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Triglobal resolvent-analysis-based control of
separated flows around low-aspect-ratio wings
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We perform direct numerical simulations of actively controlled laminar separated wakes
around low-aspect-ratio wings with two primary goals: (i) reducing the size of the
separation bubble and (ii) attenuating the wing tip vortex. Instead of preventing separation,
we modify the three-dimensional (3-D) dynamics to exploit wake vortices for aerodynamic
enhancements. A direct wake modification is considered using optimal harmonic forcing
modes from triglobal resolvent analysis. For this study, we consider wings at angles of
attack of 14◦ and 22◦, taper ratios 0.27 and 1, and leading edge sweep angles of 0◦ and 30◦,
at a mean-chord-based Reynolds number of 600. The wakes behind these wings exhibit
3-D reversed-flow bubble and large-scale vortical structures. For tapered swept wings, the
diversity of wake vortices increases substantially, posing a challenge for flow control. To
achieve the first control objective for an untapered unswept wing, root-based actuation at
the shedding frequency is introduced to reduce the reversed-flow bubble size by taking
advantage of the wake vortices to significantly enhance the aerodynamic performance
of the wing. For both untapered and tapered swept wings, root-based actuation modifies
the stalled flow, reduces the reversed-flow region and enhances aerodynamic performance
by increasing the root contribution to lift. For the goal of controlling the tip vortex, we
demonstrate the effectiveness of actuation with high-frequency perturbations near the tip.
This study shows how insights from resolvent analysis for unsteady actuation can enable
global modification of 3-D separated wakes and achieve improved aerodynamics of wings.
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1. Introduction

Controlling 3-D wake dynamics holds significant importance in aerospace engineering,
especially in shaping the capabilities of future aircraft. One of the challenges in flow
control involves managing massively separated 3-D flows, as those observed behind
finite-span wings at high angles of attack (Taira & Colonius 2009b; Anderson 2010).
Traditionally, aircraft operation under stalled flow conditions is avoided due to the
detrimental effects associated with flow separation. Nevertheless, many studies have
shown that biological flyers and swimmers benefit from stall under certain conditions
(Ellington et al. 1996; Videler, Stamhuis & Povel 2004; Shyy et al. 2008; Eldredge &
Jones 2019). Moreover, for low-Reynolds-number flows over low-aspect-ratio wings, both
lift and lift-to-drag ratio increase with the angle of attack within a certain range, even in
the presence of a separation bubble (Okamoto & Azuma 2011; Ananda, Sukumar & Selig
2015; Mizoguchi, Kajikawa & Itoh 2016; Okamoto et al. 2019). This suggests potential
benefits in exploring the flight operation of aircraft in stalled flow conditions once a
flow control capable of enhancing the aerodynamics of wings at high angles of attack
is identified.

Recent studies extensively delved into the fundamental characteristics of the separated
wake around wings through experiments, computations and theoretical analyses, primarily
focusing on the low-Reynolds-number regime (He et al. 2017; Zhang et al. 2020b;
Burtsev et al. 2022; Hayostek et al. 2022; Pandi & Mittal 2023; Ribeiro, Yeh & Taira
2023b), thereby enhancing our understanding even for much higher-Reynolds-number
flows. However, limited research has been conducted on controlling and modifying stalled
flow behaviour to enhance wing aerodynamics at high incidence angles (Taira & Colonius
2009a; Gopalakrishnan Meena, Taira & Asai 2017; Edstrand et al. 2018b; Nastro et al.
2023).

To improve the aerodynamic performance of wings, qualitatively evaluated as the
lift-to-drag ratio, effective flow control strategies require a detailed study of load
generation mechanisms. Given the particular case of stalled flows over low-aspect-ratio
wings, a significant portion of lift originates from near-wake vortices around the wing (Lee
et al. 2012; Zhang et al. 2020b; Ribeiro et al. 2022, 2023a; Zhang & Taira 2022). However,
due to the massive separation bubble over wings at high angles of attack, coherent
structures associated with vortical lift tend to advect away from the wing, substantially
reducing their contribution to the overall lift.

The reversed flow appears on the suction side of the wing for separated flows at
high angles of attack (Pauley, Moin & Reynolds 1990; Yarusevych, Sullivan & Kawall
2009; Toppings & Yarusevych 2022). To suppress this vortical formation and reattach the
flow, boundary-layer control approaches using unsteady actuation exciting the shear layer
instabilities can be efficient (Seifert, Darabi & Wygnanski 1996; Greenblatt & Wygnanski
2000; Amitay & Glezer 2002). For the low-Reynolds-number flow regime, suppression
of the separation bubble impedes the formation of large-scale lift-related vortices around
the wing. Moreover, identifying the optimal spatial–temporal characteristics of the control
input to achieve a specific goal is non-trivial. Flow control effects depend on flow field
characteristics, which are strongly associated with the wing planform geometry.

For untapered unswept wings, the reversed-flow bubble is larger inboard near the wing
root, where spanwise-aligned vortex shedding structures emerge (Taira & Colonius 2009b;
Chen, Bai & Wang 2016; Zhang et al. 2020b; Zhu et al. 2023). For swept wings, there
is a spanwise shift of the reversed-flow and shedding structures. This shift results from
sweep-induced spanwise flow emerging over the wing and stabilizing wake oscillations
(Burtsev et al. 2022; Ribeiro et al. 2022). Over swept wings, the reversed-flow bubble
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spreads over a substantial portion of the wingspan, especially near the wing tip (Zhang
et al. 2020a; Zhang & Taira 2022). This large bubble formation makes it challenging to
find an optimal location to perturb the reversed flow (McFadden, Brandt & Bons 2022;
Brandt, McFadden & Bons 2023).

Despite differences in the wakes around unswept and swept wings at high incidence,
they tend to exhibit similar lift-to-drag ratios. A higher lift and lift-to-drag ratio for
laminar post-stall flow conditions is achieved for tapered wings with high backward-swept
leading edges (Ribeiro et al. 2023a). Wake patterns become increasingly complex around
tapered wings, with vortex shedding spreading over a larger portion of the wingspan, while
the wing tip vortex is considerably weakened compared with the tip vortex around an
untapered wing.

The tip vortex, a quasi-steady streamwise vortical structure emerging due to pressure
differences between the upper and lower sides of the wing, is particularly interesting for
laminar post-stall flows around untapered unswept wings (Zhang et al. 2020b). It can
negatively affect the aerodynamics of wings, inducing drag, decreasing lift and reducing
the effective angle of attack near the tip (Devenport et al. 1996; Torres & Mueller 2004;
Dong, Choi & Mao 2020; Toppings & Yarusevych 2021). The emergence of the tip vortex
and its interaction with the inboard wake vortices affects the aerodynamic loads over the
wing and results in a complex 3-D wake (Freymuth, Finaish & Bank 1987; Viieru et al.
2005; Visbal 2012; Yilmaz & Rockwell 2012; Visbal, Yilmaz & Rockwell 2013; Neal
& Amitay 2023; Zhu, Wang & Liu 2024). Additionally, its persistence can substantially
impact air mobility and traffic control (Spalart 1998).

The tip vortex is a common structure that appears over a broad range of Reynolds
numbers. Control strategies that suppress its formation in the laminar regime provide
insights for controlling tip vortices in turbulent flow conditions, which generally retain
a laminar core. This is often observed for many other large-scale vortices emerging in
post-stall wakes. Core wake structures in separated wakes exhibit topological similarities
and find analogous vortical formations over a broad range of Reynolds numbers (Hunt
et al. 1978; Dallmann 1988; Délery 2001; Ribeiro, Frank & Franck 2020a). This suggests
that flow control findings for post-stall flows in the low-Reynolds-number regime can be
valuable for higher-Reynolds-number flows. For the case of the tip vortex, its control and
attenuation have benefited from the study of flow perturbations and instabilities (Mayer &
Powell 1992; Edstrand et al. 2018a,b).

Due to the heterogeneity of the 3-D wake structures (Zhang et al. 2020a,b) and the
non-trivial evolution of flow perturbations (Navrose, Brion & Jacquin 2019), the control
of post-stall flows over wings may appear to be a daunting task. For such flows, an
intuition-based control design may often lead to an ineffective flow modification and
undesirable outcomes. To find strategies that efficiently modify the wakes, one may seek
a proper spatial–temporal description of the actuation. This can be achieved studying the
dynamics of optimal perturbations via triglobal resolvent analysis (Ribeiro et al. 2023b;
Ribeiro & Taira 2023).

Resolvent analysis, one of the many techniques extracting important features from fluid
flows (Taira et al. 2017; Unnikrishnan 2023), is particularly attractive for flow control as
it identifies optimal inputs that can be amplified into the flow field (Trefethen et al. 1993;
Jovanović & Bamieh 2005; McKeon & Sharma 2010). Additionally, resolvent analysis
reveals the unsteady response characteristics describing how optimal perturbations can
potentially modify the base flow (Luhar, Sharma & McKeon 2014). This method has been
used to study a wide range of flow applications (Moarref et al. 2013; Schmidt et al. 2018;
Ricciardi, Wolf & Taira 2022; Houtman, Timme & Sharma 2023) and supported flow
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DNS (baseline flow)

DNS (controlled flow)

Resolvent analysis

Optimal forcing, f̂1

at St = 0.24

Optimal response, q̂1

at St = 0.24

�CL = 37 %

�CL/CD = 17 %
ωz

y

x
z5

–5
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Figure 1. Overview of the present work shown for an example of a swept wing with Λ = 30◦ at α = 22◦. The
DNS of baseline and controlled flows is visualized with isosurfaces of Q = 1 coloured with spanwise vorticity
ωz. Resolvent modes are visualized with isosurfaces of the uy component of forcing (top half-span) f̂ uy = ±1
and response modes (bottom half-span) q̂uy = ±0.5. Full span wings are shown for visualization purposes.
Optimal forcing modes at St ≡ (ω/2π)(c sin α/U∞ cos Λ) = 0.24 are introduced to the baseline simulations
as harmonic body forces. The actuation modifies the vortex shedding and yields 37 % lift and 17 % lift-to-drag
ratio increase.

control designs over two-dimensional (2-D) base flows (Yeh & Taira 2019; Jin, Illingworth
& Sandberg 2020; Liu et al. 2021; Lin, Tsai & Tsai 2023; Gross, Marks & Sondergaard
2024).

