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Abstract
The notions of majorizing mappings and cone-absolutely summing mappings
are studied in the locally convex Riesz space setting. It is shown that a
locally convex Riesz space Y is an M-space in the sense of Jameson (1970)
if and only if, for any locally convex space E, every continuous linear map
from E into Y is majorizing. Another purpose of this note is to study the
lattice properties of the vector space 3?\X, Y) of cone-absolutely summing
mappings from one locally convex Riesz space into another Y. It is shown
that if Y is both locally and boundedly order complete, then 2?\X, Y) is an
/-ideal in L\X, Y). This improves a result of Krengel.

1. Introduction

Schaefer (1972, 1974) and his school were the first who considered two important
classes of continuous linear maps defined on Banach lattices: majorizing mappings
and cone-absolutely summing maps. In terms of these two notions they gave new
characterizations of v4M-spaces and ^L-spaces (see Schaefer, 1974, p. 248).

In this note we first generalize these two notions to the locally convex spaces
setting, and then show that a locally convex Riesz space Y is an Af-space in the
sense of Jameson (1970) if and only if, for any locally convex space E, any continu-
ous linear map from E into Y is majorizing (Theorem 2.3). This is a generalization
of Schlotterbeck's result (see Schaefer, 1974, p. 243).

The final section is devoted to a study of the lattice properties of the vector space
<£?'(X, Y) of all cone-absolutely summing maps from one locally convex Riesz
space X into another Y. It is shown in particular that if Y is both locally and
boundedly order complete, then ^\X, Y) is an /-ideal in L\X, Y). This improves
a result of Krengel (see May and Chivukula, 1972).

The author wishes to thank the referee for many helpful comments.

2. A characterization of M-spaces

Let (Y,K) be a Riesz space (that is, vector lattice) with the positive cone K.
A subset V of Y is solid if it follows from | x | ^ | y\ with y e V that xeV, where | x \
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is the absolute value of x. A seminorm q on Y is a Riesz (or lattice) seminorm if

| y | ^ | v | implies that q{y) < q(v).

By a locally convex Riesz space (or locally convex vector lattice) we mean a
Riesz space (Y, K) equipped with a Hausdorff locally convex topology 3P which
admits a neighbourhood basis of 0 consisting of convex and solid sets. Clearly
( Y, K,t?) is a locally convex Riesz space if and only if 0 is determined by a family
of continuous Riesz seminorms. Throughout this paper Y' will denote the topo-
logical dual of (Y,8P), K* will denote the set of all positive linear functionals
on Y and K' = K*nY'.

Let E be a locally convex space and (Y,K,£P) a locally convex Riesz space. A
linear map T: E-> Yis said to be majorizing if for any continuous Riesz seminorm
q on Y there is a continuous seminorm p on E such that the inequality

sup p(xt)

holds for any finite subset {xv ...,xn} of E. The set consisting of all majorizing
linear maps from E into Y, denoted by =§?m(E, Y), is obviously a vector subspace of
the vector space £?(E, Y) of all continuous linear maps from E into Y. Let E®*)
be the countably algebraic direct sum and let T^* be defined by

r(N>(K, (N)]) = [Txn, (N)] for all [xn, (N)] eE™,

where N is the set of all natural numbers. If (Y,K) is order complete, then
Te£?m(E, Y) if and only if 7 ^ e£C(E^>, Y™) (see Wong, 1976, p. 76 and Lemma
(2.2.8) (4)).

LEMMA 2.1. Let E be a locally convex space, let (Y,K,0*) be a locally convex
Riesz space and TeSCm(E, Y). If Y has the property that each increasing ̂ -Cauchy
sequence in Y has an upper bound {in particular, if{Y,K,^) is boundedly a-order-
complete), then T maps each Cauchy sequence in E into a sequence which is
majorized.

PROOF. Let {xn} be a Cauchy sequence in E and let yn = sup{|7!x:f|: 1
for each natural number H > 1 . We claim that {yn} is an increasing ^-Cauchy
sequence in Y. Ifq is any ̂ -continuous Riesz seminorm on Y there is a continuous
seminorm p on E such that

q(yn) < sup {p(x{): 1 < / < «} for all n > 1;

as {xn} is a Cauchy sequence in E there is for any e > 0 an integer m > 0 such that

P(xm+i ~xm)^s for all *> 1.
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For each i^l we have

o < ym+i-ym = ;vm vsup{|r*m+y|: 1 <j<i}-ym

= 0vsup{(I Txm+j\-ym):l <j^i}

= 0vsup inf (\Txm+j\-\Txk\)

< sup inf \Txm+j-Txk\< sup\Txm+i-Txm\,

and thus

) for all I > 1

as asserted.
By the hypothesis there is a u e K such that yn < u for all n ̂  1, and hence

\Txn\^yn<u for all H.

