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Abstract
Unmanned aerial vehicles (UAVs) have recently been widely applied in a comprehensive realm. By enhancing com-
puter photography and artificial intelligence, UAVs can automatically discriminate against environmental objectives
and detect events that occur in the real scene. The application of collaborative UAVs will offer diverse interpre-
tations which support a multiperspective view of the scene. Due to the diverse interpretations of UAVs usually
deviating, UAVs require a consensus interpretation for the scenario. This study presents an original consensus-
based method to pilot multi-UAV systems for achieving consensus on their observation as well as constructing a
group situation-based depiction of the scenario. Taylor series are used to describe the fuzzy nonlinear plant and
derive the stability analysis using polynomial functions, which have the representations 𝑉 (𝑥) = 𝑚1≤𝑙≤𝑁 (𝑉l (𝑥))
and 𝑉𝑙 (𝑥) = 𝑥𝑇 𝑃𝑙 (𝑥)𝑥. Due to the fact that the �𝑃𝑙 (𝑥) in �𝑉𝑙 (𝑥) = �𝑥𝑇 𝑃𝑙 (𝑥)𝑥 + 𝑥𝑇 �𝑃𝑙 (𝑥)𝑥 + 𝑥𝑇 𝑃𝑙 (𝑥) �𝑥 will
yield intricate terms to ensure a stability criterion, we aim to avoid these kinds of issues by proposing a
polynomial homogeneous framework and using Euler’s functions for homogeneous systems. First, this method
permits each UAV to establish high-level conditions from the probed events via a fuzzy-based aggregation
event. The evaluated consensus indicates how suitable is the scenario collective interpretation for every UAV
perspective.

1. Introduction

Since the publication of the Takagi–Sugeno fuzzy model (Takagi and Sugeno, 1985; Dai et al., 2022,
2023; Zhang et al., 2023c, 2023d; Feng et al., 2024), there has been a link between the linear system
and the nonlinear system. Through fuzzy theory, a nonlinear system that is difficult to analyse could be
divided into a combination of multiple linear subsystems and their corresponding fuzzy rules, and then
the stability of each fuzzy system can be analysed and its system performance calculated, including H2
and H∞, so that the analysis of such nonlinear systems has a better solution. Generally, most scholars
choose the Lyapunov function to analyse the stability of the system, and most of the literature focuses on
the common Lyapunov function. This detection method is also called quadratic stability (Wu et al., 2022;
Xu et al., 2022; Zheng et al., 2022), and other stability criteria have been developed so far to improve
the conditions which could be more relaxed. Most of the stability analysis in early literature studies is
solved by a parallel distributed compensation controller (PDC: parallel distributed compensation) and
quadratic stability (Li et al., 2022a, 2022b, 2022c; Di et al., 2023; Zheng et al., 2023a). However, this
method is too simple and conservative, so future research focuses on how to reduce its conservatism,
which makes the solution more relaxed. To reduce the conservatism of the solution, non-parallel
distributed compensation and non-common Lyapunov function are proposed by scholars; some studies

© The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

https://doi.org/10.1017/S0373463324000146 Published online by Cambridge University Press

mailto:t13929751005@gmail.com
mailto:mengyahui@gdupt.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0373463324000146&domain=pdf
https://doi.org/10.1017/S0373463324000146


2 Z. Y. Chen et al.

are also performed by adding loose matrix or loose variables, or by introducing Pólya’s theorem to add
time-varying or non-time-varying parameters to reduce conservatism (Wang et al., 2022; Guo et al.,
2023); even in recent years, some scholars have proposed different types of Lyapunov functions, such
as the non-quadratic Lyapunov function (Bai et al., 2021; Sun et al., 2022; Shi et al., 2023a, 2023b;
Yang et al., 2023, 2024; Zhang et al. 2023a) and piecewise quadratic Lyapunov function (Dai et al.,
2022; Yang et al., 2023; Zhang et al., 2023b).

Among many research subjects, the piecewise continuous Lyapunov function is also a research topic
widely concerned by scholars. The concept of piecewise analysis is added to the system to make the
system stability analysis more relaxed (Li and Yao, 2023; Liu et al., 2024; Luo et al., 2023; Chen et
al., 2024; Hou et al., 2023b). Later, other scholars added the controller design for analysis and verified
the reason why only the minimum-type polynomial piecewise Lyapunov function can design the con-
troller for the two types of Lyapunov functions (Zheng et al., 2023b). If the definition of the largest type
piecewise Lyapunov function is used, the sufficient condition will be contrary to its definition. Some
scholars would rather study the stable region of attraction (Sun et al., 2020, 2021, 2022; Wang et al.,
2024a, 2024b). Furthermore, this paper mainly studies the non-quadratic stability of piecewise con-
tinuous Lyapunov functions, meaning a non-constant matrix P(x) that composes Lyapunov functions,
and is also a type of non-common Lyapunov functions. In the study of a Lyapunov function above the
third power, since it is necessary to discuss the differential rate �𝑉 of the Lyapunov function V, most
literature inevitably generated the differential term �𝑃 of the Lyapunov matrix P (Wang et al., 2023) and
this differential term will cause difficulties in the sufficient criterion. This paper thereby employs the
Euler’s polynomial theorem of an homogeneous function to solve this problem. Artificial neural net-
works (ANNs) have been shown to be potential means of problem solving due to their unique properties
such as massively parallel processing, adaptive learning capabilities, self-organisation and robustness
(Tian et al., 2022; Li and Yao, 2023; Tan et al., 2023; Wang et al., 2023; Zheng et al., 2023b). How-
ever, the main problem with ANNs is that these numbers hidden in neurons have a direct and strong
effect on the neuron’s performance. Therefore, we need to sacrifice the operation time to fulfil the effi-
ciency and accuracy of the computations, which makes the NN tool hard to be used online or in real
time for applications. Therefore, the traditional NN approaches, for example, a multilayer perceptron
for varying time signals or systems, are not very suitable because of their static system structure. To
handle this problem, fuzzy neural networks (FNNs) are considered as a flexible and reasonable alter-
native because they combine biologically inspired learning with human thinking mechanisms. Because
the mechanism is adjusted by fuzzy and recurrent self-evolving schemes, the stability and performance
could be improved and demonstrated in this paper. When combined with nonlinear activation functions,
RNNs can handle complex spatiotemporal patterns. Therefore, this paper highlights an RSEFNN (recur-
rent self-evolving FNN) with local feedback to classify cognitive system states for those applications
of UAVs.

