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Complex Uniform Convexity
and Riesz Measures

Gordon Blower and Thomas Ransford

Abstract. The norm on a Banach space gives rise to a subharmonic function on the complex plane for

which the distributional Laplacian gives a Riesz measure. This measure is calculated explicitly here for

Lebesgue Lp spaces and the von Neumann-Schatten trace ideals. Banach spaces that are q-uniformly

PL-convex in the sense of Davis, Garling and Tomczak-Jaegermann are characterized in terms of the

mass distribution of this measure. This gives a new proof that the trace ideals c p are 2-uniformly

PL-convex for 1 ≤ p ≤ 2.

1 Riesz Measures for Banach Spaces

Let X be a complex Banach space. A function ϕ : X → [−∞,∞) is said to be

plurisubharmonic if it is upper semicontinuous and if

(1.1) ϕ(x) ≤
1

2π

∫ 2π

0

ϕ(x + eiθ y) dθ (x, y ∈ X).

When logϕ is also plurisubharmonic, one says that ϕ is log-plurisubharmonic. If ϕ is

plurisubharmonic, and F : D → X is holomorphic where D = {ζ : |ζ| < 1}, then

ϕ
(

F(ζ)
)

is subharmonic.

For example, the norm itself is log-plurisubharmonic. Equivalently, u(ζ) =

log ‖x + ζ y‖ defines a subharmonic function on C for each x and y in X. (To see

this, one uses the Hahn-Banach theorem to show that

(1.2) u(ζ) = sup{log
∣

∣ 〈x + ζ y | x∗〉
∣

∣ : x∗ ∈ Ball(X∗)},

where log
∣

∣ 〈x + ζ y | x∗〉
∣

∣ , is a subharmonic function on the complex plane [20].) It

follows from Jensen’s inequality applied to ept that, for 0 < p <∞,

(1.3)
1

2π

∫ 2π

0

‖x + eiθ y‖p dθ ≥ ‖x‖p (x, y ∈ X).

The extent to which this inequality is strict was used by Davis, Garling, and Tomczak-

Jaegermann [12] as a measure of the convexity of the norm. They introduced the

modulus of complex convexity:
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(1.4) HX
p (t) = inf

{( 1

2π

∫ 2π

0

‖x + teiθ y‖p dθ
) 1/p

− ‖x‖ : ‖x‖ = ‖y‖ = 1
}

.

Such an X is q-uniformly PL-convex if the modulus of uniform PL-convexity is of

power type q; that is, if there exists δ(p,X) > 0 such that HX
p (t) ≥ δ(p,X)tq for all

0 < t < 1 where q < ∞. It turns out that the smallest such q is independent of the

choice of p, and that necessarily q ≥ 2 (see [12], Theorem 2.4 and Proposition 3.1).

One can characterize this condition in terms of analytic martingales, possibly after

introducing an equivalent norm on such an X; see [12, 13, 25]. We shall estimate

HX
p (t) for various X using Riesz measures, which we shall calculate explicitly.

Let Ω be a plane domain and let u be a subharmonic function on Ω with u 6≡
−∞. Then the distributional Laplacian ∆u of u is a positive Radon measure. When

multiplied by 1/2π it is also called the Riesz measure of u. In complex notation, which

will be more useful for us, ∆u = 4∂̄∂u. The Laplacian measures the strictness of the

sub-mean inequality for u. This is made precise by the Poisson-Jensen formula (see

e.g. [20], Theorem 4.5.1), of which the following is the special case that we shall need.

Let u be a subharmonic function defined on an open neighbourhood of the closed

disc D̄(w, r). Then

(1.5)
1

2π

∫ 2π

0

u(w + reiθ) dθ − u(w) =
2

π

∫

D(w,r)

log
r

|ζ − w|
∂̄∂u(dζ).

Proposition 1.1 Let X be a complex Banach space and let x, y ∈ X. Then

(1.6)
1

2π

∫ 2π

0

‖x + teiθ y‖p dθ − ‖x‖p
=

2

π

∫

D(0,t)

log
t

|ζ|
∂̄∂‖x + ζ y‖p(dζ).

This follows when one applies the Poisson-Jensen formula to u(ζ) = ‖x + ζ y‖p .

This formula allows us to estimate the modulus of uniform PL-convexity directly

from a knowledge of the Riesz measure ∂̄∂‖x + ζ y‖p. Indeed, writing V p(t ; x, y) for

the right-hand side of (1.6), we have for ‖x‖ = ‖y‖ = 1, as t → 0,

( 1

2π

∫ 2π

0

‖x + teiθ y‖p dθ
) 1/p

− ‖x‖ =
(

1 + V p(t ; x, y)
) 1/p

− 1(1.7)

=
1

p
V p(t ; x, y) + O

(

V p(t ; x, y)2
)

.(1.8)

We have thereby proved the following result.

Corollary 1.2 For any complex Banach space X, the following holds:

(1.9) lim
t→0+

HX
p (t)

tq
=

1

p
lim

t→0+

( 1

tq
inf{V p(t ; x, y) : ‖x‖ = ‖y‖ = 1}

)

.

In particular, X is q-uniformly PL-convex if and only if the right-hand side of (1.9) is

strictly positive.
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The importance of this result is that, for certain interesting cases, the Laplacian

∂̄∂‖x + ζ y‖p can be calculated, or at least estimated, quite explicitly. In section two

we shall do this for the Lebesgue spaces Lp , and in section three we shall do the same

for matrices in the von Neumann-Schatten ideals cp.

In section four we shall use the basic estimates on the Riesz measures associated

with the von Neumann-Schatten norms to provide a new proof that c p has analytic

Lusin cotype 2 for 1 ≤ p ≤ 2. In [7] the authors also consider the Riesz measures

associated with the norms of certain Banach spaces in the context of analytic Lusin

cotype. In Section 5 we present further applications of our estimates on Laplacians

of matrix functions.

Note that in general it suffices to obtain lower bounds for ∂̄∂‖x + ζ y‖p for x

and y in a dense subset of the unit sphere, since if xn → x and yn → y then

∂̄∂‖xn + ζ yn‖
p → ∂̄∂‖x + ζ y‖p as measures. Certain other aspects of the theory

of complex convexity become more transparent when one considers Riesz measures.

For instance, the equivalence of the moduli of convexity HX
p for 0 < p < ∞ is

now seen to be an immediate consequence of the fact that the complex Laplacians

∂̄∂‖x + ζ y‖p (0 < p < ∞) are bounded by constant multiples of each other (since

they are just ∂̄∂epv(ζ), where v(ζ) = log ‖x + ζ y‖).