Leveraging insights from the aforementioned studies, this work considers flow control
over low-aspect-ratio wings with two primary objectives: (i) reducing the volume of the
separation bubble to enhance time-averaged lift and lift-to-drag ratio, and (ii) attenuating
the wing tip vortex. To achieve these goals, we employ a direct wake modification approach
(Choi, Jeon & Kim 2008) based on resolvent analysis, by introducing triglobal forcing
modes as harmonic body forces. Our intent is not to suppress the separation bubble and
vortex shedding. Instead, our aim is to strategically modify the 3-D wake dynamics to
exploit vortices for aerodynamic enhancements.

The overview of the present work is illustrated in figure 1, where direct numerical
simulation (DNS) flow structures are depicted using isosurfaces of the second invariant
of the velocity gradient tensor, denoted as Q (Hunt, Wray & Moin 1988; Jeong & Hussain
1995), coloured by the spanwise vorticity ωz, while forcing and response modes are
depicted by the isosurfaces of the velocity component uy. Our study is comprised of
three parts: (i) obtain baseline flows (without control), (ii) obtain resolvent modes that
reveal the most sensitive regions to introduce harmonic perturbations to the flow and
their nonlinear response characteristics, and (iii) introduce the input (forcing) modes as
harmonic body forces to the flows and analyse the effectiveness of the control strategy.
Our work is organized as follows. In § 2 we describe our problem set-up. In § 3 we present
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Figure 2. Set-up for tapered swept wings. A wing with sAR = 2, Λ = 30◦ and λ = 0.27 is shown as an
example: (a) top view, (b) side view. The free-stream velocity is shown by U∞. Geometry details are shown: Λ

is the sweep angle, c, ctip and croot are the mean, tip and root chord lengths, respectively; b is the half-span and
α is the angle of attack.

the numerical approach used in the present work; namely, DNS and triglobal resolvent
analysis. In § 4 we present the time-averaged characteristics and the vortex dynamics of
the baseline flows. In § 5 we present the insights obtained from resolvent analysis and
how it supports flow control. In § 6 we describe our active flow control approach and
show its application to tapered swept wings and the effects of control. Our conclusions are
presented in § 7.

2. Problem set-up

We consider laminar flows over tapered swept wings with a NACA 0015 cross-sectional
profile. For the Cartesian coordinate system, (x, y, z) denote the streamwise, transverse and
spanwise directions, respectively. The origin is placed at the leading edge with the NACA
0015 profile prescribed along the (x, y) plane. The angle of attack is defined between the
airfoil chord line and the streamwise direction and set to α = 14◦ and 22◦ for this study.
Our set-up is detailed in figure 2. All wings considered herein present wing geometries
with a sharp trailing edge and a straight-cut wing tip.

The 3-D wing is built by extrusion from the wing root in the spanwise direction over
a half-span length of b. Along with the mean-chord length c, the semi aspect ratio of
the wings is fixed as sAR = b/c = 2. Tapered wings consider a taper ratio defined by
λ = ctip/croot, where ctip and croot are tip and root chord lengths, respectively. We consider
tapered wings with λ = 0.27 and 1, where λ = 1 is the untapered wing. For swept wings,
the 3-D computational set-up is sheared in the chordwise direction and Λ is the sweep
angle defined between the z direction and the leading edge axis. We consider sweep angles
Λ = 0◦ and 30◦.

For all flows studied herein, the mean-chord-based Reynolds number is defined as Rec ≡
U∞c/ν = 600, where U∞ is the free-stream velocity, c is the mean-chord length and ν is
the kinematic viscosity. Non-dimensionalization is carried as follows: spatial variables
are normalized by the mean-chord length c, velocities are normalized by the free-stream
velocity U∞ and time is reported in terms of convective time normalized by c/U∞.
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3. Methodology

3.1. Direct numerical simulations
We study 3-D flows over wings by numerically solving the incompressible Navier–Stokes
equations

∂u
∂t

+ u · ∇u = −∇p + 1
Rec

∇2u + e, (3.1a)

∇ · u = 0, (3.1b)

where u = (ux, uy, uz) is the velocity vector, p is the pressure and e is external forcing. The
latter term is modelled as a harmonic body force using the spatial–temporal characteristics
of the triglobal forcing modes obtained from resolvent analysis (§ 3.2). The set of
equations (3.1) is solved using CLIFF, the incompressible flow solver from the CHARLES
package, developed by the Cascade Technologies, Inc. This solver uses collocated
node-based second-order-accurate finite volume formulation to spatially discretize mass
and momentum equations and a fractional step scheme for time integration (Ham &
Iaccarino 2004; Ham, Mattsson & Iaccarino 2006).

With the origin of the Cartesian coordinate system placed at the leading edge of the
wing root (x, y, z)/c = (0, 0, 0), the computational domain extends over approximately
(x, y, z)/c ∈ [−20, 25] × [−20, 20] × [0, 20]. The present computational grids were also
used in Ribeiro et al. (2023a). A symmetry boundary condition is imposed at the root.
At the inlet, we prescribe a free-stream velocity vector u = (U∞, 0, 0). At the outlet, we
specify the convective boundary condition. A slip boundary condition is set on all other
far-field boundaries. Lastly, a no-slip wall boundary condition is enforced on the wing
surface.

We perform DNS for baseline (e = 0 in (3.1a)) and controlled flows (e modelled with
harmonic forcing modes). For both cases, simulations are initiated from uniform flow with
no external forcing, being performed with a constant Courant–Friedrichs–Lewy (CFL)
number of 1 until transients are washed out of the computational domain, which takes
approximately t = 90. After the transient flow features are washed out of the domain,
flows are simulated with and without external forcing using a constant time step defined
such that the CFL number is smaller than one. Statistics are collected for approximately
t = 100 to ensure statistical convergence.

3.2. Resolvent analysis
Resolvent analysis can provide valuable insights for the design of active flow control
strategies. Let us consider the Reynolds decomposition of state variable q = q̄ + q′, where
q̄ is the time-averaged flow and q′ is the statistically stationary fluctuation component. In
this study, the base flows q̄ used for resolvent analysis are derived from compressible flow
simulations with a free-stream Mach number M∞ ≡ U∞/a∞ = 0.1, where a∞ represents
the free-stream speed of sound. The spatial distribution of the velocity components for both
incompressible and compressible time-averaged flows exhibits similar patterns, as depicted
in figure 3. For compressible flows, the major variations in thermodynamic quantities
occur closer to the wing surface and remain within a 1 % difference from the free-stream
values. Resolvent modes can be derived from both compressible and incompressible base
flows. In the present work, a compressible resolvent approach is employed to build on our
previous studies (Ribeiro et al. 2023b; Ribeiro & Taira 2023).
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Compressible (resolvent)
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Figure 3. Time-averaged incompressible baseline flows from DNS (dashed, red) and the compressible base
flows used for resolvent analysis (solid, black) shown as an example for the flow over a tapered swept wing
with λ = 0.27 and Λ = 30◦ at α = 22◦. Isocontour lines of (a) ux = [−0.3, 0.3], (b) uy = [−0.3, 0.7] and
(c) uz = [−0.25, 0.55] shown in 2-D slices ((x, y) plane) at z/c = 0.5 (top) and 1.2 (bottom).

With the compressible base flow, the aforementioned Reynolds decomposition is used
to linearize the compressible Navier–Stokes equations about q̄ to yield

∂q′

∂t
= Lq̄q′ + f ′, (3.2)

where Lq̄ is the discrete form of the linearized Navier–Stokes operator and f ′ encompasses
the nonlinear and external forcing terms (McKeon & Sharma 2010). By considering the
Fourier representation for q′ and f ′, we have

[q′(x, t), f ′(x, t)] =
∫ ∞

−∞
[q̂ω(x), f̂ ω(x)] exp(−iωt) dω, (3.3)

which transforms (3.2) to read

−iωq̂ω = Lq̄q̂ω + f̂ ω, (3.4)

where x = (x, y, z) and the triglobal response and forcing modes are q̂ω and f̂ ω,
respectively, for a temporal frequency ω. This expression leads to

q̂ω = H q̄,ω f̂ ω, (3.5)

with the resolvent operator H q̄,ω ∈ Cm×m. The operator size m is defined by the product
of the number of state variables and the number of spatial grid points. Herein, the linear
operators have size m of approximately 5 × 106. We analyse the resolvent operator through
the singular value decomposition

H q̄ = [−iωI − Lq̄]−1 = QΣF∗, (3.6)

where F = [ f̂ 1, f̂ 2, . . . , f̂ m] is an orthonormal matrix comprised of forcing modes, the
diagonal matrix Σ = diag[σ1, σ2, . . . , σm] holds the singular values (gain) in descending
order and Q = [q̂1, q̂2, . . . , q̂m] is an orthonormal matrix comprised of response modes
(Trefethen et al. 1993; Jovanović & Bamieh 2005).
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The H q̄,ω operators are discretized over 3-D structured grids with the leading edge
at the root positioned at (x, y, z)/c = (0, 0, 0), extending over (x, y, z)/c ∈ [−10, 15] ×
[−10, 10] × [0, 10]. The computational grids used for resolvent analysis are smaller in
size than those used for DNS, we perform linear interpolation of the flow field between
DNS and resolvent grids. Homogeneous Neumann boundary conditions are prescribed for
T ′ and homogeneous Dirichlet boundary conditions are set for the fluctuating variables ρ′
and u′ along the far field, airfoil surface and outlet. Far from the airfoil and in conjunction
with the boundary conditions, sponges are applied (Freund 1997).

