Details of other variables are shown in Table IV.si =
(ai, bi, ci) and pi denote the orientation and position characters, respectively, which are classified by 14
and 7 types. It is defined that si = ( 1 0 0 ) and si = ( 0 1 0 ) indicate the parallel relationship between
axis and basic platform and si = ( 0 0 1 ) denotes the perpendicular relationship. When the vector is
parallel with XY plane, two categories are defined as ±XY and +X-Y. Similarly, other kinds are shown
in Table V. It is noted that when the direction is random, si = ( 2 3 4 ) is used. When pi = 0, it denotes the
arbitrary position relationship. When pi = {1, · · · , 6}, it denotes the order number of key points which
can indicate the position. qi is a sign to show the type of input, which is rotational motion (constraint
force), translational motion (constraint couple), and screw motion (constraint screw).

As shown in Table VI, the direction of reciprocal screw could be concluded as five groups: perpen-
dicular with one screw axis, perpendicular with a plan spanning by two screw axes, parallel with one
axis, arbitrary, and unknown. Herein, “arbitrary” denotes the force or couple constraint with alterna-
tive geometric conditions, and “unknown” indicates the case exists the motion or constraint screws, in
which only numerical condition should be satisfied. The position of reciprocal screw is described by the
intersection point with the given screws. In this way, the format of output is defined as

output =
⎡
⎢⎣

s1 p11 p21 q1

...
...

...
...

sn p1n p2n qn

⎤
⎥⎦ (3e)
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Table III. Equivalent motions of four-dimensional screws.

Motion Diagrams Equivalent motion matrix

Three rotations and one
translation
(rotational axes are
intersecting)

⎡
⎢⎢⎣

ai1 bi1 0 li1 mi1 ni1 0
ai2 bi2 ci2 li1 mi1 ni1 0
ai3 bi3 ci3 li1 mi1 ni1 0
0 0 0 ai4 bi4 ci4 0

⎤
⎥⎥⎦

Three rotations and one
translation
(rotational axes are
heterogeneous)

⎡
⎢⎢⎣

ai1 bi1 0 li1 mi1 ni1 0
ai2 bi2 ci2 li2 mi2 ni2 0
ai3 bi3 ci3 li3 mi3 ni3 0
0 0 0 ai4 bi4 ci4 0

⎤
⎥⎥⎦

Two rotations and two
translations
(rotational joints are
intersecting)

⎡
⎢⎢⎣

ai1 bi1 0 li1 mi1 ni1 0
ai2 bi2 ci2 li1 mi1 ni1 0
0 0 0 ai3 bi3 ci3 0
0 0 0 ai4 bi4 ci4 0

⎤
⎥⎥⎦

Two rotations and two
translations
(rotational joints are
heterogeneous)

⎡
⎢⎢⎣

ai1 bi1 0 li1 mi1 ni1 0
ai2 bi2 ci2 li2 mi2 ni2 0
0 0 0 ai3 bi3 ci3 0
0 0 0 ai4 bi4 ci4 0

⎤
⎥⎥⎦

One rotation and three
translations

⎡
⎢⎢⎣

ai1 bi1 0 li1 mi1 ni1 0
0 0 0 ai2 bi2 ci2 0
0 0 0 ai3 bi3 ci3 0
0 0 0 ai4 bi4 ci4 0

⎤
⎥⎥⎦

Table IV. Definition of input and output of neural network.

Symbols Meanings
(ai, bi, ci) Direction vector in input (si = (ai bi ci))

si Direction item in output si = 0, 1, · · · , 4
pi Order number of position character (pi = {0, · · · , 6})
qi Type of wrench and twist (qi = {−1, −2, −3}(−1 → P(Fc), −2 → R(Ff), −3 → H(Fs)))

Table V. Direction definition.

+X-Y +Y-Z +X-Z
Direction ±X ±Y ±Z ±XY -X+Y ±YZ -Y+Z ±XZ -X+Z
Vector (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (1, −1, 0) (0, 1, 1) (0, 1, −1) (1, 0, 1) (1, 0, −1)
Direction ±XYZ -X+Y+Z -X-Y+Z +X-Y+Z Random – – – –

+X-Y-Z +X+Y-Z -X+Y-Z
Number (1, 1, 1) (1, –1, –1) (1, 1, –1) (1, –1, 1) (2, 3, 4) – – – –

https://doi.org/10.1017/S0263574724000808 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000808


2410 Xinming Huo et al.

Table VI. Relationship between the direction vector and the axis of the joint.