Not only do we always have q ≥ 2 in the condition defining q-uniform PL-

convexity, we also have the following stronger result.

Proposition 1.3 Let x and y be vectors in a complex Banach space. Then there exists

x ′ ∈ span {x, y} such that

(1.10)
1

2π

∫ 2π

0

‖x ′ + teiθ y‖ dθ = ‖x ′‖ + O(t2) as t → 0.

Proof Define u(ζ) = ‖x + ζ y‖, and set

(1.11) A =
1

2π

∫ 2π

0

u(eiθ) dθ − u(0).

Let B > A and set v(ζ) = u(ζ) − B|ζ|2. Then v does not satisfy the sub-mean

inequality (1.1) on the unit circle, so it is not a subharmonic function. By Blaschke’s

theorem [20, Theorem 3.7], there exists w in the unit disc such that

(1.12) lim sup
r→0+

( 1
2π

∫ 2π

0
v(w + reiθ) dθ − v(w)

r2

)

< 0.

This means that, for all sufficiently small r > 0,

1

2π

∫ 2π

0

u(w + reiθ) dθ − u(w) < Br2.

The result follows upon taking x ′ = x + wy.

Remark 1.4 It can happen that ∂̄∂‖x + ζ y‖p contains a singular part. For example,

if X = `∞2 with x = (1, 0) and y = (0, 1), then u(ζ) = ‖x + ζ y‖2
∞ = max{1, |ζ|2},
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and a calculation then shows that ∂̄∂u = µ + 2ν, where µ is Lebesgue area measure

on {ζ : |ζ| > 1} and ν is Lebesgue linear measure on {ζ : |ζ| = 1}.

Proposition 1.5 Suppose that for some x and y in a complex Banach space X, the Riesz

measure ∂̄∂‖x + ζ y‖ contains a non-zero singular part ν with respect to Lebesgue area

measure m. Then for ν-almost all ζ , the following holds:

(1.13) lim
r→0+

( 1
2π

∫ 2π

0
‖x + (ζ + reiθ)y‖ dθ − ‖x + ζ y‖

r2

)

= ∞.

Proof For ν-almost all ζ , it holds that

(1.14)
ν
(

D(ζ, r)
)

m
(

D(ζ, r)
) → ∞ as r → 0 + .

We select such a ζ and use simple estimates on (1.6) to obtain the lower bound

(1.15)
1

2π

∫ 2π

0

‖x + (ζ + reiθ)y‖ dθ − ‖x + ζ y‖ ≥
2 log 2

π
ν
(

D(ζ, r/2)
)

.

On combining (1.14) and (1.15), we obtain the required result (1.13).

However, from the point of view of complex convexity, the singular part is unim-

portant, since in Corollary 1.2 we take the infimum over x, y. So it is the absolutely

continuous part that matters. This explains the pertinence of Blaschke’s Theorem

which essentially says that, when u(ζ) = ‖x + ζ y‖,

(1.16) lim sup
r→0+

( 1
2π

∫ 2π

0
u(w + reiθ) dθ − u(w)

r2

)

≥ A for all w

if and only if

∂̄∂u ≥ Am as measures on D.

We remark that the same theorem of Blaschke was used by Haagerup to prove that

if X is 2-uniformly PL-convex, then for all x, y ∈ X,

(1.17)
1

2π

∫ 2π

0

‖x + eiθ y‖2 dθ ≥ ‖x‖2 + I2,2‖y‖2,

where I2,2 = 2 limt→0+ H2
X(t)/t2; (see [12], Proposition 2.5).

2 Riesz Measures for Lebesgue Spaces

Let dx be a positive Radon measure on a metric space S, and let Lp be the usual scale

of Lebesgue spaces for 1 ≤ p < ∞. A classical result of Mazur [18] asserts that the

norm on Lp for 1 < p < ∞ is Fréchet differentiable at all points other than the

origin. Here we shall compute the Laplacian of the norms.
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Theorem 2.1

(i) Let f and g belong to Lp where 1 ≤ p ≤ 2. Then the density of the Riesz measure

with respect to Lebesgue area measure satisfies

(2.1) ‖ f + ζg‖
2−p
Lp ∂̄∂‖ f + ζg‖

p
Lp ≥ (p2/4)‖g‖2

Lp .

(ii) The Lebesgue space Lp is 2-uniformly PL-convex for 1 ≤ p ≤ 2, and p-uniformly

PL-convex for 2 ≤ p <∞.

Proof First suppose that f and g are step functions. Then the Riesz measure of

‖ f + ζg‖
p
Lp has density

(2.2)
2

π
∂̄∂‖ f + ζg‖

p
Lp =

p2

2π

∫

S

| f (x) + ζg(x)|p−2|g(x)|2 dx

with respect to area measure on D. This follows by direct calculation of partial deriva-

tives.

Now take 1 ≤ p ≤ 2, and let f , g ∈ Lp have ‖ f ‖Lp = ‖g‖Lp = 1. One can

check that ψ(ζ) =
∫

S
| f (x) + ζg(x)|p−2|g(x)|2 dx is finite for almost all ζ and defines

a locally integrable function. Indeed, for ϕ a smooth function which is supported

inside D(0,R), we have

∫∫

D(0,R)

ϕ(ζ)ψ(ζ)m(dζ) =

∫

S

|g(x)|p

∫

D(0,R)

ϕ(ζ)

∣

∣

∣

∣

g(x)

f (x) + ζg(x)

∣

∣

∣

∣

2−p

m(dζ) dx

where we have a uniform bound on the inner integral, since

(2.3)

∫∫

D(0,R)

∣

∣

∣

∣

g(x)

f (x) + ζg(x)

∣

∣

∣

∣

2−p

m(dζ) ≤ C(p,R) <∞.