This method generates significant beneficial results for multi-UAV systems for condition awareness,
e.g. the reliability evaluation of consensus-based group decisions. For example, when a UAV team
participated in a rescue mission, if their detecting results achieve a decision with a high degree of
agreement, then the rescuers can regard the UAV team’s interpreting scene as dependable. Otherwise,
rescuers cannot trust the results of the UAV team. Thus, if the ultimate result can satisfy the scenario
interpretations of the individual UAVs, the consensus evaluation is obviously significant.

Table 1 lists the abbreviations used in this work and the study is arranged as follows. Section 2
presents preliminary knowledge of the generalised dissimilarity modelling (GDM) procedures, such as
consensus modelling and the fuzzy ontologies, and refers to the cognition of multi-UAV systems. Section
3 describes the study’s method, and emphasises the UAV preference for generating in conditions and
constructing the consensus-based decision-making model. Section 4 displays the operating principle of
the study method in a scenario of a classic case. Finally, Section 5 dissertates the merits and inferiority
of the provided approach in comparison to each of the other approaches, which also propose the
conclusions of the paper.
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Table 1. Abbreviation of full names.

UAVs unmanned aerial vehicles
PDC parallel distributed compensation
ANNs artificial neural networks
FNNs fuzzy neural networks
RSEFNN recurrent self-evolving FNN
CS consensus in situations
CR CS on the relation
CCP collective cumulative preference
LMI linear matrix inequality

2. Preliminary theory for Euler homogeneous polynomials

To be able to deduce smoothly in the following sections, the preliminary theorems related to this paper
will be introduced here.

Lemma 2.1. Congruent transformation. It is known that a matrix M is a positive definite matrix, and
X is multiplied on its left and right sides, where X must be an 𝑋𝑇 matrix of full rank. After congruent
transformation, the obtained matrix 𝑋𝑇 MX is also a positive definite matrix, its invariance remains
unchanged before and after conversion, and vice versa.

𝑀 >0 ⇔ 𝑋𝑇 MX > 0

Lemma 2.2. Continuous Lyapunov asymptotic stability. For a continuous time-invariant system for
�𝑥 = 𝑓 (𝑥) and 𝑓 (0) = 0, that is, the equilibrium point is at the origin, if there is a Lyapunov function
𝑉 (𝑥) = 𝑥𝑇 𝑃𝑥 satisfying the following constraint condition, the system is quadratic asymptotically stable
and converges to an equilibrium point:

𝑉 (𝑥) >0
𝜕𝑉

𝜕𝑥
𝑓 (𝑥) <0

Lemma 2.3. Schur complement. Suppose A, B, C, D are p× p, p× q, p× q and q× q matrices, respec-
tively, and D is an invertible matrix. As shown below, we can convert this matrix inequality through the
Shaw transformation technique into the form of linear matrix inequalities, and vice versa.

{
𝐴 − 𝐵𝐷−1𝐶𝑇 < 0

𝐷 <0 ⇔

[
𝐴 𝐵
𝐶𝑇 𝐷

]
<0

We then introduce the continuous system architecture and modelling method, the S-procedure, and
extend it to the minimal form of homogeneous Lyapunov function. We then solve the differential term
problem of P(x) with the help of Euler order theorem and finally prove the minimal stability test
conditions for controller design of type-fragment homogeneous Lyapunov functions.

2.1. Continuous fuzzy system and fuzzy rules

This section is represented by a polynomial fuzzy system. We consider a nonlinear fuzzy system and
convert it into r rules for description, which can be expressed as follows.

If Ω1 is 𝑀𝑖1 and Ω𝑟 is 𝑀𝑖𝑟 ,

�𝑥(𝑡) = 𝐴𝑖 (𝑥)𝑥(𝑡) + 𝐵𝑖 (𝑥)𝑢(𝑡), 𝑖 = 1, 2, · · · , 𝑟 (1)
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where r is the number of fuzzy rules; 𝑀𝑖1, · · · , 𝑀𝑖𝑟 is a fuzzy set; Ω1(𝑡), · · · ,Ω𝑝 (𝑡) is a variable
(premise variable) of the fuzzy rule; 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), · · · , 𝑥𝑛 (𝑡)]

𝑇 ∈ 𝑅𝑛 is a state vector; and
𝑢(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡), · · · , 𝑢𝑚 (𝑡)]

𝑇 ∈ 𝑅𝑚 is a control input vector.
Therefore, after standard fuzzy inference, defuzzification and normalisation, the following generalised

polynomial fuzzy system can be used to describe the nonlinear system:

�𝑥(𝑡) =
𝑟∑
𝑖=1

𝜇𝑖𝐴𝑖 (𝑥)𝑥(𝑡) +
𝑟∑
𝑖=1

𝜇𝑖𝐵𝑖 (𝑥)𝑢(𝑡)

= 𝐴𝜇 (𝑥)𝑥(𝑡) + 𝐵𝜇 (𝑥)𝑢(𝑡)

(2)

In this paper, the polynomial fuzzy feedback control matrix type is 𝑢(𝑡) = 𝐾𝜇 (𝑥)𝑥(𝑡), where 𝐾𝜇 (𝑥)
is the control gain and 𝜇 ∈ 𝑅𝑟 belongs to the set Δ𝑟 , and its definition is as follows:

Δ𝑟 =

{
𝜇 ∈ 𝑅𝑟 :

𝑟∑
𝑖=1

𝜇𝑖 = 1, 𝜇𝑖 ≥ 0

}
(3)

and Equation (3) can be understood as an r polyhedron structure formed by connecting points with line
segments.

2.2. Euler homogeneous polynomials

Generally, when deriving non-quadratic stability conditions, the differentiation of the Lyapunov function
with respect to time will generate the differential term �𝑃 (x) of the Lyapunov matrix P(x) with respect to
time, which makes the whole derivation process more complicated and cumbersome, so in this section,
we will quote the characteristics of the Eurasian polynomial theorem to avoid this differential term,
making the whole derivation process easier.

Lemma 2.4. The function𝑉 (𝑥):𝑅𝑛 → 𝑅 is a homogeneous Lyapunov function of degree r, if and only if

𝑉 (𝜆𝑥) = 𝜆𝑔𝑉 (𝑥) (4)

is satisfied, where 𝑥 ∈ 𝑅𝑛, 𝜆 ≥ 0.

Lemma 2.5. Euler’s homogeneous relations (Sun et al., 2020, 2022; Wang et al., 2024a, 2024b). V (x)
is an homogeneous polynomial of degree g if and only if the V (x) function satisfies

𝑔𝑉 (𝑥) = 𝑥𝑇∇𝑥𝑉 (𝑥)

=
[
𝑥1 𝑥2 · · · 𝑥𝑛

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑉

𝜕𝑥1
𝜕𝑉

𝜕𝑥2
...