Therefore {Txn} is majorized.
In particular, ii{Y,K,^) is complete then Yhas the property mentioned in the

preceding lemma. When E and Tare Frechet spaces, Walsh (1973) has shown that
T is majorizing if and only if T sends null sequences in E into majorized sequences
in Y.

LEMMA 2.2. Let E,F be locally convex spaces and suppose that Y,Z are locally
convex spaces. Then the following assertions hold:

(a) IfSeSf(E,F) andifTe£em{F, Y), then ToSe^fm(E, Y).
(b) IfTe£Cm(E, Y) and ifSe3?(Y,Z) is positive, then SoTe^m(E,Z).

PROOF, (a) Let q be any continuous Riesz seminorm on Y and r a continuous
seminorm on F such that the inequality

7(sup|7>A sup i-Gtf (2.1)
l i

holds for any finite subset {yt, ...,yn} of F. The continuity of S ensures that there
is a continuous seminorm p on E such that

r(Sx)<p(x) fo ra l lxe^ . (2.2)

Combining (2.1) and (2.2), we conclude that To S is majorizing.
(b) Let q be a continuous Riesz seminorm on Z and r a continuous Riesz

seminorm on Y such that q(Sy)^r(y) for all ye Y. Since TeSem(E, Y) there is a
continuous seminorm p on E such that the inequality

sup p(xt)

https://doi.org/10.1017/S1446788700020243 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020243


248 Yau-Chuen Wong [4]

holds for any finite subset {xlt ...,xn} of E. As S is positive, we have

+ S(TxA *S S ( sup | Txt |) for all j with 1 <./ < n,

and thus

q( sup |(5oT)xA^qisi sup |Txt|))^ sup
\ l i / V \ l / / l i

which shows that SoT is majorizing.
A subset 5 of (y,A) is called a sublattice if for any finite subset {j^, ...,>'„} of

B it is true that suplsjis;nj>f and infl3£fc-Bj>f exist in B. Clearly the intersection of a
family of sublattices is a sublattice, hence the smallest sublattice containing a given
set B is denoted by si(B). If B is convex then so is si(B); if B is a symmetric sub-
lattice, then the solid hull S(B) of B is the order-convex hull [B] of B (where
[B] = (B+K)n(B- K)) and S(5) is a convex sublattice. Following Jameson (1970),
a locally convex Riesz space ( Y, K,&) is called an M-space \i8P admits a neighbour-
hood basis at 0 consisting of convex, solid sublattices. It is also clear that if C/is a
convex, solid ^-neighbourhood of 0 in Y, then U is a sublattice if and only if the
gauge qu of U is an M-seminorm in the following sense

for all

Therefore a locally convex Riesz space (Y,K,0>) is an M-space if and only if 0* is
determined by a family of continuous Af-seminorms. It is trivial that every AM-
space is an Af-space. In view of majorizing maps we are able to present a character-
ization of Af-spaces as follows.

THEOREM 2.3. For a locally convex Riesz space (Y, K,0*) the following statements
are equivalent.

(a) (Y,K,0>) is an M-space.
(b) The identity map from Y onto Y is majorizing.
(c) y(E, Y) = £em(E, Y)for any locally convex space E.

PROOF. The implications (a)=>(b) and (c)=>(b) are obvious, and the implication
(b)=>(c) follows from Lemma 2.2. Therefore we complete the proof by showing
that (b) implies (a). To do this, let U be any convex solid ^-neighbourhood of 0
in Y and let V be a convex, solid ^"-neighbourhood of 0 in Y such that

Qu I SUP I y< I) < sup Pviyi) (2.3)

for any finite subset {yx, ...,yn} of Y, where qv (respectively pv) is the gauge of
U (respectively the gauge of V). From (2.3) it is easily seen that sl(F) <=• U since

sl(F) = I sup inf yi}: y^eV).
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Since sl(F) is symmetric, the solid hull S(sl(F)) of sl(F) is a convex, solid and
sublattice satisfying

Therefore 0* admits a neighbourhood basis at 0 consisting of convex, solid and
sublattices, thus {Y,K,0s) is an M-space.

In particular, if (y, A'.H •()) is a Banach lattice, then in view of the remark after
Lemma 2.1, Y is isomorphic to an v4M-space if and only if every null sequence
in Y is order-bounded, therefore the preceding result is a generalization of
Schlotterbeck's result (see Schaefer, 1974 (IV.2.8), p. 243).