Let ( fn) and (gn) be sequences of step functions such that fn(x) → f (x) and

gn(x) → g(x) almost everywhere and in Lp as n → ∞. Then by Fatou’s lemma

we have the inequality

lim inf
n→∞

∫

S

| fn(x) + ζgn(x)|p−2|gn(x)|2 dx ≥

∫

S

| f (x) + ζg(x)|p−2|g(x)|2 dx

on the set {ζ : ψ(ζ) <∞}. Now by Hölder’s inequality we have

(2.4)
(

∫

S

| f (x) + ζg(x)|p−2|g(x)|2 dx
) p/2(

∫

S

| f (x) + ζg(x)|p dx
) (2−p)/2

≥

∫

S

|g(x)|p dx,

and likewise for the fn and gn. Now by the triangle inequality, for f and g on the unit

sphere of Lp(S) and ζ ∈ D, we have

(2.5)
(

∫

S

| f (x) + ζg(x)|p dx
) 1/p

≤ 2.
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and similarly for the fn and gn. Hence we have the distributional inequality of mea-

sures

(2.6)
2

π
∂̄∂‖ f + ζg‖

p
Lp (dζ) ≥

p2

2π
2p−2m(dζ),

since a similar inequality holds for fn + ζgn, and consequently

V (t) =
2

π

∫

D(0,t)

log
t

|w|
∂̄∂‖ f + wg‖

p
Lp (dw)(2.7)

≥
cp

2π

∫ t

0

∫ 2π

0

r log
t

r
dr dθ =

cp

4
t2.

Thus the criterion of Corollary 1.2 is satisfied.

For 2 < p <∞ we argue differently, observing that

w 7→

∫ 2π

0

|w + reiθg(x)|p−2 dθ/(2π)

is subharmonic and hence satisfies

(2.8)

∫ 2π

0

| f (x) + reiθg(x)|p−2 dθ

2π
=

∫ 2π

0

| f (x)eiθ + rg(x)|p−2 dθ

2π
≥ rp−2|g(x)|p−2.

Hence we can satisfy the condition of Corollary 1.2 by using (2.8) and Fubini’s The-

orem:

V (t) =
2

π

∫

D(0,t)

log
t

|w|
∂̄∂‖ f + wg‖

p
Lp (dw)(2.9)

≥ p2

∫

S

|g(x)|2
∫ t

0

log
t

r

∫ 2π

0

| f (x) + reiθg(x)|p−2 dθ

2π
r dr dx

≥ p2

∫

S

|g(x)|p

∫ t

0

rp−1 log
t

r
dr dx

≥ t p

∫

S

|g(x)|p dx.

Remark 2.2 When 0 < p < 1, the Lebesgue space Lp is a quasi-Banach space for the

quasi-norm ‖ f ‖Lp = (
∫

| f (x)|p dx)1/p. Theorem 2.1 extends without change to this

context.

The following result illustrates the possible properties that the density of a Riesz

measure can have.

Theorem 2.3

(i) For 2 ≤ p <∞, the function Lp × Lp → [0,∞) defined by

( f , g) 7→ ∂̄∂‖ f + ζg‖
p
Lp is continuous.
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(ii) For 2 ≤ p <∞, the function Lp × Lp → [0,∞) defined by

( f , g) 7→ ∂̄∂‖ f + ζg‖
p
Lp is plurisubharmonic.

(iii) For 1 ≤ p < 2, the function Lp → [0,∞) defined by f 7→ ∂̄∂‖ f + ζg‖
p
Lp is not

necessarily subharmonic.

Proof (i) This follows from (2.2) when one applies Hölder’s inequality in the obvi-

ous way.

(ii) Let f , f1, g and g1 belong to Lp . We need to show that

(2.10)

∫

S

| f (x) + η f1(x) + ζg(x) + ζηg1(x)|p−2|g(x) + ηg1(x)|2 dx

is subharmonic in η. The product of subharmonic functions need not be subhar-

monic, but the product of log-subharmonic functions is verily subharmonic; so let us

consider this stronger condition. First, g(x)+ηg1(x) and f (x)+η f1(x)+ζg(x)+ζηg1(x)

are holomorphic in η, and, as p − 2 ≥ 0, we deduce that

(2.11) (p − 2) log | f (x) + η f1(x) + ζg(x) + ζηg1(x)| + 2 log |g(x) + ηg1(x)|

is subharmonic. It follows by Jensen’s inequality that the integrand of (2.10) is sub-

harmonic; hence the whole integral is subharmonic, moreover log-subharmonic by

Radó’s criterion [21, Theorem 2.6.5; 15, Corollary 2.6.9].

(iii) When p − 2 < 0 and g is a continuous function of compact support, the

function

(2.12) ψ(a) =

∫

S

|a + ζg(x)|p−2|g(x)|2 dx (a ∈ C)

is positive and decays to zero as |a| → ∞. By the maximum principle, ψ cannot be

subharmonic on C; see [21].

Hilbert Space For f , g ∈ L2, the norm satisfies ∂̄∂‖ f + ζg‖2
L2 = ‖g‖2

L2 . One can

even calculate the Laplacian of log ‖ f + ζg‖L2 , and this has been extensively stud-

ied in the theory of several complex variables [16]. The following result shows that

the Riesz measure can distinguish between one- and two-dimensional subspaces of

Hilbert space.

Proposition 2.4 Let x and y belong to the unit sphere of Hilbert space. Then

(2.13)

∫ 2π

0

log ‖x + teiφy‖
dφ

2π
= 2−1t2 sin2

Θ(x, y) + O(t3) (t → 0)

where Θ(x, y) is the angle between x and y.

Proof One expands 2−1 log ‖x + teiθ y‖2 using Maclaurin’s theorem.
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3 Riesz Measures for Trace Ideals

For 1 ≤ p < ∞, let cp denote the von Neumann-Schatten ideal of compact oper-

ators A on separable complex Hilbert space for which the singular numbers, listed

according to multiplicity, form a sequence in `p; or equivalently, the (quasi)-norm

‖A‖cp = (trace{(A∗A)p/2})1/p is finite.

Dixmier showed that for 1 < p < ∞ the space cp is uniformly convex. Carlen

and Lieb [9] used an optimal uniform convexity inequality to show that the norm on

cp (1 < p < ∞) is continuously differentiable in Fréchet’s sense at all points other

than the origin. While c1 is not uniformly convex, it is 2-uniformly PL-convex, as was

shown by Haagerup [12]. We present below a new proof of this result which places it

within the general framework of the theory of operator convexity. We shall use with-

out further comment the non-commutative Hölder inequality [22, Theorem 2.8] to

show that various expressions involving the trace are well defined.

3a p Even

It is much simpler to compute the Riesz measure when p is an even integer, and we

begin with this case.

Proposition 3.1 For p = 2, 4 and 6, the operator ideal c p is p-uniformly PL-convex.

Moreover

(3.1)

V p(t ; A,B) ≥
t2

4
trace{(A∗A)(p−2)/2B∗B} +

t p

p2
trace{(B∗B)p/2} (0 < t < 1).

When proving such lower bounds, our calculations will often exploit the following

simple lemma, the proof of which is left to the reader.

Lemma 3.2 Suppose that X,Y and C are matrices with X,Y ≥ 0.