Diagrams Location Direction

$R
t,1$

R
t,2$

R
t,3 → pi = 1

$F
w,1$

F
w,2 → p1i = p2i = 1

(Intersected at a point)

$F
w,1 ⊥ $P

t,1 and
$F

w,2 ⊥ $P
t,1(si = 1)

$R
t,1$

R
t,2 → pi = 1

$F
w,1 → p1i = p2i = 1

(Intersected at a point)

$F
w,1 ⊥ $P

t,1 and
$F

w,1 ⊥ $P
t,2(si = 2)

$F
w,1 → p1i = p2i = 0

(Any location)
$F

w,1/$R
t,i(si = 3)

$R
t,1$

R
t,2$

R
t,3 → pi = 1

$F
w,1$

F
w,2$

F
w,3 → p1i = p2i = 1

(Intersected at a point)

$F
w,i any direction

(si = 0)

$R
t,1$

R
t,2$

R
t,3 → pi = 1, 2, 3

$F
w,1 → p11 = 1, p21 = 3

$F
w,2 → p12 = 2, p22 = 3

(Intersected at two points)

$F
w,1 ⊥ $P

t,1 and
$F

w,2 ⊥ $P
t,1(si = 1)

$R
t,1$

R
t,2 → pi = 1

$S
w,1 → p11 = 0, p21 = 0

(Including an H joint)

Direction unknown
(si = 4)

where si(si = 0, 1, · · · , 4) is defined as direction item as in Table V. p1i and p2i denote the intersection
points of rotational joints. qi has the same meaning as the input in Table IV.

Taking CRR limb as an example, the input matrix could be described as

input =

⎡
⎢⎢⎣

0 0 1 0 −1
0 0 1 1 −2
0 0 1 2 −2
0 0 1 3 −2

⎤
⎥⎥⎦ (3f)

https://doi.org/10.1017/S0263574724000808 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000808


Robotica 2411

Figure 1. Architecture of CNN and improved model.

The output is given as

output =
[

1 0 0 −1
1 0 0 −1

]
(3g)

Another example is given as R ˆ R ˆ R-P limb; the input matrix could be described as

input =

⎡
⎢⎢⎣

2 3 4 1 −2
2 3 4 1 −2
2 3 4 1 −2
2 3 4 0 −1

⎤
⎥⎥⎦ (3h)

where di is random placeholder to expand the dataset and increase the generalization of the model. The
output matrix is given as

output =
[

1 1 1 −2
1 1 1 −2

]
(3i)

3.3. Neural network modeling
In this section, 5000 samples of motion and constraint matrix data are prepared and optimally classified
as input and output, respectively. 80% of them are applied for training, and others are used in the test
dataset. To achieve the mapping between motions and constraints, neural network (NN) for predictive
model is formulated.

As shown in Fig. 1 (a), convolutional NN (CNN) is formulated, which consists of convolutional
(Conv), flatten, hidden, and output layers. Conv layer performs element-by-element multiplication
between input matrix and kernel of different weights. The weights are randomly generated at the begin-
ning of the training. Following up flatten layer, data in vector form are transferred to the hidden layers,
which contains two dense layers. Dense layer is responsible in encoding the features from previous layers
in order to come up with relevant class and hence perform classification. In the output layer, constraint
matrix would be returned to the model to compute the loss. Layer structure and parameters used in the
considered CNN are listed in Table VII.

The loss function of the CNN is defined as

MSE{u} = SSE

ns
= 1

ns

ns∑
i=1

wmse1

(
yi − ŷi

)2 (3j)
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Table VII. Parameters of neural network.

