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In confined systems, the entrapment of a gas volume with an equivalent spherical diameter
greater than the dimension of the channel can form extended bubbles that obstruct fluid
circuits and compromise performance. Notably, in sealed vertical tubes, buoyant long
bubbles cannot rise if the inner tube radius is below a critical value near the capillary
length. This critical threshold for steady ascent is determined by geometric constraints
related to the matching of the upper cap shape with the lubricating film surrounding the
elongated part of the bubble. Developing strategies to overcome this threshold and release
stuck bubbles is essential for applications involving narrow liquid channels. Effective
strategies involve modifying the matching conditions with an external force field to
facilitate bubble ascent. However, it is unclear how changes in acceleration conditions
affect the motion onset of buoyancy-driven long bubbles. This study investigates the
mobility of elongated bubbles in sealed tubes with an inner radius near the critical value
inhibiting bubble motion in a vertical setting. Two strategies are explored to tune bubble
motion, leveraging variations in axial and transversal accelerations: tube rotation around
its axis and tube inclination relative to gravity. By revising the geometrical constraints
of the simple vertical setting, the study predicts new thresholds based on rotational
speed and tilt angle, respectively, providing forecasts for the bubble rising velocity under
modified apparent gravity. Experimental measurements of motion threshold and rising
velocity compare well with theoretical developments, thus suggesting practical approaches
to control and tune bubble motion in confined environments.
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1. Introduction

Air entrapment into liquid-filled channels is encountered in a broad range of applications,
from simple hydraulic systems for intravenous filling (Groell, Schaffler & Rienmueller
1997) to CO2 sequestration in depleted geological oil reservoirs (Corapcioglu, Cihan
& Drazenovic 2004; Oldenburg & Lewicki 2006; Wang & Clarens 2012), embolism in
circulatory biological systems (Brodribb, Bienaimé & Marmottant 2016; Li et al. 2021)
and multiphase microfluidics flows (Baroud, Galllaire & Dangla 2010). In miniaturized
fluid systems, air bubbles can be exploited for transport of particles or for mixing processes
(Stone, Stroock & Ajdari 2004; Baroud, de Saint Vincent & Delville 2007; Baroud et al.
2010). Conversely, long gas bubbles may represent a challenging issue, since they can
occlude the entire cross-section of a channel and reduce the performance of a fluid circuit
(Jensen, Goranović & Bruus 2004; van Steijn, Kreutzer & Kleijn 2008; Brodribb et al.
2016).

In application fields involving narrow liquid channels, long bubbles may be challenging
to eliminate, while disrupting fluid flow, causing pressure fluctuations and affecting
mixing processes. In perfusion systems for cell cultures, these bubbles can have several
detrimental effects on cell health and experimental outcomes, such as localized nutrient
deprivation, altered pH levels and accumulation of waste products, all of which can
negatively impact cell viability and function (Sung & Schuler 2009). As an additional
example, in fuel cells, the oxidation of methanol leads to the formation of CO2 bubbles
that reduce a cell’s efficiency (Litterst et al. 2006). Thus, a considerable effort has been
dedicated to the removal of bubbles in these circuits (see e.g. Sung & Schuler 2009; Cheng
& Lu 2014; Guo, Liu & Ran 2022).

Conversely, transport of long bubbles in microfluidic channels can be cleverly exploited,
for instance for particle sieving. Since the speed of a bubble is intrinsically linked to
the thickness of its surrounding lubricating film (Fairbrother & Stubbs 1935), tuning
the velocity of the bubble may be used to separate particles based on their size (Yu,
Khodaparast & Stone 2018): monitoring the speed of the bubble may prevent particles
larger than the film thickness from reaching the fluid region past the bubble. The bubble
thus acts as an active filter that has the high advantage of preventing clogging. Thus,
enabling and controlling the motion of elongated bubbles in capillaries can enhance the
efficiency of these microfluidic systems.

Many hydraulic and microfluidic systems rely on vertical settings (see e.g. Kaigala et al.
2011), thereby calling for a better understanding of how bubble transport is influenced
by gravity forces. In a vertical configuration, a gas volume in a liquid-filled channel
is expected to rise owing to buoyancy. The more specific case of buoyant ascent in a
vertical tube of a gas volume with an equivalent spherical diameter larger than the tube
inner radius has been investigated by Dumitrescu (1943) and Davies & Taylor (1950),
which provided a prediction for the rising velocity of long bubbles in tubes, subsequently
termed Taylor bubbles. However, it was observed over a century ago (Gibson 1913) that
long bubbles within a sealed vertical tube with a sufficiently narrow diameter exhibit an
interesting behaviour: they cease to rise and appear to be stuck. This observation was
puzzling considering the existence of a thin lubricating film surrounding long bubbles
in tubes, allowing for the drainage of the fluid and thus for the rising of the bubble.
Bretherton (1961) showed that if the tube inner radius was smaller than a critical value
Rc close to the capillary length �c of the liquid (more precisely, Rc ≈ 0.918�c), no valid
bubble shape was compatible with a steady rising motion. This threshold stems from the
asymptotic matching between the upper cap profile, which results from the equilibrium
between surface tension and gravity, and the thin film surrounding the elongated part
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Figure 1. (a) Schematics of a long bubble immersed in a viscous liquid inside a sealed capillary. The top
part of the bubble can be divided into an upper cap and an elongated part surrounded by a thin film. For a
buoyant bubble to rise, mass conservation requires the fluid displaced by the tip of the bubble to drain through
the thin film. (b) Sketch of the upper cap profile of a long air bubble within a sealed tube of radius R, in the
vertical setting studied by Bretherton (1961). The profile exhibits an inflection point denoted by I. For R > Rc,
the matching with the thin-film region at the inflection point is possible. (c,d) Sketch of the configurations
investigated in this study. In the first case (c), the tube is held vertically and rotates around its symmetry axis
at angular frequency ω. In the second case (d), the tube is tilted with respect to gravity and makes an angle α

with the horizontal plane.

of the bubble, where viscous, surface tension and gravity forces are balanced. These
two regions are depicted in figure 1(a). The condition for the onset of motion can be
summarized as a geometrical constraint which imposes, for the existence of a steadily
ascending bubble, that the upper cap profile exhibits an inflection point with negative slope
(for an upward-oriented vertical axis); see figure 1(b). At the critical condition R = Rc,
both the slope and curvature vanish at the solid wall. In addition, for R slightly larger than
Rc, Bretherton (1961) predicted the bubble rising velocity, by exploiting mass conservation
through the thin film and the variation of the slope at the inflection point with the tube’s
radius.

Below the threshold R < Rc, Lamstaes & Eggers (2017) studied the unsteady bubble
motion and predicted the occurrence of a self-similar pinch-off singularity of the thin
lubricating film around the bubble, thus hindering any further flow and eventually
stopping the progression of the bubble, found to travel a finite distance over infinite time.
That prediction is supported by recent interference microscopy experiments that have
demonstrated that the bubble is apparently stuck by an infinitely slow flow taking place in
the surrounding thin liquid film whose nanometric thickness results from an equilibrium
between capillary stress and disjoining pressure (Dhaouadi & Kolinski 2019).

For bubble ascent in sealed tubes, it is necessary for the fluid displaced by the tip of
the bubble to drain through the thin film. Thus, enabling the motion of the bubble in
sealed tubes with inner radii smaller than the critical value Rc requires the development of
some strategies that would act on the thickness of the surrounding lubricating film. Zhou &
Prosperetti (2021) showed numerically that ‘encaging’ the bubble by means of thin vertical
rods regularly arranged on a circle coaxial with the tube could effectively expand the gap
between the air–liquid interface and the inner solid wall, thus facilitating the downward
flow of the liquid and increasing the rising velocity of the bubble. Bi & Zhao (2001) and
Bico & Quéré (2002) demonstrated that using angular tubes could effectively promote the
rising of the bubble even under strong confinement, owing to the presence of corners that
allow for a more efficient drainage of the liquid around the bubble (Funada et al. 2005).
In the same spirit, another strategy consists of using textured inner walls: because of the
imbibition of the roughness, the effective thickness of the lubricating film is actually larger
than on a smooth surface (Bico, Tordeux & Quéré 2001).
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However, in some applications where the geometry of the tube cannot be modified
adequately, the film thickness could be varied by adjusting the pressure distribution in
the surrounding liquid by means of an external force field, which could be easily tuned so
as to precisely control the ascent velocity of the bubble. In this context, it has been shown
that imposing a liquid flow in the tube effectively thickens the lubricating film around
the bubble (Yu et al. 2021). In particular, Magnini et al. (2019) demonstrated that when
the external flow is oriented in the same (upward) direction as buoyancy, it can enable
the rise of bubbles in tubes with radius R < Rc. Kubie (2000) documented a significant
increase in the ascent velocity of a Taylor bubble enclosed in a vertical tube subjected to
horizontal oscillations. In the case of a vertically oscillated tube, Brannock & Kubie (1996)
reported instead experimental evidences of the slowing down of the bubble, while Madani,
Caballina & Souhar (2009, 2012) observed a more nuanced behaviour: as the acceleration
of the oscillations is gradually increased, the rising of the bubble initially slows down, but
then increases at larger accelerations. More recently, Zhou & Prosperetti (2024) studied
the rising behaviour of a Taylor bubble exhibiting volume oscillations imposed either by
forcing the liquid column above the bubble to oscillate or by imposing a pulsating pressure
field at the top liquid surface. Their numerical simulations evidence that the gas volume
oscillations result in the thinning of the lubricating film around the bubble and thus in the
decrease of the drainage flow and rising velocity.

Here, we focus on the transport of long bubbles in sealed tubes filled with a viscous
liquid, with an inner radius close to the critical value below which the bubble is stopped
in a vertical configuration. We investigate two different strategies to enable bubble motion
and tune its velocity, namely rotating the tube around its symmetry axis and inclining it
with respect to gravity (figure 1c,d). In both cases, we leverage theoretical developments
to predict the new threshold for the onset of motion that depends on the rotational speed
and on the tilt angle, respectively. We also provide a prediction for the rising velocity of
the bubble as a function of the liquid properties, the tube geometry and the (modified)
gravity field. Our theoretical findings are then compared with the outcomes of dedicated
experimental campaigns.

The paper is organized in two parts. In the first part (§ 2), we report our investigation
on bubble motion in rotating tubes. Section 2.1 develops the theoretical prediction for the
cap profile of the bubble and the matching conditions between this cap and the flat-film
region, from which we derive the theoretical threshold for the onset of motion and the
prediction of the bubble velocity, in terms of the rotational speed. Section 2.2 presents
the experimental set-up and a comparison of the results against the theoretical findings.
The second part (§ 3) presents the same structure as the previous part, but investigates the
effect of tube inclination, with theoretical predictions and comparison with experimental
measurements of bubble transport in tilted tubes.

2. Effect of centrifugation

Fluid centrifugation pertains to extensive applications, ranging from the segregation
of complex or biological fluids (Svedberg & Fåhraeus 1926) to numerous industrial
processes, such as wastewater treatment (Turano et al. 2002) or crude oil refining (Gary
et al. 2007). In interfacial flows, spinning rods (Than et al. 1988) and spin-coating (Emslie,
Bonner & Peck 1958) are used to deposit uniform thin films onto diverse substrates such as
optical lenses for anti-reflective properties (Krogman, Druffel & Sunkara 2005), or silicon
wafers for organic semiconductor fabrication (Yuan et al. 2014). This method precisely
controls the film thickness through the modulation of the angular velocity, essential
for achieving high-quality coatings. Additionally, centrifugation can be employed in the
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generation of surface roughness in curing polymer melts (Marthelot, Strong & Brun 2018;
Jambon-Puillet, Royer Piéchaud & Brun 2021), where centrifugal instabilities (Rietz et al.
2017) are harnessed to facilitate the formation of periodic patterns.

In sealed tubes, the effect of centrifugation on the shape of capillary interfaces has
been exploited in spinning drop experiments (Vonnegut 1942; Rosenthal 1962; Princen,
Zia & Mason 1967; Torza 1975). These experiments can measure very low interfacial
tensions (Drelich, Fang & White 2002) by rotating a horizontal tube containing a drop
of lower-density liquid within a higher-density fluid. For high enough rotation rate, the
(transverse) gravity acceleration can be neglected, and the equilibrium shape of the drop
results from the balance of the centrifugal force, which tends to elongate the drop along its
axis (and thus to thicken the surrounding liquid film), with surface tension, which promotes
a spherical shape.

