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Poly(ADP-ribose) synthetase/polymerase (PARP) activation causes NAD+ depletion in pancreatic
β-cells, which results in necrotic cell death. On the other hand, ADP-ribosyl cyclase/cyclic ADP-
ribose hydrolase (CD38) synthesizes cyclic ADP-ribose from NAD+, which acts as a second mes-
senger, mobilizing intracellular Ca2+ for insulin secretion in response to glucose in β-cells. PARP
also acts as a regenerating gene (Reg) transcription factor to induce β-cell regeneration. This pro-
vides the new concept that NAD+ metabolism can control the cellular function through gene
expression. Clinically, PARP could be one of the most important therapeutic targets; PARP
inhibitors prevent cell death, maintain the formation of a second messenger, cyclic ADP-ribose, to
achieve cell function, and keep PARP functional as a transcription factor for cell regeneration.
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Introduction

The established biological roles of niacin are attributable to
the function of its active metabolites, NAD and NADP, as
redox coenzymes. NAD+ is synthesized from tryptophan
and also from preformed nicotinic acid and nicotinamide,
and in addition to its coenzyme role can be further metabo-
lized to poly(ADP-ribose) and cyclic ADP-ribose by
poly(ADP-ribose) synthetase/polymerase (PARP) and
ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase (CD38),
respectively (Fig. 1). Our recent results indicate that these
NAD+ metabolites and enzymes are crucially involved in
the death, regeneration, and functioning of the insulin-pro-
ducing β-cells of the pancreatic islets of Langerhans.

In the present review, some of our studies will be
described concerning the death of insulin-producing pan-
creatic β-cells by the activation of PARP. Second, a novel
signal system, the CD38–cyclic ADP-ribose signal system
for insulin secretion, will be presented. Finally, β-cell
regeneration, in which PARP acts as a regenerating gene
(Reg) transcription factor, will be described.

Poly(ADP-ribose) synthetase/polymerase activation and
ββ-cell death

PARP was isolated from nuclei of mammalian cells at the
end of the 1960s by three independent groups (Chambon et

al. 1966; Nishizuka et al. 1967; Sugimura et al. 1967).
PARP catalyses the formation of poly(ADP-ribose) from
NAD+. This enzyme is one of the best-known proteins with
DNA damage-scanning activity and is activated by DNA
damage (Ueda & Hayaishi, 1985).

Alloxan and streptozotocin are typical β-cytotoxic chem-
ical agents and have been widely used to produce diabetes
in experimental animals (Dunn et al. 1943; Rakieten et al.
1963). However, the mechanisms of action of these β-cyto-
toxins on pancreatic β-cells were not fully understood. In
1981, it was found that alloxan and streptozotocin induce
DNA strand breaks in pancreatic islet cells (Okamoto,
1981; Yamamoto et al. 1981a,b). Islets isolated from rat
pancreas were incubated with alloxan or streptozotocin for
5–20 min in Krebs–Ringer bicarbonate medium. After
incubation, islets were layered over a linear sucrose gradi-
ent and centrifuged (Fig. 2). DNA from control islets was
observed at a single peak near the bottom of the gradient,
the position at which undamaged DNA sediments.
However, after only 5–10 min incubation with alloxan or
streptozotocin, a considerable amount of DNA sedimented
as a broad peak in the middle of the gradient with a con-
comitant decrease in undamaged DNA; after the 20 min
incubation, the DNA was almost completely fragmented.

Alloxan generates oxygen radicals during a reduction
and oxidation reaction. In addition, the hydroxyl radical is
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produced by the interaction between superoxide and perox-
ide. When superoxide dismutase and catalase are present,
the formation of the hydroxyl radical is reduced. Therefore,
concerning the mechanisms of DNA strand breaks, alloxan
yields oxygen radicals, especially hydroxyl radicals, that
break islet DNA (Okamoto, 1981, 1985, 1990; Uchigata et
al. 1982, 1983). On the other hand, the streptozotocin-
induced DNA breaks are mainly associated with the alky-
lating activity of the agent itself (Okamoto, 1981, 1985,
1990; Uchigata et al. 1982, 1983; Cardinal et al. 2001).

