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When T is an irrational rotation, [T , Id] and
[T , T −1] are Bernoulli: explicit isomorphisms
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Abstract. Let θ be an irrational real number. The map Tθ : y �→ (y + θ) mod 1 from the
unit interval I = [0, 1[ (endowed with the Lebesgue measure) to itself is ergodic. In 2002,
Rudolph and Hoffman showed in [Uniform endomorphisms which are isomorphic to a
Bernoulli shift. Ann. of Math. (2) 156(1) (2002), 79–101] that the measure-preserving map
[Tθ , Id] is isomorphic to a one-sided dyadic Bernoulli shift. Their proof is not constructive.
A few years before, Parry [Automorphisms of the Bernoulli endomorphism and a class of
skew-products. Ergod. Th. & Dynam. Sys.16 (1996), 519–529] had provided an explicit
isomorphism under the assumption that θ is extremely well approached by the rational
numbers, namely,

inf
q≥1

q44q2
dist(θ , q−1

Z) = 0.

Whether the explicit map considered by Parry is an isomorphism or not in the general
case was still an open question. In Leuridan [Bernoulliness of [T , Id] when T is an
irrational rotation: towards an explicit isomorphism. Ergod. Th. & Dynam. Sys. 41(7)
(2021), 2110–2135] we relaxed Parry’s condition into

inf
q≥1

q4 dist(θ , q−1
Z) = 0.

In the present paper, we remove the condition by showing that the explicit map considered
by Parry is always an isomorphism. With a few adaptations, the same method works with
[T , T −1].

Key words: irrational rotations, skew products, Bernoulli shifts, dyadic filtrations,
constructive Markov chains
2020 Mathematics Subject Classification: 37A05 (Primary); 60J05 (Secondary)

1. Introduction
In this section, we present general properties of Meilijson’s skew products [T , Id] and
[T , T −1] before focusing on the case where T is an irrational rotation.
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1.1. Meilijson’s skew products [T , Id] and [T , T −1]. Let X = {0, 1}Z+ , endowed with
the product sigma-field X and the product measure

μ :=
⊗
n∈Z+

(δ0 + δ1)/2.

The shift operator S : X → X, defined by

S(x)(i) := x(i + 1) for every x ∈ X and i ∈ Z+,

preserves the measure μ.
Given any automorphism T of a probability space (Y , Y , ν), one defines the map [T , Id]

from X × Y to itself by

[T , Id](x, y) := (S(x), T x(0)(y)).

On the first component, the map [T , Id] simply applies the shift S. If we totally ignore the
first component, the map [T , Id] applies T or Id at random on the second one. One can
define [T , T −1] with the same formula, just by replacing {0, 1}Z+ with {−1, 1}Z+ .

One checks that the transformations [T , Id] and [T , T −1] preserve the measure μ ⊗ ν

and are two-to-one: if (x, y) is chosen randomly according to the distribution μ ⊗ ν, and
if one knows [T , Id](x, y) (or [T , T −1](x, y)), the only information missing to recover
(x, y) is the value of x(0), which is uniformly distributed on {0, 1} and independent of
[T , Id](x, y) (of [T , T −1](x, y)).

Meilijson’s theorem [8] ensures that the natural extension of [T , Id] is a K-automorphism
whenever T is ergodic and the natural extension of [T , T −1] is a K-automorphism
whenever T is totally ergodic (that is, all positive powers of T are ergodic). Actually,
the ergodicity of T only is sufficient (and necessary) to guarantee that the endomorphism
[T , Id] is exact, so its natural extension is a K-automorphism. And the ergodicity of T 2

only is sufficient (and necessary) to guarantee that the endomorphism [T , T −1] is exact,
so its natural extension is a K-automorphism. See Theorem 1 in [7].

Hence, when T (respectively T 2) is ergodic, a natural question arises: is the endomor-
phism [T , Id] (respectively, [T , T −1]) isomorphic to the Bernoulli shift S? The answer
depends on the automorphism T considered.
• An adaptation of techniques and ideas introduced by Vershik [11, 12], Heicklen and

Hoffman [2] shows that when T is a two-sided Bernoulli shift, and, more generally,
when T has positive entropy, the endomorphism [T , T −1] cannot be Bernoulli since
the standardness—a weaker property—fails. This argument can be adapted to the
endomorphism [T , Id]. More details are given in [7].

• In 2000, Hoffman constructed in [3] a zero-entropy transformation T such that the
[T , Id] endomorphism is non-standard. The proof is detailed in [7].

• In 2002, Rudolph and Hoffman showed in [4] that, when T is an irrational rotation,
the endomorphism [T , Id] is isomorphic to the dyadic Bernoulli shift S. Their proof is
not constructive.

Actually, non-trivial examples of explicit isomorphisms between measure-preserving maps
are quite rare. Yet, an independent generating partition providing an explicit isomorphism
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between [T , Id] and the dyadic one-sided Bernoulli shift was given in 1996 by Parry in [9]
when the rotation T is extremely well approximated by rational ones.

1.2. Parry’s partition. From now on, we fix an irrational number θ . We denote
I = [0, 1[ the unit interval, B(I) its Borel σ -field, ν the uniform distribution on I and
Tθ : I → I the translation of θ modulo 1. This transformation preserves the measure ν and
can be viewed as an irrational rotation on the circle R/Z. However, we choose to work
with the unit interval I = [0, 1[ to avoid ambiguity in the definition of the sub-intervals.

Since the transformation Tθ depends only on the equivalence class of θ in R/Z, we
may—and we shall—assume that 0 < θ < 1. Hence, for every y ∈ I,

Tθ (y) = y + θ − 1[1−θ ,1[(y).

The map Tθ is bijective with inverse T1−θ = T−θ , given by

T−θ (y) = y − θ + 1[0,θ [(y).

Since T1−θ = T−θ is isomorphic to Tθ , we may—and we shall—assume that 0 < θ < 1/2.
In [9], Parry introduced the partition αθ = {Aθ

0, Aθ
1} on X × I defined by

Aθ
0 := {x ∈ X : x(0) = 0} × [0, θ [ ∪ {x ∈ X : x(0) = 1} × [0, 1 − θ [,

Aθ
1 := {x ∈ X : x(0) = 0} × [θ , 1[ ∪ {x ∈ X : x(0) = 1} × [1 − θ , 1[.

Observe that, for every (x, y) ∈ X × I,

(x, y) ∈ Aθ
1 ⇐⇒ (x(0) = 0 and T

x0
θ (y) ∈ [θ , 1[) or (x(0) = 1 and T

x0
θ (y) ∈ [0, θ [).

When we endow X × I with the distribution μ ⊗ ν, the value of x(0) is uniform and
independent of [Tθ , Id](x, y) = (S(x), T

x0
θ (y)). Thus,

μ ⊗ ν[Aθ
1|[Tθ , Id]−1(X ⊗ B(I))] = 1

2 1[T
x0
θ (y)∈[θ ,1[] + 1

2 1[T
x0
θ (y)∈[0,θ [] = 1

2 .

Hence, the partition αθ is uniform and independent of [Tθ , Id]−1(X ⊗ B(I)). An induction
shows that the partitions ([Tθ , Id]−nαθ )n≥0 are independent.

For every (x, y) ∈ X × I, denote by αθ (x, y) = 1Aθ
1
(x, y) the index of the only

block containing (x, y) in the partition αθ . By construction, the ‘αθ -name’ map
�θ : X × I → X, defined by

�θ(x, y) := ((αθ ◦ Sn
θ )(x, y))n≥0,

is also a factor map which sends the dynamical system (X × I, X ⊗ B(I), μ ⊗ ν, [Tθ , Id])
on the Bernoulli shift (X, X , μ, S).

Under the assumption

inf
q≥1

q44q2
dist(θ , q−1

Z) = 0,

Parry shows that, for μ ⊗ ν-almost every (x, y) ∈ X × I, the knowledge of �θ(x, y) is
sufficient to recover (x, y), so the factor map �θ is an isomorphism.
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In Theorem 1 of [6], we relaxed Parry’s condition into

inf
q≥1

q4 dist(θ , q−1
Z) = 0.

Moreover, Theorem 10 and Lemma 14 of [6] show that we may relax this condition a bit
more into

inf
n≥1

q2
n (a1 + · · · + an) |qnθ − pn| < +∞,

where [0; a1, a2, . . .] is the continued fraction expansion of ‖θ‖ := dist(θ , Z) (which
equals θ when 0 < θ < 1/2) and (pn/qn)n≥0 is the sequence of convergents.

Actually, there was a typo, namely, a wrong exponent in the statement of Theorem 2 of
[6]. The sufficient condition given there was the stronger condition

inf
n≥1

q3
n (a1 + · · · + an) |qnθ − pn| < +∞,

so the result stated in Theorem 2 of [6] is weaker than what Theorem 10 and Lemma 14 of
[6] actually prove, but it is still true.

Anyway, in the present paper, we remove (and not only relax) Parry’s assumption and
prove that, for any irrational number θ , the factor map �θ is an isomorphism (see Theorem
1 further). Remember that the extra assumption 0 < θ < 1/2 that we make for convenience
is not a true restriction.