𝜕𝑉

𝜕𝑥𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
𝜕𝑉

𝜕𝑥1

𝜕𝑉

𝜕𝑥2
· · ·

𝜕𝑉

𝜕𝑥𝑛

] ⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
...
𝑥𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= ∇𝑥𝑉 (𝑥)

𝑇 𝑥

(5)
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Partially differentiating the above formula with respect to x gives

𝑔∇𝑥𝑉 (𝑥) = ∇𝑥𝑉 (𝑥) + ∇𝑥𝑥𝑉 (𝑥)𝑥 (6)

The relationship between gradient and Hessian matrix can be obtained after transposition:

∇𝑥𝑉 (𝑥) =
1

𝑔 − 1
∇𝑥𝑥𝑉 (𝑥)𝑥 (7)

2.3. S-procedure

In this section, we will introduce the S-procedure (Li and Yao, 2023) to understand the meaning of
adding parameter 𝜆𝑠 by citing the following lemma.

Lemma 2.5. S-procedure. Assume 𝐹0(𝑥), 𝐹1 (𝑥) to be two arbitrary quadratic functions in the space,
𝑅𝑛, and for all 𝑥 ∈ 𝑅𝑛, 𝐹1(𝑥) < 0 and 𝐹0(𝑥) < 0 if and only if there exists a 𝜏 ≥ 0 causing

𝐹0(𝑥) − 𝜏𝐹1(𝑥) ≤ 0 (8)

The symbol transformation of the above formula will be understood as the following inequality:

𝐹0(𝑥) + 𝜏𝐹1(𝑥) ≤ 0 (9)

Equation (9) holds if and only if 𝐹0 (𝑥) < 0 and 𝐹1 (𝑥) ≥ 0.
We will use this method to rewrite the Lyapunov function as the minimal form fragment Lyapunov

function to be presented, and in terms of computer simulations, we will try to find suitable values for 𝜏.

2.4. Minimal form fragment Lyapunov function

This section will introduce the minimum-type polynomial piecewise Lyapunov function (Zheng et al.,
2023b) and explain why only the minimum-type polynomial piecewise Lyapunov function is used for
controller design.

Lemma 2.6. Minimum-type polynomial piecewise Lyapunov function.

Defining a minimal form fragment Lyapunov function

𝑉 (𝑥) = 𝑚1≤𝑙≤𝑁 (𝑉𝑙 (𝑥))𝑉𝑙 (𝑥) = 𝑥
𝑇 𝑃𝑙𝑥

where N is the piecewise number of Lyapunov function, 𝑙 = 1 · · · , 𝑁 , and the minimal form piecewise
Lyapunov function has to be

(1) 𝑉 (𝑥(𝑡+)) ≤ 𝑉𝑙 (𝑥(𝑡+)),
(2) �𝑉 (𝑥(𝑡+)) ≤ �𝑉𝑙 (𝑥(𝑡

+)) ,

and 𝑉 (𝑥(𝑡)) = 𝑉𝑙 (𝑥(𝑡)), then

𝑉 (𝑥(𝑡+)) −𝑉 (𝑥(𝑡)) ≤ 𝑉𝑙 (𝑥(𝑡
+))𝑉𝑙 (𝑥(𝑡))

Take the limit at the same time

lim
𝑡+−𝑡→0

𝑉 (𝑥(𝑡+)) −𝑉 (𝑥(𝑡))

𝑡+ − 𝑡
≤ lim

𝑡+−𝑡→0

𝑉𝑙 (𝑥(𝑡
+))𝑉𝑙 (𝑥(𝑡))

𝑡+ − 𝑡

�𝑉 (𝑥(𝑡+)) ≤ �𝑉𝑙 (𝑥(𝑡
+))
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Therefore, �𝑉𝑙 (𝑥) < 0 guaranteed �𝑉 (𝑥) < 0, so if the maximum type Lyapunov function is selected,
its characteristic under 𝑉 (𝑥(𝑡+)) ≥ 𝑉𝑙 (𝑥(𝑡

+)) cannot guarantee �𝑉 (𝑥) < 0; therefore, it is not selected
and another reason will be explained in the main theorem.

For the convenience and understanding of subsequent proofs, the controlled system considered in
the reference is changed to a polynomial form, and the Lyapunov function P is also changed to a
polynomial form P(x) which is divided into N segments to be 𝑃𝑙 (𝑥). The controller is similarly changed
to 𝑢𝑙 (𝑡) = 𝐾𝜇𝑙 (𝑥)𝑥(𝑡), and according to the system in Equation (2), 𝑢(𝑡) = 𝑢𝑙 (𝑡), the following continuous
closed-loop fuzzy system can be described:

�𝑥 = 𝐴𝜇 (𝑥)𝑥(𝑡) + 𝐵𝜇 (𝑥)𝑢𝑙 (𝑡) (10)

Substituting the controller 𝑢𝑙 (𝑡) = 𝐾𝜇𝑙 (𝑥)𝑥(𝑡) into Equation (10), then we get

�𝑥 = (𝐴𝜇 (𝑥) + 𝐵𝜇 (𝑥)𝐾𝜇𝑙 (𝑥))𝑥 (11)

Equation (11) can be understood as the controlled body is not piecewise, but the control force is
piecewise, and thus

�̄�𝜇𝜇𝑙 = 𝐴𝜇 (𝑥) + 𝐵𝜇 (𝑥)𝐾𝜇𝑙 (𝑥)

Here it is shown that the system is a polynomial Lyapunov function with a stability condition of

�̄�𝜇𝜇𝑙 (𝑥)
𝑇 𝑃𝑙 (𝑥) + 𝑃𝑙 (𝑥) �̄�𝜇𝜇𝑙 (𝑥) < 0 (12)

Using the concept of the S-procedure, Equation (12) is designed into the following inequality:

�̄�𝜇𝜇𝑙 (𝑥)
𝑇 𝑃𝑙 (𝑥) + 𝑃𝑙 (𝑥) �̄�𝜇𝜇𝑙 (𝑥) +

𝑁∑
𝑠=1

𝜆𝑠 (𝑃𝑠 (𝑥) − 𝑃𝑙 (𝑥)) < 0 (13)

where 𝜆𝑠 > 0, so it can correspond to 𝜏 of the S-procedure.
The purpose of applying this method is to stabilise the original Lyapunov function in Equation

(12), according to the S-procedure, through adding 𝜆𝑠 (𝑃𝑙 (𝑥) − 𝑃𝑠 (𝑥)), which helps to guarantee that
�̄�𝜇𝜇𝑙 (𝑥)

𝑇 𝑃𝑙 (𝑥) + 𝑃𝑙 (𝑥) �̄�𝜇𝜇𝑙 (𝑥) is less than zero. The criterion can be used and then can be solved
through subsequent simplification, which will be clarified in the following subsection.

