
Journal of Glaciology 1

Measurement of Snowpack Density, Grain Size, and Black1

Carbon Concentration Using Time-domain Diffuse Optics2

Connor A. HENLEY,1,2 Colin R. MEYER,3 Jacob I. CHALIF,4 Joseph L. HOLLMANN,2 and3

Ramesh RASKAR1
4

1MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA5

2The Charles Stark Draper Laboratory, Inc., Cambridge, MA, USA6

3Thayer School of Engineering, Dartmouth College, Hanover, NH, USA7

4Department of Earth Sciences, Dartmouth College, Hanover, NH, USA8

Correspondence: Connor Henley <chenley390@gmail.com>9

ABSTRACT. Diffuse optical spectroscopy (DOS) techniques characterize scat-10

tering media by examining their optical response to laser illumination. Time-11

domain DOS methods involve illuminating the medium with a laser pulse and12

using a fast photodetector to measure the time-dependent intensity of light13

that exits the medium after multiple scattering events. While DOS research14

traditionally focused on characterizing biological tissues, we demonstrate that15

time-domain diffuse optical measurements can also be used to characterize16

snow. We introduce a model that predicts the time-dependent reflectance of a17

dry snowpack as a function of its density, grain size, and black carbon content.18

We develop an algorithm that retrieves these properties from measurements19

at two wavelengths. To validate our approach, we assembled a two-wavelength20

lidar system to measure the time-dependent reflectance of snow samples with21

varying properties. Rather than measuring direct surface returns, our system22

captures photons that enter and exit the snow at different points, separated by23

a small distance (4-10cm). We observe clear, linear correlations between our24

retrievals of density and black carbon concentration, and ground truth. For25

black carbon concentration the correlation is nearly one-to-one. We also find26

that our method is capable of distinguishing between small and large grain27

sizes.28

INTRODUCTION29

Snow is composed of transparent ice grains that absorb light very weakly at visible wavelengths (Warren,30

2019). Because of this, photons that enter a snowpack will typically scatter many times off of a large31

number of ice grains before they either exit the medium or get absorbed. The study of snow optics has32

historically focused on the interaction of snow with sunlight, as understanding this interaction is essential33

to understanding snow cover’s contribution to the Earth’s climate (Henderson and others, 2018) and for34
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forecasting snow melt (Painter and others, 2010), among other things. A key goal of snow optics has been35

to predict spectral albedo as a function of snowpack properties—such as grain size, which determines the36

probability that a photon will be absorbed at each scattering event (Wiscombe and Warren, 1980a), and37

the concentration of light absorbing particles such as dust, black carbon, or algae that are mixed into the38

snow (Wiscombe and Warren, 1980b; Skiles and others, 2018).39

The development of accurate spectral albedo models has, in turn, led to the development of optical40

sensing methods that retrieve grain size (Nolin and Dozier, 2000; Gallet and others, 2009) and LAP41

concentrations (Zege and others, 2011; Painter and others, 2012) from spectral albedo measurements. These42

methods, while useful, have limitations. Snowpack albedo is largely independent of important properties43

such as snow density (Wiscombe and Warren, 1980a). Furthermore, spectral albedo measurements usually44

require passive illumination by sunlight, and as such cannot be used to retrieve snow properties at night45

and for several months of the year in polar regions. Albedo models developed for solar illumination assume46

steady-state illumination that is collimated, diffuse, or a mixture of the two. As such, they cannot fully47

model lidar waveform measurements, which consist of the time-dependent optical response of snowpack to48

focused, pulsed illumination.49

Over the past few decades, in parallel with advances in snow optics, the biomedical optics community50

has developed a suite of techniques for characterizing biological tissue, which, like snow, is also a highly51

scattering medium. Collectively, these methods are referred to under the umbrella term of diffuse optical52

spectroscopy (DOS) (Durduran and others, 2010), which refers to the fact that the propagation of photons53

within the scattering medium is modeled using the diffusion approximation to the radiative transfer equa-54

tion (Welch and van Gemert, 1995), and to the fact that multi-wavelength illumination is frequently used55

(although this is not required). In DOS techniques the tissue is probed with a focused laser source that56

can be time-modulated, frequency-modulated, or continuous-wave. Measurements of the tissue’s optical57

response are then used to estimate its optical properties, such as the tissue’s absorption coefficient or effec-58

tive scattering coefficient. These optical properties, in turn, can be related to clinically useful properties59

of the tissue such as blood oxygenation (Sevick and others, 1991), organelle size (Li and others, 2008), and60

the concentrations of water, lipids, and collagen (Quarto and others, 2014). DOS has also been applied in61

non-clinical settings for the inspection of produce (Nicolaï and others, 2014), and for characterizing porous62

materials such as wood (Bargigia and others, 2013) and pharmaceutical tablets (Johansson and others,63

2002).64

Because snow is also a highly scattering medium, many of the results from diffuse optical spectroscopy65

can be adapted to the characterization of snowpack properties. Despite this, the adoption of diffuse optics66

concepts in the snow sensing community has been limited. Várnai and Cahalan (2007) proposed that67

the spatial spread of diffused laser light could be used to determine snow and sea ice thickness. Smith68

and others (2018) noted that the multiple scattering of green laser light within a snowpack should result69

in biases in lidar altimetry measurements. They used a combination of diffusion theory and Monte-carlo70

modeling to assess the dependence of this multiple scattering bias on grain size, black carbon concentration,71

and the choice of surface height retrieval algorithm. Smith and others (2023) used the model of Smith and72

others (2018) to develop an algorithm that infers snow grain size from full waveform lidar measurements73

collected by the Airborne Topographic Mapper (ATM). Fair and others (2024) use lidar retrievals of grain74
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size to predict biases in snow surface heights retrieved using green (532 nm) lidar beams on IceSat-2 and75

ATM. As far as we are aware, prior to this work, the only direct application of DOS techniques to retrieve76

bulk snowpack properties was made by Allgaier and Smith (2022). In their work, the snow was illuminated77

with continuous-wave laser sources at two different wavelengths, and a smartphone camera was used to78

take images of the spatially resolved, steady-state intensity of light that exited the snowpack after diffusing79

within the snow. From these smartphone images, along with an independent in situ measurement of the80

snow’s density, the authors were able to retrieve the absorption and effective scattering coefficients of the81

snowpack, as well as an estimate of the concentration of black carbon within it. In Ackermann and others82

(2006), and in a separate work by Allgaier and others (2022), time-domain diffuse optical measurements83

were used to estimate the absorption and scattering coefficients of glacier ice, which is optically similar to84

snow. A theoretical analysis of diffuse optical spectroscopy applied to glacier ice is provided in Allgaier and85

Smith (2021). Studinger and others (2024) use multiple scattering returns in green lidar measurements to86

infer the scattering length within sea ice.87

In this work we introduce a new method for characterizing the bulk properties of snow that is based on88

time-domain diffuse optical measurements. Our instrument is effectively a photon-counting lidar system89

that consists of two pulsed lasers with different wavelengths (one red, one near-infrared), and a single-90

photon avalanche diode (SPAD) receiver. Rather than measuring surface returns, which might be used for91

altimetry, we measure photons that enter the snowpack at a single point on the surface and exit at a second92

surface point that is displaced from the point of entry by a small distance (4-10 cm). Through a series of93

proof-of-principle experiments, we show that our method is capable of retrieving the density (through the94

ice volume fraction), grain size, and the concentration of light absorbing particles of a dry snowpack, in a95

non-invasive way.96

METHODS97

Diffusion Model98

The propagation of a laser pulse inside a scattering medium is described by the time-dependent radiative99

transfer equation (Welch and van Gemert, 1995), which models the flow of radiance (W m-2 sr-1) within100

a medium as a function of space and time. The scattering medium is described by a scattering coefficient101

µs (m-1), a scattering phase function, an absorption coefficient µa (m-1), and the speed of light within the102

medium c∗ (m s-1).103

Under the diffusion approximation to the radiative transfer equation, photons are modeled as particles104

that “diffuse” through a scattering medium via random walks. This approximation accurately describes105

situations for which the distance scales considered are much larger than the mean free path of photons106

within the medium (= (µa + µs)−1), and photons are typically scattered many times before they are107

absorbed (µs ≫ µa) (Welch and van Gemert, 1995). The photon diffusion equation can be written as108

follows:109

1
c∗

∂

∂t
ϕ(r, t) − D∇2ϕ(r, t) + µaϕ(r, t) = S(r, t). (1)
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Fig. 1. (a) Illustration of the measurement geometry employed in this work. A point on the snow surface is
illuminated by a laser pulse at time t = 0. A detector observes the time-dependent intensity of light that exits the
snow from a second point at distance s from the laser spot. (b) Comparison of time-dependent intensity predicted by
our model (Eq. 5), to photon time-of-flight measurements generated using a Monte-carlo simulation of a scattering
medium with the same properties. Both curves are normalized to their respective peaks.