1.3. Probabilistic reformulation. Since the transformation Tθ preserves the uniform
measure on [0, 1[, we can consider a stationary Markov chain ((ξn, Yn))n∈Z on {0, 1} ×
[0, 1[ such that, for every n ∈ Z:
• (ξn, Yn) is uniform on {0, 1} × [0, 1[;
• ξn is independent of F ξ ,Y

n−1 := σ((ξk , Yk)k≤n−1); and

• Yn = T
ξn

−θ (Yn−1) = (Yn−1 − ξnθ) mod 1.
For every real number r, denote by r = r + Z the equivalence class of r modulo Z. The
process (Yn)n∈Z is as a random walk on R/Z. The steps (Yn − Yn−1)n∈Z = (−ξnθ) are
uniformly distributed on {0, −θ}. Since each random variable ξn can be recovered from
the knowledge of Yn and Yn−1, the natural filtration (F ξ ,Y

n )n∈Z of the Markov chain
((ξn, Yn))n∈Z coincides with the the natural filtration (FY

n )n∈Z of the process (Yn)n∈Z.
The Markov chain ((ξn, Yn))n∈Z thus defined is closely related to the transformation

[Tθ , Id] since, for every n ∈ Z,

[Tθ , Id]((ξn−k)k≥0, Yn) = ((ξn−(k+1))k≥0, T
ξn

θ (Yn)) = ((ξn−1−k)k≥0, Yn−1).

Knowing the sequence (ξn)n∈Z only is not sufficient to recover the positions (Yn)n∈Z.
Indeed, one can check that Y0 is independent of the whole sequence (ξn)n∈Z.

Reformulating Parry’s method, we introduce the sequence (ηn)n∈Z defined by

ηn := (ξn + 1[θ ,1[(Yn−1)) mod 2

= 1[ξn=0 ; Yn−1≥θ ] + 1[ξn=1 ; Yn−1<θ ].
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By construction, ηn is an F ξ ,Y
n -measurable Bernoulli random variable; and ηn is uniform

and independent of F ξ ,Y
n−1 since

E[ηn|F ξ ,Y
n−1] = 1

2 1[Yn−1≥θ ] + 1
2 1[Yn−1<θ ] = 1

2 almost surely.

Moreover, since Yn = T
ξn

−θ (Yn−1),

ηn = 1[ξn=0 ; Yn≥θ ] + 1[ξn=1 ; Yn≥1−θ ]

= 1Aθ
1
((ξn−k)k≥0, Yn)

= 1Aθ
1
([Tθ , Id]−n((ξ−k)k≥0, Y0)) if n ≤ 0.

Hence, the αθ -name of ((ξ−i )i≥0, Y0) is the sequence (η−i )i≥0.
Thus, proving that the partition αθ is generating is equivalent to proving that, almost

surely, the random variable Y0 is completely determined by the knowledge of (ηk)k≤0.
By stationarity, it means that the filtration (F ξ ,Y

n )n∈Zy = (FY
n )n∈Z is generated by the

sequence (ηn)n∈Z. Actually, we show that this property holds without any additional
assumption on θ .

THEOREM 1. For every n ∈ Z, the random variable Yn can be almost surely recovered
from the knowledge of (ηk)k≤n. Hence, the filtration (F ξ ,Y

n )n∈Z = (FY
n )n∈Z is generated

by the sequence (ηn)n∈Z of independent uniform Bernoulli random variables. Equivalently,
Parry’s partition αθ is an independent generator of [Tθ , Id].

We refer the reader to §4 for the similar statement about [Tθ , T −1
θ ].

To explain why the sequence (ηn)n∈Z gives more information than the sequence
(ξn)n∈Z, we introduce the maps f0 and f1 from the interval I = [0, 1[ to itself by

f0(y) := y − θ1[θ ,1[(y), f1(y) := y + (1 − θ)1[0,θ [(y).

The union of the graphs of f0 and f1 is also the union of the graphs of Id and T−θ

(see Figure 1). Therefore, applying at random f0 or f1 has the same effect as applying
at random Id or T−θ . Actually, a direct computation distinguishing four cases, where ξn

equals 0 or 1 and Yn−1 < θ or Yn−1 ≥ θ yields

Yn = fηn(Yn−1).

The great difference with the initial recursion relation Yn = T
ξn

−θ (Yn−1) is that the maps f0

and f1 are not injective and are not surjective, unlike T 0−θ = Id and T 1−θ = T−θ .
For every n ≥ 1, denote by Fn the random map from I = [0, 1[ to itself defined

by Fn := fηn ◦ · · · ◦ fη1 . By convention, F0 is the identity map from I to I. To prove
Theorem 1, we use a coupling argument: given (y, y′) ∈ I2, we study the processes
((Fn(y), Fn(y

′))n≥0. These processes are Markov chains on I2 whose transition proba-
bilities are given by

K((y, y′), ·) = 1
2 (δ(f0(y),f0(y′)) + δ(f1(y),f1(y′))).
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FIGURE 1. Graphs of f0 and f1.

FIGURE 2. Probability transitions from different points (y, y′). The probability associated to each arrow is 1/2.
The set Bθ is the union of the shaded rectangles. When (y, y′) ∈ Bθ , only one coordinate moves, so the transitions
are parallel to the axis. When (y, y′) ∈ Bc

θ , the same translation Id or T−θ is applied to both coordinates, so the
transitions are parallel to the diagonal.

These transition probabilities are closely related to the set Bθ = [0, θ [×[θ , 1[∪[θ , 1[×
[0, θ [ (see Figure 2 in §2.2). The key step in the proof is to show that the set Bθ is visited
more and more rarely.

PROPOSITION 2. For every (y, y′) ∈ I2,

1
n

n−1∑
k=0

1Bθ (Fk(y), Fk(y
′)) → 0 almost surely as n → +∞.
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1.4. Deriving Theorem 1 from Proposition 2. We explain the final arguments now that
Proposition 2 has been established.

First, we prove that if π is an invariant probability with regard to kernel K, then π is
carried by D, the diagonal of I2. Indeed, by stationarity, one has, for every n ≥ 1,∫

I2
1Bθ ((y, y′)) dπ(y, y′) =

∫
I2

E
[

1
n

n−1∑
k=0

1Bθ ((Fk(y), Fk(y
′)))

]
dπ(y, y′).

In the right-hand side, the function integrated with regard to π takes values in [0, 1] and
goes to zero everywhere as n goes to infinity. Hence, Lebesgue dominated convergence
applies. Passing to the limit, we get π(Bθ ) = 0. Since all future orbits under the action of
T−θ are dense in I, every Markov chain with transition kernel K starting from anywhere
in Dc reaches the set Bθ with positive probability (precise bounds on the number of steps
will be given in §2). Thus, π(Dc) = 0.

Next, by enlarging, if necessary, the probability space on which the Markov chain
Y := (Yn)n∈Zy is defined, we can construct a copy Y ′ := (Y ′

n)n∈Z such that Y and Y ′ are
independent and identically distributed conditionally on η := (ηn)n∈Z. Since the process
((Yn, Y ′

n))n∈Z thus obtained is a stationary Markov chain with transition kernel K, it lives
almost surely on D, so the processes Y = Y ′ almost surely. And since L((Y , Y ′)|η) =
L(Y |η) ⊗ L(Y |η) almost surely, the conditional law L(Y |η) is almost surely a Dirac mass,
so Y is almost surely a deterministic function of the process η.

Remember that, for every n ∈ Z, the random variable ηn is independent of F ξ ,Y
n−1. Given

n ∈ Z, the sequence (ηn)k≥n+1 is independent of F ξ ,Y
n and therefore of the sub-σ -field

σ(Yn) ∨ σ((ηn)k≤n). Hence, one has, almost surely,

δYn = L(Yn|(ηk)k∈Z) = L(Yn|(ηk)k≤n) almost surely,

so Yn is almost surely a measurable function of the process (ηn)k≤n. Theorem 1 follows.

1.5. Plan of the paper. In §2, we introduce the main tools and Lemmas involved to prove
Proposition 2: continued fraction expansions, the three gap theorem and bounds for hitting
and return times under the action of T−θ .

In §3, we prove Proposition 2.
In §4, we explain how the proof must be adapted to get a constructive proof that

[Tθ , T −1
θ ] is Bernoulli.

In §5, we consider related questions that are still open.

2. Tools
In this section, we present the techniques and preliminary results involved to prove
Proposition 2. Our results heavily rely on the three gap theorem.

2.1. Three gap theorem and consequences. Let (xn)n≥0 be the sequence defined by
xn := T n

θ (0) = nθ − �nθ�. The well-known three gap theorem states that, for every n ≥ 1,
the intervals defined by the subdivision (xk)0≤k≤n−1 have at most three different lengths.
We shall use a very precise statement of the three gap theorem, involving the continued
fraction expansion θ = [0; a1, a2, . . .]. Let us recall some classical facts. A more complete
exposition can be found in [5].
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Set a0 = �θ� = 0 and define two sequences (pk)k≥−2 and (qk)k≥−2 of integers by
p−2 = 0, q−2 = 1, p−1 = 1, q−1 = 0, and, for every k ≥ 0,

pk = akpk−1 + pk−2, qk = akqk−1 + qk−2.

Moreover, pk and qk are relatively prime since pkqk−1 − qkpk−1 = (−1)k−1.
The fractions (pk/qk)k≥0 are the convergents of θ . The following inequalities hold.

p0

q0
<

p2

q2
< · · · < θ < · · · <

p3

q3
<

p1

q1
.

In particular, the difference θ − pk/qk has the same sign as (−1)k and

ak+2

qkqk+2
=

∣∣∣∣pk+2

qk+2
− pk

qk

∣∣∣∣ <

∣∣∣∣θ − pk

qk

∣∣∣∣ <

∣∣∣∣pk+1

qk+1
− pk

qk

∣∣∣∣ = 1
qkqk+1

.

Hence, the sequence (pk/qk)n≥0 converges to θ .
For every k ≥ −1, set �k = (−1)k(qkθ − pk) = |qkθ − pk|. In particular, �−1 = 1,

�0 = θ and �1 = 1 − �1/θ�θ ≤ 1 − θ . Since, for every k ≥ 0,

1
qk+2

≤ ak+2

qk+2
< |qkθ − pk| <

1
qk+1

,

the sequence (�k)k≥−1 is decreasing. For every k ≥ 1, we have �k = −ak�k−1 + �k−2, so
ak = ��k−2/�k−1�.