The nuclear fraction from islets was then prepared and
PARP activity was assayed. Both alloxan and streptozo-
tocin induced a great increase in islet PARP activity with a

peak at 10 min. NAD+ is the substrate of PARP, and the
islet NAD+ level was greatly reduced by either streptozo-
tocin or alloxan within 20 min of incubation (Yamamoto et
al. 1981a). There was a striking temporal correlation
between the decrease in the level of islet NAD+ and the
increase in the islet PARP activity. Picolinamide as well as
nicotinamide inhibited the islet nuclear PARP activity in a
dose-dependent manner (Yamamoto & Okamoto, 1980).
Streptozotocin greatly decreased the islet NAD+ level.
Picolinamide and nicotinamide completely abolished the
streptozotocin-induced decrease in the islet NAD+ level.
The same was true for the decrease in the islet NAD+ level
induced by alloxan. Nicotinamide is a precursor for NAD+

synthesis and also an inhibitor of PARP. Picolinamide is an
inhibitor of PARP, but incapable of acting as a precursor in
NAD+ synthesis. Therefore, the streptozotocin- or alloxan-
induced decrease in NAD+ is due to increased NAD+ degra-
dation to poly(ADP-ribose) by PARP activation rather than
the inhibition of NAD+ biosynthesis. Pro-insulin synthesis
in pancreatic islets is a marker for the evaluation of the dia-
betogenicity of alloxan and streptozotocin. PARP inhibitors
such as benzamides, nicotinamide, picolinamide, and
methylxanthines reverse the inhibition of pro-insulin syn-
thesis induced by alloxan and streptozotocin in a dose-
dependent manner (Uchigata et al. 1982; Okamoto, 1985,
1990).

Therefore, a unifying model was proposed for the action
of the diabetogenic agents streptozotocin and alloxan on
pancreatic β-cells (Fig. 3). Central to the model are breaks
in the nuclear DNA of β-cells caused by oxygen radicals or
the alkylation of DNA. These breaks induce DNA repair
involving the activation of PARP, which uses NAD+ as a

254 H. Okamoto and S. Takasawa

Tryptophan

Kynurenine

3-Hydroxykynurenine

3-Hydroxyanthranilic acid

Quinolinic acid

NAD

2-Amino-3-carboxymuconic semi-aldehyde

Nicotinic acid
Nicotinamide

Cyclic ADP-ribose Poly(ADP-ribose)

Poly(ADP-ribose) synthetase/
polymerase

ADP-ribosyl cyclase

Fig. 1. Cyclic ADP-ribose and poly(ADP-ribose) formation from
NAD+.

40

20

0

D
N

A
 (

%
)

Control 5 min 10 min 20 min

1 10 20 1 10 20 1 10 20 1 10 20

Fraction number

Fragmented DNA Fragmented DNA Fragmented DNA

(a)

40

20

0

D
N

A
 (

%
)

Control 5 min 10 min 20 min

1 10 20 1 10 20 1 10 20 1 10 20

Fraction number

Fragmented DNA Fragmented DNA Fragmented DNA

(b )

Undamaged DNA

Fig. 2. Pancreatic β-cell DNA strand breaks by alloxan (1 mM) (a) and streptozotocin (2 mM) (b). Islets isolated from rat pancreas were
incubated with alloxan or streptozocin for 5–20 min in Krebs–Ringer bicarbonate medium. After incubation the islets were laid on an alkaline
5–20 % sucrose gradient and centrifuged. ( , ), Undamaged DNA. (Adapted from Yamamoto et al. 1981a.)
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substrate, resulting in cellular NAD+ depletion. The fall in
cellular NAD+ decreases ATP and inhibits cellular functions
including insulin synthesis and secretion, and thus the β-
cell ultimately dies. Thus, this appears to be a suicide
response for β-cells to DNA repair. The NAD+ depletion
and the decrease in β-cell functions were prevented by radi-
cal scavengers such as superoxide dismutase and catalase,
and by the PARP inhibitors, nicotinamide and 3-aminoben-
zamide (Okamoto et al. 1988, 1997, 2000; Okamoto, 1990;
Okamoto & Takasawa, 2002; Takasawa & Okamoto,
2002a,b). Recently, this model was supported by experi-
ments using PARP-knockout mice by three independent
groups in Germany, Japan, and the USA. In the pancreatic
islets of wild-type mice, insulin-producing cells were
almost completely destroyed by streptozotocin, but in
PARP-deficient mice, the cells remained intact (Burkart et
al. 1999; Charron & Bonner-Weir, 1999; Masutani et al.
1999; Pieper et al. 1999).