Layer Type Input size Kernel size Activation Dropout Output size
1 Conv [5000,m,6] [m,6] ReLU No [5000,6m,1,1]
2 Flatten [5000,6m,1,1] – – No [5000,6m]
3 Dense1 [5000,6m] – ReLU No [5000,32]
4 Concat 2∗[5000,32] – – No [5000,64]
5 Dense2 [5000,64] – ReLU No [5000,32]
6 Dense3 [5000,32] – – Yes [5000,4]

Figure 2. Performance comparison of CNN and improved model. (a) Accuracy and loss of output
matrix of CNN model. (b) Accuracy and loss of output matrix of improved model. (c) Accuracy of
motion/constraint prediction of CNN model. (d) Accuracy of motion/constraint prediction of CNN model.

where ns is the scale of the specimen. yi and ŷi are real value and prediction value of the model, respec-
tively. MSE{u} is applied as mean-square error (MSE) of network. SSE denotes the sum of squares due
to error. wmse1 is the weight of MSE{u} in loss function, where wmse1 = 1.

When taking partial derivative of network weight w0 of on both sides of MSE{u}, the descending
gradient goes toward the fewer error of network. The loss and Pearson correlation coefficient between
the real and prediction outputs are illustrated in Fig. 2 (a), resulting in the accuracy of prediction model.

It is noted that reciprocal screws should satisfy the numerical relationship as accurate as possible.
Therefore, a physic constraint is introduced as
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Algorithm 2: Neural network-based constraint solving model
Input: Training samples P = [mi;inputi] → [outputi]

Output: Constraint solving model �1(mi) = fi

1. Initialization:

Assign an initial random weight to the neural network model ω0, learning rate αc = 0.001,
Max_enpoch = 1000, enpoch = 0; Define the sample as P = [mi;inputi] → [outputi]; The inputs to the
NN model are mi and inputi; The output is outputi; Constraint solution model defines the input as the
limb motion matrix mi and the output force matrix is defined as fi.

2 Initialize random weights ω0;

3 Defining the network net();

4 For enpoch in range(1, Max_enpoch):

5 Input samples P;

6 Gradient zeroing;

8 output = net(intput);
9 fi = F(output, mi);

7 Calculate the gradient loss of the enpochth training by Eq. ;

8 Update network parameters: ω0 = ω0 − αc · δLoss
δω0

;

9 Calculate Accuracy and save (the accuracy defined in this case is the Pearson correlation
coefficient between the matrices);

10 Gradient propagation forward into the model;

11 End For

12. Output Model �1(mi) = fi;

MSE$◦$r = 1

n

nS∑
i=1

wmse2

(
$t,i ◦ F (yi) − $t,i ◦ F

(
ŷi

))2 (3k)

where MSE$◦$r indicates the mean-square error of reciprocal product. wmse2 is the weight where wmse2 =
0.001 ∗ epoch, and epoch is the iteration. “◦” denotes the reciprocal product between the twist $t,i of the
ith motion derived from motion matrix and the real constraint wrench F(yi) (the predictive constraint
wrench F(ŷi)). Therefore, the compressive and real-time loss function is proposed as

Loss = MSE{u} + MSE$◦$r (3l)

To this end, a novel network is formulated as Improved Neural Network by Algorithm 2. The archi-
tecture of the network is the same with CNN in terms of the convolutional layers used. Besides the loss
of model considered in CNN, the novel network also learns the physic principle as reciprocity between
motion and constraint, which can improve the generalization of the predictive model. The performance
of new model is depicted in Fig. 2 (b), which decreases the loss as small as 0.044%. When applying the
prediction model on training and test sets, the probability to get accurate motion/constraint is presented
in Fig. 2 (c) and (d), respectively. It shows that the improved model has a better accuracy as high as
89.5% for a new issue.

It shows that improved model could reach higher accuracy. To find out the reason, MSE$◦$r computed
from both CNN and improved model are also compared in Fig. 3. It is recorded that improved model has
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Figure 3. MSE$◦$r comparison of improved model and CNN.

the better performance in the loss of reciprocal product, resulting from the loss function with physical
equation. Although the difference would be decreased following with training generations, the former
model is prior than the latter one as 30% after iterative 1000.

Therefore, improved model is applied for predictive modeling. In fact, from the view of meaningful
motion and constraint, both the errors of numerical and geometric features should be considered; that is
why improved model has better performance in this case.

4. Application in automatic mobility analysis
Applying the reciprocal screw solving method, the procedure to identify the mobility of parallel
mechanisms could be proposed by four steps as shown Fig. 4:

Step 1: Having topology character at hand, motion matrix would be obtained automatically by
Algorithm 1. It would be identified that whether there exist distal joints. If so, the relationship after
changing would also be constructed.