A derivation of the photon diffusion equation can be found in Haskell and others (1994). Unlike the110

time-dependent radiative transfer equation, which models the time-evolution of a five-dimensional radiance111

field, the photon diffusion equation models the lower dimensional quantity of photon fluence ϕ(r, t) (W m-2),112

which is the integral of radiance over all directions. The variable S represents an isotropic source term,113

and the diffusion constant D is defined as114

D = 1
3 [µa + (1 − g)µs] . (2)

Here g is the asymmetry factor of the scattering phase function, which can take values between −1115

and 1 depending on whether the medium is primarily backward scattering (g < 0), isotropically scattering116

(g = 0), or forward scattering (g > 0).117

Crucially, the photon diffusion equation permits analytical solutions when the geometry of the scattering118

medium is sufficiently simple. We consider the scenario depicted in Fig. 1(a). Here, the medium is assumed119

to be semi-infinite and homogeneous. The medium’s surface is illuminated by a pulsed, pencil-beam source120

at time t = 0, and a detector observes the time-dependent intensity of light that exits the medium at121

a second point that is displaced from the point of illumination by a distance s. Kienle and Patterson122

(1997) showed that, in this scenario, Eq. 1 can be accurately solved by imposing an extrapolated boundary123

condition, which requires that photon fluence goes to zero along a planar boundary that lies just above124

the medium’s surface. The source term S is approximated by a point source buried one transport mean125

free path beneath the surface, and the equation is then solved via the method of images. This yields the126

following expression for photon fluence inside the medium:127
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ϕ(s, z, t) = c∗
(4πDc∗t)3/2 exp (−µac∗t)

×
{

exp
[
−(z − z0)2 + s2

4Dc∗t

]
− exp

[
−(z + z0 + 2zb)2 + s2

4Dc∗t

]}
. (3)

Here z denotes the distance from the surface, going down; z0 = [µa + (1 − g)µs]−1 is the depth of the128

buried point source; and zb denotes the height of the extrapolated boundary. Haskell and others (1994)129

proposed a value of zb = 1+Reff

1−Reff
2D, where Reff is the fraction of photons that are internally reflected at130

the interface between the scattering medium and the external (non-scattering) medium due to a refractive131

index mismatch. Because our ultimate goal is to model the optical response of a snowpack, and because132

the snow-air boundary of a typical snowpack is not a dielectric interface at optical wavelengths, we assume133

for this work that Reff = 0 and hence, zb = 2D.134

From Eq. 3, we compute the time dependent radiosity (W m-2) that exits the surface at position s135

using Fick’s Law (Kienle and Patterson, 1997):136

J(s, t) = −D∇ϕ(s, z, t) · (−ẑ)|z=0. (4)

The reflected flux R measured by a detector that observes the medium’s surface from a distance can137

then be described using the following expression:138

R(s, t) = αc∗
3(2π)3/2

z2
0

(2Dc∗t)5/2 exp
(

−µac∗t − s2 + z2
0

4Dc∗t

)

×
[
1 + 7

3 exp
(

− 10z2
0

9Dc∗t

)]
, (5)

where α is a constant that encapsulates instrumental parameters such as transmitted laser power, detection139

efficiency, and the detector’s etendue. We note that we have made liberal use of the substitutions D = z0/3140

and zb = 2z0/3. In deriving Eq. 5, we also assumed that the surface could be accurately described141

as a Lambertian emitter, which means that the radiance emitted by the surface is independent of the142

emission angle. Previous work has relaxed this assumption (Kienle and Patterson, 1997). We found that143

doing so produced nearly identical results when describing a nadir-pointing detector, but added significant144

complexity to the model. For this reason, we elected to use Eq. 5.145

In Fig. 1(b) we compare the time-dependent intensity predicted by Eq. 5 to simulated photon time-of-146

flight measurements generated using a Monte-carlo simulation (Henley, 2020). The modeled results match147

the simulation very closely. In general, models derived from the diffusion approximation to the radiative148

transfer equation accurately describe the measurements of photons that arrive at later times (c∗t ≫ z0) and149

larger distances from the laser spot (s ≫ z0), as these photons have scattered many times before exiting150

the medium.151
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Snow Scattering Model152

Our measurement model, defined in Eq. 5, is expressed in terms of three phenomenological parameters—153

the absorption coefficient µa, the effective scattering coefficient µ′
s = (1 − g)µs, and the effective speed of154

light in the medium c∗. We use a scattering model derived from the geometric-optics scattering model of155

Kokhanovsky and Zege (2004) to define µa, µ′
s, and c∗ in terms of three physically meaningful snowpack156

parameters—v∗, the fraction of the snowpack volume that is occupied by ice; r∗ (m), the grain radius; and157

Cbc (kg kg-1), the mass mixing ratio of black carbon in the snowpack. We note that, for a dry snowpack,158

the ice volume fraction v∗ is readily converted to bulk snowpack density ρ∗ (kg m-3) via the expression159

ρ∗ = v∗ρice + (1 − v∗)ρair ≈ v∗ρice, where ρice and ρair are the intrinsic densities of ice and air, respectively.160

We do not consider wet snow in this work.161

Clean Snowpack162

For a dry snowpack that contains optically insignificant concentrations of light absorbing particles, the163

scattering and absorption coefficients can be written entirely as functions of v∗ and r∗. The absorption and164

effective scattering coefficients are computed as follows:165

µa = BΓv∗ (6)

µ′
s = 3

2(1 − g)v∗
r∗

, (7)

The grain radius r∗ can be interpreted as the characteristic size of the ice grains. As in Kokhanovsky166

and Zege (2004), r∗ is defined as the radius of the spherical ice grain that would have the same surface-167

area-to-volume ratio as the ice-air matrix that comprises the true snowpack. Explicitly r∗ = 3 ⟨V ⟩
⟨Σ⟩ , where168

⟨V ⟩ is the mean ice grain volume and ⟨Σ⟩ is the mean ice grain surface area.169

The absorption enhancement parameter B and scattering asymmetry factor g are determined by grain170

shape (Libois and others, 2013). A recent study by Robledano and others (2023) suggests that these171

parameters cluster around B = 1.7 and g = 0.825 for most real snow samples, so we use those values172

here. These values are approximately valid for visible and near-infrared wavelengths (400nm to 14000nm)173

(Robledano and others, 2023). Notably, the values determined by Robledano and others (2023) closely174

match theoretical predictions for a two-phase random mixture of ice and air, in which grains have random175

and irregular shapes rather than idealized shapes such as spheres or hexagonal plates (Malinka, 2014).176

In Fig. 2(a) we visualize the range of values for µ′
s obtained across a domain of feasible grain sizes177

and ice volume fractions. Figure 2(b) shows the dependence of µa on ice volume fraction and wavelength.178

Unlike µ′
s, the absorption coefficient depends strongly on wavelength, and varies by more than an order of179

magnitude between the red (λ = 640 nm) and near infrared (λ = 905 nm) wavelengths used in this study.180

Effective Speed of Light in Snow181

The last parameter to calculate is the effective speed of light within the snowpack c∗. In many problems182

that involve light propagation in a scattering medium, light’s speed is treated as a constant that can be183
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Fig. 2. (a) Effective scattering coefficient µ′
s (m-1) as a function of ice volume fraction v∗ (unitless) and grain

radius r∗ (mm). (b) Absorption coefficient µa (m-1) of clean snow as a function of ice volume fraction v∗ (unitless)
and wavelength λ (nm).

computed beforehand if the medium’s index of refraction is known. This approach does not work for snow,184

which is a heterogeneous mixture of two materials—ice and air—that have markedly different refractive185

indices and that may be mixed at any ratio.186

The geometric scattering model proposed by Kokhanovsky and Zege (2004), from which we defined187