Interest in the model for the mechanism of action of
alloxan and streptozotocin has been heightened by its possi-
ble extension to the effects of viruses, inflammation and
radiation, especially immune-mediated events on β-cells.
Thus, since the early 1980s, it has been proposed that,
although type 1 (insulin-dependent) diabetes can be caused
by many different agents such as immunological abnormal-
ities, inflammatory tissue damage, and β-cytotoxic chemi-
cal substances, the final pathway for the toxic agents is the
same (Fig. 4). Therefore, type 1 diabetes is theoretically
preventable by suppressing immune reactions, scavenging
free radicals, and inhibiting PARP by nicotinamide and 3-
aminobenzamide (Okamoto, 1981, 1985, 1990; Yamamoto
et al. 1981a; Uchigata et al. 1982; Okamoto et al. 1988,
1997, 2000; Okamoto & Takasawa, 2002; Takasawa &
Okamoto, 2002a,b). Concerning NO, transgenic mice were
produced expressing NO synthase constitutively in pancre-
atic β-cells and found that the β-cell mass was markedly
reduced and that the transgenic mice developed severe dia-
betes (Takamura et al. 1998).

Recently, the cell death caused by the PARP activation
has been recognized as providing the basis for necrotic cell

death (Okamoto et al. 1988; Okamoto, 1990; Germain et al.
2000; Okamoto & Takasawa, 2002; Takasawa & Okamoto,
2002a,b). In apoptotic cell death, PARP is cleaved by cas-
pases and inactivated. Therefore, PARP inhibitors can pre-
vent necrosis but are ineffective for preventing apoptosis.
Whether to die from necrosis or to die from apoptosis may
depend on the severity and duration of the cell damage,
differences in death signals, and the species of the cells.
Furthermore, several lines of evidence indicate that
macrophages and/or dendritic cells distinguish between the
two types of cell death, with necrosis providing a control
that is critical for the initiation of immunity (Sauter et al.
2000; Cocco & Ucker, 2001). Necrotic cells, when recog-
nized, enhance the pro-inflammatory responses of activated
macrophages and induce immune reactions. Therefore,
immunological abnormalities, which are frequently
observed in type 1 diabetes, may be triggered by the pre-
ceding necrotic cell death and then cause the apoptotic
death of β-cells (Fig. 5). Recently, many other tissues and
cells, such as those involved in diabetic endothelial injury
and stroke, have been reported to die by the same mecha-
nism as that involved in pancreatic β-cell death (Yamamoto
et al. 1981a; Uchigata et al. 1982; Eliasson et al. 1997;
Szabó et al. 1997, 1998; Zingarelli et al. 1998, 1999;
Bowes et al. 1999; Burkart et al. 1999; Love et al. 1999;
Mandir et al. 1999; Masutani et al. 1999; Oliver et al.
1999; Pieper et al. 1999, 2000; Stern et al. 1999; Tsao et al.
1999; Ducrocq et al. 2000; Jijon et al. 2000; Liaudet et al.
2000; Martin et al. 2000; Plaschke et al. 2000; Mabley et
al. 2001; Soriano et al. 2001; Pacher et al. 2002). Recent
human genome sequence projects have revealed the occur-
rence of similar DNA sequences to PARP. Until now, at
least seven PARP-related genes (PARP-2, PARP-3,
vaultPARP/PARP-4, Tankyrase/PARP-5, Tankyrase2,
PARP-6, and PARP-7) in addition to the original PARP
(PARP-1) have been isolated and revealed to constitute a
multigene family, the PARP gene family (Shall, 2002).
PARP-1 activation by extensive DNA damage is the major
pathway in necrotic cell death, and therefore ‘PARP’ will
be used from here onwards to indicate PARP-1.