Then trace(CXC∗Y ) ≥ 0.

Proof of Proposition 3.1 Let p = 2k, and let A and B belong to c p. We proceed to

differentiate ‖A + ζB‖
p
cp , using Leibniz’ rule to obtain

∂̄ trace{[(A + ζB)∗(A + ζB)]k}

=

k−1
∑

j=0

trace{[(A + ζB)∗(A + ζB)] jB∗(A + ζB)[(A + ζB)∗(A + ζB)]k− j−1},

which simplifies by the cyclical property of the trace to

(3.2) k trace{B∗(A + ζB)[(A + ζB)∗(A + ζB)]k−1}.
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We differentiate once more to obtain

∂̄∂ trace{[(A + ζB)∗(A + ζB)]k} =

k

k−2
∑

j=0

trace
{

B∗(A + ζB)[(A + ζB)∗(A + ζB)] j

× (A + ζB)∗B[(A + ζB)∗(A + ζB)]k− j−2
}

+ k trace{B∗B[(A + ζB)∗(A + ζB)]k−1}.

(3.3)

Each summand here is non-negative, as one can see by introducing

C j = [(A + ζB)∗(A + ζB)] j/2(A + ζB)∗B[(A + ζB)∗(A + ζB)](k− j−2)/2

and observing, after re-arranging terms, that the j-th summand is simply

trace{C∗
j C j}. The final summand is likewise positive, and we shall bound it below

using the observation that for k = 1, 2, 3, the operator function X 7→ Xk−1 is convex

on {X ∈ B(H) : X ≥ 0}. On account of this, we can set ζ = reiθ in the final term of

(3.3) and integrate to get

∫ 2π

0

trace{(B∗B)1/2[(A + reiθB)∗(A + reiθB)]k−1(B∗B)1/2}
dθ

2π

(3.4)

≥ trace
{

(B∗B)1/2
[

∫ 2π

0

(A∗A + reiθB∗A + re−iθA∗B + r2B∗B)
dθ

2π

] k−1

(B∗B)1/2
}

= trace{(B∗B)1/2[A∗A + r2B∗B]k−1(B∗B)1/2}.

Lemma 3.3 For k = 1, 2, 3, (and 4, 5), the polynomial in r

(3.5) trace{(A∗A + r2B∗B)k−1B∗B}

has non-negative coefficients and hence is

(3.6) ≥ trace{(A∗A)k−1B∗B} + r2k−2 trace{(B∗B)k}.

The proof of the lemma consists of multiplying out the expression and inspecting

the terms, which one shows to be non-negative by using the cyclical property of the

trace.

Resuming the proof of the Proposition, we deduce from the lemma and (3.4) that

V p(t ; A,B) ≥

∫ t

0

log
t

r

(

trace{(A∗A)k−1B∗B} + r2k−2 trace{(B∗B)k}
)

r dr(3.7)

=
t2

4
trace{(A∗A)k−1B∗B} +

t2k

(2k)2
trace{(B∗B)k}.(3.8)

By Corollary 1.2, this inequality implies that c p is p-uniformly PL-convex.
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3b The Riesz Measure for cp with p Not an Even Integer, p > 2

We do not know if there is an exact analogue of the formula (2.2) for the spaces c p,

but in this section we obtain some closely related inequalities which imply complex

uniform convexity for certain values of p.

It is convenient to assume that A and B are finite invertible matrices and set X(ζ) =

(A + ζB)∗(A + ζB).

Theorem 3.4

(i) Let p ≥ 2. Then the density of the Riesz measure satisfies

(3.9) ∂̄∂‖A + ζB‖
p
cp ≥ (p/2) trace{BB∗[(A + ζB)(A + ζB)∗](p/2)−1}.

(ii) For 4 ≤ p ≤ 6, the space cp is p-uniformly PL-convex.

Let us write p/2 = n + β, where n ≥ 1 is an integer and 0 < β < 1. By a formula

familiar from the theory of the Gamma function [14, 6.6.57, p. 553] and the spectral

theorem, we have a Bochner-Lebesgue integral

(3.10) X p/2
=

sinβπ

π

∫ ∞

0

uβ−1 Xn+1

u + X
du,

for which the integrand is a rational function of X. We shall calculate its partial

derivatives using the following lemma.

Lemma 3.5 Let F : D → Mn be holomorphic and let X(ζ) = F(ζ)∗F(ζ). Then the

following identity holds wherever X is invertible:

(3.11) ∂̄∂X = (∂̄X)(u + X)−1(∂X) + u(∂̄X)X−1(u + X)−1(∂X) (u > 0).

Proof of Theorem 3.4(i) The cyclical property of the trace gives

∂ trace{Xn+1(u + X)−1} = (n + 1) trace{(∂X)Xn(u + X)−1}(3.12)

− trace{(∂X)Xn+1(u + X)−2},

which reduces to

(3.13) trace{n(∂X)Xn(u + X)−1} + trace{(∂X)Xnu(u + X)−2}.

We differentiate again to get

∂̄∂ trace{Xn+1(u + X)−1} = trace
{

(∂̄∂X)nXn(u + X)−1 + (∂̄∂X)uXn(u + X)−2

(3.14)

+ (∂X)(∂̄Xn)
(

n(u + X) + u
)

(u + X)−2

− n(∂X)Xn(u + X)−1(∂̄X)(u + X)−1

− (∂X)Xnu(u + X)−1(∂̄X)(u + X)−2

− (∂X)Xnu(u + X)−2(∂̄X)(u + X)−1
}

.
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We number the signed terms on the right-hand side by (1)–(6) in order of appear-

ance, and combine them to show that the sum is positive. We substitute the identity

of the lemma in terms (1) and (2), and use the terms arising from the middle term in

(3.11) to cancel (4) and (6) by the cyclical property of the trace, and we thereby show

that

(1) + (2) + (4) + (5) + (6) = trace
{

u(∂̄X)X−1(u + X)−1(∂X)nXn(u + X)−1

(3.15)

+ u(∂̄X)X−1(u + X)−1(∂X)uXn(u + X)−2

− (∂̄X)(u + X)−2(∂X)Xnu(u + X)−1
}

= trace
{

u(∂̄X)X−1(nu + nX − u)(u + X)−2

× (∂X)Xn(u + X)−1

+ u2(∂̄X)X−1(u + X)−1(∂X)Xn(u + X)−2
}

,

a term which is positive for n ≥ 1.

This leaves us with (3), which by Leibniz’ rule contributes

trace
{

(∂X)(∂̄X)Xn−1
(

n(u + X) + u
)

(u + X)−2(3.16)

+ (∂X)X(∂̄Xn−1)
(

n(u + X) + u
)

(u + X)−2
}

.