µa and µ′
s (Eqs. 6, 7), implicitly defines the distance that a photon travels through an ice grain as the188

distance (i.e. lice) of the chord that connects the points at which a photon enters (point 1 in Fig. 3) and189

exits (point 3) the grain. This effective “transportation distance” differs from the true distance (i.e. l′ice)190

traveled through the grain if the photon is internally reflected (e.g. at point 2) before it exits the grain. The191

absorption enhancement parameter B is approximately equal to the ratio between the true and effective192

transportation distances, averaged over all possible internal paths (i.e. l′ice ≈ Blice) (Libois and others,193

2019).194

An effective light speed model that is compatible with our definitions of µa and µ′
s must describe the195

average speed at which light advances along this effective transportation path, which is equivalent to the196

true photon path in the air phase, but shorter than the true photon path in the ice phase by a factor of197

B. If a photon travels along an effective transportation path of length L, on average that path will pass198

through (1 − v∗)L of air and v∗L of ice. The time T require to traverse this path is199

T = (1 − v∗)L
c0

+ niceBv∗L

c0
, (8)

where nice is the real component of the refractive index of ice (Warren and Brandt, 2008) and c0 is the200

speed of light in air (where it’s assumed that nair = 1). The travel time within the ice phase has been201

increased by a factor B to account for the difference between the true and effective transportation path202

lengths. Dividing L by T leaves us with203

c∗ = c0
1 + (niceB − 1)v∗

. (9)
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Fig. 3. A comparison of the true path (red) traveled by a photon through an ice grain, including internal reflections,
to the effective transportation path (black, dashed) of length lice that is implicitly assumed by our absorption and
effective scattering coefficient models.
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We stress that the effective light speed defined here is lower than the mean speed of light computed with204

respect to the lengths of true photon paths through snow, which due to internal reflections can include205

jagged paths within grains. An expression for this true mean light speed was computed by Libois and206

others (2019), and is equal to the effective light speed of Eq. 9, multiplied by a factor of [1 + (B − 1)v∗].207

Effect of Light Absorbing Impurities208

Ice is an exceptionally weak absorber of light at visible wavelengths (Warren, 2019). As such, the absorption209

of visible light within a snowpack can be enhanced significantly—even dominated—by the presence of trace210

concentrations of more absorptive substances. This has the important effect of reducing snowpack albedo,211

which increases radiative forcing on the snow surface and subsequently enhances snow melt and metamor-212

phism and can also influence the local climate (Skiles and others, 2018). For our purposes, the presence213

of small concentrations of LAPs can increase the absorption coefficient of a snowpack considerably—thus214

rendering Eq. 6, our model for clean snowpack absorption, insufficient. Globally, radiative forcing from215

LAPs is dominated by black carbon, mineral dust, organic or “brown” carbon, and snow algae (Skiles and216

others, 2018). Here we assume that absorption by LAPs is dominated by black carbon, but note that our217

model could be extended to include other types of particles by modifying the LAP absorption spectrum218

used here.219

According to Flanner and others (2012), between 32-73% of the black carbon in global surface snow220

is embedded within ice grains (or “internally mixed”), with the remainder being external to those grains221

(“externally mixed”) in the air phase. The elongated paths followed by photons within ice increases the222

probability that photons will interact with internally mixed black carbon particles. As a consequence, in-223

ternally mixed black carbon has an outsized impact on snow absorption and albedo, relative to externally224

mixed black carbon (Flanner and others, 2012). Models for snow’s absorption coefficient that consider the225

mixing state of black carbon have been proposed (Liou and others, 2014; Dombrovsky and Kokhanovsky,226

2020), however these models typically require idealized grain shapes such as spheres—which do not accu-227

rately represent real snow—and assign highly non-linear dependencies on black carbon concentration that228

are grounded in electromagnetic theory (Dombrovsky and Kokhanovsky, 2020) or stochastic simulations229

(Liou and others, 2014).230

Here we propose a simple geometric optics model for the additional absorption due to black carbon231

that can be computed from the bulk density of black carbon particles embedded inside ice grains ρin
bc (kg232

m-3), the bulk density of black carbon particles external to the grains ρout
bc (kg m-3), and the wavelength-233

dependent mass absorption efficiency MAEbc (m2 kg−1) of the black carbon particles (Grenfell and others,234

2011). Under this model, the presence of black carbon in a snowpack alters its properties primarily by235

adding an extra term to the absorption coefficient, i.e. µsnow
a = µice

a + µbc
a . Our proposed model is written236

as follows:237

µbc
a = MAEbc

[
(1 − v∗)ρout

bc + Bv∗ρin
bc

]
= MAEbcρicev∗

[
(1 − v∗)Cout

bc + Bv∗Cin
bc

]
.

(10)

Here absorption by internally mixed impurities is multiplied by the absorption enhancement factor B238
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Fig. 4. The ratio of light absorption due to black carbon to total absorption by the snowpack for a range of
wavelengths. Ratio computation assumes ice volume fraction v∗ = 0.3.

to account for the elongation of photon paths within ice grains. In the lower part of Eq. 10, we replace ρin
bc239

and ρout
bc with the products of the intrinsic density of ice (ρice = 916.5 kg m-3), the snowpack’s ice volume240

fraction v∗, and the mass mixing ratios Cin
bc and Cout

bc of internally and externally mixed black carbon,241

respectively.242

To simplify our model further, we assume that the black carbon is evenly mixed, i.e. Cin
bc = Cout

bc . We243

then combine Eqs. 6 and 10 to obtain a complete expression for the snowpack absorption coefficient:244

µa = BΓv∗ + MAEbcρiceCbcv∗ [1 + (B − 1)v∗] . (11)

Following the example of Doherty and others (2014), we model the wavelength dependence of MAEbc245

using a power law spectrum:246

MAEbc(λ) = MAEbc(λref ) (λref /λ)Å , (12)

that has an Ångstrom coefficient Å = 1.1 and is referenced to MAEbc(λref ) = 6500 m2 kg−1, where247

λref = 600 nm.248

Fig. 4 illustrates that, for a fixed Cbc, the fraction of absorption attributable to black carbon in snow249

depends strongly on the wavelength of light that interacts with the snowpack. We plot the ratio of250

absorption due to black carbon (using Eq. 10) to the total absorption (from Eq. 11) for a selection of251

wavelengths that range from 400 nm (blue) to 1000 nm (near infrared). In computing these ratios, we252

assume an ice volume fraction of v∗ = 0.3. For blue light, our model suggests that absorption is entirely253

dominated by just 1 part per billion by weight (ppbw) of black carbon, which is comparable to mass mixing254

ratios found in Greenlandic snow (Warren, 2019). In contrast, at 1000 nm, absorption from black carbon255

only eclipses ice absorption for mass mixing ratios above 7500 ppbw—a very high level of soot that would256

cause the snow to appear visibly grey. This decreased sensitivity at longer wavelengths is not caused by257

the decreased absorption of black carbon at these wavelengths, but rather by the increased absorption258

efficiency of ice.259
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Fig. 5. Plots of predicted time-dependent flux measured by a detector observing snow following illumination by a
laser pulse (λ = 640 nm). Curves were produced using Eq. 5 and µa, µ′

s, and c∗ were computed from v∗, r∗, and Cbc

using Eqs. 11, 7, and 9, respectively. (a) Ice volume fraction v∗ is varied. r∗ = 100 µm, Cbc = 0 ppbw, and s = 8 cm.
(b) Grain radius r∗ is varied. v∗ = 0.3, Cbc= 0 ppbw, and s = 8 cm. (c) Impurity concentration Cbc is varied. v∗ =
0.3, r∗ = 100 µm, and s = 8 cm. (d) Detector focus position s is varied. v∗ = 0.3, r∗ = 100 µm, and Cbc = 0 ppbw.