2.5. Stability conditions for controller design of minimised fragmentary homogeneous Lyapunov
functions

In addition to the goal of making the system stable, the existing method of stabilising the system
(the original Lyapunov function) is not sufficient. To increase the stability, the controller is designed
to stabilise the system using the minimal form of the fragment homogeneous polynomial Lyapunov
function of the fuzzy system analysis, and through the method of homogeneous polynomials, we can
simplify the solution process.

Theorem 2.1. According to the continuous fuzzy system in Equation (11), we will design the controller to
stabilise the system through the minimal form of the fragment homogeneous Lyapunov function, assuming
a Lyapunov function V (x) is a homogeneous polynomial with degree g. There is an homogeneous positive
definite symmetric matrix 𝑄(𝑥) = 𝑄(𝑥)𝑇 ∈ 𝑅𝑛×𝑛, 𝑄l (𝑥) = 𝑃−1

𝑙 (𝑥)) and an asymmetric matrix F(x),
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satisfying the following inequalities:

𝑄𝑙 (𝑥) > 0
𝑀𝑖𝑖𝑙 (𝑥) > 0 𝑖 = 1, 2, · · · , 𝑟
𝑀𝑖 𝑗𝑙 (𝑥) + 𝑀 𝑗𝑖𝑙 (𝑥) > 0 𝑖 = 1, 2, · · · , 𝑟 − 1; 𝑗 = 𝑖 + 1, · · · , 𝑟

where 𝑙 = 1, 2, · · · , 𝑁 , N is the number of Lyapunov function segments,

𝑉 (𝑥) = 𝑚1≤𝑙≤𝑁 (𝑉𝑙 (𝑥))

𝑉𝑙 (𝑥) = 𝑥
𝑇 𝑃𝑙 (𝑥)𝑥

𝑀𝑖𝑖𝑙 (𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁𝑖𝑖𝑙 (𝑥) 𝑄𝑙 (𝑥) 𝑄𝑙 (𝑥) · · · 𝑄𝑙 (𝑥)
𝑄1(𝑥) −𝜆1𝑄1(𝑥) 0 · · · 0

𝑄𝑙 (𝑥) 0 −𝜆2𝑄2 (𝑥)
. . .

...
...

...
. . .

. . . 0
𝑄𝑙 (𝑥) 0 · · · 0 −𝜆𝑁𝑄𝑁 (𝑥)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑁𝑖𝑙𝑙 (𝑥) = 𝑄𝑙 (𝑥)𝐴𝑖 (𝑥)

𝑇 (𝑥) + 𝐹𝑇
𝑖𝑙 (𝑥)𝐵𝑖 (𝑥)

𝑇 (𝑥) + ★−

𝑁∑
𝑠=1

𝜆𝑠𝑄𝑙 (𝑥)

𝑀𝑖 𝑗𝑙 (𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁𝑖 𝑗𝑙 (𝑥) 𝑄𝑙 (𝑥) 𝑄𝑙 (𝑥) · · · 𝑄𝑙 (𝑥)
𝑄1(𝑥) −𝜆1𝑄1(𝑥) 0 · · · 0

𝑄𝑙 (𝑥) 0 −𝜆2𝑄2(𝑥)
. . .

...
...

...
. . .

. . . 0
𝑄𝑙 (𝑥) 0 · · · 0 −𝜆𝑁𝑄𝑁 (𝑥)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑀 𝑗𝑖𝑙 (𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁 𝑗𝑖𝑙 (𝑥) 𝑄𝑙 (𝑥) 𝑄𝑙 (𝑥) · · · 𝑄𝑙 (𝑥)
𝑄1(𝑥) −𝜆1𝑄1(𝑥) 0 · · · 0

𝑄𝑙 (𝑥) 0 −𝜆2𝑄2(𝑥)
. . .

...
...

...
. . .

. . . 0
𝑄𝑙 (𝑥) 0 · · · 0 −𝜆𝑁𝑄𝑁 (𝑥)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑁𝑖 𝑗𝑙 (𝑥) = 𝑄𝑙 (𝑥)𝐴𝑖 (𝑥)

𝑇 (𝑥) + 𝐹𝑇
𝑗𝑙 (𝑥)𝐵𝑖 (𝑥)

𝑇 (𝑥) + ★−

𝑁∑
𝑠=1

𝜆𝑠𝑄𝑙 (𝑥)

𝑁 𝑗𝑖𝑙 (𝑥) = 𝑄𝑙 (𝑥)𝐴 𝑗 (𝑥)
𝑇 (𝑥) + 𝐹𝑇

𝑖𝑙 (𝑥)𝐵 𝑗 (𝑥)
𝑇 (𝑥) + ★−

𝑁∑
𝑠=1

𝜆𝑠𝑄𝑙 (𝑥)

𝐹𝑖𝑙 (𝑥) = 𝐾𝑖𝑙 (𝑥)𝑄𝑙 (𝑥)

Proof. According to the Lyapunov theorem to analyse the continuous fuzzy closed-loop control system
in Equation (11), we assume that 𝑄𝑙 (𝑥) = 𝑃−1

𝑙 (𝑥) and the sub-g piecewise homogeneous Lyapunov
function is as follows: �

𝑉𝑙 (𝑥) = 𝑥
𝑇 𝑃𝑙 (𝑥)𝑥 >0, 𝑙 = 1, . . . , 𝑁 (14)

According to the Euler homogeneous relations in Equation (7), its differential formula can be obtained:

�𝑉𝑙 (𝑥) = 𝑔 �𝑥
𝑇 𝑃𝑙 (𝑥)𝑥 (15)
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Based on �𝑥𝑇 = 𝑥𝑇 �̄�𝑇𝜇𝜇𝑙 (𝑥), then

�𝑉𝑙 (𝑥) = 𝑔𝑥
𝑇 �̄�𝑇𝜇𝜇𝑙 (𝑥)𝑃𝑙 (𝑥)𝑥 (16)

Then dividing g by 2, the following formula can be shown with �̄�𝑇𝜇𝜇𝑙 (𝑥)𝑃𝑙 (𝑥):

�𝑉𝑙 (𝑥) =
𝑔

2
𝑥𝑇 ( �̄�𝑇𝜇𝜇𝑙 (𝑥)𝑃𝑙 (𝑥) + 𝑃𝑙 (𝑥) �̄�𝜇𝜇𝑙 (𝑥))𝑥 (17)