We can now give a precise statement of the three gap theorem. The formulation below
is close to the formulation given by Alessandri and Berthé [1].

THEOREM 3. Let n ≥ 1. Set n = bqk + qk−1 + r , where k ≥ 0, b ∈ [1, ak+1] and
r ∈ [0, qk] are integers. Then the points (xi)0≤i≤n−1 split I into n intervals:
• n − qk = (b − 1)qk + qk−1 + r intervals with length �k;
• qk − r intervals with length �k−1 − (b − 1)�k; and
• r intervals with length �k−1 − b�k .

Remark 4. Each positive integer n can be written as above. The decomposition is unique
if we require that r ≤ qk − 1. In this case:
• k is the largest non-negative integer such that qk + qk−1 ≤ n, so qk + qk−1 ≤ n <

qk+1 + qk = (ak+1 + 1)qk + qk−1;
• b is the integer part of (n − qk−1)/qk , so 1 ≤ b ≤ ak+1; and
• r = (n − qk−1) − bqk , so 0 ≤ r ≤ qk−1 − 1.

Under the assumptions of Theorem 3, we have �k−1 − (b − 1)�k = (�k−1 − b�k) + �k .
Moreover, �k−1 − b�k < �k if and only if b = ak . From these observations, we deduce the
following consequences.

COROLLARY 5. Fix n ≥ 1, and consider the n sub-intervals of I defined by the subdivision
(xi)0≤i≤n−1.
• If bqk + qk−1 ≤ n < (b + 1)qk + qk−1 with k ≥ 0 and b ∈ [1, ak+1], the greatest

length is �k−1 − (b − 1)�k .
• If qk < n ≤ qk+1, the smallest length is min{‖iθ‖ : i ∈ [1, n − 1]} = �k .
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We can now answer precisely the following two questions. Given a semi-open subinter-
val J of I, what is the maximal number of iterations of T−θ to reach J from anywhere in I?
What is the minimal number of iterations of T−θ necessary to return in J from anywhere
in J?

COROLLARY 6. Let J be a semi-open subinterval of I, modulo 1, namely, J = [α, β[ with
0 ≤ α < β ≤ 1 (with length |J | = β − α) or J = [α, 1[∪[0, β[ with 0 ≤ β < α ≤ 1 (with
length |J | = 1 + β − α).
• Let k ≥ 0 be the least integer such that �k + �k+1 ≤ |J |, and let b ∈ [1, ak+1]

be the least integer such that �k−1 − (b − 1)�k ≤ |J |. This integer is well defined
since �k−1 − (ak+1 − 1)�k = �k + �k+1. Then bqk + qk−1 − 1 iterations of T−θ are
sufficient to reach J from anywhere in I, and this bound is optimal.

• Let k ≥ 0 be the least integer such that �k ≤ |J |. For every y ∈ J , the first integer
m(y) ≥ 1 such that T

m(y)
−θ (y) ∈ J is at least equal to qk .

Proof. We are searching for the least non-negative integer m such that

m⋃
k=0

T k
θ (J ) = I. (1)

By rotation, one may assume that J = [0, |J |[. In this case, for every k ≥ 0,

T k
θ (J ) =

{
[xk , xk + |J |[ if xk + |J | ≤ 1,

[xk , 1[∪[0, xk + |J | − 1[ if xk + |J | > 1.

Therefore, equality 1 holds if and only if the greatest length of the sub-intervals of I defined
by the subdivision (xk)0≤k≤m is at most |J |. Thus, the first item follows from Corollary 5.

Next, given y ∈ J , we are searching for the least integer m(y) ≥ 1 such that
T

m(y)
−θ (y) ∈ J , which implies that

min
0≤i<j≤m(y)

‖xj − xi‖ ≤ ‖m(y)θ‖ = ‖y − T m(y)(y)‖ < |J |.

Denoting by k ≥ 0 the least integer such that �k ≤ |J |, we derive m(y) ≥ qk by
Corollary 5.

2.2. A Markov chain on I2. In this section, we study the Markov chains on I2

with kernel K. Our purpose is to give upper bounds on the entrance time in the set
Bθ = [0, θ [×[θ , 1[∪[θ , 1[×[0, θ [.

The transition probabilities can be also written as

K((y, y′), ·) = 1
2 (δ(T−θ (y),y′) + δ(y,T−θ (y′))) if (y, y′) ∈ Bθ ,

K((y, y′), ·) = 1
2 (δ(y,y′) + δ(T−θ (y),T−θ (y′))) if (y, y′) ∈ Bc

θ .

Note that the transition probabilities from any (y, y ′) ∈ Bc
θ preserve the difference y′ − y

modulo 1. See Figure 2.
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FIGURE 3. Entrance time in Bθ from any point under the action of the map (y, y′) �→ (T−θ (y), T−θ (y
′)). Points

far from the diagonal have low entrance time.

Since D is absorbing and has no intersection with Bθ , the set Bθ cannot be reached from
D. But the set Bθ can be reached from any (y, y′) ∈ Dc. We set

ty,y′ := inf{n ≥ 0 : (T n−θ (y), T n−θ (y
′)) ∈ Bθ },

Ty,y′ = inf{n ≥ 0 : (Fn(y), Fn(y
′)) ∈ Bθ }.

Note that we have always Ty,y′ ≥ ty,y′ , and that ty,y′ and Ty,y′ are null whenever (y, y′) is
in Bθ . Moreover,

Ty,y′ + 1 = inf{n ≥ 0 : Fn(y
′) − Fn(y) �≡ y′ − y mod 1}.

For every real number δ, we denote by

‖δ‖ := dist(δ, Z) = min(δ − �δ�, 1 − δ + �δ�)
the shortest distance from δ to Zy.

Informally, we want to show that the times ty,y′ and Ty,y′ are small when ‖y′ − y‖ is
far from 0 and that they are ‘often’ big when ‖y′ − y‖ is close to 0. The restriction ‘often’
cannot be removed since tθ−ε1,θ+ε2 = 0 for every ε1 ∈ ]0, θ ] and ε2 ∈ [0, 1 − θ [. See
Figure 3.

Next, we prove a useful lemma.

LEMMA 7. Let y ∈ R. There exists a unique sequence (ζ
y
n )n≥1 of independent uniform

Bernoulli random variables such that, for every integer n ≥ 0,

for all n ≥ 0, Fn+1(y) = T
ζ

y
n−θ (Fn(y)).

Proof. The uniqueness holds since T−θ (y
′) �= y′ for every y′ ∈ I. To prove the existence,

we construct a sequence (ζ
y
n )n≥1 of random variables by setting, for every n ≥ 1,
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ζ
y
n := (ηn + 1[θ ,1[(Fn−1(y))) mod 2 = 1[ηn=0 ; Fn−1(y)≥θ ] + 1[ηn=1 ; Fn−1(y)<θ ].

For every n ≥ 0, set Fn := σ(η1, . . . , ηn), with the convention F0 = {∅, �}.
By construction, ζ

y
n is an Fn-measurable Bernoulli random variable, which is uniform

and independent of Fn−1 since

E[ζ y
n |Fn−1] = 1

2 1[Fn−1(y)≥θ ] + 1
2 1[Fn−1(y)<θ ] = 1

2 almost surely.

Moreover, a computation distinguishing two cases whether Fn−1(y) < θ or Fn−1(y) ≥ θ

yields

Fn(y) = fηn(Fn−1(y)) = T
ζ

y
n−θFn−1(y).

The proof is complete.

LEMMA 8. Assume that 0 < θ < 1/2. Let y and y′ be two different points in I.
The time ty,y′ is finite. More precisely, let k ≥ 0 be the least integer such that

�k + �k+1 ≤ ‖y′ − y‖, and b ∈ [1, ak+1] the least integer such that �k−1 − (b − 1)�k ≤
‖y′ − y‖. Then ty,y′ ≤ bqk + qk−1 − 2 if ‖y′ − y‖ ≤ θ and ty,y′ ≤ q1 − 1
otherwise.

The random variable Ty,y′ is binomial negative, with parameters ty,y′ and 1/2. In
particular, E[Ty,y′] = 2ty,y′ .

Proof. Let δ = ‖y′ − y‖. Since y and y′ play the same role, we may—and we do—assume
that y′ = Tδ(y).

We use the sequence (ζ
y
n )n≥1 introduced in Lemma 7 and abbreviate the notation into

(ζn)n≥1.
For every integer n ≥ 0,

for all n ≥ 0, Fn+1(y) = T
ζn

−θ (Fn(y)).

For every integer n ∈ [0, Ty,y′ − 1], the two points Fn(y
′) and Fn(y

′) belong to the same
interval [0, θ [ or [θ , 1[, so Fn+1(y

′) = T
ζn

−θ (Fn(y
′)) ≡ Fn(y

′) − ζnθ mod 1. By recursion,
we get

Fn(y) = T
ζ1+···+ζn

−θ (y) for all n ≥ 0

and

Fn(y
′) = T

ζ1+···+ζn

−θ (y′) = Tδ(Fn(y)) for all n ∈ [0, Ty,y′ ].

Hence,

Ty,y′ = inf{n ≥ 0 : (Fn(y), Tδ((Fn(y))) ∈ Bθ }
= inf{n ≥ 0 : (T

ζ1+···+ζn

−θ (y), Tδ(T
ζ1+···+ζn

−θ (y))) ∈ Bθ }
= inf{n ≥ 0 : ζ1 + · · · + ζn = ty,y′ }.