Effect of Snow Properties on Time-domain Response260

Having obtained expressions that relate µa, µ′
s, and c∗ to the grain size, ice volume fraction, and black261

carbon concentration of a dry snowpack, we can now develop an understanding of how changes to v∗, r∗,262

and Cbc affect the snowpack’s time-domain optical response. Upon inspection of Eq. 5, we see that the263

shape of a snowpack’s transient response is primarily controlled by µac∗, which determines the rate of264

decay of the signal’s tail; 2Dc∗, which can be interpreted as the rate at which a Gaussian cloud of diffusing265

photons expands over time, and which controls the position of the signal’s peak; and z2
0 , which influences266

the shape of the response at the earliest arrival times, but in practice has little effect when s ≫ z0.267

The exponential decay rate, µac∗, depends on v∗ and Cbc. On the other hand, 2Dc∗ and z2
0 primarily268

depend on the medium’s scattering coefficient, which in turn depends on the ratio v∗/r∗. These effects are269

visualized in Figs 5(a), (b), and (c), where we plot the predicted transient response curves for snowpack270

with varying v∗, r∗, and Cbc. For these curves, the snow is probed with red (640 nm) light, and the position271

of the detector’s focus spot is fixed at s = 8 cm.272

In Fig. 5(a) we see that for a clean snowpack (Cbc = 0), as v∗ is increased while r∗ is held constant, the273

slope of the signals’ exponential tail becomes more steep as light is absorbed by the medium more quickly.274

The arrival time of the signal peak is also pushed back because tighter packing of the ice grains reduces275
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Fig. 6. (Left) A diffusion model (lower right) is fit to photon time-of-flight histograms measured at two wavelengths.
Fit parameters α′, β, γ, and δ are determined using a grid search algorithm that minimizes a negative Poisson log-
likelihood function. (Top right) Snowpack properties v∗, r∗, and Cbc are computed directly from parameters β1, β2,
γ1, and γ2 by evaluating analytical expressions (Eqs. 17, 18, and 19)

the distance between photon scattering events, thus reducing the rate at which light diffuses within the276

medium.277

In Fig. 5(b), r∗ is varied while v∗ is held constant and again Cbc = 0. As grain size increases, grains278

must be spaced further apart to maintain the same density, thus increasing the rate of diffusion within the279

medium. As such, for a fixed snow density and source-detector separation, the peak of the diffusion signal280

will arrive earlier, and will be more intense, when the grains are large.281

In Fig. 5(c), v∗ and r∗ are held fixed while Cbc is varied. Black carbon content only influences the282

absorption coefficient of the snowpack, and so increasing Cbc steepens the exponential decay rate µac∗. At283

the probing wavelength of 640 nm (where ice is a relatively weak absorber) the influence of Cbc is quite284

dramatic when compared to the comparable influence of ice volume fraction on the exponential decay rate,285

shown in Fig. 5(a).286

In Fig. 5(d), v∗, r∗, and Cbc are held fixed and the detector focus position s is varied. As s increases,287

the signal peak arrives later and becomes more faint. However, as time passes, all signals converge as light288

spreads within the medium and the distribution of emitted photons becomes nearly uniform across the289

observed region.290

Algorithm291

We fit functions of the same form as Eq. 5 to two photon time-of-flight histograms—each measured using a292

different laser wavelength. We implement a grid search algorithm to find the fit parameters that minimize293

a negative log-likelihood loss function that properly accounts for photon count statistics. The parameters294

of the fitted curves are then used to compute the snowpack properties v∗, r∗, and Cbc. A visualization of295

our retrieval algorithm is shown in Fig. 6.296
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Fit Parameterization297

We re-parameterize Eq. 5 in terms of the fitting parameters α′ = αc∗
3(2π)3/2 , β = µac∗, γ = 2Dc∗, and298

δ = z2
0 . This allows for the model to be expressed in simplified form:299

R(s, t) = α′ δ

(γt)5/2 exp
(

−βt − s2 + δ

2γt

)[
1 + 7

3 exp
(

−20δ

9γt

)]
. (13)

Although Eq. 13 appears to have four degrees of freedom, only the exponential decay rate parameter β300

and the spatial spread rate γ are used to estimate snowpack properties in practice. Interpreting the scaling301

constant α′ requires precise calibration of the instrument and measurement geometry which is challenging302

in practice and which we did not attempt. Eq. 13 also depends only weakly on the squared source depth303

δ, to the point that accurate estimates of δ are almost never obtained.304

The relative contributions of v∗ and Cbc to the decay rate parameter β vary significantly as a function of305

wavelength. However, for visible and near infrared light (λ ≲ 1100 nm), the spatial spread rate γ depends306

primarily on µ′
s and c∗, which are largely independent of the measurement wavelength. Altogether, this307

means that n + 1 independent parameters can be retrieved from measurements taken at n wavelengths. If308

absorption due to light absorbing particles is known to be insignificant (i.e. µbc
a ≪ µice

a ), then v∗ and r∗309

can be retrieved from measurements at a single wavelength. Otherwise, retrieving v∗, r∗, and Cbc requires310

measurements at two or more wavelengths.311

Maximum Likelihood Estimate of Model Parameters312

The number of counts in a histogram timing bin centered at ti is assumed to be a Poisson random variable313

with a rate parameter xi, defined as314

xi = R(s, ti; Θ) + η = α′ri + η, (14)

where R is the flux predicted by Eq. 13 at position s, time ti, and for parameters Θ = {α′, β, γ, δ}.315

The rate of background counts produced by ambient light, detector dark counts, and detector afterpulsing316

(Zappa and others, 2007) is denoted by η, and is assumed to be constant with respect to time. The variable317

ri denotes the normalized predicted flux, for which α′ = 1.318

The probability of observing a vector of time-binned photon counts y given a vector of predicted count319

rates x is320

P (y|x) =
N∏
∆

xyi
i e−xi

yi!
(15)

where N denotes the total number of timing bins in the histogram and ∆ is the starting bin for the321

curve fit. We seek to find the parameters Θ = {α′, β, γ, δ} and η that minimize the negative log-likelihood322

L(Θ, η|y) = − ln P (y|x (Θ, η))

=
N∑
∆

xi − yi ln xi + ln yi!.
(16)
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We minimize Eq. 16 using a grid search. To reduce the dimensionality of the search, we first estimate η323

by computing the mean number of counts in a designated set of noise bins that reliably contains effectively324

zero non-background counts. For any combination of β, γ, and δ, the scaling term α′ can then be estimated325

using the expression ᾱ′ =
∑N

∆ (yi − η) /
∑N

∆ ri.326

We can thus define a three-dimensional search area that contains all feasible values of β, γ, and δ. The327

feasible range for δ is tightly constrained to
( 3γ

2c0

)2
< δ <

(3niceγ

2c0

)2
, which allows for a coarse fit to be328

obtained using an effectively two-dimensional search. We uniformly sample the search area to create a grid329

of candidate fit parameters, and compute the negative log-likelihood for each set of parameters on the grid.330

We perform a sequence of nested searches—we first obtain a coarse fit, then define a small search range331

around the fitted parameters and repeat the search using a smaller grid cell size. This procedure is iterated332

until a fit with the desired precision is obtained. Our fitting algorithm was implemented in MATLAB on333

a Lenovo Thinkpad T590 laptop with 16GB of RAM. Run time per fit was typically 56 seconds for 640334

nm histograms, and 19 seconds for 905 nm histograms (which had fewer timing bins). Curve fits obtained335

using our algorithm are shown in Fig. 6. We estimated the uncertainty in the retrieved values of β, γ, and336

δ by computing the inverse of the Hessian of the loss function at the estimated minimum, and then taking337

the diagonal terms. These terms approximate the variances in parameter fits when the loss function is338

approximately Gaussian near the minimum (Bevington and Robinson, 1992).339

Computing v∗, r∗, and Cbc340

When measurements are obtained at two wavelengths, λ1 and λ2, the ice volume fraction v∗ and black341

carbon mixing ratio Cbc can be extracted from the decay parameters β1 and β2. Each term βi can be342

expressed as a function of v∗ and Cbc by taking the product of Eqs. 9 and 11. This results in a set of two343

equations which can be solved, first, for v∗:344

v∗ = b2β1 − b1β2
c0 (a1b2 − a2b1) − d1b2β1 + d2b1β2

. (17)

For notational simplicity we have made the substitutions ai = BΓi, bi = ρiceMAEbc(λi), and di =345

nice(λi)B − 1. As before, the term c0 refers to the speed of light in air.346

Once v∗ has been obtained, Cbc can be computed as follows:347

Cbc = 1
c0b1(1 + fv∗)

[( 1
v∗

+ d1

)
β1 − c0a1

]
= 1

c0b2(1 + fv∗)

[( 1
v∗

+ d2

)
β2 − c0a2

]
.