By Lemma 3.2 and an induction argument, we see that both of these terms have

positive traces, so

(3.17) (3) ≥ trace
{

(∂X)(∂̄X)Xn−1
(

n(u + X) + u
)

(u + X)−2
}

.

It follows from the spectral theorem that

(3.18)

∫ ∞

0

uβ−1
(

n(u + X) + u
)

(u + X)−2 du = (n + β)π cosec(βπ)Xβ−1,

and hence from (3.17) we have

(3.19) ∂̄∂
sinβπ

π

∫ ∞

0

uβ−1 trace
{ Xn+1

u + X

}

du ≥ (n + β) trace{(∂X)(∂̄X)Xn+β−2}.

In the original notation, ∂̄∂ trace{X p/2} equals

∂̄∂ trace{[(A + ζB)∗(A + ζB)]p/2}(3.20)

≥ (p/2) trace{(A + ζB)∗BB∗(A + ζB)[(A + ζB)∗(A + ζB)](p/2)−2}.
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We recall that for polynomials P and Q with Q(x) = xP(x) and C any matrix, it holds

that CP(C∗C)C∗ = Q(CC∗). The stated result (3.9) follows from the spectral the-

orem, as we can approximate x(p/2)−2 on compact subsets of (0,∞) by polynomials

and thereby re-arrange terms.

Proof of Theorem 3.4(ii) Let β = (p− 4)/2, so that 0 < β < 1. Having established

(3.9), our proof depends upon the observation that the operator function Y 7→ Y β+1

is convex on the cone B(H)+ = {Y ∈ B(H) : Y ≥ 0}. This follows from the criterion

of [14, Theorem 6.652(4)] since the operator function

(3.21) Y 7→
Y β+1 − tβ+1

Y − t
=

sinβπ

π

∫ ∞

0

uβ−1

(

1 −
u2

(u + Y )(u + t)

)

du

is monotone increasing on B(H)+ for each t > 0.

Consequently, with Y = (A + reiθB)(A + reiθB)∗ we have

∫ 2π

0

trace{BB∗[(A + reiθB)(A + reiθB)∗]1+β}
dθ

2π

≥ trace{BB∗(AA∗ + r2BB∗)1+β}(3.22)

≥ r2 trace{(BB∗)1/2(AA∗ + r2BB∗)β/2BB∗(AA∗ + r2BB∗)β/2(BB∗)1/2}

= r2‖(BB∗)1/2(AA∗ + r2BB∗)β/2(BB∗)1/2‖2
c2 .(3.23)

Now the operator function Y 7→ Y β/2 is monotone increasing on B(H)+, so

(3.24) (BB∗)1/2(AA∗ + r2BB∗)β/2(BB∗)1/2 ≥ rβ(BB∗)1+(β/2) ≥ 0.

Moreover, for operators with W ≥ V ≥ 0 the trace duality gives

‖W‖c2 = sup
{

trace{W S} : S ≥ 0, ‖S‖c2 ≤ 1
}

(3.25)

≥ sup
{

trace{V S} : S ≥ 0, ‖S‖c2 ≤ 1
}

= ‖V‖c2

since S1/2W S1/2 ≥ S1/2V S1/2. Hence

(3.26)
(

right-hand side of (3.23)
)

≥ r2+2β trace{(BB∗)2+β} = rp−2‖B‖
p
cp .

Arguing as in (2.8) of Theorem 2.1, we obtain the stated result from (3.26) and

Corollary 1.2.

3c The Riesz Measure for cp With 1 ≤ p < 2

It is known that for 1 ≤ p ≤ 2 the space cp is 2-uniformly PL-convex. The existing

proofs involve factorization of the operator-valued Hardy spaces H pcp, or interpola-

tion through the scale of such spaces [4, 25, 26]. Here we obtain a more elementary

proof using the Riesz measure criterion of Corollary 1.2 and a non-commutative ana-

logue of the inequality (2.1).
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Theorem 3.6

(i) For 1 ≤ p ≤ 2 the density of the Riesz measure satisfies

(3.27) ‖A + ζB‖
2−p
cp ∂̄∂‖A + ζB‖

p
cp ≥

p2

8
‖B‖2

cp .

(ii) The von Neumann-Schatten operator ideal c p is 2-uniformly PL-convex for 1 ≤
p ≤ 2.

It is convenient to assume that A and B are both finite and invertible n×n matrices.

Let Ω be the set {ζ ∈ D : det(A + ζB) 6= 0} on which A + ζB is invertible. The Riesz

measure of ‖A + ζB‖
p
cp could conceivably have positive atoms on the singular set

{ζ : det(A + ζB) = 0}, but the lower bound that we shall use to verify the hypotheses

of Corollary 1.2 will require only the absolutely continuous part of the Riesz measure

with respect to area measure. This we obtain by differentiation.

Lemma 3.7 With X = (A + ζB)∗(A + ζB), the density with respect to area measure of

the Riesz measure for ‖A + ζB‖
p
cp is given by

(3.28)

∂̄∂‖A + ζB‖
p
cp

=
p sin(pπ/2)

2π

∫ ∞

0

up/2 trace{(u + X)−1(∂̄X)X−1(u + X)−1(∂X)} du.

Proof A calculation similar to the above gives

∂ trace{X p/2} =
sin(pπ/2)

π

∫ ∞

0

up/2 trace{(∂X)(u + X)−2} du

=
p sin(pπ/2)

2π

∫ ∞

0

u(p/2)−1 trace{(∂X)(u + X)−1} du,

by integration by parts, and hence

(3.29)
∂̄∂ trace{X p/2} =

p sin(pπ/2)

2π

∫ ∞

0

u(p/2)−1 trace

{(u + X)−1∂̄∂X − (u + X)−1(∂̄X)(u + X)−1(∂X)} du

where in this case, as in Lemma 3.5,

(3.30) ∂̄∂X − (∂̄X)(u + X)−1(∂X) = u(∂̄X)X−1(u + X)−1(∂X)

and so we have the positive expression

(3.31)

∂̄∂ trace{X p/2} =
p sin(pπ/2)

2π

∫ ∞

0

up/2‖(u + X)−1/2(∂̄X)X−1/2(u + X)−1/2‖2
c2 du.