Since (ζn)n≥1 is a sequence of independent uniform Bernoulli random variables, the
random variable Ty,y′ is negative binomial, with parameters ty,y′ and 1/2.
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If δ ≤ θ , then, for every x ∈ I,

(x, Tδ(x)) ∈ Bθ ⇐⇒ x ∈ [θ − δ, θ [∪[1 − δ, 1[.

Thus, ty,y′ = inf{n ≥ 0 : T n−θ (y) ∈ [θ − δ, θ [∪[1 − δ, 1[}. By Corollary 6, at most
bqk + qk−1 − 1 iterations of the map T−θ are sufficient to reach each one of the
intervals [θ − δ, θ [ or [1 − δ, 1[ from y. But these two intervals are disjoint since
0 < θ − δ < θ < 1/2 < 1 − δ < 1. Hence, ty,y′ ≤ bqk + qk−1 − 2.

If δ > θ , then, for every x ∈ I,

(x, Tδ(x)) ∈ Bθ ⇐⇒ x ∈ [0, θ [∪[1 − δ, 1 − δ + θ [.

Thus, T = inf{n ≥ 0 : Fn(y) ∈ [0, θ [∪[1 − δ, 1 − δ + θ [}. By Corollary 6 applied with
k = 1 and b = 1, at most q1 iterations of the map T−θ are sufficient to reach each one of
the intervals [0, θ [ or [1 − δ, 1 − δ + θ [ from y. But these two intervals are disjoint since
0 < θ < 1/2 < 1 − δ < 1 − δ + θ < 1. Hence, ty,y′ ≤ q1 − 1.

The proof is complete.

COROLLARY 9. Let y and y′ be in I and let k ≥ 1 be an integer such that �k−1 ≤ ‖y′ − y‖.
Then ty,y′ ≤ qk + qk−1 − 2.

Proof. By Lemma 8, if θ ≤ ‖y′ − y‖, then ty,y′ ≤ q1 − 1 ≤ qk + qk−1 − 2.
From now on, we focus on the case where ‖y ′ − y‖ ≤ θ . Observe that

�k + �k+1 ≤ ak+1�k + �k+1 = �k−1 ≤ ‖y′ − y‖.

If ‖y′ − y‖ < �k−1 + �k , then Lemma 8 applied to the integers k and b = 1 yields
ty,y′ ≤ qk + qk−1 − 2.

Otherwise, k ≥ 2 since �k−1 < �k−1 + �k ≤ ‖y′ − y‖ ≤ θ = �0. Furthermore, the least
integer k′ ≥ 1 such that �k′ + �k′+1 ≤ ‖y′ − y‖ is at most k − 1 and Lemma 8 applies to
the integers k′ ≥ 1 and some b ∈ [1, ak′+1], so

ty,y′ ≤ bqk′ + qk′−1 − 2 ≤ ak′+1qk′ + qk′−1 − 2 = qk′+1 − 2 ≤ qk − 2.

Hence, in all cases, we get ty,y′ ≤ qk + qk−1 − 2.

2.3. A time-changed symmetric random walk. For every real number x, denote by
x = x + Z its equivalence class in R/Z. Then Lemma 8 and the strong Markov property
show that the process (Fn(y′) − Fn(y))n≥0 is a time-changed symmetric random walk on
R/Z with steps ±θ .

LEMMA 10. For every n ≥ 0, set Fn = σ(η1, . . . , ηn), with the convention F0 = {∅, �}.
Consider the non-decreasing process (An)n≥0 defined by

An :=
n−1∑
k=0

1Bθ (Fk(y), Fk(y
′)) with the convention A0 = 0,

and set A∞ := limn An. Consider its inverse (Na)a≥0, defined by

Na := inf{n ≥ 0 : An ≥ a} with the convention inf ∅ = +∞.
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On the event [Na < +∞] = [a ≤ A∞], set

�Na := Na+1 − Na and Wa :=
a∑

b=1

(2ζ
y
Nb

− 1),

with the notation of Lemma 7.
(1) For every n ≥ 0,

Fn(y
′) − Fn(y) ≡ y′ − y + θWAn mod 1.

(2) The random times (Na − 1)a≥1 are stopping times in the filtration (Fn)n≥0.
(3) The process (Wa)a≥0 is a simple symmetric random walk on Z, with possibly finite

lifetime A∞. More precisely, for every positive integer a ≥ 0, conditionally on the
event [A∞ ≥ a], the increments W1 − W0, . . . , Wa − Wa−1 are independent and
uniform on {−1, 1}.

(4) One has A∞ = AT D
y,y′ , where T D

y,y′ := inf{n ≥ 0 : Fn(y) = Fn(y
′)}. If y′ − y ∈

Z + θZ, then A∞ is almost surely finite. Otherwise, A∞ is infinite.
(5) Assume that y′ − y /∈ Zy + θZ. Conditionally on the process (((FNa (y),

FNa (y
′)))a≥0, the random variables (�Na)a≥0 are independent and each �Na − 1

is negative binomial with parameters tFNa (y),FNa (y′) and 1/2.

Proof. We use the sequence (ζn)n≥1 := (ζ
y
n )n≥1 introduced in Lemma 7 and define

(ζ ′
n)n≥1 := (ζ

y′
n )n≥1 in the same way. By construction,

Fn(y) = fηn(Fn−1(y)) ≡ Fn−1(y) − ζnθ mod 1.

Then

Fn(y
′) − Fn(y) ≡ Fn−1(y

′) − Fn−1(y) + (ζn − ζ ′
n)θ mod 1.

A recursion yields, for every n ≥ 0,

Fn(y
′) − Fn(y) ≡ y′ − y + Mnθ mod 1 where Mn :=

n∑
k=1

(ζk − ζ ′
k),

with the convention M0 = 0. For every k ≥ 1, ζ ′
k = 1 − ζk if (Fk−1(y), Fk−1(y

′)) ∈ Bθ ,
whereas ζ ′

k = ζk if (Fk−1(y), Fk−1(y
′)) ∈ Bc

θ , so

ζk − ζ ′
k = 1Bθ (Fk−1(y), Fk−1(y

′)) × (2ζk − 1)

= (Ak − Ak−1) × (2ζk − 1).

By definition, for every a ≥ 0, on the event [Na < +∞], the process (An)n≥0 remains
constant and equal to a during the time interval [Na , Na+1 − 1]. Hence,

Mn =
n∑

k=1

(Mk − Mk−1) =
An∑
b=1

(MNb
− MNb−1) =

An∑
b=1

(2ζNb
− 1) = WAn .

Item (1) follows.
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The process (An)n≥0 defined by

An =
n−1∑
k=0

1Bθ (Fk(y), Fk(y
′))

is (Fn)n≥0-predictable: the random variable A0 = 0 is constant and, for every n ≥ 1, the
random variable An is Fn−1-measurable.

For every a ≥ 0, the random variable Na is a stopping time in the filtration (Fn)n≥0. If
a ≥ 1, the random variable Na − 1 is still a stopping time since, for every n ≥ 0,

[Na − 1 ≤ n] = [Na ≤ n + 1] = [An+1 ≥ a] ∈ Fn.

Item (2) follows.
Let a ≥ 0. The event [Na < +∞] = [Na − 1 < +∞] belongs to FNa−1. On this

event, the sequence (η̃n)n≥0 := (ηNa+n)n≥0 is an independent and identically distributed
sequence of uniform Bernoulli random variables and is independent of FNa−1. Therefore,
we know the following.
• The Bernoulli random variable ζNa = (ηNa + 1[0,θ [(FNa−1(y))) mod 2 is uniform,

independent of FNa−1 and FNa -measurable. Thus the random variable Wa − Wa−1 =
2ζNa − 1 is uniform on {−1, 1}, independent of FNa−1 and FNa -measurable. Item (3)
follows.

• The random variable (Y , Y ′) := (FNa (y), FNa (y
′)) is FNa -measurable.

• The process (F̃n)n≥0, defined by F̃n := fη̃n
◦ · · · ◦ fη̃1 , is independent of FNa and has

the same law as (Fn)n≥0.
Observe that, with obvious notation,

�Na − 1 = (Na+1 − 1) − Na = T̃Y ,Y ′ := inf{n ≥ 0 : (F̃n(Y ), F̃n(Y
′)) ∈ Bθ }.

Hence, conditionally on FNa and on the event [Na < +∞] ∩ [Y �= Y ′], the random
variable �Na − 1 is almost surely finite and negative binomial with parameters tY ,Y ′ and
1/2. Item (5) follows. Moreover, for every a ≥ 0, we have almost surely

Na+1 < +∞ ⇐⇒ (Na < +∞ and FNa (y) �= FNa (y
′)).

Hence, almost surely,

A∞ = inf{a ≥ 0 : Na+1 = +∞} = inf{a ≥ 0 : Na < +∞ ; FNa (y) = FNa (y
′)}.

During each time interval [Na , Na+1 − 1], the process (Fn(y
′) − Fn(y)) remains constant

modulo 1 and the process (An)n≥0 remains constant and equal to a. Thus,

A∞ = AT D
y,y′ where T D

y,y′ := inf{n ≥ 0 : Fn(y) = Fn(y
′)}.

Since, for every n ≥ 0, Fn(y
′) − Fn(y) ≡ y′ − y + θWAn mod 1, the difference

Fn(y
′) − Fn(y) remains in the coset y′ − y + θZ + Z. Therefore, the time T D

y,y′ cannot be
finite unless y′ − y ∈ θZ + Z. Conversely, if y′ − y ∈ θZ + Z, then T D

y,y′ is almost surely
finite by recurrence of the symmetric simple random walk on Z. Item (4) follows.