(18)

Here we have subsituted f = B − 1. After v∗ and Cbc have been computed, the grain radius r∗ can be348

computed from the spatial spread parameter γi at either wavelength:349

r∗ = ei

[ 2c0
3γiv∗(1 + div∗) − ai − biCbc(1 + fv∗)

]−1
. (19)

Here ai, bi, di and f are defined as they were previously, and ei = 3(1 − g)/2. Because r∗ can be350

computed using either γ1 or γ2, we evaluate Eq. 19 at both wavelengths, and then take the uncertainty-351

https://doi.org/10.1017/jog.2024.81 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.81


Henley and others: Time-domain Diffuse Optics for Snow 15

Fig. 7. We used a monte-carlo photon transport simulator to validate our retrieval algorithm. Measurements were
simulated for 640 nm (left) and 905 nm (center) light for two simulated snow samples. True and estimated snowpack
parameters for each sample are shown on the right.

weighted average of the two values obtained in this way to arrive at our final estimate for r∗. Uncertainties352

in v∗, r∗, and Cbc are obtained via error propagation from uncertainties in β1, β2, γ1, and γ2.353

If it is known that absorption by light absorbing particles is small compared to absorption by ice grains,354

then v∗ and r∗ can be computed from the fit parameters extracted from single-wavelength measurements.355

First v∗ can be computed from the exponential decay rate β, as follows:356

v∗ = β

ac0 − βd
, (20)

and then r∗ can be obtained from the spatial spread rate γ, and our estimate of v∗:357

r∗ = e

[ 2c0
3γv∗(1 + dv∗) − a

]−1
. (21)

Here a, b, d, and e retain their meanings from Eqs. 17 and 19.358

Evaluation Using Simulated Measurements359

We validated our algorithm using a GPU-accelerated Monte-carlo photon transport simulation (Henley,360

2020), which was adapted from a simulator originally developed for tissue imaging studies (Satat, 2019).361

We modeled the propagation of photons within a semi-infinite, homogeneous scattering medium. The362

medium’s properties µa, µ′
s, and c∗ were computed from v∗, r∗, and Cbc using Eqs. 7, 9, and 11. To363
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Fig. 8. (Left) Photos depicting our experimental setup. Snow was held in a cooler placed on the floor, and
illuminated using pulsed diode lasers at two wavelengths (640 nm, 905 nm). A single-photon avalanche diode
(enclosed in pink insulating foam) measured the time-of-flight of photons that exited the snow surface at distance
s from the laser spot. (Center) Schematic of experimental setup. (Right) Time-of-flight histograms measured using
our system. For this test the snow sample consisted of natural snow that had been aged for nine months at −10 ◦C.

simulate pencil-beam illumination, photons were launched at the origin ([x, y, z] = 0) at time t = 0 and at364

normal incidence to the snow surface. Photons scattered randomly in the medium until they were absorbed,365

exited the medium, or satisfied an outlier termination criterion such as maximum number of scattering366

events. For more details, we refer the reader to Chapter 4 of Welch and van Gemert (1995).367

We simulated photon time-of-flight histograms at 640 nm and 905 nm measurement wavelengths for368

two snow samples with different properties. We binned photons by the transverse position s (bin width369

1 cm) and time t (bin width 16 ps) that photons exited the snow surface. In the first simulation, for 640370

nm measurements, photons detected at s = 8.0 ± 0.5 cm were used for curve fitting, whereas for 905 nm371

measurements photons detected at s = 5.0 ± 0.5 cm were used. In the second simulation, for 640 nm372

measurements, photons detected at s = 10.0 ± 0.5 cm were used for curve fitting, whereas for 905 nm373

measurements photons detected at s = 7.0 ± 0.5 cm were used. Once a histogram of signal photons was374

created, a random number of background counts was added to each timing bin by sampling from a Poisson375

distribution with rate parameter η that was chosen to be consistent with the uniform background count376

levels observed in experimental measurements.377

Our results are shown in Fig. 7. For the first simulation, the true snowpack properties were v∗ = 0.465,378

r∗ = 240 µm, and Cbc = 50 ppbw. Our method retrieved values of v∗ = 0.46±0.02, r∗ = 242±9 µm, and379

Cbc = 48±3 ppbw. For the second simulation, the true snowpack properties were v∗ = 0.162, r∗ = 85 µm,380

and Cbc = 0 ppbw. Our method retrieved values of v∗ = 0.164±0.004, r∗ = 86±2 µm, and Cbc = 0±3381

ppbw. These results suggest that our algorithm should produce accurate estimates under the idealized382

conditions prescribed here, and if our snow scattering model is correct.383
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MATERIALS384

Apparatus385

Lidar System386

We assembled a simple lidar system to measure the time-domain optical response of a variety of snow387

samples. We perform time-correlated single-photon counting, in which a histogram of photon times of388

flight is built up over time by repeatedly illuminating the snow surface with a pulsed laser. Photographs of389

our experimental setup are shown on the left in Fig 8. Our lidar system used a single-pixel SPAD detector390

(Microphoton Devices PDM series) with a timing jitter of ∼50 ps (FWHM), and two pulsed diode laser391

sources—a red laser with a wavelength of 640 nm (Picoquant LDH-P-C-640B), and a near-infrared laser392

with a wavelength of 905 nm (Picoquant LDH-P-C-905). Each laser was operated at a pulse repetition393

frequency of 2.5 MHz and had a quoted pulsewidth of <90 ps. The 640 nm laser was operated at a394

time-averaged power of 80 µW, and the 905 nm laser was operated at a time-averaged power of 55 µW.395

A Picoquant Hydraharp 400 was used to synchronize the arrival times of detected photons with the laser396

repetition rate. The overall instrument response function (IRF) of the system was measured to be 128 and397

160 ps (FWHM) for 640 and 905 nm measurements, respectively.398

Measurement Procedure399

Experiments were conducted in a cold room at −1 ◦C. The room’s lights were switched off and windows400

blacked out to reduce interference from ambient background light. A large folding mirror was used to direct401

the lidar beam and detector field of view (FOV) towards a cooler filled with snow that was placed on the402

floor. A schematic that illustrates our system’s optical design is shown in the center of Fig. 8. Because only403

a single laser diode could be operated at any one time, 640 nm measurements were collected first. During404

these measurements, a red bandpass filter (Edmund Optics TECHSPEC 650nm/50nm) was placed in front405

of the detector to suppress interference from ambient background light. Following these measurements406

the 640 nm laser head and bandpass filter were removed and replaced with the 905 nm laser head and a407

near-infrared bandpass filter (Thorlabs FL905-10). We then collected a second set of measurements.408

The beam from either laser head could be scanned by hand using a set of steering mirrors. A lens was409

placed in front of the detector to focus its FOV to a small spot (< 1 cm FWHM) on the snow surface. To410

find this focus spot, the laser beam would be steered to the point on the surface at which detector counts411

were maximized. Once the focus spot was found, a laser pointer (distinct from the pulsed diode lasers) was412

steered to mark the position of the focus spot. The pulsed beam could then be steered to a point on the413

snow surface that was displaced from the focus spot by a small distance s that was measured using a ruler.414

The focus-marker beam would then be switched off. When the 905 nm laser was in use, a phosphorescent415

laser viewing card was used to find the position of the laser spot on the snow surface.416

We note that even when the laser and focus spots were separated by several centimeters, interference417

from direct returns off of the snow surface remained significant due to phenomena such as lens flare.418

Although we could not suppress this interference entirely, we were able to mitigate it by placing a long lens419

tube in front of our detector that functioned as a baffle. When possible, we would further reduce interference420
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by placing a larger tube (5 cm diameter) constructed from blackout material (Thorlabs BKF12) on the421

snow surface, surrounding the spot observed by the detector. Together, these two baffles blocked most light422

paths that scattered off of the snow surface while transmitting paths that traveled beneath the surface.423