Step 2: The motion matrix from step 1 is transformed as boolean matrix, which is the input of
improved predictive model. The constraints of all limbs are obtained in the format of boolean matrix as
output.

Step 3: The independent constraints in boolean matrix format are given to the improved predictive
model. The motion of moving platform is derived and transformed as DoF matrix.

DoF =
⎡
⎢⎣

s1 r1 h1

...
...

...

sn rn hn

⎤
⎥⎦

n∗7

(3m)

Taking 3-CRR mechanism as an example, the DoF matrix would be obtained as

DoF =
⎡
⎢⎣

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

⎤
⎥⎦ (3n)

Step 4: For the mechanism exists distal joints, the full-cycle motion is distinguished. For example,
the first and last rotational joints of UPU limb are considered as distal joints. When the second and the
fourth joints have parallel motion axes and complementary motion, the geometry condition of distal
joints would not be changed in the movement. But in the other case, the motion axes of distal joints
would change to be intersecting or in different flats. At this moment, the motion and constraints would be
changed. The mobility analysis should be considered separately. The situations for distal joints without
changing mobility and constraints are concluded in Table VIII.
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Figure 4. Flowchart of mobility analysis of parallel mechanisms.

5. Software implementation
By integrating the algorithms and models with Python 3.7 programming language, a software is devel-
oped under B/S framework supporting automatic and visualized procedure for motion and constraint
analysis of parallel mechanisms. Three interactive windows are designed as input of topology, output of
mobility analysis, and visualization of constraints as shown in Fig. 5.

1. Input of topology

This window allows users to input the required topology characters, which is located on the right
of the interactive interface. Users would give the number of limbs firstly followed with the topology
characters of each limb. If someone needs help, he can find out the rules in tips “?”. Thanks to Algorithm
1, topology characters would be identified by the software, which would be transformed as motion matrix
to the next step.
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Table VIII. Identification of distal joints.

Initial assembly Possible
conditions Diagrams changes DoF not change relationship

parallel︷ ︸︸ ︷
R......R

π
R
t,1$

R
t,2$ Heterogeneous

or intersect
1. Any translations in space
2. Rotation with parallel axis to

these two lines
vertical︷ ︸︸ ︷
R....R

πR
t,1$

R
t,2$ Heterogeneous 1. Any translations in space

2. Rotation with parallel axis to
the line

intersect︷ ︸︸ ︷
R....R

πR
t,1$

R
t,2$ Heterogeneous

or parallel
1. Translations in the plane along

two lines
2. Any rotations with axis through

the intersection point

Figure 5. Module of web platform.

2. Visualization of constraints

This module illustrates the motion axes and constraints of limbs and moving platform with lines,
points, and other geometric elements. The types of geometric elements are defined and associated with
different motion and constraints thanks to WebGL interface. A drawer engine is programmed. Firstly,
the framework assigned as O-xyz is constructed on the canvas. When the topology is given and motion
matrix is solved, the first joint of one limb is located at a fixed point and along x-axis, which is taken
as a reference. Other joints and limbs are illustrated according to the motion matrix with positions
determined by the marked points and directions selected by si. The constraints would be drawn thanks
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to the geometric conditions involved in input and output matrix. The lines of different meanings are
applied by matplotlib three-dimensional, which is a graphic library of Python.

3. Output of mobility analysis

Once the topology characters are provided, the user accesses the mobility including the number and
type of motions. The results are provided to users by concise alternatives on the right side. Here, NN
for null space of screw system solving plays key roles for this function.

The software could be implemented by the following steps:

1. Input the topology characters such as the number and types of limbs into the software.
2. Motion matrix of each limb is obtained by Algorithm 1 and equivalent transformed to be mi.
3. Taking mi as the input of model �(mi) = fi, constraint matrix of each branch would be

obtained as.
4. Taking f = [f1, · · · , fn] as the input of model �(f) = m, motion matrix of moving platform would

be obtained as m.
5. Special geometric relationship as “distal” kinematic joints would be determined based on

Table VIII. If so, steps (3) and (4) are repeated.
6. Input mi, fi, m, f to WebGL drawer engine.
7. Output the results of mobility and constraints to users.

6. Cases study and discussion
6.1. 3-CRR mechanism
The motion and constraints analysis of 3-CRR has been addressed above, which is not introduced here
again. When topology character as in Eq. (2a) is entered the into the software, the result could be obtained
as in Fig. 6.