The resolvent modes are computed using the randomized resolvent analysis algorithm
(Ribeiro, Yeh & Taira 2020b) and the direct and adjoint linear systems were directly solved
using the MUMPS (multifrontal massively parallel sparse direct solver) package (Amestoy
et al. 2001). The adjoint-based sensitivity analysis was used to interpolate the resolvent
norm over frequencies ω (Schmid & Brandt 2014; Fosas de Pando & Schmid 2017). The
codes used to compute the resolvent modes are part of the linear analysis package made
available by Skene, Ribeiro & Taira (2022).

4. Baseline flows

4.1. Time-averaged characteristics
To achieve the control objectives in this study, we first comprehensively examine the
wake patterns and dynamics of the baseline flows. Specifically, for the control goal
of reducing the separation bubble size, focus is placed on investigating key features
of the reversed-flow bubble 3-D topology through the time-averaged flow field. The
reversed-flow bubble has a non-homogeneous spatial distribution, significantly influenced
by both the wing planform geometry and the angle of attack, as illustrated in figure 4. For
visualization, we present the full span wing mirrored with respect to the wing root. The
time-averaged reversed flow is depicted with light blue and purple isosurfaces of ux = 0
and −0.1, respectively.

Additionally, we present the time-averaged aerodynamic forces, reported as
non-dimensional drag and lift coefficients, CD and CL, respectively, defined as

CD = Fx

1
2

U2∞bc
and CL = Fy

1
2

U2∞bc
, (4.1a,b)

where Fx and Fy are the x and y force components, respectively. For low-Reynolds-number
flows, the time-averaged lift-to-drag ratio (CL/CD), used throughout this work to quantify
the aerodynamic performance of the wing, typically remains around O(1) and reaches
its peak at high angles of attack (Taira & Colonius 2009b; Zhang et al. 2020b). Lift
increases within the depicted α range, as seen in the CL values in figure 4(a–c) for α = 14◦
and figure 4(d–f ) for α = 22◦. Notwithstanding, the lift-to-drag ratio decreases with α,
indicating loss of aerodynamic performance as the angle of attack increases. This decline
in aerodynamic efficiency at α = 22◦, compared with α = 14◦, is linked to a post-stall
flow condition. Consequently, a flow control implementation becomes essential to assist
the wing in maintaining aerodynamic efficiency.

Wing sweep and taper also influence aerodynamic loads. Overall, wing sweep is
associated with a reduction in lift for untapered wings (Zhang et al. 2020a). The
combination of a high leading edge sweep and wing taper proves advantageous for the
aerodynamic performance of the wing, especially for post-stall flows (Ribeiro et al.
2023a). Achieving a high lift-to-drag ratio is possible for steady wakes at lower angles
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y

CL = 0.350

CL/CD = 1.525

z
x

CL = 0.333

CL/CD = 1.585

CL = 0.353

CL/CD = 1.613

CL = 0.483

(α, λ, Λ) = (22°, 1, 0°) (α, λ, Λ) = (22°, 1, 30°) (α, λ, Λ) = (22°, 0.27, 30°)

(α, λ, Λ) = (14°, 1, 0°) (α, λ, Λ) = (14°, 1, 30°) (α, λ, Λ) = (14°, 0.27, 30°)

CL/CD = 1.446

CL = 0.409

CL/CD = 1.468

CL = 0.506

CL/CD = 1.590

(a) (b) (c)

(d ) (e) ( f )

Figure 4. Time-averaged reversed flows over wings visualized with light blue and dark purple isosurfaces of
ux = 0 and −0.1, respectively. Flow fields around wings with different Λ and λ combinations at (a–c) α = 14◦
and (d–f ) 22◦ are presented. Wings are plotted with full span for visualization purposes. The time-averaged lift
and lift-to-drag ratio, CL and CL/CD, respectively, are provided for each wing.

of attack. However, for enhanced aerodynamic performance, the role of flow unsteadiness
must be considered (Zhang et al. 2020b). To take advantage of the inherent unsteadiness,
we consider resolvent-analysis-based actuation that can excite unsteady structures in the
wake. For realizing effective flow modification, we first investigate the characteristics of
the reversed-flow bubble around the wings shown in figure 4.

For laminar flows over wings at high incidence angles, the separation bubble becomes
massive, beyond the size of the wing. As shown in figure 4, the size of the reversed-flow
bubble is more pronounced for flows over wings at α = 22◦ and the intensity of the
reversed flow within the separation bubble increases with the angle of attack, as evident
from the larger ux = −0.1 isosurfaces. Additionally, the non-homogeneity of the reversed
flow is observed in the spanwise direction, with the bubble expanding and contracting
over the wingspan. For example, for untapered unswept wings (λ, Λ = 1, 0◦), the bubble
shrinks near the wing tip while expanding in the inboard region.

The wingspan location where the separation bubble reaches its maximum sectional
area in the (x, y) plane is a key aspect of the reversed-flow topology. For control, this
location is important as a direct wake modification implemented over this region can
significantly reduce the reversed-flow volume. For untapered unswept wings at lower α,
the reversed-flow bubble is marked by the contraction of the reversed-flow region near
the midspan, as depicted in figure 4(a). Zhu et al. (2023) noted that similar reversed-flow
bubble shapes resemble the tail of a swallow and termed this reversed-flow topology as
a swallow-tailed structure. With an increase in the angle of attack, they noted that the
bubble transforms into a single-tailed formation, where the tail refers to a portion of the
reversed-flow bubble with larger extension downstream of the wing in the streamwise
direction. A single-tailed reversed-flow structure is analogous to the structure presented
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(b)

Figure 5. (a,b) The PSD of CL and (c–h) instantaneous flow fields around tapered swept wings visualized
with isosurfaces of Q = 1 coloured by the streamwise velocity ux. Along the root plane, spanwise vorticity ωz
contours are shown. We present flow fields around wings with different Λ and λ combinations at (c–e) α = 14◦
and ( f –h) 22◦.

in figure 4(d). Such wake formation is commonly observed for 3-D flows over untapered
unswept low-aspect-ratio wings at high angles of attack (Chen et al. 2016).

In contrast to the flows over untapered unswept wings, for swept wings (Λ = 30◦), the
flow is attached over the midspan. For untapered swept wings (λ, Λ = 1, 30◦), shown in
figure 4(b,e), the larger portion of the reversed-flow bubble emerges over the outboard
side of the wing, closer to the tip. The characteristics of the reversed-flow bubble are
further influenced by wing taper, as shown in figure 4(c, f ). For tapered swept wings
(λ, Λ = 0.27, 30◦), the larger portion of the reversed-flow structure appears over the
inboard section of the wing. To gain further insights into the wakes, we examine the vortex
dynamics of the wakes in the following section.

4.2. Vortex dynamics
Let us continue to study the features of flows over low-aspect-ratio wings by examining
their spectral characteristics and instantaneous wakes illustrated in figure 5. In figure 5(a,b)
we present the power spectral density (PSD) of CL, where frequencies are normalized as

St ≡ ω

2π

c sin α

U∞ cos Λ
, (4.2)

which is a modified Fage–Johansen Strouhal number (Fage & Johansen 1927) with
a 1/ cos Λ scaling to account for the sweep angle. The lift spectra reveal peaks
associated with vortex shedding. At α = 14◦, the shedding structures are predominantly
two dimensional near the wing root, resulting in smoother lift PSD curves when
compared with those obtained at α = 22◦, where shedding vortices are three dimensional.

995 A13-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.580


Triglobal resolvent-analysis-based flow control

Despite the differences in wake shedding, lift peaks are found between 0.13 ≤ St ≤
0.16 for all cases shown. Within this frequency range, untapered unswept wings
(λ, Λ = 1, 0◦) peak around the lower frequencies St ≈ 0.14 while tapered swept wings
(λ, Λ = 0.27, 30◦) peak around the higher portion of the frequency range St ≈ 0.16. In
figure 5(c, f ) we examine the time-varying flows over low-aspect-ratio untapered unswept
wings (λ, Λ = 1, 0◦) at α = 14◦ and 22◦. Notably, the global unsteady characteristics
of the flow share similarities for both angles of attack. Near the root, unsteadiness is
predominantly marked by the emergence of vortices aligned in the spanwise direction. At
the wing tip, a steady flow displays a tip vortex oriented along the streamwise direction.
The streamwise length of this tip vortex is more pronounced for α = 22◦.

Wing sweep plays a stabilizing role in attenuating wake oscillations around 3-D wings
(Zhang et al. 2020a; Burtsev et al. 2022), as shown in figure 5(d,g). At the lower α,
unsteadiness is entirely suppressed. However, at α = 22◦, the flow exhibits unsteadiness
near the wing tip, while remaining steady near the wing root. For the higher α, the unsteady
flow structures develop farther away from the wing.

Figure 5(e,h) reveals that the wake patterns of tapered swept wings (λ, Λ = 0.27, 30◦)
exhibit notable similarities with those around untapered unswept wings (λ, Λ = 1, 0◦).
However, a distinctive feature is the significant shortening of the tip vortex in tapered
swept wings. Despite the pronounced leading edge sweep angle, the wakes of tapered
swept wings are unsteady. Vortex shedding structures feature spanwise rolls, akin to
the flows around untapered unswept wings shown in figure 5(c, f ). The shift in flow
unsteadiness along the spanwise direction, particularly toward the quarter-span (located
halfway between the wing root and tip), coincides with the larger expansion of the
reversed-flow bubble size over the wingspan, as depicted in figure 4(e,h).