In this context, Manning, Collicott & Finn (2011) studied the case of a tube of inner
radius R partially filled with a liquid of density ρ and surface tension γ , rotated around
its symmetry axis at angular velocity ω under weightlessness. They derived a criterion for
the occlusion of the tube by a static meniscus spanning the cross-section of the channel,
with a contact angle φ, and computed a critical angular velocity ω0:

ρω2
0R3

γ
= 32 sin3

(
π + 2φ

6

)
, (2.1)

such that the tube cannot occlude if ω > ω0. In the case of an occluding meniscus forming
a bubble, the gas–liquid interface meets the solid wall tangentially, i.e. φ = 0. Thus, (2.1)
indicates that under weightlessness, the bubble cannot occlude the channel if ρω2R3/γ >

4.
To the best of our knowledge though, the combined effect of axial gravity and transverse

centrifugal force on the rising motion of long bubbles in a vertical setting has not been
studied yet. Building on the demonstrated ability of centrifugation to elongate light
drops or bubbles in tubes, and thereby to thicken their lubricating film, we now study
how centrifugation can facilitate the release of long bubbles that are trapped in sealed
capillaries due to surface tension.

We consider a long bubble of length L immersed in a viscous fluid of dynamic viscosity
μ, density ρ and surface tension γ , both contained in a vertically oriented circular tube of
radius R � L, sealed at both ends. The bubble ascends along the vertical axis at a constant
velocity Ub under the influence of gravity. The tube’s radius is assumed to be of the order
of the capillary length �c = √

γ /ρg, where g is the acceleration due to gravity, so that the
Reynolds number Re = ρUbR/μ is sufficiently small to neglect any inertial effects.

Bretherton’s solution describing the bubble’s ascent at a constant velocity is valid only
if the tube radius exceeds a critical value Rc ≈ 0.918�c. As the tube radius R approaches
this critical value, the bubble’s ascending speed diminishes, eventually reaching zero.
This phenomenon can be explained through a simple mass conservation consideration:
the sealed tube requires the rising bubble to displace the liquid above, creating drainage
through its peripheral lubricating film. However, for R < Rc = 0.918�c, surface tension
becomes dominant, causing the bubble to expand and occupy the entire tube cross-section,
preventing liquid drainage.

We now examine the scenario where the vertical tube undergoes constant rotation
around its symmetry axis with an angular velocity ω. We can readily anticipate that the
centrifugal force will push liquid towards the solid tube wall, thickening the fluid film
around the bubble and facilitating its ascent. Therefore, a steady rising motion of the
bubble may be achievable even in tubes with R < Rc, provided the angular velocity ω
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is sufficiently high. In the subsequent section, we revisit Bretherton’s theory (Bretherton
1961) to predict the new threshold Rc(ω) and the steady rising velocity Ub as a function of
the rotational speed.

2.1. Theoretical prediction for the threshold and rising velocity
Since our focus lies in describing motion near the threshold characterized by a vanishing
velocity Ub, we preliminarily assume a small capillary number Ca = μUb/γ � 1.
Viscous stresses at the gas–liquid interface thus play a significant role only in regions
where the fluid is strongly confined, i.e. where the interface is very close to the solid wall.
Consequently, the upper part of the bubble’s profile can be divided into two regions; see
figure 1(a). The outer region corresponds to the top of the bubble (cap) where viscous
effects are negligible: the equilibrium is controlled by an interplay among surface tension,
gravity and centrifugal forces. Conversely, a thin liquid film resulting from a balance
among viscous forces, surface tension, gravity and centrifugal forces defines an inner
region of small axial curvature. We now derive the bubble’s profiles in these two regions.

2.1.1. The static cap
In the outer region, the fluid around the cap of the bubble can be considered at rest
(Bretherton 1961; Lamstaes & Eggers 2017) so that in the cylindrical reference frame
co-rotating with the tube and translating with the bubble, the pressure P in the surrounding
fluid satisfies

0 = −∇P + ρω2rer − ρgez. (2.2)

By integrating the radial component of (2.2), we obtain

P(r, z) = 1
2
ρω2(r2 − r1(z)2) + γ κ + Pair,

κ = − 1
r1(z)(1 + r′

1(z)
2)1/2 + r′′

1(z)
(1 + r′

1(z)
2)3/2 ,

⎫⎪⎬
⎪⎭ (2.3)

where r1(z) and κ denote the location of the air–liquid interface measured from the central
axis (oriented upwards) and its curvature, respectively.

From the axial component of the momentum conservation equation (2.2), it follows that

γ κ − 1
2ρω2r1(z)2 + ρgz = cst. (2.4)

By denoting as s the arc-length of the interface profile measured from the tip of the
bubble and θ its tangent angle with respect to the horizontal (see figure 2), the static
interface profile is given by

− γ

[
dθ

ds
+ sin θ

r1(s)

]
− 1

2
ρω2r1(s)2 + ρgz(s) = cst, (2.5)

where the coordinates (r1(s), z(s)) locate the position of the gas–liquid interface at s in the
(r, z) plane. Using that dr1/ds = cos(θ) and dz/ds = − sin(θ), differentiating with respect
to the curvilinear coordinate s gives

γ

[
d2θ

ds2 + cos θ

r1(s)
dθ

ds
− cos θ sin θ

r1(s)2

]
= −ρω2r1(s) cos θ − ρg sin θ. (2.6)
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Figure 2. Sketch of a bubble in a vertical tube that rotates around its central axis with angular velocity ω. Here
s is the arc-length of the interface measured from the tip of the bubble at r = 0. In the static cap region, the
air–liquid interface is located at a distance r1(s) from the central axis, and the angle its tangent makes with the
horizontal axis is denoted as θ(s). In the inner region, where a two-dimensional Cartesian system (x, y) is used,
the interface is located instead by its distance from the solid wall y1(x).

Finally, with the dimensionless variables r̄1 = r1/R and s̄ = s/R, (2.6) becomes

d2θ

ds̄2 + cos(θ)

r̄1

dθ

ds̄
− cos(θ) sin(θ)

r̄2
1

= −Bo sin(θ) − r̄1 Ce cos(θ), (2.7)

where the Bond number Bo = ρgR2/γ = (R/�c)
2 is introduced as the square of the ratio

between the tube radius and the capillary length. The centrifugal number Ce = ρω2R3/γ
can be seen as a rotational Bond number where the centrifugal acceleration Rω2 plays the
role of the gravitational acceleration.

For a given set of parameters (Bo, Ce), two boundary conditions are required to integrate
(2.7) from the position (r1(s = 0) = 0, z(s = 0) = 0). A first condition is provided by the
symmetry of the problem, which imposes θ(0) = 0 at the top of the static cap. The second
boundary condition will be determined upon matching of this static profile with that of the
inner region.

2.1.2. The thin-film region
In the inner region where the bubble is surrounded by a thin lubricating film, the film’s
thickness is extremely small compared with the tube’s radius. Following Bretherton
(1961), we thus neglect the azimuthal curvature of the air–liquid interface and consider
the thin-film region as planar instead of annular.

Under these assumptions, we introduce the two-dimensional, stationary, Cartesian
coordinate system (x, y), where x = z − Ubt opposes gravity, and y = R − r represents the
distance to the solid wall. In the framework of the lubrication approximation, the viscous
flow in the thin film is driven by a pressure gradient resulting from a combination of
gravity, capillarity and centrifugal force. The axial velocity accordingly is written as (see
Appendix A.1 for a detailed derivation)

u(x, y) = γ

2μ

(
−y′′′

1 + ρω2R
γ

y′
1 + ρg

γ

)
( y2 − 2y1y) − Ub, (2.8)
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where y1(x) denotes the distance of the air–liquid interface to the solid wall of the tube and
a prime denotes the derivative with respect to x. In (2.8), the first term of the right-hand
side stems from surface tension effects, the second from the centrifugal force and the third
from gravity. Upon integration within the thin film, the volume flux reads

Q = −2πRUby1 − 2πR
γ

3μ

(
−y′′′

1 + ρω2R
γ

y′
1 + ρg

γ

)
y3

1. (2.9)

This flux must equate the volume of fluid displaced per unit time by the top of the
bubble, which is equal to πR2Ub. Since y1/R � 1, the −2πRUby1 term in the expression
of the flow rate is a negligible correction. Finally, by imposing flux continuity with the
region far away from the tip, where the film thickness can be considered as uniform and
equal to a constant b, we obtain the following thin-film equation:

y′′′
1 = ρg

γ

(
1 − b3

y3
1

)
+ ρω2R

γ
y′

1. (2.10)

Since b is the length scale governing the flow in the inner region, we non-dimensionalize,
as in Bretherton (1961), with

y1 = ηb, x = ζb(ρgb2/γ )−1/3. (2.11a,b)

This leads to the following ordinary differential equation:

η′′′ = η3 − 1
η3 + aη′, (2.12)

where a = (Ce/Bo2/3)(b/R)2/3. In (2.12), the left-hand side represents the surface tension
term, while on the right-hand side, the first term accounts for gravity, the second for
viscous dissipation and the third for the effect of centrifugation.

2.1.3. Matching
We aim at matching the inner solution, which is described by (2.12), with the static cap
solution provided by (2.6). Given that b � R, this requires taking the limit η → ∞ in
(2.12) for the inner solution. In this limit, the equation behaves as

η′′′ = 1 + aη′, (2.13)

whose general solution reads

η = c1 e
√

aζ + c2 e−√
aζ + c3 − ζ

a
. (2.14)

The values of c1, c2 and c3 can be found through interpolation using the numerical solution
of the complete equation (2.12), whose initial conditions are obtained from the uniform
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film solution. Indeed, when η → 1, (2.12) becomes

η′′′ = 3(η − 1) + aη′, (2.15)

for which the only non-oscillating solution is η0 = 1 + C exp(Fζ ), where C is an
integration constant and

F =

(
2
3

)1/3

a

(27 + √
3
√

243 − 4a3)1/3
+ (27 + √

3
√

243 − 4a3)1/3

21/3 32/3 . (2.16)

Since the value of C can be adjusted by shifting the origin of ζ , we can set C = 1 and
a large, negative initial value ζ0 to initialize the integration. This procedure yields initial
conditions for the full nonlinear equation (2.12), i.e.

η(ζ0) = 1 + exp(Fζ0), η′(ζ0) = F exp(Fζ0), η′′(ζ0) = F2 exp(Fζ0). (2.17a–c)

We solve (2.12) (using the built-in MATLAB ODE solver ode45) to obtain the inner
solution η for various values of a, and fit the outer profile η = c1 e

√
aζ + c2 e−√

aζ + c3 −
ζ/a in the region where η � 1. This allows us to retrieve the coefficients c1(a), c2(a) and
c3(a). From figure 3(a), it is evident that the outer profile η of the inner solution exhibits
an inflection point. We thus translate the origin to the position where η′′ = 0, located at
the coordinate

ζ ∗ = 1
2
√

a
log

(
−c2

c1

)
. (2.18)

Using the shifted variable χ = ζ − ζ ∗, we can now define η(χ) = c∗
1 e

√
aχ + c∗

2 e−√
aχ +

c∗
3 − χ/a, where the new coefficients c∗

1, c∗
2 and c∗

3 are expressed as

c∗
1 = c1 e

√
aζ ∗ = c1

√
−c2

c1
= sgn(c1)

√−c1c2, (2.19a)

c∗
2 = c2 e−√

aζ ∗ = c2

√
−c1

c2
= sgn(c2)

√−c1c2, (2.19b)

c∗
3 = c3 − ζ ∗

a
= c3 − 1

2a3/2 log
(

−c2

c1

)
= η(χ = 0). (2.19c)

The new coefficients are well fitted (see figure 3b) by

c∗
1 = −c∗

2 ≈ 0.500a−3/2 + 0.286a−1/2, (2.20a)

c∗
3 ≈ 1.10, independently of the value of a. (2.20b)

Thus, the distance from the wall at which the outer profile exhibits an inflection point
can be evaluated as

y1(0) = η(0)b = (c∗
1 + c∗

2 + c∗
3)b ≈ 1.10b � R. (2.21)

Furthermore, the slope of the profile at the inflection point is given by

y′
1(0) = η′(0)(ρgb2/γ )1/3 =

(
c∗

1
√

a − c∗
2
√

a − 1
a

)
(ρgb2/γ )1/3

= 0.572(ρgb2/γ )1/3 > 0. (2.22)

Remarkably, the conditions on film thickness (2.21) and slope (2.22) at the inflection
point are the same as described in Bretherton (1961). Therefore, the centrifugal force alters
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Figure 3. (a) The inner region profile η as a function of the dimensionless height ζ . The circles represent the
solution η of the full equation (2.12) for various values of a, while the black solid lines represent the outer
profiles of the inner region η = c1 e

√
aζ + c2 e−√

aζ + c3 − ζ/a, where c1(a), c2(a) and c3(a) are obtained
by fitting with the full inner solution, in the η � 1 region. The outer profiles clearly exhibit an inflection
point, at a distance referred to as ζ ∗(a). For each value of a, the origin is then shifted so that η′′(0) = 0.
(b) Shifted coefficient c∗

1 = −c∗
2 as a function of a (red circles). The black solid line corresponds to c∗

1 =
0.500a−3/2 + 0.286a−1/2. Inset: shifted coefficient c∗

3 = η(0) ≡ η∗ as a function of a. This coefficient does
not vary significantly with a.

the inner region solution and the static cap profile, but the matching conditions (and thus
the boundary conditions for the static cap solution) remain surprisingly unchanged from
those of Bretherton (1961).