To make the system asymptotically stable, it is necessary for �𝑉𝑙 (𝑥) < 0 that

𝑔

2
𝑥𝑇 ( �̄�𝑇𝜇𝜇𝑙 (𝑥)𝑃𝑙 (𝑥) + 𝑃𝑙 (𝑥) �̄�𝜇𝜇𝑙 (𝑥))𝑥 < 0 (18)

Finally, the normal constants are divided and through the congruent conversion,

�̄�𝑇𝜇𝜇𝑙 (𝑥)𝑃𝑙 (𝑥) + 𝑃𝑙 (𝑥) �̄�𝜇𝜇𝑙 (𝑥) < 0 (19)

Taking in
∑𝑁

𝑠=1 𝜆𝑠 (𝑃s (𝑥) − 𝑃𝑙 (𝑥)) items according to the S-procedure, we then have

�̄�𝑇𝜇𝜇𝑙 (𝑥)𝑃𝑙 (𝑥) + 𝑃𝑙 (𝑥) �̄�𝜇𝜇𝑙 (𝑥) +
𝑁∑
𝑠=1

𝜆𝑠 (𝑃𝑠 (𝑥) − 𝑃𝑙 (𝑥)) <0 (20)

Multiply the inequality left and right by 𝑄𝑙 (𝑥):

𝑄𝑙 (𝑥) �̄�
𝑇
𝜇𝜇𝑙 (𝑥) + �̄�𝜇𝜇𝑙 (𝑥)𝑄𝑙 (𝑥) +

𝑁∑
𝑠=1

𝜆𝑠 (𝑄𝑙 (𝑥)𝑃𝑠 (𝑥)𝑄𝑙 (𝑥) −𝑄𝑙 (𝑥) <0 (21)

After Shur complement and order 𝑁𝜇𝜇𝑙 = 𝑄𝑙 (𝑥) �̄�
𝑇
𝜇𝜇𝑙 (𝑥) + �̄�𝜇𝜇𝑙 (𝑥)𝑄𝑙 (𝑥), we can get

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁𝜇𝜇𝑙 𝑄𝑙 (𝑥) 𝑄𝑙 (𝑥) · · · 𝑄𝑙 (𝑥)
𝑄1(𝑥) −𝜆1𝑄1(𝑥) 0 · · · 0

𝑄𝑙 (𝑥) 0 −𝜆2𝑄2(𝑥)
. . .

...
...

...
. . .

. . . 0
𝑄𝑙 (𝑥) 0 · · · 0 −𝜆𝑁𝑄𝑁 (𝑥)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (22)

where 𝑙 = 1, · · · , 𝑁 , and taking the sub-matrix 𝑁𝜇𝜇𝑙 of Equation (22),

𝑄𝑙 (𝑥) �̄�
𝑇
𝜇𝜇𝑙 (𝑥) + �̄�𝜇𝜇𝑙 (𝑥)𝑄𝑙 (𝑥) −

𝑁∑
𝑠=1

𝜆𝑠𝑄𝑙 (𝑥) <0

Substitute the state matrix �̄�𝜇𝜇𝑙 (𝑥) = 𝐴𝜇 (𝑥) + 𝐵𝜇 (𝑥)𝐾𝜇𝑙 (𝑥) back into

𝑄𝑙 (𝑥)(𝐴𝜇 (𝑥) + 𝐵𝜇 (𝑥)𝐾𝜇𝑙 (𝑥))
𝑇 + ★−

𝑁∑
𝑠=1

𝜆𝑠𝑄𝑙 (𝑥) <0

Suppose a new variable 𝐹𝜇𝑙 (𝑥) = 𝐾𝜇𝑙 (𝑥)𝑄𝑙 (𝑥) to replace the double variables

𝑄𝑙 (𝑥)𝐴𝜇 (𝑥)
𝑇 𝑥 + 𝐹𝑇

𝜇𝑙 (𝑥)𝐵𝜇 (𝑥)
𝑇 𝑥 + ★−

𝑁∑
𝜆𝑠𝑄𝑙 (𝑥) <0

By means of Equations (25) and (22), the system stability analysis can be carried out.
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Figure 1. Descriptors in the e event.

The second reason for using the minimal form fragment Lyapunov function is explained here. If the
maximal form fragment Lyapunov function is used, because the conditional inequality is𝑄𝑙 (𝑥) �̄�

𝑇
𝜇𝜇𝑙 (𝑥)+

16�̄�𝜇𝜇𝑙 (𝑥)𝑄𝑙 (𝑥) +
∑𝑁

𝑠=1 𝜆𝑠 (𝑃𝑙 (𝑥) − 𝑃𝑠 (𝑥)) >0, it is proved by Equation (22) that the diagonal term will
become 𝜆1𝑄1(𝑥), · · · , 𝜆𝑁𝑄1(𝑥), then Equation (22), by turning back the Shur complement, will be
found to violates the S-procedure, where 𝜆 < 0 is never found, so it is not applicable.

3. UAV practice in operations

Apply various types of UAVs to patrol a district and probe events coming from the scene of observation.
Every UAV has been equipped with a technical background to complete a detection event (UAVs event
detection team). UAVs could specifically probe mobile targets on the scene via tracking video algorithms,
and also use scene ontology with contextual knowledge to fuse this information (Yin et al., 2022; Li
and Zakarya, 2022; Liu et al., 2023; Hou et al., 2023a; Guo et al., 2023).

For modelling the UAV’s probed events and its values of frequency, we expanded Track Stick ontology
to a fuzzy ontology. All types of UAV probed events as well as their valuable frequency are appended
to the system ontology as principles. The applied principle is expressed as the triple 〈𝑒 , 𝑢, 𝑓 〉, whereas
e the event type, u is the UAV entity, and f the event type’s valuable frequency. The principle indicates
that this UAV u probed the event type e with the valuable frequency f.

According to the frequency value of event types, the event descriptor describing event types is
modelled as the concept in fuzzy ontology. Figure 1 displays three descriptors’ event definitions of a
specific event e: Low E, Medium E, High E. That is, the event e is a model of variable linguistic (fuzzy
linguistic) terms in the three fuzzy concepts depicted by the membership functions which are fuzzy of
the figure. These three conceptions depict different densities of vehicles (or people) related to the kind
of event e in the specified scene. Depending on the valuable frequency, the descriptor events describe
the participations in the type of event in detail in the form of the membership value which is fuzzy. For
example, if the valuable frequency of e is low, low E can depict someone’s participation in this event
type more than Medium E and High E.