It is concluded that each limb of 3-CRR mechanism has two constraint couples, which are perpen-
dicular with the motion axes of R joint. The moving platform of mechanism undergoes three constraint
couples, resulting in three translational motions, which is a full-cycle mobility.

6.2. 3-UPU mechanism
3-UPU is a typical parallel mechanism with different assembly conditions and alternative mobilities. It is
assumed that the motion axes of 1st and 5th rotational joints are parallel at initial state, which constitute
as “distal” joints. However, not only assembly conditions in the same limb but also among different
limbs would affect the motion and constraints of parallel mechanism. Here, two cases are discussed to
verify the method:

(a) Three UPU limbs are symmetrically assembled.
In this case, three limbs are symmetrically assembled with non-parallel plane of U joint. The topology

characters should be given as⎧⎪⎨
⎪⎩

x1N1RN1 | u1N1RN1 | N1N2P | u1N2RN2 | x1N2RN2

x2N3RN3 | u2N3RN3 | N3N4P | u2N4RN4 | x2N4RN4

x3N5RN5 | u3N5RN5 | N5N6P | u3N6RN6 | x3N6RN6

⎫⎪⎬
⎪⎭ (6a)

The motion matrix of limb is solved as

mi =

⎡
⎢⎢⎢⎢⎣

ai1 bi1 0 li1 mi1 ni1

ai2 bi2 ci2 li1 mi1 ni1

0 0 0 li3 − li1 mi3 − mi1 ni3 − ni1

ai2 bi2 ci2 li3 mi3 ni3

ai1 bi1 0 li3 mi3 ni3

⎤
⎥⎥⎥⎥⎦ (6b)

https://doi.org/10.1017/S0263574724000808 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000808


2418 Xinming Huo et al.

Figure 6. Motion and constraint analysis result of 3-CRR mechanism.

The motion matrix of the ith limb lies in the format as

inputi =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 3 4 1 −2

2 3 4 1 −2

2 3 4 0 −1

2 3 4 0 −1

2 3 4 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦ (6c)

As illustrated in Fig. 7, each UPU limb provides a couple constraint, which is perpendicular to its
plane of U joint. The moving platform has three independent couples, leading to the matrix for DoF

DoF =
⎡
⎢⎣

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

⎤
⎥⎦ (6d)

It indicates that 3-UPU with fully symmetric topology has three translational motions. The “distal”
joints are falling in situation (a) listed in Table VIII, which would not change the constraints and further
the mobility. Therefore, 3-UPU has a full-cycle three-dimensional translational motion [25].

(b) Motion axes of first joint of three limbs are parallel.
In this case, the planes of U joint of limbs are parallel with each other. The input would be⎧⎪⎨

⎪⎩
x1N1RN1 | x2N1RN1 | N1N2P | x2N2RN2 | x1N2RN2

x1N3RN3 | x2N3RN3 | N1N2P | x2N4RN4 | x1N4RN4

x1N5RN5 | x2N5RN5 | N1N2P | x2N6RN6 | x1N6RN6

⎫⎪⎬
⎪⎭ (6e)
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Figure 7. Motion and constraint analysis result of 3-UPU mechanism with symmetric structure.

Motion matrix of limb is formulated easily as

mi =

⎡
⎢⎢⎢⎢⎣

ai1 bi1 0 li1 mi1 ni1 0
ai2 bi2 0 li1 mi1 ni1 0
0 0 0 li3 mi3 ni3 0

ai2 bi2 0 li4 mi4 ni4 0
ai1 bi1 0 li4 mi4 ni4 0

⎤
⎥⎥⎥⎥⎦ (6f)

The output indicates a couple

outputi =
[

2 0 0 −1
]

(6g)

It is noted that each limb provides a same couple. In this moment, the DoF matrix would be

DoF11 =

⎡
⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (6h)

which indicates two rotational and three translational motions. There exist “distal” joints, but out of the
scope without changing, it will affect the constraints and mobility. Therefore, the mobility indicated in
Eq. (6e) is not full cycle, in which case the software would inform users by a popup as in Fig. 8 (a).