The above analysis provides the missing information required to solve the static cap
profile described by (2.7). Specifically, the static profile for a given set of parameters
(Bo, Ce) is obtained through a shooting method, searching for the first derivative θ̇0 at the
tip of the cap, which is such that the integration of (2.7) from initial conditions (θ0 = 0, θ̇0)
results in a profile where the inflection point r̈1(z) = 0 is reached for r1(z) = R. The
numerical integration of (2.7) is performed using the MATLAB built-in ODE solver
ode23t, with a spacing along the curvilinear coordinate of 0.01R, while the shooting
method is implemented by means of the nonlinear MATLAB system solver fsolve. The
resulting slope r′

1(z)|r=R at the inflection point is then computed from the generated profile.
For fixed Bo < Boc,0 = (Rc/�c)

2 and varying Ce, it appears that some profiles are
unphysical: below a critical value Cec that depends on the Bond number Bo, the static
cap shape exhibits a positive slope at the inflection point at the solid wall, causing the
upper profile to extend beyond the fluid domain r < R, as illustrated in figure 4, which
is not compatible with the matching condition 0 < y′

1(0) = −r′
1(z)|r=R. By progressively

increasing the centrifugal number Ce, the slope at the inflection point at the wall decreases,
leading to a reduction of the bulge outside the fluid domain, as shown in figure 4(c).
Ultimately, for Ce > Cec, the slope becomes negative, causing the entire static cap to
reside within the fluid domain; see figure 4(b,c).

In the following, we denote as φ the resulting angle between the liquid–air interface
and the vertical axis at the inflection point, i.e. φ = tan−1(−r′

1(z)|r=R) = tan−1( y′
1(0)). A

closer inspection reveals that within a small range around Cec, i.e. for |Ce − Cec(Bo)| <

0.2, φ varies linearly with Ce, as shown in figure 5(a). Within this range, the angle φ (in
radians) is well approximated by

φ(Ce, Bo) ≈ 0.144(Ce − Cec(Bo)), (2.23)
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Figure 4. Static cap profile for a Bond number Bo = 0.55 and a centrifugal number Ce that is (a) below and
(b) above the threshold Cec(Bo). Below the threshold, the slope r′

1(z)|r=R is positive at the inflection point,
causing the upper profile to escape the fluid domain r < R. Angle φ is the angle between the tangent to the
static cap profile at the wall and the vertical axis: φ = tan−1(−r′

1(z)|r=R) and is thus negative in (a) and positive
in (b). (c) Evolution of the static cap profile at fixed Bo = 0.55, when increasing Ce from a value below the
threshold Cec ≈ 1 to a value slightly above threshold.

where the factor 0.144 is independent of Bo (up to variations less than 0.001 radians).
Interestingly, this prediction is consistent with the occlusion criterion derived by Manning
et al. (2011) under weightlessness (i.e. Bo = 0), reported in the introduction of this section
(equation (2.1)). Indeed, φ represents the slope of the gas–liquid interface at the inflection
point, located at a distance 1.10b from the solid wall of the tube (equation (2.21)). In this
sense, it can be seen as the contact angle of a meniscus occluding a virtual channel of
radius (R − 1.10b), rotating at angular velocity ω. Thus, in the absence of gravity, and in
the limit of small contact angle φ, the occlusion criterion (2.1) becomes

Ce(φ, Bo = 0) = ρω2(R − 1.10b)3

γ
= 32 sin3

(
π + 2φ

6

)
≈ 4(1 +

√
3φ), (2.24)

which can be recast as φ(Ce, Bo = 0) ≈ 0.144(Ce − Cec,0), where Cec,0 ≡ Cec(Bo =
0) = 4.

Thus, at fixed Bo, the critical centrifugal number Cec(Bo) for vanishing angle φ (or
equivalently for vanishing slope) is retrieved as the value of Ce at which the best linear fit
of φ(Ce, Bo) cancels out. Its dependency on the Bond number is depicted in figure 5(b).
Note that we performed a convergence analysis and observed no further variations of Cec,
within a tolerance of 0.07 %, when increasing 10 times the resolution on the spacing
along the curvilinear coordinate used to integrate the static cap profiles. For Ce < Cec,
the geometrical constraint φ = tan−1( y1(0)) ≈ y′

1(0) > 0 cannot be satisfied, so that this
value corresponds to the threshold for the onset of motion.

A second-order polynomial approximation of (Cec(Bo), Bo) is Bo ≈ 0.842 −
0.295 Cec(Bo) + 0.020 Ce2

c(Bo), whose solution, shown in figure 5(b), reads

Cec = 0.295 −
√

0.2952 − 0.080(Boc,0 − Bo)

0.040
, (2.25)
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Figure 5. (a) Angle φ of the static cap profile between the vertical axis and the tangent to the static cap profile
(obtained by integrating (2.7) while requiring that the interface reaches the solid wall with an inflection point)
as a function of the centrifugal number Ce, for various Bond numbers Bo. The circles are the values computed
from the shape of the interface, while the solid lines are the best linear fit. For each Bo, the critical centrifugal
number Cec is defined as the value of Ce for which the best linear fit cancels out. (b) The critical centrifugal
number Cec as a function of the Bond number Bo. At a given value of Bo, the matching with the inner region
is only possible if Ce > Cec(Bo). The circles are the values of Ce that cancel the linear approximation of
φ(Ce, Bo) for each Bond number, while the back line represents the approximation (2.25). The red circle with
coordinates (Boc,0 = 0.842, Cec = 0) locates the threshold in the absence of centrifugation.

where Boc,0 = 0.842 is the critical Bond number in the absence of centrifugation (Ce =
0). Note that in the limit Bo → 0, the approximation (2.25) yields Cec(Bo = 0) ≈ 3.9,
which is close to the threshold Cec,0 = 4 computed by Manning et al. (2011) under
weightlessness. Conversely, in the limit (Cec → 0, Bo → Boc,0), (2.25) simplifies into

Cec ≈ 1
0.295

(Boc,0 − Bo). (2.26)

By injecting (2.26) into (2.23), we obtain, in the limit Ce → 0:

φ ≈ 0.49(Bo − (Boc,0 − 0.295Ce)), (2.27)

reminiscent of the expression derived by Bretherton for a non-rotating capillary tube
(φ = 0.49(Bo − Boc,0)). The similarity of these expressions highlights the role of the
centrifugation as a downward shift in the critical Bond number for the onset of motion.

In addition, this analysis provides a prediction for the rising velocity of the bubble for
Ce > Cec(Bo). Indeed, for Ce close enough to the threshold Cec(Bo), the slope of the
inner solution at the inflection point should verify, using (2.21), (2.22) and (2.23):

y′
1(0) = 0.572(ρgb2/γ )1/3

= tan(φ) ≈ φ ≈ 0.144
(

ρω2(R − 1.10.b)3

γ
− Cec(Bo)

)
. (2.28)

Since the volume of fluid displaced per unit time by the tip of the bubble πR2Ub should
be equal to to the volume flux in the uniform film region, we can relate the thickness b to
the inner radius R and the velocity Ub through ρgb3/3μUb = R/2. Expanding (2.28) up
to first order in (b/R) yields the following expression of Ca as an implicit function of Ce
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and Bo:

Ce − Cec = 3.78Ce
(

Ca
Bo

)1/3

+ 4.35Bo1/3
(

Ca
Bo

)2/9

, (2.29)

where Cec is the function of Bo described above. The ratio Ca/Bo compares the bubble
velocity Ub with the settling velocity U∗ = ρgR2/μ. Note that (2.29) admits an analytical
solution: by setting the unknown x = (Ca/Bo)1/9, (2.29) can indeed be recast as an
equation of the type x3 + a1x2 + a2x + a3 = 0.

2.2. Experiments on centrifugated bubbles
In this section, we outline our experimental set-up and procedure and compare the results
against the above theoretical developments.

2.2.1. Experimental set-up and procedure
Cylindrical borosilicate capillary tubes (Hilgenberg GmbH) are partially filled with
silicone oil (Sigma Aldrich, ρ = 964 kg m−3, μ = 9.64 × 10−2 Pa s, γ = 2.09 ×
10−2 N m−1), leaving an air bubble with a length L greater than 10 times the radius R
of the tube. Both ends of the tubes are sealed with epoxy resin. The inner radii of the tubes
used in our experimental campaign vary between 0.8 and 1.3 mm, corresponding to Bond
numbers Bo ≡ ρgR2/γ in the range [0.29, 0.76]. Note that the uncertainty in the inner
diameters of the tubes is of 0.05 mm.

The tube attachment system, presented in figure 6(a), consists of two circular mounts
made of PETG, rigidly connected together via two vertical steel rods, and linked by
bearings to a fixed aluminium frame (not represented in the figure). On each mount, a
central, threaded circular mouthpiece accommodates a hollow cylinder whose inner radius
matches the outer radius of the capillary tube. The extremities of the tube are then inserted
into these cylinders, and securely clamped to the mounts using a clamping chunk. By this
means, the tube can be easily replaced by a capillary of a different size with minimal
adjustments of the set-up. The lower mount is also connected to the shaft of a DC motor
that imposes the rotation of the tube attachment system. While the tube, the mounts and
the rods rotate collectively, the verticality and stability of the whole set-up are ensured by
the fixed aluminium frame.

The motor is voltage-controlled to achieve the desired rotation speed, measured with
less than 1 % error using a tachometer. To enhance visualization, a light-emitting-diode
panel is positioned behind the tube attachment system.

A Basler camera records the evolution of the bubble in the tube, and the velocities
of the upper and lower caps of the bubble are obtained through image post-processing
performed via a custom MATLAB script. Specifically, a column of pixels aligned with the
tube that crosses the upper and bottom profiles of the bubble is extracted from each frame.
These slices are then juxtaposed to each other into an image where the horizontal axis
represents time. The displacement of the bubble extremities with time are clearly visible
on the resulting image, as shown in figure 6(c).

Once the motor is switched on, a transient regime occurs where the upper cap of the
bubble rises while the bottom cap remains immobile, resulting in bubble elongation,
reminiscent of spinning bubble experiments (Vonnegut 1942). This is accompanied by the
progressive thickening of the surrounding film that propagates from the top to the lower
cap of the bubble, as seen in figure 6(b). Once the propagation front reaches the bottom
extremity, the lower cap starts its ascent at the same (constant) velocity as the upper cap;
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Figure 6. Experimental set-up and post-processing for rotating bubbles. (a) Tube attachment system. The
capillary tube is clamped on both extremities to mounts connected together by two metal rods. The bottom
mount is linked to the shaft of a DC voltage-controlled motor that imposes the rotation of the system around
its central, vertical axis. (b) Photographs of a long bubble inside a tube filled with silicone oil at different and
equally spaced time steps within the transient regime. In the red frame, the motor has been switched on and
the upper cap starts rising while the bottom cap remains still. Along with the resulting bubble elongation, the
surrounding liquid film gets progressively thicker from the top to the bottom part of the bubble. The dotted line
roughly locates the position of the propagation front. Once the front has reached the lower cap, it starts rising.
(c) Intensity profile as a function of time along the tube axis. To produce this image, a column of pixels aligned
with the central axis of the tube is extracted from each frame of the movie. The columns are then juxtaposed to
each other. The locations of the upper and lower cap as a function of time are easily identified as the two roughly
parallel black curves limiting a darker domain that corresponds to the position of the bubble itself. At time t1,
the motor is switched on. At t2, the bubble dynamics reaches a stationary state: the upper and lower caps rise at
same constant velocity, as highlighted by the parallel blue solid lines that are superimposed on the position of
the caps as a function of time. For (b,c), R = 1.2 mm and Ce = 1.97. The transient duration is approximately
equal to t2 − t1 ≈ 130 s and the capillary number computed from the steady state is Ca ≈ 3.03 × 10−4.

see figure 6(c). The rising regime is assumed to be stationary if the difference between
the caps’ velocities is less than 5 %. The bubble velocity is computed as the mean velocity
between the upper and the bottom cap velocities.