As soon as every UAV conveys preferences in conditions, the module M2 first permits UAVs to
establish a decision in a group, so evaluates team agreements as well as probes which UAVs dominate
the decision through using consensus reaching processes. Condition understanding based on a multi-
UAV system is founded as a problem of GDM (Jiang et al., 2021; Chen et al., 2022a; Ma and Hu,
2022; Dai et al., 2023; Guo and Hu, 2023; Xiao et al., 2023); these conditions have been regarded as the
alternatives, and every UAV in the system team can be evaluated as one expert. So, every UAV represents
its preferences for these detected conditions (refer to Section 3A), officially, defining n UAVs as well
as m conditions, every UAV conveys preferences in the m conditions. These preferences represented
through the ith UAV are expressed in vector 𝑃𝑖 = (𝑥𝑖1, 𝑥

𝑖
2, . . . , 𝑥

𝑖
𝑚), whereas 𝑃𝑖 ∈ 𝑅𝑚,∀𝑖 = 1, 2, . . . , 𝑛.

This preference 𝑥𝑖𝑗 , by the vector preference P𝑖 , expressed that the quantity of the ith UAV prefers some
jth condition over any others. The number of dimensionality of preference vectors equals the number of
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stars used for the ranking system. The document preference vector is represented based on the average
vector of term preference vectors.

As these UAV systems could comprise various kinds of UAVs (e.g. aerial, ground, sensor-based,
etc.), every UAV possesses distinct functions and abilities. Further, the weather, e.g. luminosity and
humidity, or any other environmental characteristics (that is, dense forests, radioactive regions), may
decrease the capabilities of some UAVs. Therefore, each UAV has a reliability level; more specifically,
w𝑖 means the reliability weight incorporated with the ith UAV. For example, let us premeditate that a
UAV team comprises three UAVs (i.e. UAV#1, UAV#2, and UAV#3), in which UAV#1 and UAV#3 have
been equipped with action cameras and UAV#2 equipped with infrared cameras.

This kind of model summarises UAV preferences and defines the collective vector preference about
this condition. The collective vector preference cp = (cp1, cp2, . . . , cp𝑚) comprises m components, in
which the jth factor (cp 𝑗) presents this team’s preference for this jth case. Hence, we let 𝑤𝑖 and
𝑃𝑖 = (𝑥𝑖1, 𝑥

𝑖
2, . . . , 𝑥

𝑖
𝑚) be respectively that weight as well as vector preference which are incorporated

with this ith UAV. The cp 𝑗 terms are given, while the arithmetic weighted mean in this UAV preferences
in this jth case

cp 𝑗 =

∑𝑛
𝑖=1 (𝑥

𝑖
𝐽 · 𝜔𝑖)∑𝑛

𝑘=1 𝜔𝑘
(23)

where the cp 𝑗 value presents this global aggregation preference values in the jth condition, and 𝑗 =
1, 2, . . . , 𝑚. While given 𝜃 similarity vectors, n UAVs are evaluated, whereas 𝜃 = 𝑛 · (𝑛−1)/2. Assuming
𝑃 𝑗 and 𝑃𝑖 are the vector preferences for the jth and ith UAVs, respectively, the vector similarity SV𝑘

amid the UAV pair are computed as these distances between the UAVs vectors preference (Ma et al.,
2023b; Song et al., 2022; Wang et al., 2022; Guo et al., 2023; Mi et al., 2023):

SV𝑘 = |𝑃𝑖 − 𝑃 𝑗 | (24)

where 𝑖 ≠ 𝑗 and 𝑘 = 1, 2, . . . , 𝑖, 𝜃 𝑗 = 1, 2, . . . , 𝑛.
Level 2, A Consensus in situations (CS). By integrating a resemblance vector between the UAV

pairs, the degree of consensus amid all the UAVs for each condition (CS) is acquired. Given the
resemblance vector SV𝑘 = (SV𝑘

1 , SV𝑘
2 , SV𝑘

𝑚) amid the vectors preferences 𝑃𝑖 and 𝑃 𝑗 in which 𝑖 ≠ 𝑗
and 𝑖, 𝑗 = 1, 2, . . . , 𝑛, the degree of consensus cs 𝑗 amid all of the UAVs on that jth condition has been
computed as the average power mean of that jth element in all of the resemblance vectors:

cs 𝑗 =

(
1
𝑡

𝑡∑
𝑘=1

|sv𝑘
𝑗 |

𝑝

)1/𝑝

(25)

where 𝑗 = 1, 2, . . . , 𝑚, and p the 𝑝 − norm average power value.
The degree of CS determines in what kind of conditions the UAVs exhibit divergence, thence,

discriminate whether the team’s decision is reliable on each condition. CS degree under all of the
conditions (cr) has been computed as the average power means of the CS degree,

cr =

(∑𝑚
𝐽=1 |cs 𝑗 |𝑃

𝑚

)
(26)

CS on the relation (cr) offers an unparalleled accumulative gauge for assessing the consistency amid
UAVs in this team under all of the conditions. The denser cr is to zero, the higher the consistency of UAV
under all the conditions, and the higher the reliability of the last decision group (ccp). The collective
cumulative preference (ccp) is computed as these arithmetic means in the factors of these collective
preferences.

ccp =
∑𝑚

𝐽 2=1 cp 𝑗

𝑛
(27)

https://doi.org/10.1017/S0373463324000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463324000146


The Journal of Navigation 11

Once the vector preference 𝑃𝑖 = (𝑥𝑖1, 𝑥
𝑖
2, . . . 𝑥

𝑖
𝑚) for that ith UAV, the collective preference for that

ith UAV amid all of the conditions is the arithmetic mean of its factors

cuv𝑖 =
1
𝑚

𝑚∑
𝑗=1
𝑥𝑖𝑗 (28)

where 𝑖 = 1, 2, . . . , 𝑛. The proximity and consensus degrees have been applied to explain the axioms
of conditions and UAVs (Lu and Osorio, 2018; Cao et al., 2021; Lyu et al., 2023; Ma et al., 2023a; Qu
et al., 2023a, 2023b). Thereby, the system can probe the most reasonable conditions and UAVs guiding
the team’s decision through requests.