For each snow sample, and for each laser wavelength, we collected measurements at multiple source-424

detector separations s. Each measurement consisted of a histogram of photon arrival times with 16 ps425

timing bins that spanned a 250 ns timing window. Examples of histograms measured by our lidar system426

are shown on the right in Fig. 8. The first measurement would always be collected at s = 0 cm to measure427

the time-of-arrival of photons that scattered directly off of the snow surface. The peak of this direct428

return would serve as a reference time for all subsequent measurements. Direct surface returns were always429

measured with a 60 second integration time, with a neutral density filter placed in front of the detector430

to prevent saturation, and with a wooden ruler placed on the snow surface at the position of the laser431

spot to prevent bias due to subsurface scattering. Following this, histograms would be collected for one or432

more non-zero source-detector separations. We used an integration time of 10 minutes for each histogram433

collected with 640 nm light, and 30 minutes for each histogram collected with 905 nm light. A longer434

integration time was required at 905 nm because our SPAD detector was less sensitive at this wavelength,435

the output power of our laser was lower, and the snow itself was less reflective. Ice grains from each sample436

were inspected before and after each set of measurements to ensure that snow properties had not changed437

significantly due to metamorphism.438

Before proceeding, we want to stress that our lidar system was assembled strictly for the proof-of-439

principle demonstrations documented in this paper. It was not optimized for ease of use or light collection440

efficiency. Although the integration times reported here are quite long, we expect that a cleverly engineered441

system might collect equivalent data with integration times that are far shorter—perhaps by several orders442

of magnitude. Integration time could be reduced significantly, for instance, by using a multipixel Silicon443

Photomultiplier (SiPM) in place of the single-pixel SPAD used here, and by using lasers with higher power444

and higher repetition rates. The use of laser sources and SPADs designed for a consumer electronics445

environment (King and others, 2023), rather than the optical bench equipment used here, would also allow446

for a system that was portable, rugged, and affordable. Altogether, this suggests that the development of447

a field-deployable system is a feasible goal—one which we hope to pursue in future work.448

Samples449

We performed two sets of experiments. In the first, samples had relatively low LAP concentrations but450

grain size and density varied significantly. In the second, the samples had varying amounts of black carbon451

mixed into them, but density and grain size was relatively constant.452

All snow used in our experiment originated as natural snow harvested on Dartmouth College campus453

and was subsequently modified in various ways. When not being used for experiments, snow samples were454

stored in lidded coolers in a −10 ◦C cold room.455
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Clean Snow Samples456

We performed five sets of measurements on samples with varying density and grain size but relatively low457

LAP content. The snow used in the first set of measurements was harvested after a snowfall in March458

2022 and then kept in a −10 ◦C cold room for nine months. By the time measurements were taken, the459

snow had become more dense and the grains had metamorphosed into medium size rounded grains and460

rounding faceted particles (Fierz and others, 2009). The next three data collections were performed on461

a single snow sample that was modified between measurements. The sample was harvested 30 minutes462

after snow had ceased falling, immediately outside our laboratory at Dartmouth College. It was then463

stored overnight at −10 ◦C. Measurements were collected the next morning on the unmodified sample,464

which had a very low density and consisted of precipitation particles (Fierz and others, 2009), with many465

stellar dendrites. A second set of measurements was collected after the snow had been compacted with a466

shovel—thus increasing its density and potentially reducing grain size by fragmenting grains. The third467

set of measurements was collected after the snow was aged for three weeks at −10 ◦C and then for one468

day at 0 ◦C. This aging produced a clear change in grain shape, to small rounded grains and decomposing469

precipitation particles, and a small increase in grain size and density. For our final set of measurements we470

harvested snow that had been sitting outside for weeks, where it had experienced several melt and re-freeze471

events. This snow had very high density and coarse grains.472

At the time of data collection, all samples were held in coolers with approximate internal dimensions473

of 50 cm×25 cm×30 cm and that had matte white internal walls. Snow would fill the cooler to varying474

degrees, but was typically at least 20 cm deep, relative to the cooler bottom.475

Soot Addition Experiments476

For the second set of experiments, we filled five Styrofoam coolers (dimensions 17.5 cm×23.5 cm×24.0 cm)477

with freshly fallen snow. We then mixed small amounts of Sigma-Aldrich Fullerene Soot (PN: 572497) into478

the samples, such that the five respective samples had 0, 1, 2, 3, and 4 baseline units of soot. To add479

soot to the snow in a controlled fashion, we created a soot-water suspension with a known concentration480

of soot, and then applied controlled volumes of the suspension to each snow sample with a spray bottle.481

The soot was mixed evenly into the snow using an ice scraper.482

After performing a first set of measurements on the sooty samples we found that the added soot had a483

weaker effect on the snowpack absorption coefficients than had been expected. Following this finding, we484

approximately doubled the added soot concentration in all samples and repeated the measurements.485

Ground Truth Measurements486

Ground truth ice volume fraction was measured by extracting a small core with a depth of ∼5cm and487

diameter of ∼6cm from the snow surface using a cylindrical polypropylene jar. We measured the volume488

of snow in the core. The snow was then allowed to melt, and we measured the volume of the meltwater.489

Ice volume fraction was computed from the snow and meltwater volumes using conservation of mass.490

Ground truth grain size was measured by imaging a small, snow-filled test tube (1.4 cm internal491

diameter) with a SkyScan 1172 microCT scanner (40 kV, 250 µA source, 17 µm resolution). Bruker492
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NRecon software was used to reconstruct a 3D image of the sample. Following guidance from Hagenmuller493

and others (2016), the image was then blurred with a Gaussian kernel (radius 1 pixel), binarized with494

Otsu’s method, and morphologically “opened” (radius 1 pixel). The surface area to volume ratio (SA/V)495

of the imaged sample was then computed two times using Bruker’s CTAN software, following marching496

squares (2D analysis) and marching cubes (3D analysis) surface reconstructions. We computed the grain497

radius from each SA/V ratio independently, and then used the average of these two values as ground truth.498

Ground truth estimates of black carbon concentration were obtained using a single particle soot pho-499

tometer (SP2; Droplet Measurement Technologies), in a manner similar to that reported in Lazarcik and500

others (2017). Each snow sample was melted and ultrasonicated for at least 15 minutes prior to analy-501

sis. The liquid snow samples were aerosolized using an ultrasonic nebulizer (CETAC U5000AT), which502

removes moisture from the liquid stream before passing aerosols such as black carbon onto the SP2. The503

SP2 estimates black carbon particle mass via measurements of laser-induced incandescence. This system504

was calibrated using a series of fullerene soot standards. To avoid saturating the SP2, snow samples that505

were expected to have particularly high black carbon concentrations were diluted with MilliQ water by a506

factor of 6.507

RESULTS508

Clean Snow Experiments509

Individual Snow Sample510

To provide insight into our data collection and fitting procedures, we first present a detailed review of all511

measurements collected for a single snow sample. This sample, which is described in greater detail in the512

Materials section, consisted of natural snow that had been aged for nine months in a −10 ◦C cold room.513

The raw, time-of-flight histogram data collected for this sample, as well as our curve fits to those514

measurements, are shown in Fig. 9. Measurements were taken at four different source-detector separations515

for each wavelength: s = 4, 6, 8 and 10 cm at 640 nm, and s = 4, 5, 6 and 7 cm at 905 nm. As a rule516

of thumb, we would start each fit at a timing bin that corresponded to the peak of the diffusion signal.517

This was done to avoid fitting to the earliest arriving photons, which are poorly described by our diffusion518

model. Histograms were collected at multiple s values because it was not known a priori what range of519

s values would yield good diffusion curve fits. If s and µ′
s were both small, then photons in the signal520

peak would be poorly described by our diffusion model because they would exit the snowpack after too521

few scattering events. On the other hand, if s and µ′
s or µa were too large, the diffusion signal would be522

faint relative to background interference, and the fit would be poor.523

In Fig. 10, we show how the retrieved snow properties varied with respect to our choices of source-524

detector separation at each wavelength. In general, estimates of v∗, r∗, and Cbc did not vary substantially525

if good curve fits were obtained at both wavelengths, but diverged from the typical value when one or both526

of the curve fits were poor. As an example, it is evident in Fig. 10(c) that Cbc estimates are biased high527

at s640 = 4 cm, but are otherwise relatively insensitive to changes in s at either wavelength. A relatively528

small amount of variance was observed in snow property estimates even when good fits were obtained.529

The sources of this variance are unconfirmed, but could be explained by instrumental phenomena such as530
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Fig. 9. Raw measurements collected for a single snow sample. Time-of-flight histograms were measured at two
wavelengths (640 nm, 905 nm) and for four source-detector separations per wavelength. A diffusion model was fit to
each histogram. The pair of curves with the best goodness of fit was used to compute snowpack properties.