5. Triglobal resolvent analysis

Resolvent analysis reveals the spatial regions with high receptivity to external
perturbations, the optimal frequency of actuation and the harmonic response of the flow
field. These insights can support flow control design by uncovering the responsiveness
of the flow field to optimal perturbations. We discuss how the findings obtained from
resolvent analysis can support flow control using the resolvent modes over wings at
α = 22◦, as shown in figure 6. We present the leading resolvent gain spectra and the
forcing-response mode pairs at St = 0.14. As seen in figure 6(a), the frequency peaks
for the highest gain σ1 at St ≈ 0.14 are consistent across various wing planforms. Another
commonality in the resolvent modes is attributed to the convective nature of the resolvent
operator, where forcing modes manifest upstream of the wing, while response modes
emerge downstream in the wake.

Resolvent modal structures exhibit a pattern of spatial oscillations in the streamwise
direction, whose wavelength scale relates to the modal frequency and the convective
physics of the base flow. For this reason, lower-frequency resolvent modes usually have
larger streamwise wavelengths, while higher-frequency resolvent modes exhibit shorter
streamwise wavelengths. It is important to note that resolvent modes are defined over
the entire domain, albeit being in a non-uniform manner. That is, resolvent mode have
a localized larger amplitude over certain regions, i.e. regions with higher spatial support
of forcing or response modes. For the flow fields considered herein, the higher spanwise
support of each pair of forcing and response modes appears over the same portion of the
wingspan. As the frequency increases, there is a shift in the spatial support of forcing-mode
pairs across the wingspan.
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Figure 6. Resolvent modes for flows around low-aspect-ratio wings at α = 22◦. (a) Leading amplification
gain σ1 spectra. (b–d) Bottom, heatmap of the spatial support of forcing (red) and response (blue) modes
at each St, visualized by Ω f̂ /‖Ω f̂ ‖∞ ≥ 0.5 and Ωq̂/‖Ωq̂‖∞ ≥ 0.5, respectively. An arrow marks the St of

the mode shown on top. Isosurfaces of forcing f̂ uy = ±1 and response modes q̂uy = ±0.5 are shown for
(b) (λ, Λ) = (1, 0◦), (c) (λ, Λ) = (1, 30◦) and (d) (λ, Λ) = (0.27, 30◦) wings.

We illustrate the connection between the spatial support of forcing-response mode pairs
over the wingspan (z/c) and their frequency (St) in figure 6(b–d) using the contours of

Ωf̂ (z) =
∫

S(x,y)
‖ f̂ ‖2 dS and Ωq̂(z) =

∫
S(x,y)

‖q̂‖2 dS, (5.1a,b)

where ‖ f̂ ‖2 and ‖q̂‖2 are the 2-norm of f̂ and q̂, respectively, at each grid point of the
computational domain. These modes are defined by five state variables, denoted as f̂ =
[ f̂ ρ, f̂ ux, f̂ uy, f̂ uz, f̂ T ] and q̂ = [q̂ρ, q̂ux

, q̂uy
, q̂uz

, q̂T ], under the Chu norm (Chu 1965).

As ‖ f̂ ‖2 and ‖q̂‖2 are integrated over spanwise slices of the domain, S(x, y), the Ω f̂
and Ωq̂ shows the wingspan region over which the forcing-response mode pair has higher
spatial support. For the visualization in figure 6(b–d), Ω f̂ and Ωq̂ are normalized based
on their respective maximum values at each St. These contours are then represented using
red and blue shades, where Ω f̂ /‖Ω f̂ ‖∞ ≥ 0.5 and Ωq̂/‖Ωq̂‖∞ ≥ 0.5, respectively. This

approach results in a heatmap illustrating the spatial distribution of f̂ and q̂ across the
wingspan for each frequency.

The spatial support over the wingspan for the forcing-response mode pairs at the
frequency corresponding to the resolvent gain peak coincides with the spanwise location
where the reversed-flow bubble is larger. Specifically, for the untapered unswept wing
(λ, Λ = 1, 0◦) at α = 22◦, the dominant mode pair at St = 0.14 displays root-dominant
modal structures seen in figure 6(b) analogous to the shape of the shedding vortices
observed in the DNS. However, with increasing frequency, the spatial support of the
forcing-response mode pairs gradually transitions in the spanwise direction from the root
region towards the wing tip. Resolvent analysis indicates that lower-frequency actuation
(St ≤ 0.20) is more responsive and prone to altering wake dynamics when applied near the
wing root. Conversely, actuation at St > 0.20 demonstrates greater potential for modifying
the wake closer to the wing tip.

995 A13-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.580


Triglobal resolvent-analysis-based flow control

With the insights from the resolvent modes, we can strategically determine the region
within the flow field that amplifies unsteadiness to attain a specific control objective. For
the untapered swept wing illustrated in figure 6(c), the larger portion of the reversed-flow
bubble appears at the wing tip. Consequently, the forcing-response mode pairs at the peak
resolvent gain frequency, St = 0.14, emerge closer to the wing tip region. As frequencies
increase, spatial support shifts from the wing tip towards the wing root for St > 0.20.

For the flow over the tapered swept wing (λ, Λ = 0.27, 30◦) depicted in figure 6(d), the
reversed-flow bubble is prominent over the quarter-span. Therefore, the forcing-response
mode pairs at the resolvent gain frequency peak also emerge near the quarter-span. There is
a distinct shift of spatial support towards the wing root for 0.20 ≤ St < 0.30, and at higher
frequencies (St ≥ 0.30), the modes shift towards the wing tip. For the sake of brevity, we
do not discuss the suboptimal resolvent modes, since we are interested in flow control
techniques based on the primary modes. Discussion on the subdominant modes can be
found in Ribeiro et al. (2023b) and Ribeiro & Taira (2023).

6. Controlled flows

6.1. Implementation of resolvent-analysis-based actuation
Resolvent analysis finds the optimal perturbation that can be amplified in the flow
field. However, the receptivity of low-Reynolds-number separated 3-D flows to external
perturbations remains elusive. To address this issue, forcing modes obtained from resolvent
analysis are introduced as a harmonic external body force e in (3.1a). The body force is
used in the numerical simulation to model actuators employed in practical flow control
applications. For instance, the control effects of dielectric barrier discharge plasma
actuators have been studied numerically using body forces (Shyy, Jayaraman & Andersson
2002; Mullenix, Gaitonde & Visbal 2013; Waindim & Gaitonde 2016) and surface heat
actuators (Yeh, Munday & Taira 2017; Prasad & Unnikrishnan 2023). For this reason,
even though this study is a fundamental analysis of the 3-D post-stall flow control, the
spatio-temporal characteristics of the body forces presented here can be approximated in
practical flow control applications.

The spatial distribution of the forcing modes and their frequency ω is used within the
definition of the body force e expressed as

e(x, t) = A[Re( f̂ (x)) sin(ωt + φ) + Im( f̂ (x)) cos(ωt + φ)], (6.1)

where f̂ (x) is the spatial forcing mode, with real Re(·) and imaginary Im(·) parts, A is the
amplitude and φ is the phase. For all controlled flows considered herein, φ is set to initiate
the body force actuation at the time of maximum CL. The resolvent modes f̂ and q̂ are
weakly compressible, being derived from a base flow characterized by a free-stream Mach
number of M∞ = 0.1 (Ribeiro & Taira 2023). Only velocity components of f̂ are used in
(6.1).

Forcing modes are spatially global, extending over the entire computational domain (x),
with higher spatial support upstream of the wing, as depicted in figure 7(a). To provide
fundamental insights into separation control, we narrow our focus to actuation over a
specific subset of x. We term this approach as spatially confined actuation, in which body
forces are introduced within a volume of actuation (Vact) and its corresponding actuation
surface (Sact), defined as the outer surface of the actuation volume. Our procedure to define
Vact will be discussed in the following section. It is noteworthy that global and localized
actuation lead to distinct control outcomes, as depicted in figure 7(b,c).
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Figure 7. Global and confined forcing-mode actuation for the flow control over a untapered unswept wing
(λ, Λ = 1, 0◦) at α = 14◦. (a) Isosurfaces of St = 0.14 forcing f̂ uy = ±0.5 (bottom) and response f̂ uy = ±0.2
(top). (b) Plot of CL versus time for global and confined controlled flows at two actuation frequencies. (c) Global
and confined controlled flows using St = 0.14 forcing mode, visualized with Q = 0.3, coloured by ux. Arrows
show how upstream perturbation emerges in the forcing mode and how it appears in the flow actuated using
global forcing.

This study adopts a confined actuation approach for two primary reasons. First, global
forcing modes emerge upstream far from the wing, making them unrealistic for practical
aircraft actuation and flow control. Secondly, confined actuation enables us to discern
the effects of control over specific regions of the wingspan. The spanwise support of
forcing modes changes as the frequency of actuation varies (§ 5). Let us take the example
of a global forcing actuation using forcing modes at St = 0.14 and 0.26 using the same
body force amplitude A. Notably, the forcing modes at St = 0.14 have stronger spatial
support over the wing root, while those at St = 0.26 are more pronounced at the wing tip.
Nevertheless, global actuation yields similar lift over time for both frequencies, as seen in
figure 7(b). Additionally, global actuation with the St = 0.14 forcing mode alters the wake
across the entire wingspan, perturbing the tip vortex upstream in the wake, as observed
in figure 7(c). In contrast, the control effects of the confined actuation in the wake are
concentrated in the root region.