Poly(ADP-ribose) and cyclic ADP-ribose 255

Alloxan

Streptozotocin

O2•
H2O2

OH•

CH3•

ATP

Cell death

Repair

Poly(ADP-ribose)

PARP
activation

NAD depletion

DNA
damage
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The β-cell damage is theoretically preventable through inhibition of the serial reactions ( ). One method is by inhibiting abnormal immune
reactions with immunomodulators such as cyclosporin, linomide and OK-432. Others include scavenging the radicals, which break DNA, by
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Okamoto et al. 1988; Okamoto et al. 1995; Okamoto et al. 1997; Okamoto et al. 2000; Okamoto, 1990; Okamoto & Takasawa, 2002;
Takasawa & Okamoto, 2002a,b.)
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Fig. 5. The Okamoto model for necrotic cell death. The Okamoto model, originally proposed as a unifying model for β-cell damage and its
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synthetase/polymerase. (Adapted from Okamoto & Takasawa, 2002.)

https://doi.org/10.1079/NRR200362 Published online by Cambridge University Press

https://doi.org/10.1079/NRR200362


The ADP-ribosyl cyclase/cyclic ADP-ribose
hydrolase–cyclic ADP-ribose signal system for insulin

secretion

Cyclic ADP-ribose is a cyclic compound synthesized from
NAD+. This compound was first found in 1987 by Dr Lee
of Minnesota University when studying Ca2+ release in sea
urchin eggs (Clapper et al. 1987). The physiological signifi-
cance of cyclic ADP-ribose in mammalian systems was not
understood at the time.

As shown in Fig. 4, decreases in the NAD+ level under
various circumstances can cause decreases in cyclic ADP-
ribose in β-cells. In 1993, a model of insulin secretion by
glucose was proposed, as shown in Fig. 6 (Takasawa et al.
1993a, 1994; Okamoto et al. 1997, 2000; Okamoto &
Takasawa, 2002; Takasawa & Okamoto, 2002a,b). That is,
ATP, produced in the process of glucose metabolism, inhibits
the cyclic ADP-ribose hydrolase activity of CD38, causing
the accumulation of cyclic ADP-ribose, which acts as a sec-
ond messenger for Ca2+ mobilization from an intracellular
Ca2+ pool, the endoplasmic reticulum, for insulin secretion.
CD38 is a 300-amino-acid protein that catalyses the for-
mation of cyclic ADP-ribose from NAD+ and also the
hydrolysis of cyclic ADP-ribose to ADP-ribose (Takasawa et
al. 1993b; Tohgo et al. 1997). It was determined that glu-

tamic acid-226 is essential for NAD+ binding and that cys-
teine-119 and cysteine-201 are essential for the hydrolase
reaction (Tohgo et al. 1994; Okamoto & Takasawa, 2001). It
is of special importance that lysine-129 is the cyclic ADP-
ribose binding site and that ATP competes with cyclic ADP-
ribose for the binding site, inhibiting the cyclic ADP-ribose
hydrolase of CD38 and increasing the cyclic ADP-ribose
level (Tohgo et al. 1997). In fact, the cyclic ADP-ribose con-
tent of islets incubated with high-concentration glucose was
increased within 5 min but not when incubated with low-
concentration glucose (Takasawa et al. 1998).