Fig. 10. Dependence of v∗, r∗, and Cbc estimates on choice of source-detector separation s for each measurement
wavelength. Estimates that correspond to the pair of curve fits with the lowest reduced deviance (McCullagh, 2019)
are outlined in red.

photon pile-up distortion (Coates, 1968); the varied influence of unmodelled phenomena such as surface531

roughness, finite cooler size, or interference from direct surface returns; the metamorphism of snow between532

data collections; or true spatial variation in the snow’s properties.533

To arrive at a single estimate for v∗, r∗, and Cbc, we chose the curve fit at each wavelength with the534

lowest reduced deviance (McCullagh, 2019). Deviance is a goodness of fit metric that is appropriate for data535

that follows Poisson statistics, and that is asymptotically equivalent to χ2 goodness of fit when the number536

of counts in all histogram bins is high. For the data collection described here, the best fits corresponded537

to s = 10 cm at 640 nm and s = 7 cm at 905 nm. From the parameters of these two fits we estimated538

that v∗ = 0.361±0.004, r∗ = 379±4 µm, and Cbc = 91±1 ppbw. As described previously, the reported539

uncertainties correspond to statistical uncertainties in the curve fit parameters, propagated through Eqs.540

17, 18, and 19. They do not account for potential inaccuracies in the diffusion or scattering models. The541

ground truth measurements of v∗, r∗, and Cbc were 0.465, 242.5 µm, and 30.7 ppbw, respectively.542
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Fig. 11. Summary of the estimated and ground truth ice volume fractions v∗ and grain sizes r∗ of five clean snow
samples. Error bars indicate one standard deviation. Estimates and ground truth values are matched by color.

Full Results543

We now present a summary of all results obtained for the clean snow samples. The properties of the snow544

samples used in these tests varied widely, from light, fine-grained fresh powder to dense, coarse-grained545

snow that had experienced several melt and re-freeze events. In Fig. 11, we show a scatter plot of the546

densities and grain sizes estimated using our method, as well as ground truth values.547

Our estimates of v∗, r∗, and Cbc are plotted with respect to ground truth in Fig. 12. In Fig. 12(a),548

we see a clear positive and nearly linear relationship between the ice volume fraction estimated using our549

technique, and ground truth, although estimates appear to be biased towards lower densities. The trends550

for r∗ and Cbc are less clear, although our method appears to be capable of distinguishing between small551

and large grain sizes, and low and moderate impurity concentrations. To the extent that trends can be552

observed, there appears to be an approximately 1:1 relationship between r∗ estimates and ground truth,553

whereas Cbc appears to be over-estimated by a factor of ∼2.5. All statistical uncertainties in v∗ and r∗554
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Fig. 12. Ground truth versus estimated values of ice volume fraction v∗, grain size r∗, and black carbon mass mixing
ratio Cbc for five clean snow samples. Blue marks indicate estimates obtained using two measurement wavelengths
(640 nm, 905 nm). Error bars indicate one standard deviation. Red marks indicate estimates of v∗ and r∗ obtained
from 905 nm measurements only. Uncertainties were not computed for 905-only estimates.

estimates are 1-2% of the estimated value. All statistical uncertainties in Cbc estimates are 1-2 ppbw.555

Notably, these uncertainties are comparable to the statistical uncertainties reported by Allgaier and others556

(2022) in their estimates of black carbon concentrations in glacier ice.557

In addition to dual-wavelength estimates of v∗, r∗, and Cbc, we also show estimates of v∗ and r∗ computed558

using only 905 nm measurements. The single-wavelength results match the dual-wavelength results very559

closely. Ice volume fraction estimates are slightly higher, which is consistent with excess absorption due to560

unmodeled LAPs. Single-wavelength grain size estimates are alternately higher or lower than corresponding561

dual-wavelength estimates.562

Considering the very small statistical uncertainties in our results, we expect that the biases seen here563

are most likely attributable to model mismatch. In particular, the excess black carbon content predicted564

by our method is plausibly explained by the presence of other kinds of light absorbing impurities such as565

dust. The samples used in this test were collected outdoors and were handled with shovels, ice scrapers,566

and various other equipment that may have been coated with dust or dirt. Further investigation is needed567

to understand the bias in estimates of v∗, which appear to be underestimated by a factor of approximately568

3/4. One possible explanation is that the measured signal was influenced by unmodeled reflections from569

the white side-walls of the cooler. A deeper analysis would be required to confirm this. However, one would570

expect such reflections to reduce the observed decay rate by scattering photons back into the probed region571

instead of allowing them to escape. There is a notable outlier among the r∗ estimates that is approximately572

50% higher than its ground truth measurement (estimate: 379.0±4.1 µm, truth: 242.5 µm). The origins573

of this outlier are unclear. By inspection of Eq. 7, we see that the estimated r∗ value would be reduced by574

50% if the modeled scattering asymmetry factor was increased from 0.825 to 0.883. It is thus possible that575

the outlier snow sample—which consisted of medium size rounded grains and rounding faceted particles576

that had been aged for nine months in a −10 ◦C cold room—had a higher scattering asymmetry factor577

than the others. However it is not clear why this would be so.578
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Soot Addition Experiments579

Here we present the results of the soot addition experiments described in the Materials section, where580

the snow samples contained varying concentrations of black carbon. For these tests, the source-detector581

separation was held fixed at s = 8 cm for 640 nm measurements. For 905 nm measurements, a value of s582

= 5 cm was typically used, although this was occasionally reduced to 4 cm if the measured signal would583

otherwise be too faint to yield a good curve fit.584

The primary goal of these experiments was to assess the accuracy and sensitivity of the estimates of585

black carbon mass mixing ratio produced by our method. To this end, in Fig. 13 we show a plot of the Cbc586

values estimated with our method versus ground truth estimates obtained using an SP2. Blue data points587

correspond to the first set of measurements, for which the soot concentrations were relatively low, and red588

data points correspond to a second set of measurements that was collected after the added black carbon589

concentration in each snow sample had been approximately doubled.590

Upon inspection we see a clear correlation between the estimated and ground truth Cbc values. The591

correlation is approximately linear and nearly one-to-one. Two outlier data points (with ground truth Cbc592

of 58, 59 ppbw) lie off of the one-to-one line. We expect that the outliers are the result of an error in593

the ground truth estimates. It is possible that our mixing process did not uniformly distribute the black594

carbon content throughout the snow and that the region sampled for SP2 analysis was unusually clean.595

The range of estimated Cbc values indicates that our technique is sensitive to concentrations above596

100 ppbw. Notably, this is significantly more sensitive than estimates derived from remote, multi-spectral597

albedo measurements, which are unreliable for black carbon concentrations below 1000 ppbw (Zege and598

others, 2011; Warren, 2013). Methods that infer black carbon concentration from in situ, hyperspectral599

albedo are sensitive to black carbon concentrations above 50 ppbw (Dumont and others, 2017), which is600

comparable to the sensitivity achieved here. The sensitivity of our method could be improved, perhaps601

significantly, by using a blue or green laser source in place of the red laser used here. As shown in Figure 4,602

the influence of black carbon on the absorption coefficient of snow is much stronger at these wavelengths.603