One can easily check that (3.31) converges on Ω. This concludes the proof of the

lemma.
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We pause to remark that integrals of this form have been considered in [4, 14,

17]. However, Ando [1] records that the function (Y, L) 7→ Y −1/2L2Y−1/2 need not

be convex on the positive definite matrices, a fact which makes this integral tricky to

deal with. In the proof below, we overcome these difficulties by passing to a suitably

chosen orthonormal basis; a device related to arguments from [4, 9].

Proof of Theorem 3.6 Let us write K = X−1/2∂X and observe that this operator

function satisfies K∗K = B∗B wherever it is defined. The density of the Riesz measure

with respect to area measure is, by the lemma,

(3.32) ∂̄∂‖A + ζB‖
p
cp =

p sin(pπ/2)

2π

∫ ∞

0

up/2 trace{(u + X)−1K∗(u + X)−1K} du.

We let (e j)
n
j=1 be an orthonormal basis consisting of eigenvectors of the positive oper-

ator X, let (x j)
n
j=1 be the corresponding eigenvalues and set K jk = 〈Kek, e j〉; all these

quantities depend implicitly upon ζ , but this does not have significant consequence

in what follows. In terms of these quantities the integral becomes

(3.33)
p sin(pπ/2)

2π

n
∑

j,k=1

|K jk|
2

∫ ∞

0

up/2

(u + x j)(u + xk)
du,

where for j = k and other instances with x j = xk we have

(3.34)

∫ ∞

0

up/2

(u + x j)2
du =

p

2

∫ ∞

0

u(p/2)−1

u + x j

du =
pπ

2
cosec(pπ/2)x

(p/2)−1
j ;

and for all cases wherein x j 6= xk,

(3.35)

∫ ∞

0

up/2

(u + x j)(u + xk)
du =

∫ ∞

0

up/2

x j − xk

( 1

u + xk

−
1

u + x j

)

du

has a left-hand-side which defines a holomorphic function of p for −2 < <p < 2,

so by analytic continuation is equal to

(3.36) π cosec(pπ/2)
x

p/2
j − x

p/2
k

x j − xk

.

For 1 ≤ p ≤ 2 we can use the mean value theorem to obtain x jk between x j and xk

such that

(3.37) 0 <
x j − xk

x
p/2
j − x

p/2
k

=
2

p
x

1−(p/2)
jk ≤

2

p
(x

1−(p/2)
j + x

1−(p/2)
k ).

We introduce E ∈ cq where 1/p+1/q = 1, with ‖E‖cq = 1, such that trace{KE} =

‖K‖cp in the standard duality of von Neumann-Schatten ideals [22, p. 45]. Writing
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E jk = 〈Eek, e j〉, we obtain from the Cauchy-Schwarz inequality a decoupling expres-

sion

(3.38)

| trace{KE}|2 =

∣

∣

∣

n
∑

j,k=1

K jkEk j

∣

∣

∣

2

≤
(

n
∑

j,k=1

|K jk|
2

x
p/2
j − x

p/2
k

x j − xk

)

×
(

n
∑

j,k=1

|E jk|
2 x j − xk

x
p/2
j − x

p/2
k

)

in which we interpret the difference quotient as the corresponding derivative for j =

k and x j = xk. By (3.37), the latest sum is

(3.39)

≤
2

p

n
∑

j,k=1

|E jk|
2(x

1−(p/2)
j + x

1−(p/2)
k )

=
2

p

n
∑

j=1

‖E∗e j‖
2
`2

n
x

1−(p/2)
j +

2

p

n
∑

k=1

‖Eek‖
2
`2

n
x

1−(p/2)
k .

To these sums we apply Hölder’s inequality, thus obtaining

(3.40)

≤
2

p

(

n
∑

j=1

‖E∗e j‖
q

`2
n

) 2/q(
n

∑

j=1

x
p/2
j

) (2−p)/p

+
2

p

(

n
∑

k=1

‖Eek‖
q

`2
n

) 2/q(
n

∑

k=1

x
p/2
j

) (2−p)/p

.

Now we can recognise from the latest sum and the identity

(3.41)
(

n
∑

k=1

x
p/2
k

) 1/p

= (trace{X p/2})1/p
= ‖A + ζB‖cp ,

the first factor from (3.27). Moreover, the map cν → `νn(`2
n) : E 7→ (Eek)n

k=1 is

bounded with norm at most one for ν = 2 and ν = ∞, hence also for all ν = q

with 2 ≤ q ≤ ∞ by the Riesz-Thorin interpolation theorem extended to the scale

of trace ideals [22, Theorem 2.10(b)]. The other terms in (3.40) may be estimated

similarly. Since ‖K‖cp = ‖B‖cp , it follows from the preceding estimates that

(3.42)
4

p
‖A + ζB‖

2−p
cp ∂̄∂‖A + ζB‖

p
cp ≥

p

2
‖B‖2

cp .

On integrating this inequality we obtain the lower bound

(3.43)
1

p
lim

t→0+

( 1

t2
inf{V p(t ; A,B) : ‖A‖cp = ‖B‖cp = 1}

)

≥
p

32

as in Theorem 2.1. By Corollary 1.2, it follows from (3.43) that the space c p is 2-

uniformly PL-convex.

https://doi.org/10.4153/CJM-2004-011-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-011-3


240 G. Blower and T. Ransford

4 Analytic Lusin Cotype for Trace Ideals

Uniform PL-convexity is an isometric property of quasi-Banach spaces, and in the

development of the theory it has been helpful to introduce related properties which

are invariant under linear homeomorphism. In this section we give a new proof that

cp (1 ≤ p ≤ 2) has the analytic Lusin cotype 2 property introduced by Xu [25, 26].

Previously known proofs have used factorization of c1-valued holomorphic functions

as products of holomorphic c2-valued functions, in the style of Helson-Lowdenslager

and Sarason; see [6].

Proposition 4.1 Let F : D → cp be a holomorphic function and 1 ≤ p ≤ 2. Then

there exists C p <∞ such that

(4.1)

∫ 2π

0

(

∫ 1

0

log
1

r
‖F ′(reiθ)‖2

cp r dr
) p/2 dθ

2π
≤ C p sup

0≤r<1

∫ 2π

0

‖F(reiθ)‖
p
cp

dθ

2π
.