The motion matrix would be changed as

mi =

⎡
⎢⎢⎢⎢⎣

ai1 bi1 0 li1 mi1 ni1 0
ai2 bi2 0 li1 mi1 ni1 0
0 0 0 li3 mi3 ni3 0

ai2 bi2 0 li4 mi4 ni4 0
ai1 bi1 ci5 li1 mi1 ni1 0

⎤
⎥⎥⎥⎥⎦ (6i)
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Figure 8. Motion and constraint analysis result of 3-UPU mechanism with parallel axes.
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The output of constraint from the ith limb is written as

outputi =
[

2 1 1 −2
]

(6j)

which indicates a constraint force. In this moment, the DoF matrix would be

DoF =

⎡
⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0

⎤
⎥⎥⎦ (6k)

which indicates two rotational and two translational motions, as illustrated in Fig. 8 (b).
Compared with case (a), it could be seen that the arrangement of limbs would affect the resultant

mobility. It is necessary to observe the constraints in the process. In this situation, the mobility at initial
pose is considered as non-full cycle DoF, which would be changed once there is a rotational movement
between the 1st and the last joints. The software depicts this phenomenon and shows it to users by a
window. When the motion axes have been changed, it falls in the four DoF, which is a full-cycle mobility
which is illustrated in the main page. From this point, the initial pose could be considered as a singular
pose of the mechanism. In this way, the software can provide much information to users rather than the
mobility.

6.3. Exechon robot
Exechon robot is famous in machining, which is composed of two UPR limbs and one SPR limb. The
topology could be characterized as⎧⎪⎨

⎪⎩
x1N1RN1 | x2N1RN1 | N1N2P | x2N2RN2

x1N1RN1 | x2N1RN1 | N1N2P | x2N2RN2

u1N4RN4 | u2N4RN4 | u3N4RN4 | N4N5P | x3N5RN5

⎫⎪⎬
⎪⎭ (6l)

Based on the algorithms and predictive model, the result of mobility and constraint analysis is
generated by the software as shown in Fig. 9, which is consistent with the result in ref. [26].

It could be seen from the visual constraints that UPR limb provides one couple and one force con-
straints, and SPR limb provides one force constraints. It is a redundant mechanism which has two couples
and three forces. Among them, one couple and two forces are independent. Therefore, the mechanism
has two rotational motions and one translational motion. The detail process is given in appendix.

6.4. Omni III robot
Omni III robot is composed of four RRRR limbs. The first joints of limbs are perpendicular with each
other, and the adjacent two joints are intersected at one point. The input could be given as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1N1RN1 | u1N1RN2 | u2N2RN3 | x1N3RN3

x2N1RN1 | u3N1RN4 | u4N4RN3 | x2N3RN3

x2N1RN1 | u5N1RN5 | u6N5RN3 | x2N3RN3

x1N1RN1 | u7N1RN6 | u8N6RN3 | x1N3RN3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6m)

Based on the algorithms and predictive model, the result of mobility and constraint analysis is
generated by the software as shown in Fig. 10, which is consistent with the result in ref. [27].

It could be seen from the visual constraints that each RRRR limb provides two force constraints in
the plane π . It is a redundant mechanism which has eight forces. Among them, three forces and one
couple are independent. Therefore, the mechanism has two rotational motions, which can move as a
simi-sphere and is famous as simi-sphere mechanism. The detail process is given in appendix.
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Figure 9. Motion and constraint analysis result of exechon mechanism.

Figure 10. Motion and constraint analysis result of Omni III robot.
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Figure 11. Motion and constraint analysis result of 2-PPPHR.

6.5. 2-PPPHR mechanism
2-PPPHR mechanism is composed of two PPPHR limbs. The first joints of limbs are perpendicular with
each other, and the adjacent two joints are intersected at one point. The input could be given as{

z1z1P | x1x1P | x2x2P | x2N1HN1 | x3N2RN2

z1z1P | x1x1P | x2x2P | x2N3HN3 | x3N4RN4

}
(6n)

Based on the algorithms and predictive model, the result of mobility and constraint analysis is
generated by the software as shown in Fig. 11, which is consistent with the result in ref. [22].

It could be seen from the visual constraints that the two PPPHR limbs provide a same couple con-
straint. Therefore, the mechanism has two rotational and three translational motions. The detail process
is given in appendix.