Then, the Ca2+ release from islet microsomes was exam-
ined. Cyclic ADP-ribose caused the release of Ca2+ from
islet microsomes. Inositol 1,4,5-trisphosphate (IP3) did not
cause the release of Ca2+, and after the addition of IP3 the
islet microsomes were still responsive to cyclic ADP-
ribose. In cerebellar microsomes, IP3 caused the release of
Ca2+ and cyclic ADP-ribose also caused the release of Ca2+.
Heparin, an inhibitor of the IP3 receptor, inhibited the Ca2+

release by IP3 but not that caused by cyclic ADP-ribose.
Therefore, cerebellum microsomes respond to both cyclic
ADP-ribose and IP3, but cyclic ADP-ribose induces Ca2+

release via a different mechanism from that utilized by IP3
(Takasawa et al. 1993a).
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From these results and other available evidence, the
CD38–cyclic ADP-ribose signal system for insulin secre-
tion was proposed, as shown in Fig. 6. To verify our model
of insulin secretion, CD38-knockout mice were created
(Kato et al. 1999). In CD38-knockout mice, the ADP-ribo-
syl cyclase activity of the islet homogenate was almost
undetectable. The cyclic ADP-ribose content in wild-type
mouse islets was greatly increased when incubated with
high-concentration glucose, but in CD38-knockout mouse
islets the cyclic ADP-ribose content was not affected by
high-concentration glucose. In the CD38-knockout mouse
islets, the increase in the intracellular Ca2+ concentration by
high-concentration glucose was much lower than that in
wild-type mouse islets, and insulin secretion was severely
decreased in knockout islets (Fig. 7).

The CD38–cyclic ADP-ribose signal system for insulin
secretion is different from the ATP-sensitive K+ channel
theory proposed by Ashcroft et al. (1984). Furthermore, the
CD38–cyclic ADP-ribose signal system is also different
from the theory proposed by Berridge & Irvine (1984), in
which IP3 induces Ca2+ release from the endoplasmic retic-
ulum. In this context, controversial results were reported by
Swedish and Swiss groups (Islam et al. 1993; Rutter et al.
1994; Webb et al. 1996; Islam & Berggren, 1997). They
used ob/ob mouse islets and RINm5F β-cells. Our group
showed that the Ca2+ release responses of microsomes of
diabetic β-cells such as ob/ob mouse islets and RINm5F 
β-cells were quite different from those of normal islet
microsomes (Takasawa et al. 1998). Microsomes from
normal C57BL mouse islets released Ca2+ in response to
cyclic ADP-ribose but scarcely in response to IP3. In con-
trast, ob/ob mouse islet microsomes released only a small
amount of Ca2+ in response to cyclic ADP-ribose but
released much in response to IP3. The microsomes of
RINm5F β-cells, which are a cell line derived from a rat
insulinoma and show almost no insulin secretion response
to glucose, responded well to IP3 to release Ca2+ but did not