6.2. Volume of actuation and momentum coefficient
The objective of control is to achieve notable flow modifications using a small forcing
input. To quantify the magnitude of the control input, we consider the momentum
coefficient Cμ defined as

Cμ ≡
ρ

Sact

Vact

∫
Vact

(u′
x

2 + u′
y

2 + u′
z
2
) dV

1
2
ρU2∞bc

, (6.2)

where u′
x, u′

y and u′
z are the velocity components induced by the actuation body force e

defined in Vact. The induced velocity is measured in a calibration simulation in which
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Figure 8. Confined forcing and amplitude definition for untapered unswept wing (λ, Λ = 1, 0◦) at α = 14◦.
(a) Actuation volume Vact (yellow) and forcing modes visualized with isosurfaces of f̂ ux/‖ f̂ ux‖∞ = ±0.1
(blue-red). (b) Actuation in quiescent flow visualized with isosurfaces of Q = 0.1 coloured by ux for St = 0.14
forcing modes. (c) Lift coefficient CL over time for baseline (right axis) and actuated quiescent flows (left axis).
(d) Amplitude of body force actuation A for estimated momentum coefficients of 0.01 ≤ Cμ ≤ 0.05.

the free-stream flow is turned off. The determination of an actuation volume involves the
analysis of the magnitude of f̂ :

Kf̂ (x, ω) ≡ | f̂ ∗
ux

f̂ ux
+ f̂ ∗

uy
f̂ uy

+ f̂ ∗
uz

f̂ uz
|. (6.3)

This scalar variable is defined across the spatial domain for each forcing mode and serves
as a velocity-based metric depicting the spatial support of the forcing modes.

The actuation volume, denoted as Vact, is specified within the region where

Kf̂ (x, ω) ≥ 0.5 max
x

(Kf̂ (x, ω)). (6.4)

This threshold is selected for two main reasons: (i) Vact is limited to a region closer to
the wing surface for all cases studied herein, and (ii) the region of spanwise support for
the forcing modes can be clearly distinguished for modes at different frequencies (see
figure 6). A yellow isosurface illustrates the definition of Vact, as seen in figure 8, along
with red and blue isosurfaces representing the global modes with f̂ ux/‖ f̂ ux‖∞ = ±0.1.

Following the definition of Vact, simulations are conducted under quiescent free-stream
flow with actuation to estimate the momentum coefficient Cμ. The velocity components of
the forcing mode, denoted as f̂ = [ f̂ ux, f̂ uy, f̂ uz], each having unit magnitude (‖ f̂ ‖2 =
1), are introduced to the momentum equation (3.1a), as illustrated in figure 8(b), with
Q = 0.1. To enlarge the flow structures for visualization purposes, the chosen value of Q in
this context is 10 times lower than that used throughout the paper. As shown in figure 8(c),
lift fluctuation induced by actuation under quiescent free-stream flow conditions remains
under approximately 1 % of the baseline CL for Cμ ≤ 0.05. Through simulations of
quiescent free-stream flows, we obtain u′

x, u′
y and u′

z for (6.2) to be evaluated over Vact,
revealing a linear relation between Cμ and the actuation amplitude A, as illustrated in
figure 8(d). For Cμ = 0.05, the value of A is of order O(1), exhibiting a magnitude similar
to previous studies implementing body force actuation in comparable flow conditions
(Edstrand et al. 2018b).
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Figure 9. Effect of momentum coefficient Cμ on controlled flows over an untapered unswept wing (λ, Λ =
1, 0◦) at α = 22◦ using (a) St = 0.40 (wing tip) and (b) St = 0.14 (reversed flow) forcing modes. (a) Tip
vortex attenuation visualized with time-averaged isosurfaces of Q̄ = 1 coloured in light grey for baseline, blue
for Cμ = 0.01, red for Cμ = 0.02 and dark grey for Cμ = 0.05. (b) Plots of CL and CL/CD versus time for
controlled flows with distinct input Cμ.

In our analysis we maintain a constant Cμ = 0.05. It is noteworthy that variations in Cμ

may induce changes in the controlled wake, as illustrated in figure 9. This figure depicts
the impact of different Cμ values on flow control over an untapered unswept wing (λ, Λ =
1, 0◦) at α = 22◦. Focusing on the controlled flows with a forcing mode at St = 0.40,
situated near the wing tip, the effect of Cμ on the controlled tip vortex length is relatively
minor, as demonstrated in figure 9(a). Notably, an approximately 60 % reduction in the tip
vortex length is achieved for all considered Cμ values.

When examining controlled flows with a St = 0.14 forcing mode located inboard over
the wing, an increase in Cμ results in higher time-averaged and root-mean-squared (RMS)
values for CL and CL/CD, as presented in figure 9(b). We note that a smaller Cμ could
be used to reduce RMS levels and its impact on structural vibration of the wing. Given
our objective to reduce the separation bubble size and enhance time-averaged lift and
the lift-to-drag ratio, we specifically select Cμ = 0.05 as it yields superior improvements
in aerodynamic performance. Importantly, even at lower Cμ values, there is a notable
increase in both CL and CL/CD, such as a 4.73 % increase in CL for Cμ = 0.05 compared
with Cμ = 0.01. Similarly, CLRMS is 0.067 for Cμ = 0.01, while it increases to 0.103 for
Cμ = 0.05.

6.3. A priori assessment and guidance for flow control
With the forcing-mode-based actuation established, let us consider an a priori assessment
of the control design and its impact on the wake. To this end, we quantify mixing
introduced by the modal structures using the modal streamwise, transverse and spanwise
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Figure 10. Assessment of control effects from response mode Reynolds stress metric M over St for an
(a) untapered unswept wing (λ, Λ = 1, 0◦) at α = 14◦, (b) untapered swept wing (λ, Λ = 1, 30◦) at α = 14◦
and a (c) tapered swept wing (λ, Λ = 0.27, 30◦) at α = 22◦. Grey arrows indicate frequencies in which
controlled flows yielded maximum contraction of reversed-flow (RF) bubble, maximum tip vortex (TV)
attenuation and maximum aerodynamic performance.

Reynolds stresses (Luhar et al. 2014; Yeh & Taira 2019) respectively defined as

R̂x(x, ω) = Re(q̂∗
uy

q̂uz
), R̂y(x, ω) = Re(q̂∗

uz
q̂ux

), R̂z(x, ω) = Re(q̂∗
ux

q̂uy
), (6.5a–c)

where Re(·) denotes the real part of the complex-valued variable. To assess the modal
capability to perturb a flow structure, we employ the following mixing metric as

M(ω) =
∫

Vresp

[σ 2
1 (R̂x(x, ω) + R̂y(x, ω) + R̂z(x, ω)]1/2 dV, (6.6)

where Vresp denotes a specific region in space of the response modes over which the
integral is computed. This region is chosen based on the flow structure targeted for
modification through flow control.

For reducing the size of the reversed-flow bubble, let us define Vresp where ux ≤ 0, as
shown by the blue isosurfaces over both wings in figure 10. For the untapered unswept
wing (λ, Λ = 1, 0◦), note that the peak of the blue curve in figure 10(a) suggests that
the forcing modes at St ≈ 0.14 have higher potential to induce momentum mixing within
the separation bubble, consequently achieving the control objective of reducing the
reversed-flow bubble size. Conversely, when analysing M over the wing tip vortex, we
define Vresp to be the region for ωx ≤ −0.5 and z/c ≥ 1.65, as shown in figure 10(a). In this
case, the control objective shifts to perturbing and mitigating the tip vortex (represented
in red). The red curve peaks around St ≈ 0.26, suggesting that forcing modes at this
frequency can augment momentum mixing within the tip vortex, potentially weakening
its core and reducing its length.

Turning our attention to figure 10(b), we focus on the untapered swept wing (λ, Λ =
1, 30◦) scenario. Here, the peak of M for the blue curve suggests that a St ≈ 0.10 forcing
mode is likely to yield a larger contraction of the reversed-flow bubble. For the untapered
swept wing, utilizing the tip-dominant St = 0.10 forcing mode substantially modifies the
flow around the tip. Nevertheless, this actuation may not impact the entire reversed-flow
bubble, as the upstream portion of the separated flow is located near the wing root.
To address this issue, we pursue higher-frequency forcing modes that emerge near the
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wing root. To identify the forcing modes that enhance momentum mixing and modify the
reversed-flow bubble near the wing root (highlighted in yellow), we define Vresp as the
region where |ωz| ≥ 5 and z/c ≤ 0.5. This span subset confines the analysis to the root
region while also encompassing the upstream portion of the reversed-flow bubble. The
|ωz| threshold only affects the magnitude of M and not its distribution over St. We note that
earlier discussions about an untapered unswept wing have excluded the wing-root-based
analysis because it closely aligns with the blue curve for the reversed-flow-based analysis
shown in figure 10(a).

For the untapered swept wing, the distribution of the wing-root-based M suggests the
utilization of a root-dominant St = 0.18 forcing mode for actuation. For frequencies St ≥
0.20, both wing-root-based and reversed-flow-based M decrease. A rapid decline in the
reversed-flow-based M implies that the actuation with St ≥ 0.20 forcing modes increases
momentum mixing near the root while minimally affecting the reversed-flow bubble.
Distinguishing the effects of reversed-flow- and wing-root-based metrics is challenging for
tapered swept wings (λ, Λ = 0.27, 30◦) because the separation bubble over this wing is
centred at quarter-span, as depicted in figure 10(c). For a tapered swept wing at α = 22◦,
the reversed-flow-based M peaks at St = 0.14, suggesting this mode for an actuation to
reduce the reversed-flow bubble size. The wing-root-based metric exhibits two peaks:
the first at St = 0.14 as the wing-root-based Vresp encompasses part of the reversed-flow
bubble. The second peak of the wing-root-based M appears at St = 0.20 for a root-based
actuation, while the reversed-flow-based metric M remains high. This result suggests that
actuation using St = 0.20 forcing mode can yield significant effects over the reversed-flow
region.

It is important to note that analysing M alone does not guarantee improvements in lift
and lift-to-drag ratio for the controlled flows. Such enhancements need to be confirmed
through experiments and numerical simulations, as demonstrated in the subsequent
sections. Furthermore, we show how the behaviour of controlled flows concurs with
predictions made by the Reynolds stresses using the response modes. For the remainder
of this paper, we narrow our discussion to the three cases depicted in figure 10, as they
present distinct and challenging flow features for control, including a variety of separation
bubble spatial characteristics and the emergence of wing tip vortices.