For good measure, we also show the estimates of ice volume fraction, grain radius, and black carbon604

concentration obtained for all samples. Estimates are plotted in Fig. 14 as a function of total units of605

soot-water solution that were applied to each sample using a spray bottle. Although ground truth v∗ and606

r∗ were not collected, results in Fig. 14(a) and (b) indicate that the density and grain size of the snow607

samples was relatively consistent, but did have some variance. This variance may have been caused by608

differences in how each sample was mixed, or from interaction with the liquid water in the soot-water609

suspension. Regardless, we see in Fig. 14(c) that estimated Cbc increases approximately linearly and nearly610

monotonically as a function of the amount of added soot, with no clear dependence on density or grain611

size.612

DISCUSSION613

In this work we have introduced a new method for measuring the density, grain size, and black carbon con-614

tent of a dry snowpack using non-invasive, time-domain diffuse optical measurements. We have presented615

a model for the time-domain optical response of a snowpack that was adapted from the biomedical optics616
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Fig. 13. Retrieved values of black carbon mass mixing ratio Cbc plotted with respect to ground truth estimates
obtained by a single-particle soot photometer (SP2). Increasing quantities of Sigma-Aldrich fullerene soot were added
to five snow samples. Results from the first set of measurements are shown in blue. Soot concentrations were then
approximately doubled for all samples and a second set of measurements was taken. Results from the second set of
measurements are shown in red. Error bars indicate one standard deviation. SP2 errors are typically too small to
be visible.
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Fig. 14. Estimates of v∗, r∗, and Cbc obtained during soot addition experiments. Estimates are plotted as a
function of the number of soot units mixed into the snow. One soot unit corresponds to a fixed volume of soot-water
suspension that is applied to the snow sample with a spray bottle and then mixed into the snow volume. The amount
of soot per unit in the second run (red) was approximately double the soot per unit in the first run (blue). Error
bars indicate one standard deviation.

literature (Kienle and Patterson, 1997; Haskell and others, 1994). Our model was obtained by solving the617

photon diffusion equation—an approximation to the radiative transfer equation that accurately describes618

the propagation of light in highly scattering media (Welch and van Gemert, 1995). We used a geometric619

scattering model to relate the parameters of our photon diffusion model to dry snowpack density, grain620

size, and black carbon concentration. Our scattering model was derived from a well-known snow-optics621

model (Kokhanovsky and Zege, 2004), but extended to account for the effective speed of light within snow,622

as well as the mixing state of black carbon. We then developed an algorithm to retrieve the snowpack623

properties from time-domain optical measurements collected at two wavelengths.624

We were able to validate our method in a series of proof-of-principle experiments in which we measured625

the properties of real snow samples using a photon-counting lidar system. The results of these experiments626

are encouraging. We see a clear, nearly linear correlation between the snowpack densities estimated by627

our method, and ground truth. When the LAPs in the snow were known to be black carbon particles,628

we observed a nearly one-to-one correlation between the black carbon mass mixing ratios estimated using629

our method, and those measured using a single-particle soot photometer (Schwarz and others, 2006). A630

nearly one-to-one correlation was also found between the grain sizes measured by our method and those631

determined from micro-CT images—although this correlation was not as strong. Our goal in this work was632

to obtain proof-of-principle results. More experiments are required to comprehensively assess our method’s633

accuracy, biases, and failure modes.634

Although our results are encouraging, we believe that the primary contribution of our work is not nec-635

essarily the exact method that we have proposed, but rather that we have been able to clearly demonstrate636

that time-domain diffuse optics is an appropriate sensing modality for measuring snowpack properties.637

Previous works have used ray-tracing simulations to explore the feasibility of inferring snow properties638

from time-domain diffuse optical signals (Libois and others, 2019), and to predict the relationship between639

snow properties and lidar altimetry biases (Smith and others, 2018). However, as far as we are aware, our640

work is the first to provide clear experimental evidence that the optical response of a snowpack that has641

been illuminated by a laser pulse can be accurately described using a photon diffusion model; and also642

https://doi.org/10.1017/jog.2024.81 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.81


Henley and others: Time-domain Diffuse Optics for Snow 27

that this response is measurably influenced by changes to important snowpack properties like grain size,643

density, and impurity content.644

Our method could be improved in several ways. More sophisticated models that incorporate features645

such as liquid water content in the snow, finite snow depth, or surface roughness might be developed to646

enable retrieval of snow properties in a broader set of circumstances. Our measurement procedure could also647

be improved. In our experiments, processing a single snow sample required between 40 minutes to several648

hours of data collection time. This could be dramatically reduced by improving our instrument design to649

incorporate multi-pixel SPAD detectors, higher power lasers, or by simply placing the laser and detector650

closer to the snow surface. The integration times used in our experiments were also conservative—further651

analysis could determine the minimum number of photons required to accurately retrieve snow properties.652

Finally, using our method in the field would require the development of a rugged and portable instrument.653

The dramatic decrease in the cost and size of pulsed lasers and photon counting detectors in recent years654

makes this possible. All components required for such a device can be found in the current model of the655

iPhone Pro (King and others, 2023).656

Although non-invasive, optical methods for measuring snow grain size (Nolin and Dozier, 2000; Gallet657

and others, 2009) and LAP concentrations (Dumont and others, 2017; Allgaier and Smith, 2022) have been658

demonstrated previously, our work provides what is, to our knowledge, the first experimental demonstration659

of snow density estimation from non-invasive optical measurements. Previous works used ray-tracing660

simulations to demonstrate non-invasive porosity (= 1−v∗) measurements in arbitrary porous media (Libois661

and others, 2019), or estimated snow density using invasive optical transmission measurements (Gergely662

and others, 2010). Our method could potentially provide field measurements of snow-water-equivalent663

(SWE)—the product of snow depth and density—or surface density, which might in turn prove useful in664

hydrological or ecological studies, or for validating remote sensing techniques (Kinar and Pomeroy, 2015).665

Diffuse optical methods may also enable more sensitive field measurements of LAPs, particularly if shorter666

wavelength (e.g. blue or green) illumination is used. Field measurement of black carbon concentration from667

snow’s hyperspectral albedo has been demonstrated (Dumont and others, 2017). Our method infers black668

carbon concentration from a decay rate parameter that is proportional to snow’s absorption coefficient,669

which is far more sensitive to impurity content than albedo. The trace concentrations of impurities found670

in remote snowpacks reduce snow’s albedo by at most a few percent (Warren, 2013) whereas, in theory, the671

absorption coefficient of snow at green wavelengths should be doubled by just a few ppbw of black carbon672

(see Fig. 4). We note that the spatially-resolved diffuse optical technique demonstrated by Allgaier and673

Smith (2022) also infers LAP concentrations via the absorption coefficient, and so should be able to achieve674

comparable sensitivities.675

Although the instrument used in this study was assembled from the same components that make up676

a typical photon counting lidar system, our measurements were effectively in situ because our lidar was677

always placed within a meter of the snow’s surface. In the future, we hope to develop true remote lidar678

sensing techniques that are grounded in time-domain diffuse optics models. Such methods would enable679

important capabilities such as the remote mapping of SWE or impurity concentrations. However, the leap680

from in situ to remote measurements poses new challenges that include dramatically lower photon counts,681

wider beam footprints, and confocal measurement geometries. Further analysis is required to determine682
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which snow properties can be feasibly retrieved under these conditions. An alternative direction for future683

work is the development of more advanced algorithms for processing in situ measurements that leverage684

decades of advances in diffuse optical spectroscopy research (Konugolu Venkata Sekar and others, 2019).685

In particular, the adaption of diffuse optical tomography methods (Okawa and Hoshi, 2023) to snow would686

enable non-invasive retrieval of snow stratigraphy, or even full 3D mapping of snowpack properties within687

a probed region. Observations of snow stratigraphy are often made to assess the structural stability of the688

snowpack to predict avalanche risk, as well as the history of snow deposition and metamorphism (Nienow689

and Campbell, 2011).690

CONCLUSIONS691

We have developed a new technique to estimate the density, grain size, and black carbon concentration of692

a dry snowpack using time-resolved measurements of laser light that has scattered multiple times beneath693

the snow surface. Our method was inspired by diffuse optical spectroscopy techniques that were originally694

developed for biomedical applications. We validated our method in a series of proof-of-principle experi-695

ments. Our results revealed strong, nearly linear correlations between our estimates of snow density and696

black carbon concentration, and independent ground truth measurements. Additionally, our method suc-697

cessfully distinguished between small and large grain sizes. Our results indicate that non-invasive optical698

measurement of snow density, grain size, and black carbon concentration is possible. However, further699

refinement of our instrument design is needed for practical field use. More broadly, our work provides the700

first clear experimental evidence that time-dependent scattering of laser light by snow is well described by701

a diffuse optical model. This could pave the way for future algorithms that retrieve snow properties from702

remote lidar measurements as well as more advanced in situ techniques, such as methods that infer snow703

stratigraphy.704
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