Proof For 1 ≤ p ≤ 2 the Schatten trace ideal c p is a separable dual space, and hence

has the Radon-Nikodým property. It follows that if the right-hand side of (4.1) is

finite, then F(reiθ) has limits as r → 1− for almost all θ, and F(ζ) may be inter-

preted for ζ ∈ D as the Poisson integral of the function in the Bochner-Lebesgue

space Lp([0, 2π]; cp) that is defined by the resulting boundary values. Trigonomet-

ric polynomials with coefficients in cp are dense in Lp([0, 2π]; cp). Consequently, we

can assume without loss that F(ζ) is a polynomial with coefficients from c p. A fur-

ther approximation allows us to take these coefficients to be finite matrices so that

F(ζ) is an invertible matrix on D, except on the finite set {a j : j = 1, . . . ,m} =

{ζ : det F(ζ) = 0}. Let a0 = 0 and introduce Ωη = D −
⋃m

j=0 D(a j , η), where η > 0

is chosen so small that the discs D(a j , 2η) do not overlap and are all contained in D.

One can show as in Theorem 3.6 that ‖F(ζ)‖
p
cp is twice continuously differentiable

on Ωη with

(4.2) ‖F(ζ)‖
2−p
cp ∂̄∂‖F(ζ)‖

p
cp ≥ (p2/8)‖F ′(ζ)‖2

cp ;

indeed, (3.11) holds with X = F(ζ)∗F(ζ). Moreover, we have the differential in-

equality |∇‖F(ζ)‖
p
cp | ≤ p‖F(ζ)‖

p−1
cp ‖F ′(ζ)‖cp for ζ ∈ Ωη . Consequently we can

apply Green’s theorem on Ωη , and then let η → 0+ to deduce

∫ 2π

0

‖F(eiθ)‖
p
cp

dθ

2π
− ‖F(0)‖

p
cp =

2

π

∫∫

D

log
1

r
∂̄∂‖F(reiθ)‖

p
cp r dr dθ,

since {a j : j ≥ 0} has zero area measure.

As (4.2) holds for all but finitely many radial rays, it follows that

∫ 2π

0

(

∫ 1

0

log
1

r
‖F ′(reiθ)‖2

cp r dr
) p/2 dθ

2π
(4.3)

≤
8p/2

pp

∫ 2π

0

(

∫ 1

0

log
1

r
∂̄∂‖F(reiθ)‖

p
cp r dr

) p/2

sup
0≤r<1

‖F(reiθ)‖
(2−p)p/2
cp

dθ

2π
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which by Hölder’s inequality is

≤
8p/2

pp

(

∫ 2π

0

∫ 1

0

log
1

r
∂̄∂‖F(reiθ)‖

p
cp r dr

dθ

2π

) p/2

(4.4)

×
(

∫ 2π

0

sup
0≤r<1

‖F(reiθ)‖
p
cp

dθ

2π

) 1−(p/2)

.

We have already calculated the first of these integrals. By the Hardy-Littlewood max-

imal theorem in the cases 1 < p ≤ 2, or by the maximal inequality of Bourgain[8] in

the case p = 1, we have a bound on the second integral

(4.5)

∫ 2π

0

sup
0≤r<1

‖F(reiθ)‖
p
cp

dθ

2π
≤ C p

∫ 2π

0

‖F(eiθ)‖
p
cp

dθ

2π
.

The required result follows from these bounds.

The following result was mentioned in [26]; a different proof was published in [2].

Proposition 4.2 Let 2 ≤ q <∞. Then there exists Cq <∞ such that

(4.6)

∫ 2π

0

∫ 1

0

(1 − r)q−1‖F ′(reiθ)‖
q
cq r dr dθ ≤ Cq sup

0<r<1

∫ 2π

0

‖F(reiθ)‖
q
cq

dθ

2π

for all holomorphic functions F : D → cq.

Proof Let F : D → B(H) be a bounded holomorphic function. Then by the Cauchy

integral formula, one has the inequality

(4.7) (1 − r)‖F ′(reiθ)‖B(H) ≤ sup
ζ∈D

‖F(ζ)‖B(H) (reiθ ∈ D),

which one interprets as the limiting case q = ∞ of (4.6). Moreover, (4.6) holds for

the Hilbert-Schmidt ideal c2 with C2 = 2 by Proposition 4.1. Pisier [19] has shown

that one can interpolate by the real method in the family of cq-valued Hardy spaces

and identify, up to equivalent norms,

(4.8)
(

H1c1,H∞B(H)
)

ψ,q
= Hqcq

where ψ satisfies 1/q = (1 − ψ)/1 + ψ/∞ and 0 < ψ < 1. By the re-iteration the-

orem [5, Theorem 3.5.3], we deduce that
(

H2c2,H∞B(H)
)

φ,q
= Hqcq when 1/q =

(1−φ)/2 +φ/∞. The inequality (4.6) thus holds for all q ∈ [2,∞] by interpolation

between the endpoint cases.

For a holomorphic function F : D → cq with 2 < q <∞ the inequality

(4.9) ∂̄∂‖F(ζ)‖
q
cq ≥ (q/2) trace{F ′(ζ)F ′(ζ)∗[F(ζ)F(ζ)∗](q/2)−1}

may be established as in Theorem 3.6 since (3.11) holds with X = F(ζ)∗F(ζ). It

would of interest to deduce (4.6) from this fact.
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5 Subharmonicity for Matrix Functions

Let F : D → Mn be a holomorphic matrix function, and set X(ζ) = F(ζ)∗F(ζ). We

let λ1(ζ) ≥ λ2(ζ) ≥ · · · ≥ λn(ζ) be the eigenvalues of X(ζ), listed according to

multiplicity, and let s j(ζ) = λ j(ζ)1/2 be the singular values of F(ζ). It is well known

that λ1(ζ) = ‖F(ζ)‖2
Mn

is a subharmonic function, whereas λ2(ζ) need not be sub-

harmonic, as examples of Aupetit [3] show. In his thesis [23], White proved that,

for any convex and increasing function h : [−∞,∞) → [0,∞) with h(−∞) = 0,

the sums
∑k

j=1 h
(

log s j(ζ)
)

are subharmonic for k = 1, 2, . . . , n. For instance,

trace h
(

log X(ζ)
)

is subharmonic. In this section, we shall obtain lower bounds

on the Laplacians of such expressions for a special class of h. Our main result is a

generalization of Theorem 3.4.

Theorem 5.1 Let F : D → Mn be a holomorphic and invertible matrix function with

‖F(ζ)‖Mn
< 1 for all ζ ∈ D, and set X(ζ) = F(ζ)∗F(ζ). Suppose that g is continuous

on (−∞, 0] and has derivatives of all orders on (−∞, 0) which satisfy

(5.1) g(k)(x) ≥ 0 (k = 0, 1, 2, . . . ; x < 0).

Then Φ(X) = Xg(log X) has ϕ(ζ) = trace{Φ(X)} subharmonic on D with

(5.2) ∂̄∂ϕ(ζ) ≥ trace{(X−1∂X)∗Φ(X)(X−1∂X)}.