By density of the subgroup θZ + Z in R and by recurrence of the symmetric simple
random walk on Z, we derive the following consequence.
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COROLLARY 11. Let y and y′ be two points in I such that y′ − y /∈ Z + θZ. Then, almost
surely,

lim inf
n→+∞ ‖Fn(y

′) − Fn(y)‖ = 0 and lim sup
n→+∞

‖Fn(y
′) − Fn(y)‖ = 1/2.

Proof. We use the notation and the results of Lemma 10. The recurrence of the symmetric
simple random walk on Z and the density of the subgroup θZ + Z in R yields

inf
n≥0

‖Fn(y
′) − Fn(y)‖ = inf

a≥0
‖y′ − y + θWa‖ = inf

w∈Z ‖y′ − y + θw‖ = 0 almost surely.

Since the quantities ‖Fn(y
′) − Fn(y)‖ are all positive, the greatest lower bound of the

sequence (‖Fn(y
′) − Fn(y)‖)n≥0 is not achieved and is therefore a lower limit. We argue

in the same way with the least upper bound.

To prove that the Cesàro averages of the sequence (‖Fn(y
′) − Fn(y)‖)n≥0 tend to zero,

we observe that the time change in the process (WAn)n≥0 slows down the random walk
much more when the difference is ‖y′ − y‖ is small. Indeed, Corollary 9 shows that if
‖y′ − y‖ is not close to zero, then the process ((Fn(y), Fn(y

′))n≥0 reaches Bθ quickly,
and the difference Fn(y

′) − Fn(y) changes immediately after.
Conversely, if ‖y′ − y‖ is small, we hope that it will take a long time for the process

((Fn(y), Fn(y
′)))n≥n0 to reach Bθ . During this time, the difference Fn(y

′) − Fn(y)

remains unchanged. Yet, we may be unlucky, so the times ty,y′ and Ty,y′ may be small.
Fortunately, the distance ‖Fn(y

′) − Fn(y)‖ is close to θ at time N1 = Ty,y′ + 1, so it
will change soon. With probability 1/2, we will get W2 = 0, so ‖FN2(y

′) − FN2(y)‖ =
‖y′ − y‖ will be small, and this time the distance ‖Fn(y

′) − Fn(y)‖ will remain
unchanged during a long time. The role of the next Lemma is to provide a lower bound for
this time.

LEMMA 12. Let y and y′ be two distinct points in I such that (y, y′) ∈ [0, 1 − θ [2∪[θ , 1[2

and ‖y′ − y‖ < �2. Let k ≥ 3 be the integer such that �k ≤ ‖y′ − y‖ < �k−1. Keep the
notation of Lemma 10. Then

on the event [W2 = 0], �N2 − 1 ≥ tFN2 (y),FN2 (y′) ≥ qk + 1 − q2 − q1.

Before proving Lemma 12, it is important to note that all probability transitions
K((y, y′), ·) give full measure to the set [0, 1 − θ [2∪[θ , 1[2 (see Figure 4). Hence, the
additional hypothesis (y, y′) ∈ [0, 1 − θ [2∪[θ , 1[2 will not be a true restriction. Actually,
this assumption could be removed by changing the lower bound into qk − q2 − q1.

Proof. The inequality �N2 − 1 ≥ tFN2 (y),FN2 (y′) ≥ 0 follows from item (5) of Lemma 10.
The assumption (y, y′) ∈ [0, 1 − θ [2∪[θ , 1[2 ensures that (Fn(y), Fn(y

′)) belongs to
[0, 1 − θ [2∪[θ , 1[2 not only for every n ≥ 1, but also when n = 0.

Set δ = ‖y′ − y‖. By symmetry, we may assume that y′ − y ≡ δ mod 1, that is,
y′ = Tδ(y). Hence, for every a ≥ 0, FNa+1−1(y

′) − FNa+1−1(y) ≡ δ + θWa mod 1.
On the event [W2 = 0], we have

FN3−1(y
′) − FN3−1(y) ≡ FN1−1(y

′) − FN1−1(y) ≡ δ mod 1.
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FIGURE 4. The squares [0, θ [×[1 − θ , 1[ and [1 − θ , 1[×[0, θ [ cannot be reached from anywhere via the kernel
K. If 0 < δ < θ , then Bθ ∩ {(y, Tδ(y)); y ∈ I} is the union of two ‘semi-open segments’, defined by θ − δ ≤
y < θ and 1 − δ ≤ y < 1. The second semi-open segment cannot be reached from anywhere via the kernel K

and is the image of the first one by the map (y, y′) �→ (T−θ (y), T−θ (y
′)).

Since the points (FN1−1(y), FN1−1(y
′)) and (FN3−1(y), FN3−1(y

′)) belong at the same
time to Bθ and to [0, 1 − θ [2∪[θ , 1[2, we deduce that FN1−1(y) and FN3−1(y) belong to
[θ − δ, θ [. But FN3−1(y) is obtained from FN1−1(y) by applying the transformation T−θ

exactly ζ
y
N1

+ tFN1 (y),FN1 (y′) + ζ
y
N2

+ tFN2 (y),FN2 (y′) times.
On the event [W2 = 0], we have ζ

y
N1

+ ζ
y
N2

= 1, so Corollary 6 yields

tFN1 (y),FN1 (y′) + tFN2 (y),FN2 (y′) + 1 ≥ qk .

But FN1(y
′) − FN1(y) ≡ δ ± θ mod 1, so

‖FN1(y
′) − FN1(y)‖ ≥ θ − δ > �0 − �k ≥ �1.

Corollary 9 yields tFN1 (y),FN1 (y′) ≤ q2 + q1 − 2.Thus,

tFN2 (y),FN2 (y′) + q2 + q1 − 1 ≥ qk .

The desired inequality follows.

2.4. Martingales and symmetric simple random walk on Z. In this subsection, we
establish three more results that which help us in the proof of Proposition 2. The first
of them is a kind of law of large numbers.

LEMMA 13. Let (Gn)n≥0 be a filtration of (�, A, P) and let (Zn)n≥1 be a sequence of real
random variables, bounded in L2(P), and adapted to the filtration (Gn)n≥1. Then

1
n

n∑
k=1

(Zk − E[Zk|Gn−1]) → 0 almost surely as n → +∞.
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Proof. For every n ≥ 0, let

Mn =
n∑

k=1

1
k
(Zk − E[Zk|Gn−1]).

By construction, the sequence (Mn)n≥0 is a square-integrable martingale in (G)n≥0. The
increments Mk − Mk−1 are pairwise orthogonal in L2(P) and

∑
k≥1

‖Mk − Mk−1‖2
2 =

∑
k≥1

1
k2 ‖Zk − E[Zk|Gn−1]‖2

2 ≤
∑
k≥1

1
k2 ‖Zk‖2

2 < +∞.

Hence, the martingale (Mn)n≥0 is bounded in L2(P) and it converges almost surely and in
L2(P) to some real random variable M∞.

1
n

n∑
k=1

(Zk − E[Zk|Gn−1]) = 1
n

n∑
k=1

k(Mk − Mk−1)

= 1
n

(
nMn +

n−1∑
k=1

kMk − M0 −
n−1∑
k=1

(k + 1)Mk

)

= Mn − 1
n

n−1∑
k=1

Mk .

The conclusion follows from Cesàró’s lemma.

The second result is a refinement of the gambler’s ruin theorem [10].

LEMMA 14. Let (Wn)n≥0 be a symmetric simple random walk on Z, that is, W0 = 0 and
(Wn − Wn−1)n≥1 is an independent and identically distributed sequence of Rademacher
random variables. Fix two non-negative integers a and b and set

τ−a,b = inf{n ≥ 0 : Wn = {−a, b}}.
Then τ−a,b < +∞ almost surely. Moreover:
• P[Wτ−a,b = −a] = b/(a + b) and P[Wτ−a,b = b] = a/(a + b);
• E[τ−a,b] = ab; and
• for every λ ≥ 0, E[(cosh λ)−τ−a,b ] = cosh(((−a + b)/2)λ)/ cosh(((a + b)/2)λ).

Proof. One checks that the processes (Wn)n≥0, (W 2
n − n)n≥0 and (e±λWn(cosh λ)−n)n≥0

are martingales, and that the martingales

(Wn)n≥0,
((

Wn − b − a

2

)2

− n

)
n≥0

,
(

cosh
(

λ

(
Wn − b − a

2

))
(cosh λ)−n

)
n≥0

are uniformly bounded on the time interval [0, τ−a,b]. Hence, the optional stopping time
theorem applies. Writing that the expectations at time τ−a,b are equal to the expectations
at time 0 yields items (1), (2) and (3).

The third result states an equidistribution modulo 1.
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LEMMA 15. Let (Wn)n≥0 be a symmetric simple random walk on Zy and let θ be any
irrational number. Then, for every continuous 1-periodic function f : R → C,

1
n

n−1∑
k=0

f (θWk) →
∫ 1

0
f (x) dx almost surely as n → +∞.

Proof. Since the trigonometric polynomials form a dense subspace of the vector space of
all continuous 1-periodic functions, we need only to prove the result when f is the function
em : x �→ ei2πmx for some m ∈ Z. The case where m = 0 is trivial, so we fix m �= 0.

For every n ≥ 1, let

Sn :=
n−1∑
k=0

ei2πmθWk .

Then

|Sn|2 = SnSn =
n−1∑
k=0

n−1∑
�=0

ei2πmθ(Wk−W�).

Let z = E[ei2πmθ(W1−W0)] = cos(2πmθ). Then z ∈ ] − 1, 1[ since m �= 0 and θ is
irrational. By independent equidistribution of the increments of the random walk W, we
derive

E[|Sn|2] =
n−1∑
k=0

n−1∑
�=0

z|k−�| = n + 2
n−1∑
d=1

(n − d)zd

≤ n

(
1 + 2

n−1∑
d=1

|z|d
)

≤ n
1 + |z|
1 − |z| .