6.6. Discussion
As a preliminary step, twist and wrench should be solved in a concise and efficient manner. To achieve
this, two primary methods have been developed: numerical computation and observation of null-space.

For the numerical method, alternative solutions could be obtained when the number of equations
is less than five. These solutions satisfy the algebraic relationship but are failing with the geometric
features. For example, the constraints of limbs in cases 6.1–6.4 would have multi-solutions by solv-
ing null-space. In contrast, the predictive approach applies artificial intelligence to learn the geometric
features of reciprocal screws, which are granted the real meanings.

For the observation method, it requires extensive human knowledge, which is hard to be programmed
and handle with the amount of cases. Furthermore, when there exist helical joints in the screw sys-
tem, observation method would not be comfortable anymore. Besides geometric features, the predictive

https://doi.org/10.1017/S0263574724000808 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000808


2424 Xinming Huo et al.

Table IX. Comparison with existing theoretical analysis methods.

Observation method Numerical method This method
With screw motion/force × √ √
Programming × √ √
Visualization

√ × √
Explicit meanings

√ × √

approach also takes algebraic properties as loss function, which can improve the accuracy and solve the
case with helical joint like case 6.5.

As a universal function fitter, NN has become another way to solve the above problems. A single
perceptron can simulate three operations: AND, OR, and NOT. Three perceptrons forming a percep-
tron network including one hidden layer can simulate all operations. Therefore, NNs can simulate any
combination of logical functions in theory. Specifically, this ability is mainly based on the following
aspects:

1. Machine learning can identify complex patterns and rules from data, including relationships
between inputs and outputs. These patterns and rules can be abstracted into the “IF. . .THEN. . .”-
type conditional statements.

2. Machine learning constructs models by learning and training on datasets, rather than relying
on manually crafted rules. This allows machine learning to automatically extract features and
patterns from data.

3. Once the patterns and rules are learned from data, the machine learning typically generalizes this
knowledge to previously unseen data. This means that even when dealing with new situations or
data, the model can make accurate predictions or decisions.

Using the powerful fitting capabilities of machine learning, the results obtained from this approach
would be consistent with those of manual observation and numerical computation, and the advantages
of the proposed automated method are summarized in Table IX.

7. Conclusions
This paper investigates the automatic identification method for motion/constraint and mobility of parallel
mechanisms based on machine learning. The following conclusions could be drawn:

1. Topology is characterized by symbols, including the type of limbs with the direction and position
of motion axis relative to fixed platform. Motion matrix is defined by signing key points. The
mapping between topology and motion is formulated by algorithm.

2. Predictive model for reciprocal screw is constructed by NN, which reaches 89.5% accuracy by
defining a physical-informed loss function. In this way, motion and constraints are solved with
natural meanings and numerical properties.

3. Automatic mobility analysis procedure is proposed by four steps based on the predictive model.
Full-cycle mobility is identified considering the “distal” joints.

4. The online software for visualization constraint and mobility analysis is developed, and five
typical examples are given.

The automatic approach proposed in this article not only provides the results from mobility analysis
but also gives an insight investigation of meaningful motion and constraints. It offers additional benefits
by providing clear visual information and aiding in kinematic modeling, including singularity analysis.
In our future work, time series data structures for finite motion description would be well investigated.

https://doi.org/10.1017/S0263574724000808 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000808


Robotica 2425

Additionally, we aim to integrate topology synthesis, analysis, and design visually and intelligently,
taking into account both the characteristics of finite motion and constraints.
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Appendix

a. Exechon robot

(1) Step 1: motion matrix could be

m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 =

⎡
⎢⎢⎢⎢⎣

1 0 0 l11 m11 n11

0 1 0 l11 m11 n11

0 0 0 l14 − l11 m14 − m11 n14 − n11

1 0 0 l14 m14 n14

⎤
⎥⎥⎥⎥⎦

m2 =

⎡
⎢⎢⎢⎢⎣

1 0 0 l21 m21 n21

0 1 0 l21 m21 n21

0 0 0 l24 − l21 m24 − m21 n24 − n21

1 0 0 l24 m24 n24

⎤
⎥⎥⎥⎥⎦

m3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a31 b31 c31 l31 m31 n31

a32 b32 c32 l31 m31 n31

a33 b33 c33 l31 m31 n31

0 0 0 l35 − l31 m35 − m31 n35 − n31

0 1 0 l35 m35 n35

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A-1)