respond to cyclic ADP-ribose. The mRNA expression of
the type 2 ryanodine receptor, which is a Ca2+ release chan-
nel for cyclic ADP-ribose, was detected in normal islets but
not in ob/ob islets. In contrast, IP3 receptor mRNA was
scarcely detectable in normal islets but was clearly
detectable in ob/ob islets (Takasawa et al. 1998). This fits
well with the observation that IP3-induced Ca2+ mobiliza-
tion preferentially acts in ob/ob islet microsomes.
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Fig. 7. Impaired Ca2+ signalling and insulin secretion in ADP-ribosyl
cyclase/cyclic ADP-ribose hydrolase (CD38)-knockout mouse islets.
Digital imaging of intracellular Ca2+ concentration in the islets (a)
and changes of intracellular Ca2+ concentration (b) in response to
glucose stimulation are shown. Islets were loaded with fura-2 by a
30 min incubation at 37°C in Krebs–Ringer buffer containing 0·2 %
(w/v) bovine serum albumin, 2·8 mM-glucose, and 25 µM-
acetoxymethyl ester of fura-2. Islets were perfused with
Krebs–Ringer buffer containing 2·8 mM-glucose (LG) or 20 mM-
glucose (HG) at 37°C at a rate of 2·5 ml/min. Fura-2 excitation (340
and 380 nm) and fluorescence detection (510 nm) were
accomplished, and the 340:380 nm fluorescence value was
converted to intracellular Ca2+ concentration using QuantiCell 900.
The interval between successive recording images was 4 s (Kato et
al. 1999). Insulin secretion from isolated islets under various glucose
concentrations is shown (c). Twenty islets were pre-incubated for 2 h
at 37°C in RPMI1640 medium (1 ml) containing 10 % (v/v) fetal calf
serum and 2·5 mM-glucose and then incubated for another 1 h in the
same medium containing various concentrations of glucose. The
medium samples were subsequently assayed by radioimmunoassay
for insulin (Kato et al. 1995, 1999). (�), Wild-type mouse islets; (�),
CD38-knockout mouse islets. Mean values were significanly lower
than for the wild-type mouse islets: * P < 0·05, ** P < 0·01. (Adapted
from Kato et al. 1999; Okamoto et al. 2000; Okamoto & Takasawa,
2002; Takasawa & Okamoto, 2002b.)
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Furthermore, the CD38 mRNA level was significantly
decreased in ob/ob islets (Matsuoka et al. 1995), and in
RINm5F β-cells CD38 was not expressed (Koguma et al.
1994). Therefore, the cyclic ADP-ribose signal system for
insulin secretion is used under normal physiological condi-
tions but is replaced by the IP3 system in diabetic β-cells
such as ob/ob mouse islets and RINm5F β-cells (Okamoto
et al. 1997; Takasawa et al. 1998; An et al. 2001; Mitchell
et al. 2001; Okamoto & Takasawa, 2002; Takasawa &
Okamoto, 2002b; Varadi & Rutter, 2002). Cells can there-
fore utilize two second messengers, IP3 and cyclic ADP-
ribose, depending on the species of cells as well as
differences in the cellular conditions, physiological or
pathological (Fig. 8). Recently, a novel signal system, the
CD38–cyclic ADP-ribose system, has been reported to
function in various tissues and cells (Galione, 1993; Sasaki
et al. 1993; Hua et al. 1994; Lee et al. 1994; Thorn et al.
1994; Allen et al. 1995; Gromada et al. 1995; Higashida et
al. 1995, 1997; Kuemmerle & Makhlouf, 1995; Tanaka &
Tashjian, 1995; Rakovic et al. 1996, 1999; Ebihara et al.
1997; Li et al. 1998; Mothet et al. 1998; Prakash et al.
1998; Yamaki et al. 1998; Guse et al. 1999; Inngjerdingen
et al. 1999; Reyes-Harde et al. 1999; Sun et al. 1999; Han
et al. 2000; Khoo et al. 2000; Fukushi et al. 2001; Partida-
Sanchez et al. 2001; Chini et al. 2002; Tang et al. 2002).
Therefore, the NAD+ metabolism may control cellular
functions via the novel metabolite, cyclic ADP-ribose.

Recently, a missense mutation was identified in the
CD38 gene in Japanese diabetic patients (Yagui et al.
1998). The resulting CD38 protein showed altered catalytic
activities with a decreased production of cyclic ADP-
ribose. Furthermore, anti-CD38 auto-antibodies have been
detected in 10–14 % of Japanese as well as Caucasian dia-
betic patients (Ikehata et al. 1998; Pupilli et al. 1999;
Antonelli et al. 2001, 2002; Mallone et al. 2001). These
results indicate that the CD38–cyclic ADP-ribose signal
system functions in insulin secretion in man. Thus, both the
CD38–cyclic ADP-ribose signal system and the ATP-sensi-

tive K+ channel system are important in insulin secretion in
response to glucose (Okamoto et al. 1997, 2000; Okamoto
& Takasawa, 2002; Takasawa & Okamoto, 2002a,b).