According to Theorem 2.1, the inequality of the detection conditions of stability analysis can be
tested by the method of sum of squares, so if the theorem condition is true, Theorem 2.1 is true, and the
test rules are as follows:
𝑣𝑇 (𝑄𝑙 (𝑥) − 𝜖1(𝑥)𝐼)𝑣 are SOS
−𝑣𝑇 (𝑀𝑖𝑙𝑙 (𝑥) + 𝜖2(𝑥)𝐼)𝑣 are SOS 𝑖 = 1, 2, · · · , 𝑟
−𝑣𝑇 (𝑀𝑖 𝑗𝑙 (𝑥) + 𝑀 𝑗𝑖𝑙 (𝑥) + 𝜖3(𝑥)𝐼)𝑣 are SOS 𝑖 = 1, 2, · · · , 𝑟 − 1; 𝑗 = 𝑖 + 1, · · · 𝑟
where 𝑣 ∈ 𝑅𝑛, 𝜖1(𝑥) > 0, 𝜖3(𝑥) > 0, 𝑙 = 1, · · · , 𝑁 , N is the number of Lyapunov function segments

𝑉 (𝑥) = 𝑚1≤𝑙≤𝑁 (𝑉l (𝑥))

𝑉𝑙 (𝑥) = 𝑥
𝑇 𝑃𝑙 (𝑥)𝑥

𝑀𝑖 𝑗𝑙 (𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁𝑖𝑖𝑙 (𝑥) 𝑄𝑙 (𝑥) 𝑄𝑙 (𝑥) · · · 𝑄𝑙 (𝑥)
𝑄1(𝑥) −𝜆1𝑄1 (𝑥) 0 · · · 0

𝑄𝑙 (𝑥) 0 −𝜆2𝑄2(𝑥)
. . .

...
...

...
. . .

. . . 0
𝑄𝑙 (𝑥) 0 · · · 0 −𝜆𝑁𝑄𝑁 (𝑥)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑁𝑖𝑙𝑙 (𝑥) = 𝑄𝑙 (𝑥)𝐴𝑖 (𝑥)

𝑇 (𝑥) + 𝐹𝑇
𝑖𝑙 (𝑥)𝐵𝑖 (𝑥)

𝑇 (𝑥) + ★−

𝑁∑
𝑠=1

𝜆𝑠𝑄𝑙 (𝑥)

𝑀𝑖 𝑗𝑙 (𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁𝑖 𝑗𝑙 (𝑥) 𝑄𝑙 (𝑥) 𝑄𝑙 (𝑥) · · · 𝑄𝑙 (𝑥)
𝑄1(𝑥) −𝜆1𝑄1(𝑥) 0 · · · 0

𝑄𝑙 (𝑥) 0 −𝜆2𝑄2(𝑥)
. . .

...
...

...
. . .

. . . 0
𝑄𝑙 (𝑥) 0 · · · 0 −𝜆𝑁𝑄𝑁 (𝑥)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑀 𝑗𝑖𝑙 (𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁 𝑗𝑙 (𝑥) 𝑄𝑙 (𝑥) 𝑄𝑙 (𝑥) · · · 𝑄𝑙 (𝑥)
𝑄1 (𝑥) −𝜆1𝑄1(𝑥) 0 · · · 0

𝑄𝑙 (𝑥) 0 −𝜆2𝑄2(x)
. . .

...
...

...
. . .

. . . 0
𝑄𝑙 (𝑥) 0 · · · 0 −𝜆𝑁𝑄𝑁 (𝑥)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑁𝑖 𝑗𝑙 (𝑥) = 𝑄𝑙 (𝑥)𝐴𝑖 (𝑥)

𝑇 (𝑥) + 𝐹𝑇
𝑗𝑙 (𝑥)𝐵𝑖 (𝑥)

𝑇 (𝑥) + ★−

𝑁∑
𝑠=1

𝜆𝑠𝑄𝑙 (𝑥)

𝑁 𝑗𝑖𝑙 (𝑥) = 𝑄𝑙 (𝑥)𝐴 𝑗 (𝑥)
𝑇 (𝑥) + 𝐹𝑇

𝑖𝑙 (𝑥)𝐵 𝑗 (𝑥)
𝑇 (𝑥) + ★−

𝑁∑
𝑠=1

𝜆𝑠𝑄𝑙 (𝑥)

𝐹𝑖𝑙 (𝑥) = 𝐾𝑖 (𝑥)𝑄𝑙 (𝑥)
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where v is an arbitrary parameter vector 𝜀1(𝑥) independent of x, 𝜀2(𝑥), 𝜀3(𝑥) are extremely small values
and they can also be functions of x to exclude the possibility of SOS being 0.

The simulation of the example will be based on the theory in Section 2, and the computer simulation
will be performed by using the sum of squares detection conditions in Section 3, where 𝜆 is the
experimental value. According to the S-procedure, there exists a 𝜆 > 0 to ensure Equation (15) is
established. As for the value of 𝜆, each time for optimal selection is random numbers that are close
to each other. In addition, the design method of Lyapunov matrix and control gain matrix in computer
simulation is based on the method of Lu and Osorio (2018).

4. Numerical case

A case study is in the section to demonstrate how our model acts in the practical scene. Let us premeditate
the experimental scene displayed in Figure 2. This scene relates to some people crossing as well as
others walking nearby the road. Hence, let us presume a group of six UAVs achieved a site, spying on
this district, in which the scenario demonstrated has been occurring. Every UAV could simultaneously
probe five people at the scene via tracking video, where other moving objects have been filtered off
(as shown by obj_6 in the figure). The UAV infers the constructed epistemology to probe events as the
system ontology axioms (that is, predicate-object-subject triples), in which these event types (predicate)
have been involved in the relevant personnel (subject) as well as the position where this event takes
place (object). Taking an example, these axioms depict events detected via UAV#1 relating to probed
people and POIs (Chen et al., 2022b, 2022c; Li et al., 2022c; Chen et al., 2023; Ma et al., 2023b; Yin
et al., 2023).

Depending on Section 3, the module M1 implements an initial step which is identified by 0 for UAV
configuration preferences, so the module M2 guides the UAVs to the last interpretation group via other
steps. The flow chart is explained in Figure 3.

4.1. Situation and preference generation

Calculate the frequencies which were related to each event’s type probed by the UAVs. At this time,
based on the query-based maximum concept satisfiability, it is probable to calculate this preference of
UAV#1 on the marching people states. Generally, the preference of the UAV for a certain condition is
produced by requesting the maximum satisfiability concept of UAV instance as well as their event type
frequencies.

There are five statuses that can be recognised in this scene, displayed as Figure 2, such as simple
crossing, people marching, traffic, shopping and men working on the road. UAVs will produce the
preference values on these statuses, their results reported as Table 2. Due to the scene not showing any
status which may affect any UAV’s performances, for the purpose of simplification, by allocating its
weights to one that supposes each UAV has the same reliability. Table 3 demonstrates the cps vectors.
UAV#5 guides team decisions in all statuses and UAV#2 and UAV#4 represent the decisions most
distinct from the ultimate team decision.