3. Lattice properties of cone-absolutely summing mappings

Let (E, C, &~) be an ordered convex space and F a locally convex space. A
linear map T: E-+F is said to be cone-absolutely summing if for any continuous
seminorm q on F there is a continuous seminorm p on E such that the inequality

holds for any finite subset {ult..., un} of C. The set consisting of all cone-absolutely
summing maps from E into F, denoted by ^Cl(E, F), is a vector subspace of the
space HE, F) of all linear maps from E into F. Clearly each element in Ji?l(E, F)
is a continuous map from C into F, thus if E is locally decomposable (for definition,
see Wong and Ng, 1973), then Se\E,F)<^^{E,F). Other properties of cone-
absolutely summing mappings can be found in Chapter 3 of Wong (1976).

The notions of cone-absolutely summing maps and majorizing maps were first
considered by Schaefer and his school in the Banach lattices setting (see Schaefer,
1972, 1974). Walsh (1973) and others extended these notions to the case of locally
o-convex spaces with closed and generating cones; Walsh (1973) was very successful
in extending Schlotterbeck's results to a fairly general setting, and offering counter-
examples to show that some of his results really involve the lattice structure
intrinsically.

Let X and Y be locally convex Riesz spaces and let Y be order complete. Then
L\X, Y) is an order complete Riesz space under the canonical ordering, but
£?(X, Y) need not be a Riesz space (see Peressini, 1967 (IV.3.3)). If M is a vector
subspace of ££(X, Y), it is a difficult problem to determine under what conditions
on M (or Y), M is a Riesz subspace of L\X, Y). If Fis both locally and boundedly
order complete, then 3?l(X, Y) is an /-ideal (that is, solid subspace) in L\X, Y) as
shown by the following result.

THEOREM 3.1. Let (X,C,&~) and (Y,K,0*) be locally convex Riesz spaces. If
(Y,K,!?) is both locally and boundedly order-complete then 3?\X, Y) is an l-ideal in
L\X, Y) and hence is an order-complete Riesz space in its own right.
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PROOF. Let Te£?l(X, Y). For any ^"-continuous Riesz seminorm q on Y, there i
exists a ^"-continuous Riesz seminorm p on X such that

f=l \t=l

holds for all finite subsets {xlf...,xn} of C. Let u be in C and let u = £™=iMi with i
ut e C. As q is a Riesz seminorm, there is

Hence the set { S r - i l ^ h « = 2"=i«i> « i e Q is a ^-bounded subset of Y. On '
the other hand, the Riesz decomposition property ensures that the set j
{Ti1i=i\Tui\:u = ^^lui,uieC} is directed upwards. Therefore the bounded I
order-completeness of Y implies that the supremum

exists for each ueC. It then follows that \T\ exists in L\X, Y). Consequently
Se\X, Y)<=-L\X, Y).

Further, we show that | T\ eSC\X, Y). Let r be any ̂ "-continuous Riesz seminorm
on Y. By Lemma 1 of May and Chivukula (1972), there exists a ^"-continuous
Riesz seminorm q on Y such that

r(sup B) < sup {q{b): beB},

where B is any ̂ -bounded subset of Y which is directed upwards. In particular,

r(\T\u)^suph(fl\Tui\\:u= Sw^eC

holds for all ueC. As TeSf\X, Y), there exists a ^"-continuous Riesz seminorm/;
on X such that the inequality (3.1) holds for all finite subsets {xlt ...,*„} of C.
If {wlt..., wn} is any finite subset of C, there are

» n
SK T WyX Ssup

3=1 J - l

= sup] S9|S|rM«|): Wy = S«y,%£C|
li=i \t=i / »=i )

{ n
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Therefore \T\ is cone-absolutely summing. Combining this with the above
conclusion, we see that ££\X, Y) is a Riesz space.

Finally, if O^S^T, where SeLb(X, Y) and TeSCl(X, Y), then it is easily seen
that Se3P(X, Y). This shows that £e\X, Y) is an /-ideal in L\X, Y) and therefore
the proof is complete.

COROLLARY 3.2. Let (X,C,£F) and (Y,K,0>) be locally convex Riesz spaces for
which (Y,K,!P) is both locally andboundedly order complete. If 3~ is the Dieudonni
topology o^X, X') (that is, the topology of uniform convergence on order-intervals
in X'), then £?(X, Y) is an l-ideal in L\X, Y), and hence Se{X, Y) is an order com-
plete Riesz space.

PROOF. In view of Theorem (3.2.12)(h) of Wong (1976), =S?(Z, Y) =SC\X, Y),
the result now follows from Theorem 3.1.

In particular, if (X, C,||.||) is a normed vector lattice such that the norm ||.|| is
additive on C, then the norm-topology coincides with a^X,X'). Therefore the
preceding corollary is an improvement of Theorem 1 of May and Chivukula (1972)
as well as of Krengel's result (see Peressini, 1967 (IV.3.8), p. 174).
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