Thus,

+∞∑
n=1

∥∥∥∥ 1
n3 Sn3

∥∥∥∥
2

≤
+∞∑
n=1

(
1 + |z|
1 − |z|

)−1/2

n−3/2 < +∞.

The series
∑

n Sn3/n3 is absolutely convergent in L2(P), so it converges almost surely and
in L2(P). Therefore, Sn3/n3 → 0 almost surely as n → +∞. To deduce that Sn/n → 0
almost surely as n → +∞, it suffices to set rn = �n1/3� and to note that

|Sn − Sr3
n
| ≤ n − r3

n ≤ 3n2/3(n1/3 − r) ≤ 3n2/3.

3. Proof of Proposition 2
Let y, y′ be in I and let δ = y′ − y. We use again the notation and the results contained in
Lemma 10.

If δ ∈ Z + θZ, then, almost surely, Fn(y
′) − Fn(y) is null for all large enough n, so the

conclusion holds.
We now focus on the difficult case, when δ /∈ Z + θZ. First, we prove the following

Lemma.
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LEMMA 16. Assume that δ /∈ Z + θZ, and keep the notation of Lemma 10.
(1) Consider the function g from [0, 1/2] to [0, +∞] defined by g(0) = +∞ and

g(r) := 1 + (qk + 1 − q2 − q1)+ whenever �k ≤ r < �k−1.

This function g is non-increasing on [0, 1/2] and bounded below by 1. Moreover, the
integral of g on [0, 1/2] is infinite.

(2) Moreover,

for all a ≥ 3, �Na ≥ g(‖θWa‖)1[Wa=Wa−2].

Proof. The sequence (�k)k≥0 is decreasing and the sequence (qk)k≥0 is non-decreasing.
The monotonicity of g and h and the lower bounds follow. On each interval [�k , �k−1[,
g(r) ≥ qk − q3, and thus

∫ �2

0
g(r)dr ≥

+∞∑
k=3

qk(�k−1 − �k) − q3�2.

But qk�k−1 ≥ 1/2 for every k ≥ 0 and �k−1 ≥ (1 + √
5)/2�k for at least one k among two

consecutive k (since �k−1 ≥ �k + �k+1 for every k ≥ 0). Item (1) follows.
Now, assume that a ≥ 3. Then Na−2 ≥ a − 2 ≥ 1, so the point (Y , Y ′) :=

(FNa−2(y), FNa−2(y
′)) belongs to [0, 1 − θ [2∪[θ , 1[2. The sequence (ηNa−2+n)n≥0 is

independent of (Y , Y ′) and has the same law as (ηn)n≥0. Hence, we may apply Lemma 12
to (Y , Y ′) and the sequence (ηNa−2+n)n≥0 instead of (y, y′) and (ηn)n≥0. We get

�Na ≥ (1 + (qk + 1 − q1 − q2)+)1[Wa=Wa−2] = g(‖δ + θWa‖)1[Wa=Wa−2].

Item (2) follows.

We now prove Proposition 2.
On each time interval [Na , Na+1 − 1], we have An = a, so

a

Na+1
<

An

n
≤ a

Na

.

Hence, we only need to show that Na/a → +∞ almost surely as a → +∞. To do this,
we observe that, for every a ≥ 3,

Na

a
= 1

a

a−1∑
b=0

�Nb ≥ 1
a

a−1∑
b=3

1[Wb=Wb−2]g(‖δ + θWb−2‖)

= 1
a

a−2∑
k=2

1[Wk+1=Wk−1]g(‖δ + θWk−1‖).

Therefore, it is sufficient to prove that

1
a

a∑
k=1

1[Wk+1=Wk−1]g(‖δ + θWk−1‖) → +∞ almost surely as a → +∞.
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The positive function x �→ g(‖δ + x‖) can be written as the limit of a non-decreasing
sequence of continuous 1-periodic functions. Given such functions, the sequence of their
integrals on [0, 1] tends to infinity by Beppo Levi’s lemma.

Thus, it suffices to prove that, for every continuous 1-periodic function f : R → R,

1
a

a∑
k=1

1[Wk+1=Wk−1]f (θWk−1) → 1
2

∫ 1

0
f (x) dx almost surely as a → +∞.

Since, for every k ≥ 1, P[Wk+1 = Wk−1|FNk
] = 1/2, Lemma 13 applied to the random

variables Zk := 1[Wk+1=Wk−1]f (θWk+1) = 1[Wk+1=Wk−1]f (θWk−1) and to the filtration
(Gk)k≥0 := (FNk

)k≥0 yields

1
a

a∑
k=1

(
1[Wk+1=Wk−1]f (θWk−1) − 1

2
f (θWk−1)

)
→ 0 almost surely as n → +∞.

But Lemma 15 yields

1
a

a∑
k=1

f (θWk−1) →
∫ 1

0
f (x) dx almost surely as a → +∞.

Hence, the conclusion follows. �

4. Constructive proof that [Tθ , T −1
θ ] is Bernoulli

The strategy used for [Tθ , Id] also works for [Tθ , T −1
θ ] with some adaptations, which are

often slight but in some places more substantial. Let us explain them.
We define [Tθ , T −1

θ ] on the space {−1, 1}Z+ × I with the same formula used to
define [Tθ , Id] on the space {0, 1}Z+ × I. In the probabilistic reformulation, we work
with an independent and identically distributed sequence (ξn)n∈Z of Rademacher random
variables. The process (Yn)n∈Z is a Markov chain on I whose evolution is governed by
(ξn)n∈Z through the recursion relation

Yn = (Yn−1 − ξnθ) mod 1 for all n ∈ Z,

where ξn is uniform on {−1, 1} and independent of F ξ ,Y
n−1.

For every n ∈ Z, the random variable

ηn := (1[0,θ [(Yn−1) − 1[θ ,1[(Yn−1))ξn.

is also uniform on {−1, 1} and independent of F ξ ,Y
n−1, and the recursion relation can be

written alternatively as

Yn = fηn(Yn−1) for all n ∈ Z,

where the maps f−1 and f1 from I to I (see Figure 5) are defined by

fh(y) := (y − hθ(1[0,θ [(y) − 1[θ ,1[(y))) mod 1.

We want to show that, for every n ∈ Z, the random variable Yn can be almost
surely recovered from the knowledge of (ηk)k≤n. To do this, we introduce the ran-
dom maps Fn := fηn ◦ · · · ◦ fη1 and the σ -fields Fn = σ(η1, . . . , ηn) for n ≥ 0. Let
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FIGURE 5. Graphs of f−1 and f1.

FIGURE 6. Probability transitions from different points (y, y′). The probability associated to each arrow is 1/2.
The set Bθ is the union of the shaded rectangles. When (y, y′) ∈ Bc

θ , the same rotation T±θ is applied to both
coordinates. When (y, y′) ∈ Bθ , rotation Tθ is applied to one coordinate, whereas rotation T−θ is applied to the

other one.

Bθ := [0, θ [×[θ , 1[∪[θ , 1[×[0, θ [ and let D be the diagonal of I2. The global strategy,
based on a coupling argument is unchanged.
(1) For every (y, y′) ∈ I2, the process ((Fn(y), Fn(y

′))n≥0 is a Markov chain on I2 in
the filtration (Fn)n≥0, whose transition probabilities (see Figure 6) are given by

K((y, y′), ·) = 1
2 (δ(f−1(y),f−1(y′)) + δ(f1(y),f1(y′))).
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(2) The process (An)n≥0, defined by

An :=
n−1∑
k=0

1Bθ (Fk(y), Fk(y
′)),

is predictable in the filtration (Fn)n≥0.
(3) Given (y, y′) ∈ I2, the process ((Fn(y′) − Fn(y))n≥0 with values in R/Z is still a

time-changed symmetric random walk, making steps ±2θ , with probability 1/2 each.
More precisely, for every n ≥ 0,

Fn(y
′) − Fn(y) ≡ y′ − y + 2θWAn mod 1,

where (Wa)a≥0 is a simple symmetric random walk on Z, independent of
(An)n≥0.

(4) The process ((Fn(y), Fn(y
′))n≥0 visits Bθ more and more rarely: An/n → 0 almost

surely as n → +∞.
(5) The final argument given in §1.4 (which uses that invariant probability measures for

K are carried by Bc
θ , and therefore by D) is unchanged.

Yet, the laws of the reaching times of the set Bθ from any point (y, y′) ∈ Dc are very
different in our new situation, and this changes notably the proof of step 3. The main
changes occur in Lemmas 12 and 16 which must be replaced by Lemmas 17 and 18 below.
The purpose is the same, namely, exhibiting situations that occur sufficiently often where
the process ((Fn(y), Fn(y

′))n≥0 spends a lot of time outside of Bθ (and, therefore, close to
the diagonal D), but the assumptions and the lower bounds for the reaching time of Bθ are
different.

For every a ≥ 0, we set Na = inf{n ≥ 0 : An ≥ a} and �Na = Na+1 − Na . By con-
struction, the random times (Na − 1)a≥1 are exactly the visit times of Bθ by the process
((Fn(y), Fn(y

′))n≥0, so they are stopping times in the filtration (Fn)n≥0.
We now relate the distribution of N2 − N1 given W1 = −1 with the distribution of

stopping times of the form τ−1,b := inf{n ≥ 0 : Wn ∈ {−1, b}} with b ≥ 0.
Remember that �−1 = 1, �0 = θ , �1 = 1 − �1/θ�θ < min(θ , 1 − 2θ) and q1 = a1 ≥ 2,

since we assumed that 0 < θ < 1/2. Hence, the condition δ ∈ ]0, min(θ , 1 − 2θ)[ below
holds whenever 0 < δ < �1.