For a given inner radius R and a fixed rotational speed ω, both Bo and Ce are fixed.
The capillary number Ca = μUb/γ is then derived from the measurement of the bubble
velocity at steady state Ub. For the experiments reported in this section, we specify that
the Bond number remains smaller than the threshold Boc = 0.842. Thus, the bubble does
not move at all if the rotational speed is zero. To avoid excessively long working time
for the motor, we did not operate it more than 8 hours consecutively. Considering that
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Figure 7. (a) Diagram (Bo, Ce), where each circle corresponds to a measurement of Ca > 0 for a given set
of parameters (Bo, Ce). The red crosses indicate the couples (Bo, Ce = Cec,exp(Bo)) for which the bubble
displacement fell below our detection limit. The black circles indicate the theoretical threshold for the onset
of motion and the black solid line represents the approximation (2.25) of Cec(Bo). Below this line, the grey
area indicates the region of parameters where the steady rising of a bubble is not possible according to our
theoretical analysis. Finally, the shaded area corresponds to the region of parameters that is not accessible
with our set-up, due to the constraints on the maximal angular velocity provided by the motor. (b) Capillary
number Ca as a function of the centrifugal number Ce measured for various Bond numbers. The circles are the
experimental points, and for each Bond number Bo, the solid line is the theoretical prediction (2.29), computed
using the corresponding experimental value of Bo indicated in the legend. The dotted lines also represent the
prediction (2.29), but for Bo ± Bo, where Bo accounts for the ±0.05 mm uncertainty on the tube inner
diameters. The errorbars represent the measurement uncertainty on the bubble velocity.

with our experimental set-up we cannot precisely detect a motion smaller than 1 mm
between the start and the end of an experiment, the smallest capillary number that is
experimentally measurable is Camin = 1.6 × 10−7. A value inferior to this limit will be
accordingly set equal to zero. The maximal rotational speed achieved by the DC motor
is ωmax = 400 rad s−1. For a given tube inner radius, this sets a limit on the maximal
centrifugal number Cemax that is experimentally reachable.

2.2.2. Experimental results and comparison with the theoretical threshold
For comparison with the theoretical threshold for the onset of motion, we present
our experimental findings in the (Bo, Ce) diagram featured in figure 7(a). Overall, the
theoretical prediction is quantitatively consistent with the experimental results, which
reveal a rapid decay in the bubble velocity as the centrifugal number Ce approaches
the theoretical threshold Cec(Bo). As it was challenging to precisely determine the
experimental threshold, we endeavoured to establish a narrow range by identifying the
highest Ce ≡ Cec,exp for which the bubble displacement fell below our detection limit.
This lower bound is denoted by red crosses in figure 7(a), and closely aligns with the
theoretical threshold. However, the prediction is less precise for the smallest values of Bo:
the experimental threshold is downward-shifted with respect to the theoretical prediction.

Figure 7(b) reports measurements of the bubble velocity as a function of the rotational
speed. The trend is satisfyingly captured by (2.29). We note, however, that close to the
threshold, the measured velocities are in general higher than predicted, consistent with
the downward shift of the experimental threshold mentioned above. We believe that this
can be ascribed to horizontal vibrations of the tube attachment system observed while
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operating the motor. As observed by Kubie (2000), the rising velocity of a Taylor bubble
within a vertical tube is indeed larger when the tube is oscillated in the horizontal plane,
and increases with the oscillation acceleration. This hypothesis is backed up with the
photographs of rotating bubbles along their ascent, that show some asymmetry of the
bubble profile with respect to the tube axis, as can be seen for instance in figure 6(b).
This is compatible with the observations of Kubie (2000) under horizontal oscillations:
the relative position of the bubble moves periodically from one side of the tube to the
other, which thickens the lubricating film on one or the other side of the bubble, resulting
in a more efficient drainage and thus in faster bubble ascent.

Despite these discrepancies, our theoretical analysis seems to provide a good estimation
of the threshold for the onset of motion and a satisfying prediction for the general trend of
the rising velocity as a function of the rotational speed.

In summary, rotation reduces the critical tube radius for the onset of motion and
facilitates bubble ascent. From a theoretical point of view, the most appreciable effect
of centrifugation is the modification of the static cap profile, while geometrical constraints
stemming from the matching with the thin-film region appear remarkably unchanged
from the classical case without rotation. At the same time, experiments demonstrate the
thickening of the thin film surrounding the elongated part of the bubble, for increasing
rotational speed. This thickening is caused by the centrifugal acceleration which induces a
radial, ‘gyrostatic’ pressure gradient that pushes liquid towards the solid wall. We can thus
interpret centrifugation as a means to tune the thickness, and thus the flow rate within the
gap between the tube wall and the bubble, resulting in the lowering of the critical Bond
number for the onset of motion.

An alternative and simple strategy to modify the hydrostatic pressure gradient is to tilt
the tube with respect to gravity, whose effect is investigated in the next section.

3. Effect of tilt

The influence of inclination angle on the mobility of elongated bubbles was first observed
by White & Beardmore (1962), who pointed out the necessity of careful positioning
of pipes for precise measurement of the rising velocity. Since then, many studies have
been dedicated to the motion of long bubbles in inclined pipes (e.g. Zukoski 1966;
Maneri & Zuber 1974; Bendiksen 1984; Weber, Alarie & Ryan 1986; Couët & Strumolo
1987; Shosho & Rya 2001; Boucher et al. 2023). All studies reported a non-monotonic
dependency of the rising velocity on the tilt angle: starting from a horizontal position,
the velocity of elongated bubbles increases with the inclination of the pipe, reaching
a maximum value. Subsequently, the velocity decreases until the vertical position is
attained. These observations are reminiscent of the so-called Boycott effect (Boycott
1920; Acrivos & Herbolzheimer 1979) in the case of settling suspensions in sealed tubes,
as seminally observed by Boycott (1920) with blood corpuscles sedimenting in serum,
that demonstrated a several-fold increase in their sedimentation rate when the tube was
inclined.

Most of these analyses are interested in the inertial regime, with large Bond numbers,
and only a few studies have been dedicated to the regime close to the onset of motion,
which is dominated by surface tension (low Bond number). Zukoski (1966) conducted
an extensive series of experiments focusing on the velocity of elongated bubbles in tubes
within a large range of Bond numbers, delving into the impact of liquid viscosity and
surface tension on bubble velocity. For low Bond number (Bo = 0.870), elongated bubbles
exhibited no detectable movement in horizontal or vertical positions but could rise in
inclined tubes with angles ranging from 20◦ to 80◦ with the horizontal, with a maximum
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Figure 8. (a) Sketch of the static cap in a tube tilted with angle α with respect to the horizontal plane. A
Cartesian coordinate system (x, y, z) is used, where z is the direction aligned with the central axis of the
tube. The height of the liquid–air interface is denoted as h(x, y) and the gas–liquid interface meets the wall
with an angle φ, in all radial directions. (b) Sketch of the thin-film region, assumed to be axisymmetric. A
two-dimensional Cartesian coordinate system (x̃, ỹ) is used, where x̃ is the direction aligned with the central
axis of the tube. The distance of the liquid–air interface from the solid wall is denoted by y1(x̃). (c) Comparison
between the solution of (3.1) (red solid line) and the axisymmetric solution of (2.6) with no rotation (ω = 0)
(pink dotted line), for tilt angle α = 90◦ (vertical tube), φ = 0.50◦ and Bond number Bo = 0.86.

velocity reached for about 50◦. This observation suggests that tilting the tube with respect
to gravity may enable the motion of long bubbles that are stuck in a vertical configuration
owing to surface tension.

In a similar context, Collicott & Manning (2014) studied the stability of a liquid mass
in a tube above a capillary interface spanning the cross-section of the channel, for various
contact angles and tube inclinations with respect to gravity. At fixed contact angle, they
computed the critical Bond number as the threshold above which the SURFACE EVOLVER
simulations do not converge to a solution of finite axial extent, thereby identifying the
critical Bond number as a stability threshold for the capillary interface. Within this
approach, the critical Bond number for a 0◦ contact angle should correspond to the stability
threshold of a long static bubble, expanding over the entire cross-section of the tube.
However, difficulties of modelling perfectly wetting conditions prevented the authors from
computing the critical Bond number as a function of inclination in this case.

To the best of our knowledge, there is currently no predictive analysis of the mobility
enhancement of long bubbles due to tilted gravity in very narrow capillaries. In this study,
we investigate how the direction of gravity affects the mobility of long bubbles in the
low-Bo regime, focusing on the angle-dependent threshold for the initiation of motion.

3.1. Theoretical prediction for the threshold and rising velocity

3.1.1. The three-dimensional static cap
We first introduce the equilibrium equation for the static three-dimensional shape of
the upper cap of the bubble. We define a Cartesian coordinate system (x, y, z), where
z is the direction aligned with the central axis of the tube. The gravity vector reads
g = (g cos(α), 0, −g sin(α)), where α is the tilt angle of the tube (α = 90◦ corresponds to
a vertical tube); see figure 8(a).

The evaluation of the static interface profiles of the upper cap is based on the
two-dimensional Young–Laplace equation, where length scales are non-dimensionalized
with the tube radius (Manning et al. 2011; Rascón, Parry & Aarts 2017):

∇ ·
(

∇h̄√
1 + (∇h̄)2

)
= Bo(cos(α)x̄ − h̄ sin(α)), (3.1)

999 A9-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

74
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.746


A. Marcotte and others

where h̄(x̄, ȳ) denotes the height of the static cap; the quantity on the left-hand side is the
curvature κ of the liquid–gas interface while the term on the right-hand side corresponds to
the hydrostatic contribution. Equation (3.1) is complemented with the boundary condition
at the solid wall: (∇h/

√
1 + (∇h)2) · n = − cos(φ), where n is the outwards-oriented

vector normal to the tube, and the angle φ is defined similarly to that in the first part
of this study, as the angle between ez and the tangent at the wall to the intersection of
the liquid–gas interface with the plane (n, ez). We thus require the interface to reach the
solid wall with a specified slope, which is assumed to be the same for all directions n,
for consistency with the matching with the thin-film profile, assumed in the following to
be radially symmetric. Note that this differs from the first part of this study, where we
imposed a vanishing radial curvature at the wall and computed the angle φ a posteriori.
Here, the the slope at the wall is specified as a boundary condition, with no requirement
on the curvature. We acknowledge that requiring the gas–liquid interface to reach the wall
for all directions n is somehow counterintuitive, given that for small tilt angles α (i.e. for a
strongly inclined tube with respect to gravity), we expect the film surrounding the bubble
to be thicker in the direction x > 0, and the liquid–gas interface to be relatively far from
the solid wall in this region. However, we focus here on the vicinity of the threshold for
the onset of motion, where surface tension is dominant and causes the bubble to expand
in the entire fluid domain

√
x2 + y2 = r < R in all directions, as experimentally observed

(see for instance figure 11d). The derivation of (3.1) can be found in Appendix B.

3.1.2. The thin-film region and matching
Here, we opt for a simplified description of the inner region, which is assumed to be
radially symmetric. Neglecting the azimuthal curvature allows us to describe the bottom
thin film with a two-dimensional, stationary Cartesian reference frame (x̃ = z − Ubt, ỹ),
where ex̃ is aligned with the tube central axis and points upwards (such that ex̃ · g =
−g sin(α)), and eỹ is the inward vector normal to the inner solid wall, such that eỹ · g =
−g cos(α); see figure 8(b).