6.4. Control of flow separation around untapered unswept wings
Let us study the wake modification achieved by the present resolvent-analysis-based active
flow control approach for an untapered unswept wing (λ, Λ = 1, 0◦) at α = 14◦. For
reference, the baseline flow is visualized using grey-coloured isosurfaces of Q, as shown in
figure 11(a). Also shown over the wing is a blue isosurface representing the reversed-flow
bubble, where ux ≤ 0. For this flow, we observe spanwise-aligned vortex shedding over
the majority of the wing and a tip vortex near the free end.

The DNS of controlled flows shows substantial differences compared with baseline
flows. A quantitative assessment of the control effect is shown in figure 11(b). Here,
the percentage difference (Δ) is used to illustrate variations in flow features between the
baseline and controlled flows. In particular, let us analyse the blue curve that represents the
contraction (negative) and expansion (positive) effect of flow control on the reversed-flow
bubble, which is one of the objectives of the present study. The minimum reversed-flow
bubble volume is achieved when the forcing mode at St = 0.14 is used for actuation. At
this frequency, the reversed-flow bubble undergoes a 50 % volume reduction, as seen in
figure 11(d).
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Figure 11. Assessment of flow modification using forcing-mode actuation for an untapered unswept wing
(λ, Λ = 1, 0◦) at α = 14◦. (a) Baseline flow. (b) Percentage of reversed-flow (RF) volume contraction,
tip vortex (TV) length reduction and aerodynamic forces modification for controlled flows compared with
baseline. (c–e) On the left, isosurfaces of forcing f̂ uy = ±1 and response modes q̂uy = ±0.5 at (c) St = 0.06,
(d) St = 0.14 and (e) St = 0.28. On the right, controlled flows. All flow fields are visualized with grey-coloured
isosurfaces of Q = 1 and blue-coloured isosurfaces of ux = 0.

The notable reduction in the reversed-flow bubble size at St = 0.14 leverages the
forcing-response mode pair at this frequency. In particular, the response mode emerges
over the baseline separation bubble, indicating that the forcing-mode actuation excites
structures within the reversed-flow bubble. Indeed, along the spanwise-aligned root
vortices, the controlled flow using forcing modes at St = 0.14 induces spatial oscillations
in the wake that are absent in the baseline flow, as seen in figure 11(d). These structures
perturb the baseline reversed-flow bubble and result in its volumetric contraction.

Concurrently, the controlled flow with St = 0.14 forcing-mode actuation exhibits the
highest increase in lift and lift-to-drag ratio, shown by the percentage difference in
CL and CL/CD between the baseline and controlled flows (grey curves). We note that
improvements in the aerodynamic performance are achieved because the amount of lift
increase is substantially greater than that of the drag. The concomitant CL/CD increase
and reversed-flow bubble contraction shown in figure 11(b) indicate that diminishing the
reversed-flow size enhances the overall aerodynamic performance of the wing. As the
actuation frequency increases, the higher spatial support of the forcing-mode pairs shifts
toward the wing tip and the modes emerge outside the reversed-flow region. As a result, the
effect of contracting the reversed-flow bubble is minimized for high-frequency actuation,
reaching a plateau for St ≥ 0.26.

Forcing-mode actuation for St ≥ 0.26 is also important for flows over untapered unswept
wings (λ, Λ = 1, 0◦) due to their ability to control the tip vortex while moderately
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increasing lift and lift-to-drag ratio, as seen in figure 11(b). The attenuation and control
of tip vortices has been extensively studied (Gursul et al. 2007; Greenblatt 2012; Gursul
& Wang 2018) due to its adverse effects on wing aerodynamics (Francis & Kennedy
1979; Katz & Bueno Galdo 1989; Green & Acosta 1991; Devenport et al. 1996) and its
negative impact in air transportation (Spalart 1998). In prior studies involving laminar
steady flow around an untapered unswept wing, a 21 % reduction was achieved using
instability analysis modes as body forces (Edstrand et al. 2018a,b). For this approach, a
vortex instability was taken advantage of to increase dissipation of the tip vortex.

While the St = 0.14 forcing mode proves highly effective in diminishing the volume
of the separation bubble, its impact on the reduction of the tip vortex length is relatively
modest, as seen in the red curve of figure 11(b). Here, the control effect on the tip vortex
is measured through the percentage difference between the baseline and the controlled tip
vortex lengths. For figure 11(b), the tip vortex length is estimated using the distance in
the streamwise direction between the trailing edge and the tip of the ωx = −1 isosurface.
While the chosen value of the ωx isosurface is arbitrary, it does not affect the findings.

A decrease in the tip vortex length is achieved for the control using St ≤ 0.10 forcing
modes, reaching a local minimum at St = 0.06. The forcing-response mode pair at
St = 0.06 and the corresponding controlled flow are depicted in figure 11(c). This
actuation induces prominent streamwise vortices over the inboard region, perturbing the
reversed-flow bubble and diminishing its volume. These structures also interact with the
downstream portion of the tip vortex, resulting in an overall reduction in its length.

To achieve a more substantial weakening of the tip vortex, forcing modes at higher
frequencies are employed for direct wake modification. The controlled flows with St ≥
0.26 forcing modes achieve a higher level of reduction in the tip vortex length, while
preserving the baseline reversed-flow bubble, as depicted in figure 11(e) for the controlled
flow with the St = 0.28 forcing mode near the wing tip, structures excited by the forcing
mode emerge predominantly from the pressure side of the wing tip and induce a helical
vortical structure formation that is associated with a significant reduction of the tip
vortex length. Moreover, the weakening of the tip vortex alleviates the inboard downwash,
resulting in a 6 % overall lift increase.

Figure 12(a) shows the sectional lift (Cl) over the wingspan for baseline and controlled
flows at different actuation frequencies. The z/c region where Cl increases, compared with
the baseline flow, coincides with the spanwise region where the forcing-response mode
pairs have higher spatial support. For instance, for the St = 0.10 forcing-mode actuation,
the most pronounced increase in Cl is observed between 0.5 ≤ z/c ≤ 1.2, contributing to
a 16 % overall lift increase. Similarly, for the controlled flow with St = 0.14 forcing mode,
a larger rise in Cl is evident over a broader portion of the wingspan between 0 ≤ z/c ≤
1.5, resulting in 31 % total lift increase. For the controlled flow with St = 0.18 forcing
mode, the greatest increase in lift occurs over a narrower wingspan region compared with
the control with St = 0.14. For the control with St = 0.18 forcing mode, lift increases
especially closer to the wing tip between 0.7 ≤ z/c ≤ 1.7, resulting in a 22 % increase in
the overall lift.

The Cl increase results from vortical lift from near-wake structures excited by the
actuation. The signature of these vortical structures advecting over the wing marks the
skin friction field over their suction side, as seen in figure 12(b), showing that separation is
not suppressed. Using force element analysis (details in Appendix A), we reveal how such
near-wake structures contribute to lift in figure 13. Drag elements distribution, qualitatively
similar to lift elements, are not shown for brevity. Lift elements show that the major
lift contribution (positive, red) comes from the flow structures located outside of the
reversed-flow region over a significant portion of the wingspan.
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Figure 12. (a) Sectional lift Cl distribution over span for an untapered unswept wing (λ, Λ = 1, 0◦) at
α = 14◦. (b) Time-averaged skin friction lines over the suction side of the wing.
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Figure 13. Lift elements around an untapered unswept wing (λ, Λ = 1, 0◦) at α = 14◦, (a) baseline,
(b) controlled flows with St = 0.14 and (c) St = 0.18 forcing modes. Leftmost figures show 3-D time-averaged
lift elements with isosurfaces of (ω × u) · ∇φy = ±1. To the right of the 3-D view, slices at z/c = 0.5, 0.8 and
1.2 show the red and blue contours of lift elements and a black line contour of ux = 0.

For force element analysis, the volume force elements are identified by the dot product
of the Lamb vector (ω × u) and the gradient of the auxiliary potential (∇φi). The
auxiliary potential field decays rapidly in magnitude far from the wing surface. The
∇φi characteristics are only affected by the wing planform, being consistent for baseline
and controlled flows. For this reason, a strategic wake modification that reduces the
reversed-flow bubble size has the potential to bring vortices closer to the wing where ∇φi
has a higher magnitude. Consequently, flow structures emerging in controlled flows near
the wing have higher contribution to the overall vortical lift. It is important to note that the
higher magnitude of ∇φi consistently appears near the wing surface for all wing planforms
and local lift enhancements result from the strengthening of lift elements caused by the
flow field. For instance, for flows over untapered and tapered swept wings, Zhang & Taira
(2022) and Ribeiro et al. (2023a) have shown that major increases in root contribution to
the overall lift results from the emergence of root-based vortices.
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As shown in figure 13(a,b) for the baseline and controlled flow with the St = 0.14
forcing mode, the reversed-flow bubble size significantly decreases at z/c = 0.5 and 0.8.
This causes lift elements to emerge nearer to the wing compared with the baseline.
Consequently, the highest lift increase occurs near the inboard quarter-span of the wing,
as depicted by the red curve in figure 12(a). For the controlled flow with St = 0.18, the
reversed-flow bubble reduces significantly over the outboard portion of the wingspan
at z/c = 1.2 when compared with the baseline case, as depicted in figure 13(a,c). This
reversed-flow structure contraction at z/c = 1.2 causes lift elements to emerge over this
region and closer to the wing. As a result, this flow modification leads to a substantial
lift increase over the outboard quarter-span of the wing, as seen in the yellow curve in
figure 12(a). The control effects resulting from actuation at the shedding frequency over
an untapered unswept wing (λ, Λ = 1, 0◦) at α = 14◦ are analogous to those observed at
α = 22◦ (discussions are omitted for brevity).