LEMMA 17. Let (y, y′) ∈ I2. Assume that (y, y′) ∈ Bθ (so N1 = 1) and that y′ = T2θ+δ(y)

for some δ ∈ ]0, min(θ , 1 − 2θ)[. Then we have the following.
(1) (Tθ (y), T−θ (y

′)) /∈ Bθ . Hence, on the event [W1 = −1], (F1(y), F1(y
′)) /∈ Bθ .

(2) If �k ≤ δ < �k−1 with k ≥ 2, then, for every λ > 0,

E
[

1 − (cosh λ)−�N1

1 − (cosh λ)−1

∣∣∣∣W1 = −1
]

≥ E
[

1 − (cosh λ)−1−τ−1,qk−2

1 − (cosh λ)−1

]

= tanh(((qk − 1)/2)λ)

tanh(λ/2)
.

Proof. By assumption, we have (y, y′) ∈ [0, θ [×[θ , 1[ or (y, y′) ∈ [θ , 1[×[0, θ [. Since
y′ = (y + 2θ + δ) mod 1, we get (see Figure 7)
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FIGURE 7. Possible locations of (y, y′) and (Tθ (y), T−θ (y
′)) when (y, y′) ∈ Bθ and y′ = T2θ+δ(y) with 0 <

δ < min(θ , 1 − 2θ), depending on whether 3θ + δ ≥ 1 (left) or 3θ + δ ≤ 1 (right). Under these assumptions,
the couple (Tθ (y), T−θ (y

′)) is not in Bθ .

{
0 ≤ y < min(θ , 1 − 2θ − δ)

2θ + δ ≤ y′ < min(3θ + δ, 1)
or

{
max(θ , 1 − 2θ − δ) ≤ y < 1 − θ − δ

max(3θ + δ − 1, 0) ≤ y′ < θ .

Thus,{
θ ≤ Tθ (y) < min(2θ , 1 − θ − δ)

θ + δ ≤ T−θ (y
′) < min(2θ + δ, 1 − θ)

or

{
max(2θ , 1 − θ − δ) ≤ Tθ (y) < 1 − δ

max(2θ + δ, 1 − θ) ≤ T−θ (y
′) < 1.

In both cases, (Tθ (y), T−θ (y
′)) /∈ Bθ . This shows item (1).

Let us prove item (2). Let a (respectively, b) be the number of iterations of the
Cartesian product map T−θ × T−θ (respectively, Tθ × Tθ ) necessary to reach Bθ from
(Tθ (y), T−θ (y

′)). By item (1), we have a ≥ 1 and b ≥ 1. But, we have also

a = min{k ≥ 0 : T −k
θ (Tθ (y)) ∈ [θ − δ, θ [∪[1 − δ, 1[},

b = min{k ≥ 0 : T k
θ (Tθ (y)) ∈ [θ − δ, θ [∪[1 − δ, 1[}.

Since Tθ ([1 − δ, 1[) = [θ − δ, θ [, Corollary 6 yields a + b ≥ qk − 1.
On the event [W1 = −1], the random variable �N1 − 1 = (N2 − 1) − N1 is the hitting

time of {−a, b} by (W1+n − W1)n≥1. This process is independent of W1 and is a symmetric
simple random walk, like W. Hence, the distribution of �N1 − 1 under P[·|W1 = −1] is
the distribution on τ−a,b := inf{n ≥: Wn ∈ {−a, b}} under P. Thus, the gambler’s ruin
theorem (Proposition 14) yields, for every λ > 0,

E[(cosh λ)−(�N1−1)|W1 = −1] = E[(cosh λ)−τ−a,b ]

= cosh(((−a + b)/2)λ)

cosh(((a + b)/2)λ)

≤ cosh((((a + b)/2) − 1)λ)

cosh(((a + b)/2)λ)
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= E[(cosh λ)−τ−1,a+b−1 ]

≤ E[(cosh λ)−τ−1,qk−2 ] since τ−1,a+b−1 ≥ τ−1,qk−2

= cosh(((qk − 3)/2)λ)

cosh(((qk − 1)/2)λ)
.

Hence,

E
[

1 − (cosh λ)−�N1

1 − (cosh λ)−1

∣∣∣∣W1 = −1
]

≥ E
[

1 − (cosh λ)−1−τ−1,qk−2

1 − (cosh λ)−1

]

= E
[

cosh λ − (cosh λ)−τ−1,qk−2

cosh λ − 1

]

= cosh λ cosh(((qk − 1)/2)λ) − cosh(((qk − 3)/2)λ)

(cosh λ − 1) cosh(((qk − 1)/2)λ)

= sinh λ sinh(((qk − 1)/2)λ)

2 sinh2(λ/2)) cosh(((qk − 1)/2)λ)

= tanh(((qk − 1)/2)λ)

tanh(λ/2)
.

Item (2) follows.

Now, let us explain how we use Lemma 17.
By symmetry, the roles of y and y′ can be switched provided the event [W1 = −1] is

replaced with the event [W1 = 1].
For every a ≥ 1, we introduce a sign εa which indicates the shortest path in the circle

R/Z to go from YNa to Y ′
Na

. More precisely, we set

εa = 1 if Y ′
Na

− YNa ∈ ]0, 1/2[+Z,

εa = −1 if Y ′
Na

− YNa ∈ ]1/2, 1[+Z,

εa = 0 if Y ′
Na

− YNa ∈ (1/2)Z.

Given λ > 0, call hλ the function from [0, 1/2] to [0, +∞] defined by hλ(0) = +∞,
hλ(r) = 1 if r ≥ �1 and

hλ(r) := tanh(((qk − 1)/2)λ)

tanh((1/2)λ)
whenever �k ≤ r < �k−1 with k ≥ 2.

As λ → 0+, hλ(r) increases to h(r), where h(0) = +∞, h(r) = 1 if r ≥ �1 and h(r) :=
qk − 1 whenever �k ≤ r < �k−1 with k ≥ 2. We see that the integral of h over [0, 1/2] is
infinite in the same way as we did for the function g in Lemma 16.

Hence, the strong Markov property at time Na and Lemma 17 yield the next lemma,
which replaces Lemma 16.

LEMMA 18. For every a ≥ 1 and λ > 0,

E
[

1 − (cosh λ)�Na

1 − cosh λ

∣∣∣∣FNa

]
≥ hλ(‖Y ′

Na
− YNa‖)1[Wa−Wa−1=−εa]

≥ hλ(‖Y ′
Na−1 − YNa−1 − 2θ‖)1[Wa−Wa−1=−εa ].
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Therefore,

E
[

1 − (cosh λ)�Na

1 − cosh λ

∣∣∣∣FNa−1

]
≥ 1

2
hλ(‖Y ′

Na−1 − YNa−1 − 2θ‖).

We now use Lemma 18. The inequalities above may be false for a = 0, but this as no
influence on the Cesàró limits below. Observing that, for every λ > 0,

�Na ≥ 1 − (cosh λ)�Na

1 − cosh λ

and applying Lemma 13, we get, almost surely,

lim inf
a→+∞

Na

a
= lim inf

a→+∞
1
a

a−1∑
b=0

�Nb

≥ lim inf
a→+∞

1
a

a−1∑
b=0

1 − (cosh λ)�Nb

1 − cosh λ

= lim inf
a→+∞

1
a

a−1∑
b=0

E
[

1 − (cosh λ)�Nb

1 − cosh λ

∣∣∣∣FNa−1

]

≥ lim inf
a→+∞

1
a

a−1∑
b=0

hλ(‖y′ − y + 2θWa−1 − 2θ‖).

The function x �→ hλ(‖x + y′ − y − 2θ‖) can be written as the limit of an increasing
sequence of non-negative continuous 1-periodic functions. Applying Lemma 15 and
Beppo Levi’s lemma yields, almost surely,

lim inf
a→+∞

1
a

a−1∑
b=0

hλ(‖y′ − y + 2θWa−1 − 2θ‖) ≥
∫ 1

0
hλ(‖x + y′ − y − 2θ‖) dx

= 2
∫ 1/2

0
hλ(r) dr .

Hence,

lim inf
a→+∞

Na

a
≥ 2

∫ 1/2

0
hλ(r) dr almost surely.

Letting λ go to zero and applying Beppo Levi’s lemma again yields

lim inf
a→+∞

Na

a
≥ +∞ almost surely.

We derive that An/n → 0 almost surely in the same way as we did for [Tθ , Id].

5. Related results and open questions
In this section, we consider related questions that are still open and a few variants of what
we have done for [Tθ , Id] and [Tθ , T −1

θ ].
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5.1. Almost sure continuity of the isomorphism and its inverse. We come back to the
transformation [Tθ , Id] defined on X × I, where X = {0, 1}Zy+ and I = [0, 1[. We endow
X with the product topology, I with the topology deriving from the metric defined by
d(y, y′) := ‖y′ − y‖ and X × I with the product topology. Since the map Tθ is continuous
on I, the map [Tθ , Id] is continuous on X × I.

The map αθ : X × I → {0, 1} associated to Parry’s partition αθ := {Aθ
0, Aθ

1} is contin-
uous μ ⊗ ν-almost everywhere since it is given by

αθ (x, y) = 1Aθ
1
(x, y) = (1[(1−x0)θ+x0(1−θ),1[(y)) mod 2

= (x0 + 1[θ ,1[(T
x(0)
θ (y))) mod 2.

The ‘αθ -name’ map �θ : X × I → I is given by

�θ(x, y) := ((αθ ◦ [Tθ , Id]n)(x, y))n≥0.

Since [Tθ , Id] is continuous and preserves μ ⊗ ν, we deduce that �θ is continuous μ ⊗
ν-almost everywhere.