Within the lubrication framework, the viscous flow in the thin film is driven by Laplace
and hydrostatic pressure gradients. The axial velocity in the bottom thin film is accordingly
written as (see Appendix A.2 for a detailed derivation)

u(x̃, ỹ) = γ

2μ

[
−y′′′

1 + ρg cos(α)

γ
y′

1 + ρg sin(α)

γ

]
(ỹ2 − 2y1ỹ) − Ub, (3.2)

where y1 denotes the distance of the air–liquid interface from the solid wall of the tube.
Upon integration within the thin film and neglecting azimuthal variations of curvature and
film thickness, the volume flux reads

Q ≈ −2πRUby1 − 2πR
γ

3μ

(
−y′′′

1 + ρg cos(α)

γ
y′

1 + ρg sin(α)

γ

)
y3

1. (3.3)

Owing to mass conservation, this flux must be equal to the volume of fluid displaced
per unit time by the top of the bubble, which is πR2Ub. Given that y1/R � 1, the term
−2πRUby1 in the flow rate expression is a negligible correction. Finally, by enforcing flux
continuity with the region far from the tip, where the film thickness is uniformly constant
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and equal to b, we derive the following thin-film equation:

y′′′
1 = ρg sin(α)

γ

(
1 − b3

y3
1

)
+ ρg cos(α)

γ
y′

1. (3.4)

We non-dimensionalize with

y1 = ηb, x̃ = ζb(ρgb2 sin(α)/γ )−1/3, (3.5a,b)

which leads to the following ordinary differential equation:

η′′′ = η3 − 1
η3 + aη′, (3.6)

where a = cos(α) sin(α)−2/3Bo1/3(b/R)2/3.
Upon introduction of the parameter a, this equation is exactly the same as (2.12)

describing the inner region in a centrifugated tube, which has been solved in § 2.1. Thus,
shifting the origin to the position where η′′ = 0, the distance from the wall at which the
inner solution exhibits an inflection point is

y1(0) = η(0)b = 1.10b � R, (3.7)

and the slope of the inner region profile at the inflection point is given by

y′
1(0) = η(0)(ρgb2 sin(α)/γ )1/3 = 0.572 Bo1/3 sin(α)1/3

(
b
R

)2/3

> 0. (3.8)

For the matching of the thin-film region with a two-dimensional cap, we would need to
determine the value of (positive) angle φ which leads to zero curvature at the wall. For
the matching with the previously introduced three-dimensional shape of the static cap, we
extend this analysis by searching for the angle φ that gives rise to zero radial curvature in
at least one point of the matching boundary. Note that although we imposed as a boundary
condition a constant angle φ at the interface when reaching the wall, the height of the
interface at the wall, and so the curvature, varies along the azimuthal direction. Since the
angle φ at the point of vanishing curvature should be positive according to the matching
condition (3.8), we identify the critical Bond number as the Bo value for which φ = 0, and
the radial curvature at the wall vanishes in at least one point. For smaller Bond numbers,
the geometrical constraint on the slope cannot be satisfied in at least one point of the
domain.

Equation (3.1), together with its boundary conditions, is implemented in the
finite-element solver COMSOL Multiphysics. We exploit fourth-order Lagrangian shape
functions, solving for the height h and the mean curvature κ in a grid composed of
quadrangular elements, with 10 boundary layers of 1.3 stretching factor to properly capture
the curvature at the boundary. For each tilt angle α, solutions are obtained for different
values of the angle φ and Bond number Bo using the built-in Newton algorithm, initialized
with the zero solution. We then perform a continuation study by gradually decreasing the
angle φ from 90◦. Note that the boundary condition φ = 0◦ cannot be imposed in this
framework, as it implies infinite directional derivatives for the thickness. We thus study
solutions in the close vicinity of φ = 0◦ and extrapolate the retrieved behaviour for φ → 0;
however, this limitation will not significantly affect the evaluation of the threshold for the
bubble rise. For fixed Bond number, a convergence analysis from a characteristic size of
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Figure 9. (a) Static cap profiles computed as solutions of (3.1) for various tilt angles α, with φ = 0.5◦
and Bo � Boc(α). The colourbar represents the radial curvature κr computed along the height profiles in
the plane y = 0. The heights of the profiles for various α have been translated for visualization purposes.
(b) Three-dimensional static cap shape close to critical conditions φ = 0.5◦, for various tilt angles. The
colourbar represents the profile height h̄ − h̄max.

0.05R to 0.01R (i.e. from 3200 to 33 012 elements) showed variations of ∼10−4 rad in the
value of φ resulting in a zero radial curvature. The numerical code for α = 90◦ (i.e. for a
vertical tube), φ = 0.5◦ and Bo = 0.86 is compared against the axisymmetric solution of
(2.6) with no rotation (ω = 0). The result of the comparison is reported in figure 8(c) and
a good agreement is observed.

Figure 9 shows the static cap of the bubble for different inclination angles and Bond
numbers, for same angle φ = 0.5◦. For α < 90◦, the static cap is not axisymmetric: as
the tilt angle increases, the apex of the cap moves towards negative x. Conversely, an
elongated region (tongue) develops in the vicinity of the x axis, in the direction x > 0 (i.e.
in the direction of positive gravitational acceleration) and becomes longer as the tilt angle
increases. The elongated region presents abnormal values of mean curvature with respect
to the rest of the cap. The highest (negative) curvature is observed to be localized at the
tip point of this tongue.

To obtain the critical conditions, we fix the tilt angle and the Bond number and
progressively decrease the angle φ. A preliminary analysis showed that the highest radial
curvature is obtained at the tip point of the tongue (of coordinates (x̄ = 1, ȳ = 0)), in
agreement with the above observations, and increases with decreasing φ. For each angle φ,
we thus compute the radial curvature κr = (∂2h̄/∂ x̄2)/(1 + (∂ h̄/∂ x̄)2)3/2 at the extremity
of the tongue. Note that (∂ h̄/∂ ȳ)(x̄, ȳ = 0) = 0 because of symmetry. The angle φ is
then decreased until κr vanishes. This limit value (which is obtained through linear
interpolation, when a change of sign is detected, of the values of curvature between two
successive values of φ, with a step of 9 × 10−5 rad) is denoted φlim(α, Bo). For the set
of parameters (Bo, α, φ = φlim(α, Bo)), the liquid–air interface exhibits then an inflection
point at the wall, and its tangent plane makes an angle φlim(α, Bo) with the z direction.
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Figure 10. (a) Angle φlim for which the radial curvature of the liquid–air interface vanishes at one point at
the wall as a function of Bo for various values of α (coloured circles). For each panel, the black solid line is
the linear fit φlim(α, Bo) = β(α)[Bo − Boc(α)] performed in order to retrieve the threshold for the onset of
motion Boc(α), that corresponds to φlim = 0. (b) Threshold Boc as a function of the tilt angle α (filled circles).
The maximum extrapolation error is of the order of 0.001 and is smaller than the marker size. The black solid
line represents the polynomial approximation (3.10). The open circles represent instead the threshold Bo2D

c (α)

retrieved from the matching of the thin film with a two-dimensional static cap profile. The black dotted line
is a guide for the eyes. Inset: coefficient β as a function of the tilt angle α. The errorbars represent the 95 %
confidence interval. The black solid line represents the polynomial approximation (3.11).

Repeating the same procedure varying the Bond number while fixing the tilt angle α,
we can retrieve φlim as a function of Bo. In the range φlim ∈ [0.5◦, 2◦], φlim(α, Bo) varies
linearly with the Bond number Bo, as shown in figure 10(a). For each tilt angle α we
interpret the Bond number value at which φlim(α, Boc) = 0 as the threshold Boc(α) for
the onset of motion. We retrieve this value by performing for each tilt angle α a linear
fit of φlim(α, Bo) for φlim varying between 0.5◦ and 2◦, and by extrapolating the value
Boc(α) that corresponds to φlim = 0◦. The fit is performed by considering at least eight
points within the declared range. We verified that the threshold and slope do not vary
appreciably by decreasing the number of points while keeping a constant distance between
the remaining points. The slope of the fit is also a function of α, so that overall, φlim(α, Bo)

is approximated by
φlim(α, Bo) = β(α)(Bo − Boc(α)). (3.9)

The result of this procedure is displayed in figure 10. Our study clearly indicates that
the threshold for the onset of motion is lowered by tilting the tube, with a minimum that
is reached for a tilt angle of 45◦ < αopt < 50◦. Overall, the critical Bond number and the
slope β as a function of the tilt angle are well approximated by

Boc(α) ≈ 0.54
[

1 + 0.5
( π

180

)2
(α − 48◦)2 +

( π

180

)4
(α − 48◦)4

]
, (3.10)

β(α) ≈ −2
3

( π

180

)2
(α − 51◦)2 + 0.85 [rad], (3.11)

as shown in figure 10(b). Note that in the vertical case, we retrieved values for the critical
Bond number Boc(α = 90◦) and for the slope β(α = 90◦) that match Bretherton’s values
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(Boc = 0.842, β = 0.49 rad) within 0.03 % and 2 % of relative error, respectively, thus
validating further the procedure.

We now aim at providing a prediction for the ascent velocity. The matching of the
two-dimensional thin-film region with the static cap shape at the inflection point amounts
to enforcing

0.572 Bo1/3 sin(α)1/3
(

b
R

)2/3

= φlim(α, Bo) = β(α)

[
ρg
γ

(R − 1.10b)2 − Boc(α)

]
. (3.12)

The volume of fluid displaced per unit time by the tip of the bubble πR2Ub being equal
to the volume flux in the uniform film region, (b/R) = (3Ca/2Bo sin(α))1/3. Expanding
(3.12) up to first order in (b/R) finally yields the following implicit function for the bubble
velocity:

(Bo − Boc(α)) sin(α) = 2.52(Bo sin(α))2/3 Ca1/3

+ 0.63 sin(α)

β(α)
(Bo sin(α))1/9 Ca2/9. (3.13)

As for the centrifugated case, (3.13) can be recast as an equation of the type x3 + a1x2 +
a2x + a3 = 0, by setting x = Ca1/9.

3.2. Experiments on tilted bubbles

3.2.1. Experimental set-up and procedure
The same silicone oil used in § 2.2 is employed to partially fill capillary tubes, that
are then sealed on both ends, trapping a long air bubble inside. The inner radii of the
tubes vary between 1.08 and 1.96 mm, corresponding to Bond numbers in the range
Bo ∈ [0.53, 1.73]. As in the previous section, the uncertainty in the tube inner diameters
is 0.05 mm.

The experimental set-up is depicted in figure 11(a). The tube is attached on an
aluminium arm that can be tilted by an angle α ∈ [0◦, 180◦] with respect to the horizontal
plane. A light-emitting-diode panel is positioned behind the set-up for visualization
purposes. Once the tilt angle is fixed, a camera records the rising motion of the bubble
along the central axis of the tube. From the recorded footage, we can then retrieve the
bubble velocity as previously described in § 2.2, and as illustrated in figure 11(b,c). For
the narrowest tubes where the bubble velocity is the smallest (if not zero), we use time
lapses instead of movies.

Unlike the case of motor-driven rotating tubes, there is in principle no limitation on the
observation time, allowing the detection of much slower bubble displacements. In practice,
we consider the bubble velocity to be zero if the displacement of the bubble over a week
is smaller than our resolution limit of 1 mm. This implies that the smallest experimentally
measurable capillary number is Camin = 7.6 × 10−9.

3.2.2. Experimental results and comparison with the theoretical prediction
Our experimental findings are summarized and compared with our theoretical predictions
in figure 12. Firstly, we observe that the bubble velocity strongly depends on the tilt angle α
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Figure 11. (a) Sketch of the experimental set-up. (b) Photographs of a long bubble inside a tube filled with
silicone oil, at different and equally spaced time steps. Here, Bo = 1 and the tube is tilted by α = 35◦ with
respect to the horizontal axis. (c) Intensity profile as a function of time along the tube axis. To produce this
image, a column of pixels aligned with the central axis of the tube is extracted from each frame of the movie.
The columns are then juxtaposed to each other. The locations of the upper and lower cap as a function of time
are easily identified as the two roughly parallel black curves limiting a slightly darker domain that corresponds
to the position of the bubble itself. The rising velocity is given by the slope of these black lines. As in (b), Bo =
1 and α = 35◦. (d) Photograph of a bubble in a tube tilted by α = 50◦, with Bo = 0.7. For these parameters,
the system is close to critical conditions for the onset of motion.

and reaches its maximum at α ≈ 50◦, a value independent of Bo within the range of Bond
numbers investigated here, as shown in figure 12(b). Furthermore, for Boc(α = 50◦) =
0.5401 < Bo < 0.842 = Boc(α = 90◦), tilting the tube by the appropriate angle actually
enables the motion of a bubble that would otherwise be stuck in a vertical configuration,
as illustrated for instance by the cases Bo = 0.71 and Bo = 0.65 reported in figure 12(b).
No motion at all is observed below the threshold Boc(α ≈ 50◦). Those observations align
well with our theoretical analysis.