Proof By Bernstein’s Theorem [24], this g is the Laplace transform of some bounded

and positive Radon measure on [0,∞), so that

(5.3) g(u) =

∫ ∞

0

etuµ(dt) (u ≤ 0).

We transform this by setting x = eu so that

(5.4) xg(log x) =

∫ ∞

0

xt+1µ(dt) (0 < x < 1).

Since 0 < X < I, we obtain thereby a formula which expresses g(log X) as a multiple

of a convex combination of Xt for t ≥ 0.

To verify that ϕ(ζ) is subharmonic, it suffices to show that trace{X(ζ)t+1} is sub-

harmonic for each t ≥ 0. This we do by differentiating various integral formulae

such as

(5.5) Xt+1
=

sinβπ

π

∫ ∞

0

uβ−1 Xm+1

u + X
du

where m = max{n ∈ Z : n < t + 1} ≥ 1 and β = t + 1 − m has 0 < β < 1; the case

in which t is itself an integer is simpler.

The calculations of Theorem 3.4 lead to the bound

(5.6) ∂∂̄ trace{Xt+1} ≥ (t + 1) trace{(∂X)(∂̄X)Xt−1}.
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On integrating this against µ(dt), we deduce from the identity Φ(X) =
∫ ∞

0
Xt+1µ(dt)

that

(5.7)
∂̄∂ trace{Φ(X)} ≥

∫ ∞

0

(t + 1) trace{X−1(∂X)(∂̄X)X−1Xt+1
}

µ(dt)

≥ trace{X−1(∂X)(∂̄X)X−1
Φ(X)},

as required.

We conclude this paper by considering another family of plurisubharmonic func-

tions on Hilbert space which arises in interpolation theory. A family of norms ‖ . ‖(ζ)

on C
n, parametrized by ζ ∈ D, is said to be subharmonic if ζ 7→ ‖ f (ζ)‖(ζ) is a subhar-

monic function for each holomorphic function f : D → C
n. The norms are Hilber-

tian when there exists a positive definite matrix Ω(ζ) such that 〈Ω(ζ)ξ, ξ〉Cn = ‖ξ‖2
(ζ)

for each ξ ∈ C
n and ζ ∈ D. Coifman and Semmes [10] show that, when Ω is twice

continuously differentiable, then 〈Ω(ζ)ξ, ξ〉
1/2
Cn is a subharmonic family of norms if

and only if

(5.8) ∂̄∂Ω − (∂̄Ω)Ω−1(∂Ω) ≥ 0 (ζ ∈ D)

holds as an operator inequality. The curvature of the family is

(5.9) K(w, ξ) =
−1

〈Ωξ, ξ〉

〈(

∂̄∂Ω − (∂̄Ω)Ω−1(∂Ω)
)

ξ, ξ
〉

where Ω and its partial derivatives are evaluated at w ∈ D. One can check that the

curvature is characterized by the variational formula

(5.10) K(w, ξ) = sup{−∂̄∂ log ‖ f (ζ)‖2
(ζ)|ζ=w : f holomorphic, f (w) = ξ}.

Hence a subharmonic norm family has K(w, ξ) ≤ 0 and ∂̄∂ log ‖ f (ζ)‖2
(ζ)|ζ=w ≥

−K(w, ξ)‖ξ‖2
Cn for any holomorphic function f : D → C

n with f (w) = ξ. Kobayashi

has extended these ideas to the context of norm families on Banach spaces. The fol-

lowing result gives a new method for constructing subharmonic Hilbertian families

of norms.

Let us recall that a Borel real function g is strictly operator monotone on (a, b) if

(5.11) X < Y ⇒ g(X) < g(Y )

for all self-adjoint and bounded linear operators X and Y with spectra contained in

(a, b). Such a g is a function of positive type; see [14, 6.6.40]. In particular, g has

derivatives of all orders on (a, b) which satisfy g(k)(x) > 0 for all x ∈ (a, b), as in

Theorem 5.1.

Theorem 5.2 Let g be strictly operator monotone on (−∞, 1), and suppose that

F : D → Mn is a bounded holomorphic function with supζ∈D ‖F(ζ)‖Mn
< 1 such that

F(ζ)−1 exists for each ζ ∈ D. Then

(5.12) Ω(ζ) = g
(

F∗(ζ)F(ζ)
)

− g(0) (ζ ∈ D)

gives a subharmonic family of Hilbertian norms 〈Ω(ζ)ξ, ξ〉1/2.
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Proof By Loewner’s Theorem [11, p. 86], such a g may be represented as

(5.13) g(x) = αx + β +

∫ ∞

1

( 1

u − x
−

u

u2 + 1

)

µ(du),

where α ≥ 0 and β ∈ R are constants, and µ is a positive Radon measure on [1,∞)

for which
∫ ∞

1
(1+u2)−1µ(du) <∞. Consequently we have an integral representation

(5.14) Ω = αF∗F +

∫ ∞

1

(

(u − F∗F)−1 − u−1
)

µ(du).

The limit of an increasing sequence of subharmonic functions is again subhar-

monic; so it is easy to approximate this integral by finite Riemann sums, and hence it

suffices to check the subharmonicity conditions for such finite sums.

The function S∞ = F∗F satisfies (5.8) with equality, while one can check that

Su = (u − F∗F)−1 − u−1 satisfies

(5.15)

∂̄∂Su − (∂̄Su)S−1
u (∂Su) = (u − F∗F)−1F∗∂F(u − F∗F)−1(∂F)∗F(u − F∗F)−1 ≥ 0

since u − F∗F > 0 for u ≥ 1. Hence the norms associated with the positive definite

matrix functions S∞ and Su (u ≥ 1) form subharmonic families, and we shall check

that the norm family associated with Ω is likewise subharmonic.

Radó [21] showed that a function w : D → (0,∞) has log w(ζ) subharmonic, if

and only if | f (ζ)|w(ζ) is subharmonic for all scalar-valued holomorphic functions f .

Using this characterization, one checks that ‖ξ‖(ζ) = (‖ξ‖2
1,(ζ) + ‖ξ‖2

2,(ζ))
1/2 is a sub-

harmonic family of Hilbertian norms whenever ‖ξ‖ j,(ζ) (ζ ∈ D) are subharmonic

families of Hilbertian norms for j = 1, 2.

We deduce that Ω = αS∞+
∫ ∞

1
Suµ(du) gives a subharmonic family of Hilbertian

norms.
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