6.5. Control of flow separation around untapered swept wings
For separated flows over untapered swept wings (λ, Λ = 1, 30◦), our objective is to
directly modify the wake and control the size of the reversed-flow bubble. Unlike the
findings presented in § 6.4, achieving the maximum reduction in the volume of the
reversed-flow bubble around swept wings may not necessarily lead to optimal lift and
lift-to-drag ratio enhancements. To illustrate the control effects, let us examine the laminar
separated flow around a swept wing with Λ = 30◦ at α = 14◦. The steady baseline flow is
depicted in the insert visualization of figure 14(a). The reversed-flow region is highlighted
with a blue isosurface at ux = 0. The application of resolvent-analysis-based actuation
results in unsteady wakes that modify the 3-D dynamics about the reversed-flow bubble,
contracting its volume.

The baseline reversed-flow bubble is larger near the tip. Consequently, to achieve the
most significant reduction in the reversed-flow bubble volume, direct wake modification
is applied near the wing tip. In this regard, the flow field is actuated using a forcing
mode in the frequency range of 0.10 ≤ St ≤ 0.14, whose spatial support is predominantly
concentrated near the wing tip. As shown in figure 14(b), the controlled flow at these
frequencies induces a local shedding close to the tip, exciting structures that perturb and
modify the reversed-flow bubble. Given the actuation near the wing tip, the inboard flow
near the wing root remains undisturbed.

The reduction of the reversed-flow bubble size, through actuation with 0.10 ≤ St ≤ 0.14
forcing mode, results in a significant improvement in lift and lift-to-drag ratio. The most
pronounced aerodynamic enhancements in CL and CL/CD are achieved when promoting
structures near the wing root, where the baseline flow is attached to the wing surface.
To actuate in this region, we employ the forcing mode at St = 0.18, which exhibits
larger spatial support near the wing root, as depicted in figure 14(c). This actuation
substantially increases the root contribution to the overall lift, as seen in figure 14(d).
As discussed for controlled flows over the untapered unswept wing (λ, Λ = 1, 0◦) in
§ 6.4, the strengthening of near-surface vortices over a section of the wingspan yields
sectional lift enhancements. The coherent structures promoted by the actuation mechanism
produce the Cl increase near the tip for the controlled flow with the tip-based forcing
mode at St = 0.10. In contrast, the actuation with the root-based forcing mode at St = 0.18
produces a higher increase in Cl near the root.

The lift and lift-to-drag ratio enhancements achieved through control using the St = 0.18
forcing mode surpass those obtained with other actuation frequencies. In fact, controlled
flows with actuation frequencies St ≥ 0.20 experience a significant decline in lift and
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Figure 14. Assessment of flow modification using forcing-mode actuation for an untapered swept wing
(λ, Λ = 1, 30◦). Control with forcing modes located over the reversed-flow (RF) bubble and wing root (WR)
are covered in detail. (a) Reversed-flow volume contraction and aerodynamic changes for controlled flows.
Baseline flow on the bottom-right corner. (b,c) On top, isosurfaces of forcing f̂ uy = ±1 and response modes
q̂uy = ±0.5 at (b) St = 0.10 and (c) St = 0.18. On the bottom, instantaneous controlled flows over half-span.
All flows are visualized with grey-coloured isosurfaces of Q = 1 and blue-coloured isosurfaces of ux = 0.
(d) Plot of Cl versus wingspan, (e) lift PSD and ( f ) probed uy for controlled flows.

lift-to-drag ratio improvements, despite utilizing a spatial support over the wing root
similar to that of the St = 0.18 forcing mode. Moreover, as depicted in the blue curve
of figure 14(a), controlled flows using St ≥ 0.24 forcing modes increase the size of the
reversed-flow bubble. As illustrated in figure 15(a–c), which compares controlled flows
using St = 0.12, 0.18 and 0.24, only actuation using the St = 0.18 forcing mode induces
a global wake modification that alters flow dynamics across the entire wingspan. Both
lower- and higher-frequency forcing modes primarily alter flow in specific regions where
actuation occurs, near the wing tip for St = 0.12 and near the root for St = 0.24. Controlled
flows with the St ≥ 0.24 forcing modes yield minor changes on the reversed flow because
their spatial support is concentrated near the wing root region and do not merge into the
separated flow bubble. The aerodynamic modifications achieved with St ≥ 0.24 are not
related to any changes in the reversed-flow bubble but are mainly due to the emergence
of near-surface vortices excited by the actuation mechanism. As shown in figure 15(d),
for the controlled flow with St = 0.18, the global wake modification is initiated by the
perturbation, arising near the wing root and rapidly evolving downstream into hairpin-like
vortices that reshape the overall wake dynamics. Consequently, the controlled flow using
the St = 0.18 forcing mode benefits from a local lift increase around the root-based
actuation and a subsequent reduction in the reversed-flow bubble, leading to significant
aerodynamic improvements.
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Figure 15. Instantaneous visualizations of flow modification for controlled flows with (a) St = 0.12, (b) St =
0.18 and (c) St = 0.24 forcing-mode actuation for an untapered swept wing with Λ = 30◦ at α = 14◦. Inserts of
percentual difference (Δ) of time-averaged reversed-flow (RF) volume, CL and CL/CD with respect to baseline
flow. Panel (d) shows the initial evolution of the unsteady controlled flow at St = 0.18 for 1.8 ≤ t ≤ 4.5. Flow
structures are visualized with isosurfaces of Q = 2 coloured with ωz.

The periodic controlled flows synchronize with the actuation frequency, as shown by
the PSD of CL in figure 14(e). Here, the lift spectra peaks at the input frequencies and its
harmonics for both St = 0.10 (blue) and St = 0.18 (yellow) controlled flows. The actuation
frequency affects the size of flow structures, as the higher-frequency input yields elongated
spanwise-aligned vortices, as shown by the probed uy along (x, y)/c = (3, −0.5) over time
in figure 14( f ). Additionally, the higher-frequency actuation yields a lower lift-to-drag
RMS. While (CL/CD)RMS = 0.148 for the controlled flow at St = 0.10, the root-based
controlled flow at St = 0.18 results in (CL/CD)RMS = 0.079. For brevity, only the control
effects for the untapered swept wing (λ, Λ = 1, 30◦) at α = 14◦ are presented here. We
note that the control effects are analogous for both angles of attack. At α = 22◦, the control
using a lower-frequency mode near the wing tip is also less effective in improving lift and
aerodynamic performance than a higher-frequency forcing mode located near the wing
root (see figure 1).

6.6. Control of flow separation around tapered swept wings
For post-stall flows over tapered swept wings, our aim is to control the size of the
reversed-flow bubble. Flow control effects over tapered swept wings are consistent with
those observed for untapered swept wings, as discussed in § 6.5. For a tapered swept
wing (λ, Λ = 0.27, 30◦) at α = 22◦, the actuation frequency that maximally reduces the
reversed-flow bubble size does not coincide with the frequency leading to the highest
aerodynamic improvements in CL and CL/CD.

The baseline flow exhibits high levels of wake fluctuations across a significant portion
of the wingspan, as shown in figure 16(a). The spatial support of the resolvent modes
employed for flow control is also distributed over the wingspan. Forcing-response mode
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Figure 16. Assessment of flow modification using forcing-mode actuation for a tapered swept wing (λ, Λ =
0.27, 30◦) at α = 22◦. (a) Baseline flow. (b,c) On top, isosurfaces of forcing f̂ uy = ±1 and response modes
q̂uy = ±0.5 at (b) St = 0.10 and (c) St = 0.18. On the bottom, instantaneous controlled flows over half-span.
All flows are visualized with grey-coloured isosurfaces of Q = 1 and blue-coloured isosurfaces of ux = 0.
Improvements in CL and CL/CD are shown. (d) Plot of Cl versus wingspan. (e) Temporal behaviour of probed
uy for controlled flows.

pairs are primarily concentrated over the quarter-span (St ≤ 0.18), the wing root (0.18 <

St < 0.28) and the wing tip (St ≥ 0.28). Actuation using forcing modes at frequencies
St ≥ 0.28 introduces flow perturbations near the tip region but proves ineffective in
modifying the wake or enhancing the overall aerodynamic performance. This is attributed
to the absence of a noticeable tip vortex structure in the baseline flow.

For the tapered swept wing (λ, Λ = 0.27, 30◦), based on the characteristics of the
modal structures and insights gained from flow control discussions in §§ 6.4 and 6.5, we
assess the control effects at only two frequencies, St = 0.14 and 0.20. We recall that the
largest (x, y) sectional area of the baseline separation bubble for this wing is located at
the quarter-span (see § 4.1). For the first actuation frequency using the St = 0.14 forcing
mode, whose spatial support is present near the quarter-span and within the reversed-flow
bubble, perturbations are excited within the reversed-flow bubble, modifying the near wake
and reducing the reversed-flow volume, as seen in figure 16(b).

The second frequency of actuation involves wake modification near the wing root
region, aiming to assess whether a more significant enhancement in CL and CL/CD can
be achieved by perturbing this area, akin to the effects observed for swept wings. The
forcing mode at St = 0.20 exhibits higher spatial support over the root region, as seen in
figure 16(c). The DNS of the controlled flows at this frequency promotes structures near
the wing root, leading to an increased root contribution to the overall lift, as depicted in
figure 16(d). Additionally, this actuation results in a greater increase in lift and lift-to-drag
ratio compared with the lower-frequency actuation at St = 0.14.
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The differences in the wake patterns between baseline and controlled flows are
not readily apparent from the 3-D depiction of coherent structures in figure 16(b,c).
Additionally, controlled flows with St = 0.14 and 0.20 forcing modes achieve
approximately 38 % of contraction of the reversed-flow volume. To delve into the
distinctions between baseline and controlled flows, we examine the probed uy at (x, y)/c =
(3, −0.5) over time and frequency in figure 16(e). While omitted here for brevity, we note
that the baseline and actuated wakes using the forcing mode at St = 0.14 exhibit minimal
differences in both temporal and spectral analyses of the probed data.