Finally, the bubble velocity as a function of the tilt angle α at low Bond numbers seems
to be well described by (3.13), without any fitting parameter; see figure 12(b). We note
that the agreement with the theoretical prediction appears to slightly deteriorate at larger
Bond numbers. Indeed, several assumptions made in the theoretical analysis, reasonable
in the vicinity of the threshold, are expected to fail in the large-Bo regime. Notably, Atasi
et al. (2017) measured the top and bottom film thickness around long bubbles in horizontal
tubes and observed that the film asymmetry grows with the Bond number. Thus, in large
capillaries, the thin-film thickness cannot be considered as uniform along the azimuthal
direction: the lubricating film is indeed much thicker in the direction x > 0 (Zukoski 1966).
Similarly, requiring the static cap profile to expand in the entire fluid domain r < R is
likely to become inadequate as Bo increases. All together, however, the comparison tends
to validate the relevance of a two-dimensional analysis to describe the thin lubricating film
surrounding the bubble, even in a tilted configuration, in the low-Bo regime.

It is worth mentioning that as a first attempt to describe the phenomenon, we opted
for a fully two-dimensional description of the air–liquid interface. By matching the
two-dimensional static cap with the thin-film profile, we obtained the threshold Bo2D

c (α)

reported in figure 10(b). This threshold exhibits the same non-monotonic trend as a
function of the tilt angle, with a minimum reached for αopt � 50◦. However, it is
downward-shifted with respect to the critical Bond number relying on a three-dimensional
description of the static cap, which provides a much better agreement with experimental
measurements; see figure 12(a). From this comparison, we conclude that while a
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Figure 12. (a) Diagram (Bo, α) where each circle corresponds to a measurement of Ca > 0 for a given set of
parameters (Bo, α). The red crosses indicate the couples (Bo, α) for which the bubble displacement fell below
our detection limit. The black circles indicate the theoretical threshold for the onset of motion and the black
solid line represents the polynomial approximation (3.10). Below this line, the grey area corresponds to the
region of parameters where the steady rising of a bubble is not possible according to our theoretical analysis.
(b) Velocity of the bubble as a function of the tilt angle α for various Bond numbers. The circles are the
experimental points while for each Bond number, the solid line is described by (3.13), using the corresponding
experimental value of Bo reported above each panel. No fit parameter is used here: the values of β(α) and
Boc(α) in (3.13) are those displayed in figure 10. The dotted lines also represent the prediction (3.13), but for
Bo ± Bo, where Bo accounts for the ±0.05 mm uncertainty on the tube inner diameters. Here, the marker
size represents the maximal measurement uncertainty on the bubble velocity.

simplified, two-dimensional description of the thin-film region is acceptable, a proper
characterization of the phenomenon requires accounting for the three-dimensional shape
of the static cap.

We can now rationalize the theoretical and experimental results: the increase in
transversal acceleration due to the tilt angle tends to increase the film thickness at the
tongue of the static cap, enabling higher velocities within the tube for the same axial
gravity. However, tilting the tube decreases the driving buoyancy force, which in turn
reduces the bubble velocity. The interplay between these two effects leads to the observed
non-monotonic dependency of the rising velocity on the tilt angle. In the limit case α → 0◦
(horizontal tube), there is no motion within the tube since the driving force disappears.

4. Conclusion

In this study, we investigated theoretically and experimentally two different strategies
aimed at enabling the motion of long air bubbles trapped in narrow, sealed capillaries
partially filled with a viscous liquid. Both strategies, namely centrifugating the tube or
tilting it with respect to its central axis, amount to modifying the pressure distribution in
the film surrounding the bubble by means of an external force field (centrifugal force or
tilted gravity). This impacts both the shape of the static cap of the bubble, and the profile
of the liquid–air interface in the thin-film region. In particular, the resulting pressure
gradients lead in both cases to the thickening of the lubricating film, thus enabling bubble
ascent. The threshold for the onset of motion and the rising velocity above threshold
as functions of the rotational speed and of tilt angle, respectively, are retrieved by the
matching of the static cap and thin-film profiles, which conditions the steady ascent of
the bubble. Remarkably, the matching conditions in terms of film thickness and slope at
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the inflection point are in both cases the same as described in Bretherton (1961) for the
classical vertical setting (without rotation). However, both centrifugation and inclination
alter the inner region solution and the static cap profile, making this matching possible
for smaller Bond numbers. Thus, tunable parameters such as the rotational speed or the
tilt angle can effectively lower the threshold for the onset of motion, thus allowing the
transport of bubbles even in very narrow capillaries.

The first part of this study was dedicated to the case of a vertical tube in rotation around
its central symmetry axis. We extended Bretherton’s analysis (Bretherton 1961) to account
for the radial pressure gradient resulting from the tube centrifugation. By computing the
shape of the tip of the bubble and solving the lubrication equation describing the thin-film
region, we could derive a matching condition yielding a theoretical prediction for the
ascent velocity of the bubble, together with a new threshold for the onset of motion.
Our theoretical findings highlight that centrifugating the tube acts as a downward shift
on the critical bubble confinement. Our experimental campaign corroborated this analysis
and confirmed the relevance of this strategy for releasing bubbles trapped in very narrow
capillaries.

In the second part, we explored how tilting the tube with respect to gravity could
influence the transport of the bubble trapped inside. The three-dimensional static cap
shape of the bubble was computed numerically, while the thin-film region was assumed
to be axisymmetric. By matching these profiles at the point of vanishing radial curvature,
we could derive a prediction for the steady velocity of the bubble, which can only hold
if the inner radius is larger than an angle-dependent critical value. This threshold varies
non-monotonically with the tilt angle, with a minimum reached about αopt ≈ 48◦. Those
predictions, although relying on a simplified description of the thin-film region, align well
with our experimental findings.

Overall, these strategies seem well suited to many microfluidics applications where
it is instrumental to get rid of trapped bubbles, without compromising the integrity
of the capillary. The use of a tunable external force field provides a practical way to
precisely monitor the motion of long bubbles. For further practical uses, we recall here
the approximated expressions of the thresholds derived during this study:

Boc(Ce) ≈ 0.842 − 0.295 Ce + 0.020 Ce2 for centrifugated tubes and

Boc(α) ≈ 0.54
[

1 + 0.5
( π

180

)2
(α − 48◦)2 +

( π

180

)4
(α − 48◦)4

]
for tilted tubes.

⎫⎬
⎭

(4.1)

At a more fundamental level, these strategies provide an interesting framework to
examine the infinitely slow dynamics of pinch-off, a phenomenon explored theoretically
by Lamstaes & Eggers (2017) and experimentally investigated by Dhaouadi & Kolinski
(2019) in capillary tubes with inner radii R < Rc. For instance, starting from a moving
bubble within a rotating capillary and subsequently halting the rotation offers a practical
means to establish a precisely defined initial condition, from which the pinching process
starts.
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Appendix A. Derivation of the thin-film velocity profile for the centrifugal and tilted
cases

A.1. Thin-film velocity profile in a centrifugated tube
Here, we derive the velocity profile in the thin-film region when the (vertical) tube is
rotated around its central axis at angular frequency ω. In the rotating reference frame,
translating with the bubble at steady velocity Ubez, the stationary Navier–Stokes equations
are written as

∇ · u = 0, ρ[(u · ∇)u + 2Ω × u] = −∇p − ρΩ × (Ω × r) + μu + ρg, (A1)

where Ω = ωez is the rotation vector.
We introduce the dimensionless variables ū, z̄, r̄ and p̄, such that u = Ubū, z = Rz̄,

r = Rr̄ and p = πp̄, where π = ρωRUb. The dimensionless Navier–Stokes equations read

∇ · ū = 0, Ro(ū · ∇)ū + 2ez × ū = −∇p̄ − 1
Ro

ez × (ez × r̄) + Eū − g
ωUb

ez,

(A2)
where Ro = Ub/ωR is the Rossby number and E = ν/ωR2 is the Ekman number. In the
experiments presented in this study, Ro � 1 and the nonlinear terms of the Navier–Stokes
equation can therefore be neglected. Under these assumptions, and enforcing axisymmetry,
the stationary Navier–Stokes equations in cylindrical coordinates are

0 = 1
r

∂

∂r
(rur) + ∂uz

∂z
, (A3)

−2ρωuθ = −∂p
∂r

+ ρω2r + μ

[
∂

∂r

(
1
r

∂

∂r
(rur)

)
+ ∂2ur

∂z2

]
, (A4)

2ρωur = μ

[
∂

∂r

(
1
r

∂

∂r
(ruθ )

)
+ ∂2uθ

∂z2

]
, (A5)

0 = −∂p
∂z

+ μ

[
1
r

∂

∂r

(
r
∂uz

∂r

)
+ ∂2uz

∂z2

]
− ρg. (A6)

Furthermore, in cylindrical coordinates, the stress tensor is written as

σ =

⎛
⎜⎜⎜⎜⎜⎝

−p + 2μ
∂ur

∂r
μr

∂

∂r

(uθ

r

)
μ

(
∂ur

∂z
+ ∂uz

∂r

)
μr

∂

∂r

(uθ

r

)
−p + 2μ

r
ur μ

∂uθ

∂z

μ

(
∂ur

∂z
+ ∂uz

∂r

)
μ

∂uθ

∂z
−p + 2μ

∂uz

∂z

⎞
⎟⎟⎟⎟⎟⎠ , (A7)

and the vector normal to the interface is n = (1/

√
1 + r′

1(z)
2)(−1, 0, r′

1(z))
T.
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g ez
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ω

Figure 13. Sketch of the upper part of a long bubble in a sealed vertical tube, rotating around its symmetry
axis at angular velocity ω. The flow around the bubble is first described in cylindrical coordinates (r, θ, z),
where ez is aligned with the tube axis. We focus on the thin-film region, which can be considered as planar
instead of annular, and describe then the lubricating film in Cartesian coordinates (x, y = R − r, z).

Therefore, the dynamic and kinematic boundary conditions at the fluid–air interface are

γ κ = ( p − pair)(1 + r′
1(z)

2) − 2μ

[
∂ur

∂r
+ r′

1(z)
2 ∂uz

∂z

]
+ 2μr′

1(z)
[
∂ur

∂z
+ ∂uz

∂r

]
, (A8)

0 = 2r′
1(z)

[
∂ur

∂r
− ∂uz

∂z

]
+ (1 − r′

1(z)
2)

[
∂ur

∂z
+ ∂uz

∂r

]
, (A9)

where κ = −1/(r1(z)
√

1 + r′
1(z)

2) + r′′
1(z)/(1 + r′

1(z)
2)3/2 is the curvature.

Finally, the no-slip boundary condition at the solid wall implies uz(r = R) = −Ub.

A.1.1. Change of coordinates
In the thin-film region, the film thickness is very small compared with the radius, so
that the flow can be treated as if the region were planar, instead of annular. Accordingly,
we describe the flow in the Cartesian coordinate system (x, y = R − r, z); see figure 13.
Furthermore, we introduce the modified pressure field: P = p + ρω2Ry + ρgz. In this
system of coordinates, the Navier–Stokes equation become

0 = ∂uy

∂y
+ ∂uz

∂z
− uy

R − y
, (A10)

−2ρωux = ∂P
∂y

− ρω2y + μ

[
1

R − y
∂uy

∂y
+ uy

(R − y)2 − ∂2uy

∂y2 − ∂2uy

∂z2

]
, (A11)

−2ρωuy = μ

[
− 1

R − y
∂ux

∂y
− ux

(R − y)2 + ∂2ux

∂y2 + ∂2ux

∂z2

]
, (A12)

0 = −∂P
∂z

+ μ

[
− 1

R − y
∂uz

∂y
+ ∂2uz

∂y2 + ∂2uz

∂z2

]
. (A13)
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Likewise, the dynamic and kinematic boundary conditions become

γ κ = (P − Pair)(1 + y′
1(z)

2) − 2μ

[
∂uy

∂y
+ y′

1(z)
2 ∂uz

∂z

]
+ 2μy′

1(z)
[
∂uy

∂z
+ ∂uz

∂y

]
,

(A14)

0 = 2y′
1(z)

[
∂uy

∂y
− ∂uz

∂z

]
+ (1 − y′

1(z)
2)

[
∂uy

∂z
+ ∂uz

∂y

]
, (A15)

where κ = −1/((R − y1(z))
√

1 + y′
1(z)

2) − y′′
1(z)/(1 + y′

1(z)
2)3/2.