We have proved that the partition αθ is an independent generator, so �θ is an isomor-
phism transforming the dynamical system (X × [0, 1[, B(X) ⊗ P([0, 1[), μ ⊗ ν, [Tθ , Id])
into (X, B(X), μ, S). Thouvenot asked me whether or not �−1

θ is continuous μ-almost
everywhere. Answering this question is difficult since we do not have simple formulas to
recover (x, y) ∈ X × I from �θ(x, y).

Once again, we reformulate our problem in probabilistic terms. Remember that

�θ((ξ−i )i≥0, Y0) = (η−i )i≥0.

We know that Y0 is almost surely a function of (η−i )i≥0. To prove that �−1
θ is continuous

μ-almost everywhere, we just have to prove that this function is almost surely continuous,
thanks to the recursion relations

ξ−i = (η−i + 1[θ ,1[(Y−i−1)) mod 2

= (η−i + 1[θ ,1[(T
ξ−i+···+ξ0
θ (Y0))) mod 2.

For every n ≥ 0, we know that

Y0 = fη0 ◦ · · · ◦ fη−n+1(Yn+1),

that (η0, . . . , η−n+1) is independent of F ξ ,Y
−n and therefore of Y−n, and Y−n is uniform

on I.
Given n ≥ 0, the random map Pn = fη0 ◦ · · · ◦ fη−n+1 has the same law as

Fn = fηn ◦ · · · ◦ fη1 . Yet, there is a great difference between the processes (Pn)n≥0 and
(Fn)n≥0. When we couple in the past, the range Pn(I) can only decrease or stay equal as
n increases. But when we couple in the future, no such inclusion holds. We only know
that the Lebesgue measures |Fn(I)| can only decrease or stay unchanged, since, for every
n ≥ 0, the set Fn+1(I) is the image of Fn(I) by the random piecewise translation fηn+1 .

Moreover, we have the following result.

PROPOSITION 19. As n goes to infinity, |Fn(I)| goes to zero almost surely.
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FIGURE 8. Five simulations showing the evolution of the length of the smallest interval of I (viewed as the circle
R/Z) containing Pn(I), for 1 ≤ n ≤ 3000, when θ = (

√
5 − 1)/2.

Proof. For every n ≥ 0, consider the random set En := {y ∈ I : Fn(Tθ (y)) �= Fn(y)}.
Then En+1 ⊂ En, since Fn+1 = fηn+1 ◦ En. Using that the random maps Fn are piece-
wise translations on I, one checks that, for every n ≥ 0, Fn(I) = Fn(En) so |Fn(I)| =
|Fn(En)| ≤ |En|. Hence, it suffices to show that |En| goes to zero in L1(P) as n goes
to infinity. By Fubini’s theorem and the Lebesgue dominated convergence theorem, one
only needs to check that, for each y ∈ I, P[y ∈ En] → 0 as n → +∞. This follows from
Lemma 10, which shows that (Fn(Tθ (y)) − Fn(y))n≥0 is—modulo 1—a time-changed
simple symmetric random walk on θZ, with steps ±θ , starting at θ and stopped when
it hits zero.

This convergence is quite slow. In an online version of the paper, we establish that
E[|Fn(I)|] ≤ E[|En|] ≤ 2/qk whenever n ≥ 2(qk + qk−1)q

2
k . Since, for each n ≥ 0, the

random variables |Pn(I)| and |Fn(I)| have the same distribution, and since the sequence
(Pn(I))n≥0 is non-decreasing, we deduce that |Pn(I)| also goes to zero almost surely as
n goes to infinity. These facts and simulations (see Figure 8) lead us to formulate the
following conjecture.

Conjecture 20. The diameter of Pn(I) (for the distance d) goes almost surely to zero as n
goes to infinity.

Actually, we expect a still slower convergence. Observe that the conclusion will be false
if we replace Pn(I) by Fn(I).

If Conjecture 20 is true, this gives a positive answer to Thouvenot’s question. Indeed,
given δ ∈ ]0, 1/2[, we can find almost surely an integer N ≥ 1 such that the diameter of
Pn(I) is at most δ. Then, the knowledge of η0, . . . , η−N+1 only is sufficient to provide a
random variable Ỹ0 such that ‖Y0 − Ỹ0‖ ≤ δ. Hence, Y0 can be recovered with probability
1 as an almost everywhere continuous function of (η−i )i≥0.

Yet, proving this conjecture requires new ideas and looks difficult.
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5.2. Changing the partition. To define the random sequence (ηn)n∈Z, we split the
interval I = [0, 1[ at θ . An advantage of the (non-trivial) partition ι = {[0, θ [, [θ , 1[} is
that, for every n ≥ 0, the partition

n∨
k=0

T k
θ ι

comprises only n + 1 intervals given by the subdivision ((kθ) mod 1)0≤k≤n, which is the
least number possible. This facilitates the study of the random maps Fn = fηn ◦ · · · ◦ fη1 .

Yet, if the definition of the sequence (ηn)n∈Z is modified only by a modification of the
splitting point—α instead of θ , say—a large part of our preceding analysis remains true,
namely, Lemma 10 and its variant for [Tθ , T −1

θ ]. Yet, the set Bθ must be replaced by Bα ,
and estimating the reaching time of Bα from any point in I2 is less simple.

A remarkable phenomenon occurs when we study [Tθ , T −1
θ ] and split I at 1/2: namely,

when we set

ηn := (1[0,1/2[(Yn−1) − 1[1/2,1[(Yn−1))ξn.

Indeed, replacing the Markov chain ((ξn, Yn))n∈Z by ((−ξn, (1 − Yn) mod 1)n∈Z preserves
its law and modifies the sequence (ηn)n∈Z only on a null set, namely, on the negligible
event [there exists n ∈ N : Yn ∈ {0, 1/2}]. Hence, the knowledge of (ηn)n∈Z is not suffi-
cient to recover almost surely the Markov chain ((ξn, Yn))n∈Z. By symmetry, at least one
bit of information is lost.

We complete this observation with a coupling argument to prove that only one bit of
information is lost. Given y and y′ in I, look at the Markov chain ((Fn(y), Fn(y

′))n≥0,
where Fn = fηn ◦ · · · ◦ fη1 .
• On the event [(Fn(y), Fn(y

′)) ∈ Bc
1/2], we have

‖Fn+1(y
′) − Fn+1(y)‖ = ‖Fn(y

′) − Fn(y)‖ ≤ ‖Fn(y
′) + Fn(y)‖.

• On the event [(Fn(y), Fn(y
′)) ∈ B1/2], we have

‖Fn+1(y
′) + Fn+1(y)‖ = ‖Fn(y

′) + Fn(y)‖ ≤ ‖Fn(y
′) − Fn(y)‖.

As a result, the quantity min(‖Fn(y
′) + Fn(y)‖, ‖Fn(y

′) − Fn(y)‖) can only decrease or
stay unchanged, so it tends to zero since lim infn→+∞ ‖Fn(y

′) − Fn(y)‖ = 0.
Therefore, if Y ′ := (Y ′

n)n∈Z is a copy of Y := (Yn)n∈Zy such that Y and Y ′ are indepen-
dent and identically distributed conditionally on η := (ηn)n∈Z, the process ((Yn, Y ′

n))n∈Z
thus obtained is a stationary Markov chain with transition kernel K, so it lives almost surely
on D ∪ D′, where D′ is the anti-diagonal

D′ = {(y, y′) ∈ I2 : y + y′ ∈ Z} = {(0, 0)} ∪ {(y, 1 − y) : y ∈ ]0, 1[}.
Moreover, D′ is an absorbing set, like D. Since

L((Y , Y ′)|η) = L(Y |η) ⊗ L(Y |η),

we derive that the conditional law L(Y |η) is almost surely carried by two points, which
gives the desired conclusion.
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FIGURE 9. The modified maps f0 and f1.

This symmetry is an exceptional case. Intuitively, we may expect that no information is
lost in the other cases, namely, when the splitting point is different from 1/2, or when we
work with [Tθ , Id].

5.3. Working with more general skew products. So far, we have worked only with
[Tθ , Id] and [Tθ , T −1

θ ]. A natural generalization of these two transformations is [Tα , Tβ ],
where α and β are real numbers such that β − α is irrational. The map [Tα , Tβ ] can be
defined on the product {α, β}Z+ × I by

[Tα , Tβ ]((xn)n≥0, y) := ((xn+1)n≥0, Tx0(y)).

Let (Yn)n∈Z be a Markov chain (Yn)n∈Z governed by the recursion relation

Yn = T−ξn(Yn−1), where ξn is independent of F ξ ,Y
n−1 and uniform on {α, β}.

Let θ = β − α. Define f0 and f1 from I to I by

f0(y) := 1[0,θ [(y)T−α(y) − 1[θ ,1[(y)T−β(y),

f1(y) := 1[0,θ [(y)T−β(y) − 1[θ ,1[(y)T−α(y).

The graphs of f0 and f1 are drawn in Figure 9. The recursion governing (Yn)n∈Z can be
written Yn = fηn(Yn−1) by adapting the definition of (ηn)n∈Z accordingly.

Once again, we study the Markov chain ((Fn(y), Fn(y
′)))n≥0, where (Fn)n≥0 is the

sequence of random maps defined by Fn = fηn ◦ · · · ◦ fη1 . Given y and y′ in I, the
difference Fn(y

′) − Fn(y) is still (modulo 1) θ times a time-changed symmetric simple
random walk on Zy, where the time change is given by the past sojourn time in Bθ of the
process ((Fn(y), Fn(y

′)))n≥0.
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But this time, when the Markov chain ((Fn(y), Fn(y
′)))n≥0 is in Bc

θ , the steps it makes
are uniform on {(−α, −α), (−β, −β)}. In this general context, estimating the reaching
time of Bθ from any point in I2 is much harder.
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