Notable differences emerge when comparing the probed data of controlled flows at
St = 0.14 and 0.20 as the peak frequencies of the controlled flow with the St = 0.20
forcing mode shift to a higher St range. Wake vortices exhibit a spanwise split into
two shedding modes: near-root vortices synchronized with the actuation frequency and
quarter-span vortices with a lower frequency unsynchronized with the actuation frequency.
This behaviour induces a low-frequency beating in the lift spectrum. This phenomenon,
known as vortex dislocation, has been observed in the wakes of high-aspect-ratio blunt
bodies and controlled flows (Eisenlohr & Eckelmann 1989; Williamson 1989; Zhang et al.
2020b). Despite the lower aspect ratio in the present controlled flow, a similar wake pattern
emerges due to the interplay between near-tip and near-root shedding structures. Lastly,
we note that both St = 0.14 and St = 0.20 forcing-mode actuation strategies increase
lift-to-drag RMS, which is originally (CL/CD)RMS = 0.017 for the baseline flow. For the
controlled flow with the St = 0.14 forcing mode, (CL/CD)RMS increases to 0.098, while
the root-based actuation at St = 0.20 yields a lower (CL/CD)RMS = 0.059. Again, we note
that the control effects for the tapered swept wing at α = 14◦ and 22◦ are analogous and
we have omitted the results for the lower incidence angle for brevity.

6.7. Control of tip vortex around untapered unswept wings
To understand the mechanisms that lead to the tip vortex attenuation, we focus our
discussion on the flow over an untapered unswept wing (λ, Λ = 1, 0◦) at α = 14◦. We
compute the streamwise circulation Γx = ∫

C = u · dl, where C is the isocontour of ωx =
−1 on the ( y, z) plane at varied x. To compute Γx, only the isocontours of ωx = −1
aligned at the wing tip at z/c ≈ 2 are considered. In this manner, we limit the inboard
vorticity influence on Γx, caused by the interplay of the tip vortex and the root shedding
structures. Our discussions focus on wake modifications relative to the baseline and are
not significantly influenced by the specific value of the ωx isocontour used to compute the
circulation.

Let us analyse the specifics of the St = 0.06 forcing-mode actuation. This actuation
results in 8 % reduction in tip vortex length, as shown in figure 17(c), compared with
the baseline length shown in figure 17(b). As seen in the vorticity contours at x/c = 3
in figure 17(e), this low-frequency actuation has minimal impact on the core of the
tip vortex near the wing because its perturbations arise over the inboard region of the
flow, increasing unsteadiness locally. This inboard wake interacts with the tip vortex
downstream increasing its dissipation, as shown by the higher decay rate of circulation
d|Γx|/dx, resulting in an overall reduction in the tip vortex length.

When employing tip-based actuation at St ≥ 0.22, the resulting flows exhibit a
substantial attenuation of the tip vortex. The controlled flow with the St = 0.26 forcing
mode achieves a remarkable reduction in tip vortex length, reaching approximately 42 %,
as depicted in figure 17(d). Examining the vorticity contours at x/c = 3 in figure 17(e),
we reveal that the actuation associated with the St = 0.26 forcing mode effectively
modifies the vortex core near the wing. This modification is predominantly observed in

995 A13-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.580


Triglobal resolvent-analysis-based flow control

0.25

0.20

0.15

0.10

|Γx|

0.05

0

0

–0.25

–0.50

1.50 1.75 2.00 2.25

2 4 6
x/c

z/c

0

–0.25

–0.50

1.50 1.75 2.00 2.25

z/c

0

–0.25

–0.50

1.50 1.75 2.00 2.25

z/c

0

–
0
.5

–0.25

–0.50

1.50 1.75 2.00 2.25

z/c

y/
c

8 10 12

St = 0.26

St = 0.06
0.92l

Baseline
St = 0.06
St = 0.26
St = 0.32

0.58l

l
Baseline

–2

–0.5
–1.5

–1

–1

–2

–
1
.5

–1

–
1
.5–

0
.5–
0
.5

–1

–0.5

–0.5

–
1

–2.5

–
1
.5

–
2–

0
.5

–
0
.5

–0
.5

–
1
.5

–
2

–2.5

–1

(a)

(e)

(b)

(c)

(d )

Figure 17. Tip vortex attenuation for optimal forcing-mode actuation at specific frequencies for an untapered
unswept wing (λ, Λ = 1, 0◦) at α = 14◦. Throughout the figure, black is used for the baseline case, blue is
used for St = 0.06, red is used for St = 0.26 and yellow for St = 0.32 forcing-mode actuation. (a) Tip vortex
streamwise circulation |Γx| over x/c. (b–d) Side view of the time-averaged flow structures using isosurfaces of
Q̄ = 1. (e) Streamwise vorticity contours shown in 2-D slices (( y, z) plane) at x/c = 3.

Cases CL CLRMS CD CDRMS CL/CD (CL/CD)RMS

Baseline 0.713 0.016 0.447 0.002 1.594 0.027
Controlled (St = 0.26) 0.755 0.037 0.461 0.009 1.637 0.052
Controlled (St = 0.30) 0.753 0.034 0.460 0.008 1.634 0.048
Controlled (St = 0.34) 0.755 0.028 0.460 0.006 1.640 0.042
Controlled (St = 0.38) 0.753 0.025 0.459 0.005 1.640 0.039

Table 1. Effect of tip vortex control using St ≥ 0.26 forcing modes on time-averaged and RMS of CL, CD and
CL/CD.

the lower portion of the vortex core between −0.5 ≤ y/c ≤ −0.25, as a consequence of
this forcing-mode actuation being localized on the pressure side of the wing.

For controlled flows with St = 0.32, circulation near the wing is reduced, as illustrated
by the vorticity contours at x/c = 3. However, this forcing-mode actuation is suboptimal
for reducing the tip vortex length downstream in the wake. The structures excited by the
St = 0.32 actuation remain coherent downstream, resulting in a lower circulation decay
rate. It is noteworthy that the resolvent-analysis-based control achieves substantial tip
vortex attenuation for St ≥ 0.26 while also maintaining the increases in CL, CD and CL/CD
within 6 % difference from the baseline flow, as demonstrated in table 1.

Similar results were obtained when investigating tip vortex attenuation for an untapered
unswept wing (λ, Λ = 1, 0◦) at α = 22◦. For this case, the optimal actuation for tip
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vortex attenuation is identified for the tip-dominant forcing mode at St = 0.40, leading
to a sizeable reduction in the tip chord length of approximately 60 %. In the Reynolds
number regime considered herein, the analysis of tip vortex attenuation is conducted
for untapered unswept wings, given that tapered swept wings (λ, Λ = 0.27, 30◦) lack a
distinct streamwise vortex core at the wing tip, as shown in figure 5.

7. Conclusions

We performed DNS involving external actuation with optimal forcing modes identified
through triglobal resolvent analysis. The baseline flows for all cases exhibited a large
stalled flow region on the suction side of the wing. Our investigation identifies structures
capable of modifying the separated wake, consequently enhancing the overall lift of the
wing. For laminar separated flows, the emergence of coherent structures near the wing was
found to positively impact aerodynamics. Active control through direct wake modification
was demonstrated to improve the lift and lift-to-drag ratio of laminar post-stall flows over
low-aspect-ratio wings, with the specific strategy depending on the wing planform and the
reversed-flow bubble topology.

For an untapered unswept wing (λ, Λ = 1, 0◦), actuation near the root region with
frequency content close to that of the baseline vortex shedding, significantly reduced
the reversed-flow volume. With the bubble contraction, this actuation induced unsteady
vortical structures closer to the wing, leading to a substantial increase in overall lift.
At higher frequencies, optimal forcing modes appeared in the vicinity of the wing tip,
originating from the trailing edge at the pressure side. Flows actuated using these modes
exhibited an unsteady helical vortex formation, suppressing the quasi-steady streamwise
vortex core seen in the baseline flow. While the tip vortex circulation decayed at any
distance from the wing, modest effects were observed on the inboard wake.

The application of direct wake modification to untapered and tapered swept wings
(Λ = 30◦) was also guided by the insights of forcing-response mode pairs and baseline
flow physics. High-frequency actuation using forcing modes with higher spatial support
near the wing root of both untapered and tapered swept wings induced unsteadiness that
modified the near wake, leading to increased lift and lift-to-drag ratio. Our study also
highlighted the utility of response modes and their modal Reynolds stresses for an a priori
assessment of control effects. Overall, our findings underscore the receptiveness of laminar
separated flows to external perturbations, demonstrating that the optimal spatial–temporal
input can significantly alter the 3-D dynamics of the wake and improve the aerodynamic
performance of the wing.
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Appendix A. Force element analysis

Force element analysis (Chang 1992) identifies flow structures that exert aerodynamic
loads on the wing. This method shares close similarities with force elements derived
through a variational approach (Quartapelle & Napolitano 1983), force partition methods
(Menon & Mittal 2021) and many others. In the present approach we define an auxiliary
potential with a boundary condition of −n · ∇φi = n · ei set on the wing surface, where
φ is the auxiliary potential, n is the unit wall normal vector and ei is the unit vector in
the ith direction. By taking the inner product of the Navier–Stokes equations with ∇φ and
performing an integral over the fluid domain, the forces exerted in the ith direction can be
expressed as

Fi =
∫

V
ω × u · ∇φi dV + 1

Re

∫
S
ω × n · (∇φi + ei) dS, (A1)

where the first integrand represents the volume force elements and the second integrand
corresponds to the surface force elements. To illustrate the lift elements in the flow field,
we take the Hadamard product of the gradient of the auxiliary potential ∇φi and the Lamb
vector (ω × u). For instance, the resulting (ω × u) · ∇φy variable is often called the lift
element. At Rec = 600, the volume elements tend to dominate the contribution to the total
force exerted over the wing.
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