A.1.2. Lubrication approximation
We non-dimensionalize as follows: uz = Ubuz, uy = Uyuy, ux = Uxux, P = P0P̄, y =
bȳ, y1 = by1, z = Rz̄, where ε = b/R � 1. According to the least degeneracy principle
applied to the mass conservation equation, Uy = εUb and the mass conservation equation
becomes ∂uy/∂ ȳ + ∂uz/∂ z̄ = 0.

Furthermore, upon introduction of the dimensionless fields and variables, the
momentum conservation equations are written as

−2ρωUxux = P0

b
∂P̄
∂ ȳ

− ρω2bȳ

+ ε
μUb

b2

[
ε

1 − εȳ
∂uy

∂ ȳ
+ ε2 uy

(1 − εȳ)2 − ∂2uy

∂ ȳ2 − ε2 ∂2uy

∂ z̄2

]
, (A16)

−2ρωεUbuy = μUx

b2

[
− ε

1 − εȳ
∂ux

∂ ȳ
− ε2 ux

(1 − εȳ)2 + ∂2ux

∂ ȳ2 + ε2 ∂2ux

∂ z̄2

]
, (A17)

0 = −P0

R
∂P̄
∂ z̄

+ μUb

b2

[
− ε

1 − εȳ
∂uz

∂ ȳ
+ ∂2uz

∂ ȳ2 + ε2 ∂2uz

∂ z̄2

]
. (A18)

The least degeneracy principle applied to the momentum conservation equations along
the x and z axes implies that Ux = 2ερωUbb2/μ and P0 = μUb/bε.

Thus, the momentum conservation equations along the y axis become

− 4ε Re ux = Ca
ε4 Ce

∂P̄
∂ ȳ

− ȳ + Ca
ε2 Ce

[
ε

1 − εȳ
∂uy

∂ ȳ
+ ε2 uy

(1 − εȳ)2 − ∂2uy

∂ ȳ2 − ε2 ∂2uy

∂ z̄2

]
,

(A19)
with Re = ρUbb/μ, Ca = μUb/γ and Ce = ρω2R3/γ . From the volume conservation
constraint ρgb3/3μUb = R/2, we deduce that Ca/Ce ∼ ε3(2g/3ω2R) = O(ε3). Thus, the
system of equations reduces to

0 = ∂uy

∂ ȳ
+ ∂uz

∂ z̄
, 0 = ∂P̄

∂ ȳ
, 0 = −∂P̄

∂ z̄
+ ∂2uz

∂ ȳ2 . (A20a–c)
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The dynamic and kinematic boundary conditions are

γ κ = μUb

bε
(P̄ − P̄air)(1 + ε2y1

′(z̄)2) − 2ε
μUb

b

[
∂uy

∂ ȳ
+ ε2y1

′(z̄)2 ∂uz

∂ z̄

]

+ 2ε
μUb

b
y1

′(z̄)
[
ε2 ∂uy

∂ z̄
+ ∂uz

∂ ȳ

]
, (A21)

0 = 2ε2y1
′(z̄)

[
∂uy

∂ ȳ
− ∂uz

∂ z̄

]
+ (1 − ε2y1

′(z̄)2)

[
ε2 ∂uy

∂ z̄
+ ∂uz

∂ ȳ

]
. (A22)

Thus, including the no-slip boundary condition at the solid wall, the boundary
conditions at leading order are

P̄ − P̄air = γ κ
εb

μUb
,

∂uz

∂ ȳ
= 0, uz(ȳ = 0) = −1. (A23a–c)

Finally, going back to the dimensional form, and reintroducing the original pressure
field p = P − ρω2Ry − ρgz, the full problem is written as

0 = ∂uy

∂y
+ ∂uz

∂z
,

∂p
∂y

= −ρω2R,
∂p
∂z

= μ
∂2uz

∂y2 − ρg, (A24a–c)

and is complemented by the following boundary conditions:

p( y = y1, z) − pair = γ κ,
∂uz

∂y

∣∣∣∣
y=y1

= 0, uz( y = 0, z) = −Ub. (A25a–c)

The integration of the pressure field is straightforward and leads to

p( y, z) = pair + γ κ + ρω2R( y1(z) − y). (A26)

Finally, by injecting this pressure field in the axial component of the momentum equation,
we can derive the following equation for the velocity in the thin film:

μ
∂2uz

∂y2 = γ κ ′ + ρω2Ry′
1 + ρg, (A27)

which results in

uz( y, z) = −Ub + γ

2μ

(
κ ′ + ρω2R

γ
y′

1 + ρg
γ

)
( y2 − 2y1y). (A28)

A.2. Thin-film velocity profile in a tilted tube
We now aim at deriving the velocity profile in the thin-film region when the tube is tilted
by an angle α. Since the Reynolds number Re = ρUbb/μ characterizing the flow in the
thin-film region is very small, we can safely neglect the effect of inertia. In the stationary
cylindrical system of coordinates (r, θ, z), translating with the bubble at steady velocity

999 A9-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

74
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.746


A. Marcotte and others

α

g
ez

ez

ex

ez
ey

er

er
eθ

eθ

(b)(a)

Figure 14. (a) Sketch of the upper part of a long bubble in a sealed tube tilted by an angle α with respect
to the horizontal plane. The flow in the thin lubricating film is described in cylindrical coordinates (r, θ, z),
where ez is the direction aligned with the tube axis, such that ez·g = −g sin(α). The origin of θ is chosen such
that er(θ = 0)·g = g cos(α). (b) Sketch of the cross-section of the channel and of the bubble. We focus on the
region in the vicinity of the plane θ = 0, described in Cartesian coordinates (x, y = R − r, z), where ex·g = 0,
ey·g = −g cos(α) and ez·g = −g sin(α).

Ubez, where z is aligned with the central axis of the (tilted) tube (see figure 14a), the
Navier–Stokes equations read

0 = 1
r

∂

∂r
(rur) + 1

r
∂uθ

∂θ
+ ∂uz

∂z
, (A29)

0 = −∂p
∂r

+ μ

[
∂

∂r

(
1
r

∂

∂r
(rur)

)
+ 1

r2
∂2ur

∂θ2 − 2
r2

∂uθ

∂θ
+ ∂2ur

∂z2

]
+ ρg cos(θ) cos(α),

(A30)

0 = −∂p
∂θ

+ μ

[
∂

∂r

(
1
r

∂

∂r
(ruθ )

)
+ 1

r2
∂2uθ

∂θ2 + 2
r2

∂ur

∂θ
+ ∂2uθ

∂z2

]
− ρg sin(θ) cos(α),

(A31)

0 = −∂p
∂z

+ μ

[
1
r

∂

∂r
(r

∂uz

∂r
) + 1

r2
∂2uz

∂θ2 + ∂2uz

∂z2

]
− ρg sin(α). (A32)

We know from our analysis of the three-dimensional cap profile that the matching with
the thin-film region profile should be imposed at the tip of the tongue exhibited by the
static cap, i.e. at the point of coordinates (r = R, θ = 0, h(R, 0)). We thus restrict the study
of the thin-film solution to the plane (θ = 0); see figure 14(b). By assuming a vanishing
azimuthal curvature ∼1/R, the region of size ∼R dθ in the close vicinity of θ = 0 can be
considered infinite. Yet, in the vicinity of θ = 0, the derivative with respect to θ should
vanish by symmetry. Therefore, in this region, the Navier–Stokes equations reduce to

0 = 1
r

∂

∂r
(rur) + ∂uz

∂z
, (A33)

0 = −∂p
∂r

+ μ

[
∂

∂r

(
1
r

∂

∂r
(rur)

)
+ ∂2ur

∂z2

]
+ ρg cos(α), (A34)

0 = μ

[
∂

∂r

(
1
r

∂

∂r
(ruθ )

)
+ ∂2uθ

∂z2

]
, (A35)

0 = −∂p
∂z

+ μ

[
1
r

∂

∂r
(r

∂uz

∂r
) + ∂2uz

∂z2

]
− ρg sin(α). (A36)
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These equations are complemented by the following dynamic and kinematic boundary
conditions:

γ κ = ( p − pair)(1 + r′
1(z)

2) − 2μ

[
∂ur

∂r
+ r′

1(z)
2 ∂uz

∂z

]
+ 2μr′

1(z)
[
∂ur

∂z
+ ∂uz

∂r

]
,

(A37)

0 = 2r′
1(z)

[
∂ur

∂r
− ∂uz

∂z

]
+ (1 − r′

1(z)
2)

[
∂ur

∂z
+ ∂uz

∂r

]
, (A38)

where κ = −1/(r1(z)
√

1 + r′
1(z)

2) + r′′
1(z)/(1 + r′

1(z)
2)3/2 is the curvature, and, by the

no-slip boundary condition at the solid wall, uz(r = R) = −Ub.

A.2.1. Change of coordinates
As before, we neglect curvature in the azimuthal direction, and describe the thin-film
region within the Cartesian coordinate system (x, y = R − r, z); see figure 14(b).
Furthermore, we introduce the modified pressure field: P = p + ρg cos(α)y + ρg sin(α)z.
In this system of coordinates, the mass conservation and momentum conservation
equations along the y and z directions become

0 = ∂uy

∂y
+ ∂uz

∂z
− uy

R − y
, (A39)

0 = ∂P
∂y

+ μ

[
1

R − y
∂uy

∂y
+ uy

(R − y)2 − ∂2uy

∂y2 − ∂2uy

∂z2

]
, (A40)

0 = −∂P
∂z

+ μ

[
− 1

R − y
∂uz

∂y
+ ∂2uz

∂y2 + ∂2uz

∂z2

]
. (A41)

Likewise, the dynamic and kinematic boundary conditions become

γ κ = (P − Pair)(1 + y′
1(z)

2) − 2μ

[
∂uy

∂y
+ y′

1(z)
2 ∂uz

∂z

]
+ 2μy′

1(z)
[
∂uy

∂z
+ ∂uz

∂y

]
,

(A42)

0 = 2y′
1(z)

[
∂uy

∂y
− ∂uz

∂z

]
+ (1 − y′

1(z)
2)

[
∂uy

∂z
+ ∂uz

∂y

]
, (A43)

where κ = −1/((R − y1(z))
√

1 + y′
1(z)

2) − y′′
1(z)/(1 + y′

1(z)
2)3/2.

A.2.2. Lubrication approximation
We non-dimensionalize as follows: uz = Ubuz, uy = Uyuy, P = P0P̄, y = bȳ, y1 = by1,
z = Rz̄, where ε = b/R � 1. According to the least degeneracy principle applied to the
mass conservation equation, Uy = εUb and the mass conservation equation becomes 0 =
∂uy/∂ ȳ + ∂uz/∂ z̄.
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Furthermore, upon introduction of the dimensionless fields and variables, the
momentum conservation equations along the y and z directions are written as

0 = P0

b
∂P̄
∂ ȳ

+ εμUb

b2

[
ε

1 − εȳ
∂uy

∂ ȳ
+ ε2

(1 − εȳ)2 uy − ∂2uy

∂ ȳ2 − ε2 ∂2uy

∂ z̄2

]
, (A44)

0 = −P0

R
∂P̄
∂ z̄

+ μUb

b2

[
− ε

1 − εȳ
∂uz

∂ ȳ
+ ∂2uz

∂ ȳ2 + ε2 ∂2uz

∂ z̄2

]
. (A45)

The least degeneracy principle applied to the momentum conservation equation along
the z axis implies that P0 = μUb/bε. At leading order, the problem reduces then to

0 = ∂uy

∂ ȳ
+ ∂uz

∂ z̄
, 0 = ∂P̄

∂ ȳ
, 0 = −∂P̄

∂ z̄
+ ∂2uz

∂ ȳ2 . (A46a–c)

The dynamic and kinematic boundary conditions are

γ κ = μUb

bε
(P̄ − P̄air)(1 + ε2y1

′(z̄)2) − 2ε
μUb

b

[
∂uy

∂ ȳ
+ ε2y1

′(z̄)2 ∂uz

∂ z̄

]

+ 2ε
μUb

b
y1

′(z̄)
[
ε2 ∂uy

∂ z̄
+ ∂uz

∂ ȳ

]
, (A47)

0 = 2ε2y1
′(z̄)

[
∂uy

∂ ȳ
− ∂uz

∂ z̄

]
+ (1 − ε2y1

′(z̄)2)

[
ε2 ∂uy

∂ z̄
+ ∂uz

∂ ȳ

]
. (A48)

Therefore at leading order, and including the no-slip boundary condition at the solid
wall, the boundary conditions are written as

P̄ − P̄air = γ κ
εb

μUb
,

∂uz

∂ ȳ
= 0, uz(ȳ = 0) = −1. (A49a–c)

Finally, going back to the dimensional form, and reintroducing the original pressure
field p = P − ρg cos(α)y − ρg sin(α)z, the full problem reduces to

0 = ∂uy

∂y
+ ∂uz

∂z
,

∂p
∂y

= −ρg cos(α),
∂p
∂z

= μ
∂2uz

∂y2 − ρg sin(α), (A50a–c)

and is complemented by the following boundary conditions:

p( y = y1, z) − pair = γ κ,
∂uz

∂y

∣∣∣∣
y=y1

= 0, uz( y = 0, z) = −Ub. (A51a–c)

The pressure field integrates straightforwardly into

p( y, z) = pair + γ κ + ρg cos(α)( y1(z) − y). (A52)

Finally, by injecting this pressure field in the axial component of the momentum equation,
we can derive the following equation for the velocity in the thin film:

μ
∂2uz

∂y2 = γ κ ′ + ρg cos(α)y′
1 + ρg sin(α), (A53)

which leads to the velocity profile:

uz( y, z) = −Ub + γ

2μ

(
κ ′ + ρg cos(α)

γ
y′

1 + ρg sin(α)

γ

)
( y2 − 2y1y). (A54)
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Appendix B. Derivation of the equilibrium equation for the static cap

Following previous works (see e.g. Manning et al. 2011; Lubbers et al. 2014; Rascón et al.
2017), we derive from energy principles the three-dimensional equilibrium equation for
the equilibrium of the static cap. We introduce the coordinate system (x, y, z), with the z
axis aligned with the central tube axis and the x axis aligned with the gravity component
normal to the z axis (so that ex · g = g cos(α); see figure 8a). The location of the air–liquid
interface is denoted by h(x, y).