ββ-Cell regeneration and the regenerating gene

At the end of 19th century, von Mering & Minkowski
(1890) in Strasbourg found that a dog became diabetic fol-
lowing pancreatectomy. This observation stimulated many
workers to try to isolate the active pancreatic agent as a
possible treatment for diabetes. In 1984, our group pro-
duced 90 % depancreatized rats and injected them with
PARP inhibitors such as nicotinamide and 3-aminobenza-
mide intraperitoneally every day. Urinary glucose excretion
was normalized in 90 % depancreatized rats treated with
nicotinamide or 3-aminobenzamide, and the surgical dia-
betes was ameliorated. The islets in the remaining pan-
creases of the rats that had received the PARP inhibitors for
3 months were extremely large and almost the entire area of
the enlarged islets stained for insulin (Yonemura et al.
1984). From the regenerating islets a novel gene, Reg, was
isolated. The human REG gene was also isolated. Human
and rat genes encoded 166 and 165 amino-acid proteins
with signal peptides, indicating that Reg proteins are secre-
tory proteins (Terazono et al. 1988). Three disulfide bonds
were conserved in human and rat Reg proteins. A Reg pro-
tein receptor of 919 amino acids was also isolated. The Reg
receptor-expressed cells showed increased 5�-bromo-2�-
deoxyuridine incorporation upon the addition of Reg pro-
tein (Kobayashi et al. 2000). Thus, the Reg–Reg receptor
system for β-cell regeneration was proposed (Fig. 9). Reg
protein is synthesized in, and secreted from, pancreatic β-
cells and acts on its receptor as an autocrine or paracrine
growth factor (Watanabe et al. 1994; Gross et al. 1998;
Unno et al. 2002). Our recent results indicate that the Reg
receptor-mediated growth signal induces the cell cycle via
cyclin (Okamoto & Takasawa, 2002).

More recently, it was found that the Reg gene is acti-
vated by interleukin-6 (IL-6), dexamethasone, and PARP
inhibitors, and that the regeneration and proliferation of
pancreatic β-cells are primarily regulated by Reg gene
expression (Akiyama et al. 2001). The combined addition
of IL-6 and dexamethasone induced Reg gene expression,
and further addition of nicotinamide or 3-aminobenzamide
increased the expression further. Progressive deletion of the
5�-flanking region of rat Reg gene revealed that the region
between nucleotides �81 and �71 is essential for Reg gene
promoter activity. In gel mobility shift assays using the Reg
gene promoter, the DNA–protein complex was detected in
the nuclear extracts of cells treated with IL-6, dexametha-
sone and/or nicotinamide, and the intensity was correlated
with the promoter activity. The addition of NAD+ to the
nuclear extracts attenuated the complex. Nicotinamide and
3-aminobenzamide quenched the effect of NAD+. These
results suggest that PARP participates in the formation of
the active transcriptional DNA–protein complex and that
the formation of the active complex was inhibited by the
poly(ADP-ribosyl)ation of nuclear proteins. The involve-
ment of PARP in the active transcriptional complex was
evidenced by the fact that the complex was stained by an
anti-PARP antibody. The involvement of PARP in the
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(intestine)
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Fig. 8. Alternative use of the two Ca2+-mobilizing second messengers
depending on differences in the cell types and on physiological and
pathological conditions. Various physiological phenomena from
animal to plant cells become understandable in terms of this novel
signal system. MIN6, INS-1 and RINm5F are �-cell lines. cADPR,
cyclic ADP-ribose; IP3, inositol 1,4,5-trisphosphate. (Adapted from
Okamoto & Takasawa, 2002; Takasawa & Okamoto, 2002b.)
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active complex was further evidenced by the immunodeple-
tion of PARP with an anti-PARP antibody.

Thus, as shown in Fig. 10, inflammatory mediators IL-6
and glucocorticoids induce the formation of an active tran-
scriptional complex for Reg gene, in which PARP is
involved, and Reg gene transcription proceeds. On the other
hand, during inflammation, superoxide and NO are 
produced and cause DNA damage. In this case, PARP is

activated and poly(ADP-ribosyl)ates itself. The poly(ADP-
ribose) chains on the PARP protein inhibit the formation of
the active transcriptional complex, and Reg gene transcrip-
tion is stopped. In the presence of PARP inhibitors, the
PARP is not poly(ADP-ribosyl)ated, the transcriptional
complex is stabilized, and Reg gene transcription proceeds.
When the DNA is massively damaged, PARP is rapidly
activated to repair the DNA, as has been mentioned earlier
in the present review, and the complex for Reg gene tran-
scription is not formed at all.