Rule𝑖 : IFx1(𝑡) is M𝑖1

Then �𝑥(𝑡) = 𝐴𝑖𝑥 + 𝐵𝑖𝑢, 𝑖 ∈ 1, 2, 3

Its constant system matrix is as follows:

𝐴1 =

[
1.59 −7.29
0.01 0

]
, 𝐴2 =

[
0.02 −4.64
0.35 0.21

]
, 𝐴3 =

[
−a −4.33
0 0.05

]
𝐵1 =

[
1
0

]
, 𝐵2 =

[
8
0

]
, 𝐵3 =

[
−𝑏 + 6
−1

]
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Figure 2. Experimental study illustrating six UAVS observations and a practical scenario interpretation.

Figure 3. Flow chart of the UAV application with optimal design.
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Table 2. Six UAVs preferences on five situations: men on the road (WRK); simple crossing (CRS); traffic
(TRF); people marching (MAR); shopping (SHO).

Situations

UAV(#) WRK CRS TRF MAR SHO

UAV#1 0 · 64 0 · 13 0 · 11 0 · 29 0 · 33
UAV#2 0 · 62 0 · 79 0 · 15 0 · 46 0 · 53
UAV#3 0 · 12 0 · 83 0 · 15 0 · 12 0 · 13
UAV#4 0 · 52 0 · 33 0 · 35 0 · 82 0 · 53
UAV#5 0 · 21 0 · 62 0 · 34 0 · 32 0 · 03
UAV#6 0 · 01 0 · 02 0 · 49 0 · 24 0 · 73

Table 3. UAV cumulative proximity: each row illustrates a drone decision distinct from a decision by
the group in all situations.

Proximity (cps) UAV(#)

–0 · 04 UAV#1
–0 · 31 UAV#2
0 · 05 UAV#3
–0 · 26 UAV#4
–0 · 01 UAV#5
–0 · 01 UAV#6

functions of the three fuzzy rules are as follows:

𝑀1(𝑡) =
cos(10𝑥1 (𝑡)) + 1

4
, 𝑀2 (𝑡) =

sin(10𝑥1 (𝑡)) + 1
4

,

𝑀3(𝑡) =
− cos(10𝑥1 (𝑡)) − sin(10𝑥1 (𝑡)) + 1

4

The computer simulation is performed in the initial state 𝑥(0) =[
−2 1

]𝑇
,
[
1 2

]𝑇
,
[
−1 −2

]𝑇
,
[
2 −1

]𝑇 in a purely controlled and non- piecewise manner, and the
respective energy function 𝑄(𝑥)𝐴𝑇𝑖 (𝑥) + 𝐹

𝑇
𝑖 (𝑥)𝐵𝑇𝑖 (𝑥) + ★ <0 diagrams are obtained.

After computer simulation, we get results as follows, respective piecewise Lyapunov matrices 𝑄l(𝑥)
for

𝑄1(𝑥) =

[
0.52𝑥2

1 + 0.15345𝑥2
2 0

0 0.15345𝑥2
1 + 0.045266𝑥2

2

]

𝑄2(𝑥) =

[
0.51553𝑥2

1 + 0.15227𝑥2
2 0

0 0.15227𝑥2
1 + 0.044954𝑥2

2

]

𝑄3(𝑥) =

[
0.51122𝑥2

1 + 0.1507𝑥2
2 0

0 0.1507𝑥2
1 + 0.044353𝑥2

2

]
The controller Kil is as follows:

𝐾11 =
[
−0.08675𝑥2

1 − 0.6741 −0.03222𝑥2
2 + 2.6102

]
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𝐾21 =
[
−0.02481𝑥2

1 + 0.0781 0.0802𝑥2
2 + 0.4386

]
𝐾31 =

[
−0.01089𝑥2

1 − 1.1141 −0.02357𝑥2
2 − 0.9996

]
𝐾12 =

[
−0.08744𝑥2

1 − 0.6782 0.03236𝑥2
2 + 2.6279

]
𝐾22 =

[
−0.02502𝑥2

1 + 0.0765 0.0806𝑥2
2 + 0.4392

]
𝐾32 =

[
−0.01097𝑥2

1 − 1.0965 0.02403𝑥2
2 − 0.9669

]
𝐾13 =

[
−0.088𝑥2

1 − 0.6893 0.03277𝑥2
2 + 2.6379

]
𝐾23 =

[
−0.02514𝑥2

1 + 0.0741 0.08177𝑥2
2 + 0.4391

]
𝐾33 =

[
−0.01103𝑥2

1 − 1.1293 −0.02346𝑥2
2 − 1.0156

]
Then we have the initial state 𝑥(0) =

[
−2 1

]𝑇
,
[
1 2

]𝑇
,
[
−1 −2

]𝑇
,
[
2 −1

]𝑇 similarly to get their
respective energy function diagrams.

5. Discussion, conclusion and future study

In the previous literature on analysis of Lyapunov functions, when trying to deal with the differentiation
of polynomial Lyapunov functions, the differential term of P(x) will be generated, which needs to be
avoided through complicated methods, and this paper quotes Euler polynomial theorem homogeneous
functions dealing with this problem, and constructs the Hessian matrix relationship between V(x)
and �𝑉 (𝑥), successfully avoiding the problem of differential terms.

In terms of computer simulation, this method is demonstrated feasibly to converge the system that
is difficult to be stabilised. It proves that it increases the degree of relaxation of the solution. A major
advantage of increasing the degree of relaxation comes from

∑𝑁
s=1 𝜆𝑠 (𝑃𝑠 (𝑥) − 𝑃l(𝑥)), but the selection

and adjustment of 𝜆𝑠 is an optimal process, which is different for each individual system. According
to whether the energy function 𝑉l(𝑥) is interleaving or converged, we can adjust the stabilisation
straightforwardly and easily.

The future study directions will emphasise a multi-agent paradigm for UAV system design, on the
basis of the proposed consensus-based GDM model, we will train in defining cooperation assignment
activities aimed, instead, at the UAV consensus in the scene interpretation. An LMI (linear matrix
inequality) program will occupy the hardware resources of the computer when it is executed, so if the
matrix parameters to be solved are defined to be too high or too complicated, it will be difficult. It may
cause the solution time to be too long, or there may even be insufficient memory capacity to execute. In
terms of computer demonstrations, the sum-of-squares method is used to test the stability conditions of
the fuzzy system, and a static feedback gain is designed to achieve stabilisation with a fuzzy controller
based on the effective and efficient results of a nonlinear system as an example.
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