The Gibbs free energy associated with the cap interface can be written as
E(h) = γA + G, (B1)

where the first term on the right-hand side is the surface energy. As in Rascón et al. (2017),
the surface A is computed as

A =
∫

Ω

√
1 + (∇h)2 dx dy, (B2)

with Ω the cross-section of the capillary. The term G represents in turn the gravitational
potential energy, which in general form reads (Pitts 1973)

G = −
∫

V
ρg · r dx dy dz, r = (x, y, z), g = g(cos α, 0, − sin α), (B3)

where the volume V is given by

V =
∫

Ω

dx dyh(x, y). (B4)

Upon introduction of the Lagrange multiplier λ to ensure volume conservation, the
functional to be minimized to obtain equilibrium reads

F(h) = γ

∫
Ω

√
1 + (∇h)2 dx dy + ρg

∫
V
(−x cos α + z sin α) dx dy dz − λ

∫
V

dxdy dz.

(B5)
Upon integration along the z direction between 0 and h:

F(h) = γ

∫
Ω

√
1 + (∇h)2 dx dy + ρg

∫
Ω

(
−x cos α + 1

2
h sin α

)
h dx dy − λ

∫
Ω

h dx dy.

(B6)
Formal minimization of the functional F(h) with respect to h leads to the following partial
differential equation:

γ∇ ·
(

∇h√
1 + (∇h)2

)
= ρg(cos(α)x − h sin(α)) + λ, (B7)

with the constant slope condition at the wall:
∇h√

1 + (∇h)2
· n = − cos(φ), (B8)

where n is the unit exterior normal to the tube wall. The value of λ can be set by integrating
the resulting equilibrium equation within the whole domain, leading to the following
expression:

λ = −2γ

R
cos(φ) + ρgh0 sin α, (B9)

where h0 = V/Ω is the reference average value of the static cap height. By imposing
λ = 0, the reference height reads h0 = 2�2

c cos(φ)/R sin α, reminiscent of the well-known
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Jurin height. Upon non-dimensionalization with the tube radius R, one obtains the
equilibrium equation (3.1) reported in the main text.
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JENSEN, M.J., GORANOVIĆ, G. & BRUUS, H. 2004 The clogging pressure of bubbles in hydrophilic
microchannel contractions. J. Micromech. Microeng. 14, 876.

KAIGALA, G.V., LOVCHIK, R.D., DRECHSLER, U. & DELAMARCHE, E. 2011 A vertical microfluidic probe.
Langmuir 27, 5686–5693.

KROGMAN, K.C., DRUFFEL, T. & SUNKARA, M.K. 2005 Ultra-high mobility transparent organic thin film
transistors grown by an off-centre spin-coating method. Nanotechnology 16 (7), S338.

KUBIE, J. 2000 Velocity of long bubbles in horizontally oscillating vertical pipes. Intl J. Multiphase Flow 26,
339–349.

LAMSTAES, C. & EGGERS, J. 2017 Arrested bubble rise in a narrow tube. J. Stat. Phys. 167, 656–682.
LI, Z., LI, G., LI, Y., CHEN, Y., LI, J. & CHEN, H. 2021 Flow field around bubbles on formation of air

embolism in small vessels. Proc. Natl Acad. Sci. USA 18, e2025406118.
LITTERST, C., ECCARIUS, S., HEBLING, C., ZENGERLE, R. & KOLTAY, P. 2006 Increasing μDMFC

efficiency by passive CO2 bubble removal and discontinuous operation. J. Micromech. Microeng. 16,
248–253.

LUBBERS, L.A., WEIJS, J.H., BOTTO, L., DAS, S., ANDREOTTI, B. & SNOEIJER, J.H. 2014 Drops on soft
solids: free energy and double transition of contact angles. J. Fluid Mech. 747, R1.

MADANI, S., CABALLINA, O. & SOUHAR, M. 2009 Unsteady dynamics of Taylor bubble rising in vertical
oscillating tubes. Intl J. Multiphase Flow 35, 363–375.

MADANI, S., CABALLINA, O. & SOUHAR, M. 2012 Some investigations on the mean and fluctuating
velocities of an oscillating Taylor bubble. Nucl. Engng Des. 252, 135–143.

MAGNINI, M., KHODAPARAST, S., MATAR, O.K., STONE, H.A. & THOME, J.R. 2019 Dynamics of long
gas bubbles rising in a vertical tube in a cocurrent liquid flow. Phys. Rev. Fluids 4, 023601.

MANERI, C.C. & ZUBER, N. 1974 An experimental study of plane bubbles rising at inclination. Intl J. Multiph.
Flow 1, 623–645.

MANNING, R., COLLICOTT, S. & FINN, R. 2011 Occlusion criteria in tubes under transverse body forces.
J. Fluid Mech. 682, 397–414.

MARTHELOT, J., STRONG, E.F. & BRUN, P.-T. 2018 Designing soft materials with interfacial instabilities in
liquid films. Nat. Commun. 9 (1), 4477.

OLDENBURG, C.M. & LEWICKI, J.L. 2006 On leakage and seepage of co2 from geologic storage sites into
surface water. Environ. Geol. 50, 691–705.

PITTS, E. 1973 The stability of pendent liquid drops. Part 1. Drops formed in a narrow gap. J. Fluid Mech. 59,
753.

PRINCEN, H.M., ZIA, I.Y.Z. & MASON, S.G. 1967 Measurement of interfacial tension from the shape of a
rotating drop. J. Colloid Interface Sci. 23 (1), 99–107.

RASCÓN, C., PARRY, A. & AARTS, D. 2017 Correction for Rascón et al., geometry-induced capillary
emptying. Proc. Natl Acad. Sci. USA 114, E3162–E3162.

RIETZ, M., SCHEID, B., GALLAIRE, F., KOFMAN, N., KNEER, R. & ROHLFS, W. 2017 Dynamics of falling
films on the outside of a vertical rotating cylinder: waves, rivulets and dripping transitions. J. Fluid Mech.
832, 189–211.

ROSENTHAL, D.K. 1962 The shape and stability of a bubble at the axis of a rotating liquid. J. Fluid Mech. 12,
358–366.

SHOSHO, C.E. & RYA, M.E. 2001 An experimental study of the motion of long bubbles in inclined tubes.
Chem. Engng Sci. 56, 2191–2204.

VAN STEIJN, V., KREUTZER, M.T. & KLEIJN, C.R. 2008 Velocity fluctuations of segmented flow in
microchannels. Chem, Engng J. 135, 159–165.

STONE, H.A., STROOCK, A.D. & AJDARI, A. 2004 Engineering flows in small devices: microfluidics toward
a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411.

SUNG, J.H. & SCHULER, M.L. 2009 Prevention of air bubble formation in a microfluidic perfusion cell
culture system using a microscale bubble trap. Biomed. Microdevices 11, 731–738.

SVEDBERG, T. & FÅHRAEUS, R. 1926 A new method for the determination of the molecular weight of the
proteins. J. Am. Chem. Soc. 48 (2), 430–438.

THAN, P., PREZIOSI, L., JOSEPHL, D.D. & ARNEY, M. 1988 Measurement of interfacial tension between
immiscible liquids with the spinning road tensiometer. J. Colloid Interface Sci. 124 (2), 552–559.

TORZA, S. 1975 The rotating-bubble apparatus. Rev. Sci. Instrum. 46, 778–783.
TURANO, E., CURCIO, S., DE PAOLA, M.G., CALABRÒ, V. & IORIO, G. 2002 Ultra-high mobility

transparent organic thin film transistors grown by an off-centre spin-coating method. J. Membr. Sci. 209
(2), 519–531.

VONNEGUT, B. 1942 Rotating bubble method for the determination of surface and interfacial tensions. Rev.
Sci. Instrum. 13 (1), 6–9.

999 A9-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

74
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.746


A. Marcotte and others

WANG, S. & CLARENS, A.F. 2012 The effects of CO2-brine rheology on leakage processes in geologic carbon
sequestration. Water Resour. Res. 48, W08518.

WEBER, M.E., ALARIE, A. & RYAN, M.E. 1986 Velocities of extended bubbles in inclined tubes. Chem.
Engng Sci. 41, 2235–2240.

WHITE, E.T. & BEARDMORE, R.H. 1962 The velocity of rise of single cylindrical air bubbles through liquids
contained in vertical tubes. Chem. Engng Sci. 17, 351–361.

YU, Y.E., KHODAPARAST, S. & STONE, H.A. 2018 Separation of particles by size from a suspension using
the motion of a confined bubble. Appl. Phys. Lett. 112, 181604.

YU, Y.E., MAGNINI, M., ZHU, L., SHIM, S. & STONE, H.A. 2021 Non-unique bubble dynamics in a vertical
capillary with an external flow. J. Fluid Mech. 911, A34.

YUAN, Y., GIRI, G., AYZNER, A.L., ZOOMBELT, A.P., MANNSFELD, S.C.B., CHEN, J., NORDLUND, D,
TONEY, M.F., HUANG, J & BAO, Z. 2014 Ultra-high mobility transparent organic thin film transistors
grown by an off-centre spin-coating method. Nat. Commun. 5 (1), 3005.

ZHOU, G. & PROSPERETTI, A. 2021 Faster Taylor bubbles. J. Fluid Mech. 920, R2.
ZHOU, G. & PROSPERETTI, A. 2024 Volume oscillations slow down a rising Taylor bubble. J. Fluid Mech.

978, A13.
ZUKOSKI, E.E. 1966 Influence of viscosity, surface tension, and inclination angle on motion of long bubbles

in closed tubes. J. Fluid Mech. 25, 821–837.

999 A9-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

74
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.746

	1 Introduction
	2 Effect of centrifugation
	2.1 Theoretical prediction for the threshold and rising velocity
	2.1.1 The static cap
	2.1.2 The thin-film region
	2.1.3 Matching

	2.2 Experiments on centrifugated bubbles
	2.2.1 Experimental set-up and procedure
	2.2.2 Experimental results and comparison with the theoretical threshold


	3 Effect of tilt
	3.1 Theoretical prediction for the threshold and rising velocity
	3.1.1 The three-dimensional static cap
	3.1.2 The thin-film region and matching

	3.2 Experiments on tilted bubbles
	3.2.1 Experimental set-up and procedure
	3.2.2 Experimental results and comparison with the theoretical prediction


	4 Conclusion
	Appendix A. Derivation of the thin-film velocity profile for the centrifugal and tilted cases
	A.1 Thin-film velocity profile in a centrifugated tube
	A.1.1 Change of coordinates
	A.1.2 Lubrication approximation

	A.2 Thin-film velocity profile in a tilted tube
	A.2.1 Change of coordinates
	A.2.2 Lubrication approximation


	Appendix B. Derivation of the equilibrium equation for the static cap
	References