(2) Step 2: the inputs to the classification optimization would be

input =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

input1 =

⎡
⎢⎢⎢⎢⎣

1 0 0 1 −2

0 1 0 1 −2

2 3 4 0 −1

2 3 4 0 −1

⎤
⎥⎥⎥⎥⎦

. . .

input3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 3 4 1 −2

2 3 4 1 −2

2 3 4 1 −2

2 3 4 0 −1

0 1 0 2 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A-2)
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The constraints of each limb would be obtained as

output =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

output1 =
[

2 1 1 −2

2 0 0 −1

]

output2 =
[

2 1 1 −2

2 0 0 −1

]

output3 = [
2 1 1 −2

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A-3)

(3) Step 3: DoF analysis

DoF =
⎡
⎢⎣

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 1 0

⎤
⎥⎦ (A-4)

(4) Step 4: full-cycle mobility determination
There is no “distal” joint existing in the limb. The mechanism has a full-cycle mobility.

b. Omni III robot

(1) Step 1: motion matrix could be

m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0

a12 b12 c12 a12 b12 c12

a13 b13 c13 0 0 c14

1 0 0 0 0 c14

⎤
⎥⎥⎥⎥⎦

m2 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0

a22 b22 c22 a22 b22 c22

a23 b23 c23 0 0 c14

1 0 0 0 0 c14

⎤
⎥⎥⎥⎥⎦

m3 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0

a32 b32 c32 a32 b32 c32

a33 b33 c33 0 0 c14

1 0 0 0 0 c14

⎤
⎥⎥⎥⎥⎦

m4 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0

a42 b42 c42 a42 b42 c42

a43 b43 c43 0 0 c14

1 0 0 0 0 c14

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A-5)
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(2) Step 2: the inputs to the classification optimization would be

input =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

input1 =

⎡
⎢⎢⎢⎢⎣

1 0 0 1 −2

2 3 4 2 −2

2 3 4 3 −2

2 3 4 0 −1

⎤
⎥⎥⎥⎥⎦ , input2 =

⎡
⎢⎢⎢⎢⎣

0 0 1 1 −2

2 3 4 2 −2

2 3 4 3 −2

2 3 4 0 −1

⎤
⎥⎥⎥⎥⎦

input3 =

⎡
⎢⎢⎢⎢⎣

0 1 0 1 −2

2 3 4 2 −2

2 3 4 3 −2

2 3 4 0 −1

⎤
⎥⎥⎥⎥⎦ , input4 =

⎡
⎢⎢⎢⎢⎣

1 0 0 1 −2

2 3 4 2 −2

2 3 4 3 −2

2 3 4 0 −1

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A-6)

The outputs would be

output =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

output1 =
[

1 1 3 −2

1 2 3 −2

]
, output2 =

[
1 1 3 −2

1 2 3 −2

]

output3 =
[

1 1 3 −2

1 2 3 −2

]
, output4 =

[
1 1 3 −2

1 2 3 −2

]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A-7)

(3) Step 3: DoF analysis

DoF =
[

1 0 0 0 0 0 0

0 1 0 0 0 0 0

]
(A-8)

(4) Step 4: full-cycle mobility determination
There is no “distal” joint existing in the limb. The mechanism has a full-cycle mobility.

c. 2-PPPHR mechanism

(1) Step 1: motion matrix could be

m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 1 0 l14 m14 n14 h

1 0 0 l15 m15 n15 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

m2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 1 0 l24 m24 n24 h

1 0 0 l25 m25 n25 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A-9)
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(2) Step 2: the inputs to the classification optimization would be

input =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

input1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −1

0 1 0 0 −1

0 0 1 0 −1

0 1 0 1 −3

1 0 0 2 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

input2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −1

0 1 0 0 −1

0 0 1 0 −1

0 1 0 1 −3

1 0 0 2 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A-10)

The outputs would be

output =
⎧⎨
⎩

output1 = [
2 0 0 −1

]
output2 = [

2 0 0 −1
]
⎫⎬
⎭ (A-11)

(3) Step 3: DoF analysis

DoF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A-12)

(4) Step 4: full-cycle mobility determination
There is no “distal” joint existing in the limb. The mechanism has a full-cycle mobility.
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