Recently, Reg and Reg-related genes have been isolated
and shown to constitute a multigene family, the Reg gene
family (Unno et al. 1993; Okamoto, 1999; Okamoto &
Takasawa, 2002). Based on the primary structures of the
Reg proteins, the members of the family are grouped into
four subclasses; type I, II, III, and IV (Fig. 11). In man, four
REG family genes, i.e. REG Iα (Watanabe et al. 1990), REG
Iβ (Moriizumi et al. 1994), REG-related sequence (RS)
(Watanabe et al. 1990), and HIP/PAP (genes expressed in
hepatocelullar carcinoma, intestine, pancreas/gene encoding
pancreatitis-associated protein), are tandemly ordered in the
95 kbp region of chromosome 2p12 (Miyashita et al. 1995),
whereas REG IV/RELP (regenerating protein-like protein)
locates on chromosome 1p12–13.1 (Hartupee et al. 2001;
Kämäräinen et al. 2003). In the mouse genome, all the Reg
family genes, i.e. Reg I, Reg II, Reg IIIα, Reg IIIβ, Reg IIIγ,
and Reg IIIδ, were mapped to a contiguous 75 kbp region of
chromosome 6C (Abe et al. 2000). Type I (and type II) Reg
proteins are expressed in regenerating islets (Unno et al.
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Fig. 9. The Reg–Reg receptor system for β-cell regeneration. Reg
protein produced in β-cells acts as an autocrine and paracrine
growth factor on β-cells via the Reg receptor. DNA replication and
cell cycle progression in β-cells occurs via cyclin, and β-cell
regeneration is achieved. Reg, regenerating gene. (Adapted from
Okamoto & Takasawa, 2002.)
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Fig. 10. Representation of the unified role of poly(ADP-ribose) synthetase/polymerase (PARP) in the regenerating (Reg) gene transcription
and DNA repair. β-Cells are affected by many agents such as immunological abnormalities, virus infections, irradiation, and chemical
substances (see also Figs. 3–5), leading to local inflammation in and/or around pancreatic islets. Inflammatory mediators such as interleukin-6
(IL-6) and glucocorticoids are produced in the inflammation process. IL-6–glucocorticoid stimulation induces the formation of an active
transcriptional complex for Reg, in which PARP is involved. DNA-damaging substances such as superoxide (O2

–• ) and nitric oxide (NO•) are
frequently produced in inflammatory processes. When the DNA is damaged, PARP senses DNA nicks and auto-poly(ADP-ribosyl)ates itself for
the DNA repair. Once PARP is self-poly(ADP-ribosyl)ated, the formation of the Reg gene transcriptional complex is inhibited, interfering with
the interaction between PARP and other nuclear proteins necessary for the active complex, and therefore the transcription of Reg gene stops.
When the PARP is not poly(ADP-ribosyl)ated in the presence of PARP inhibitors, the transcriptional complex is stabilized and the Reg gene
transcription is maintained. When the DNA is massively damaged, PARP is rapidly activated to repair the DNA and the complex for Reg gene
transcription is not formed at all. (Adapted from Akiyama et al. 2001; Okamoto & Takasawa, 2002; Takasawa & Okamoto, 2002b.)
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1993). Type III Reg proteins have been suggested to be
involved in cellular proliferation in intestinal cells, hepatic
cells, and neuronal cells. Importantly, mouse Reg III was
shown to be a Schwann cell mitogen that accompanies the
regeneration of motor neurons (Livesey et al. 1997), and Reg
protein functions as a neurotrophic factor for motor neurons
(Nishimune et al. 2000). Reg was also shown to mediate gas-
tric mucosal proliferation (Asahara et al. 1996; Fukui et al.
1998; Kazumori et al. 2000; Alderman et al. 2003) and vas-
cular cell viability (Kiji et al. 2003) in rats. The expression of
Reg protein receptor mRNA has also been detected in liver,
kidney, stomach, small intestine, colon, adrenal gland, pitu-
itary gland, and brain (Kobayashi et al. 2000), suggesting
that the Reg–Reg receptor signal system is involved in a
variety of cell types other than pancreatic β-cells. In fact, our
preliminary histopathological analyses of Reg-knockout mice
showed that there are some structural abnormalities in tissue
organization in the alimentary tract and liver.
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