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SOLVABILITY OF A CLASS OF RANK 3
PERMUTATION GROUPS?

D.G. HIGMAN

1. Introduction. Let G be a rank 3 permutation group of even order
on a finite set X, |X| ==, and let 4 and I be the two nontrivial orbits
of G in Xx X under componentwise action. As pointed out by Sims [6],
results in [2] can be interpreted as implying that the graph &7 = (X,4) is a
strongly regular graph, the graph theoretical interpretation of the parameters
k, 1, 2 and p of [2] being as follows: % is the degree of &7, 2 is the number
of triangles containing a given edge, and g is the number of paths of length
2 joining a given vertex P to each of the [ vertices # P which are not
adjacent to P. The group G acts as an automorphism group on .&¥ and
on its complement & = (X,I).

A family of solutions of the conditions in [2] for the parameters =, k,
l, 2, ¢ is given by

1) n=dt+1, k=1=2f, p=21+1=t.

This family includes the only case in which the adjacency matrix A of &
has irrational eigenvalues [2].

Assuming that (1) holds for G, we have by [2] that
(2) G is primitive,
(3) & is a strongly regular graph whose parameters satisfy (1), and
(4) A*+ A—tI=tF, where F has all entries 1.

Here we consider the case in which ¢ is a prime, proving

TueorEM 1. If G is a rank 3 permutation group with parameters given by
(1) with t a prime, then G is solvable.

Received November 20, 1969.
1 Research supported in part by the National Science Foundation.

89

https://doi.org/10.1017/50027763000014082 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014082

90 D.G. HIGMAN

As explained in §2, the groups G of Theorem 1 are actually deter-
mined (Theorem 2). Our result implies that for admissable prime values
of ¢ the graph &7 is unique up to isomorphism. We do not know if
strongly regular graphs satisfying (1) but not admitting rank 3 automorphism
groups can exist, nor do we have an example of a nonsolvable group of
rank 3 whose parameters satisfy (1).

For the most part we follow the notation and terminology of Wielandt’s
book [7]. But if G is a permutation group on X and @<X we write G,
and Gy, respectively for the setwise and pointwise stabilizers of @, and if
H<G,, we denote by H|® the image under restriction of H in the sym-
metric group on @. We use the notation and terminology of [2] and [3]
for rank 3 permutation groups. For the connection between permutation
groups and graphs see the papers [5] and [6] of Sims.

2. Examples of Singer type. Let p be a prime and ¢ an integer >0
such that ps = 4¢ 4+ 1. Let M be the additive group of the field F,,. Identify
a primitive element & of F,, with the automorphism z—x¢ of M and let
7 be an automorphism of F,, regarded as an automorphism of M. Then
G = M<&, t> acts as a rank 3 group of permutations M satisfying (1).2 A
permutation group isomorphic with one of these groups G will be called a
rank 3 group of Singer type. The graph &7 (for suitable choice of 4) is
isomorphic with the graph whose vertices are the elements of F,, two
being adjacent if and only if their difference is a nonzero square. Of course
if ¢ is a prime >2 then either p =1 or p =s and p is an odd prime.

In proving Theorem 1 we actually prove

TueoreM 2. Under the hypotheses of Theorem 1, G must be of Singer type.
The remainder of this paper is devoted to the proof of this result.

3. The case in which ¢ is a prime. From now on G will be a rank
3 group satisfying (1) and the additional condition that is a prime. If G
has degree 9 then it is of Singer type, so we assume that ¢ >2. If n=4¢+1
is a prime then G is of Singer type by a theorem of Burnside [7; Th. 11.7].
Hence we assume that

2) The values for 2 and g follow at once from the existence of an isomorphism of &
onto &7, namely 2 — n2, 2€F,, n a fixed nonsquare.
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(5) t is an odd prime and 4t + 1 is not a prime.
Choose PeX and put H= G,. The H-orbits = {P} are

A4(P) = the set of all points of X adjacent to P and
I'(P) = the set of all points # {P} of X not adjacent to P in the graph &”.
Let S(#)<< H be a ¢-Sylow subgroup of G. By [7; Th. 3.4’] S(¢) has

two orbits 4, and 4, of length ¢ in 4(P) and two orbits 4, and 4, of length
¢t in I'(P). The corresponding martix A (cf. [4; Appendix]) has the form

S
I

© © H R o
©

where z + y=¢t—1 and z+ w=¢. The rows and columns of A are indexed
by the S(¢)-orbits 4, = {P}, 4,, 4, 4,, 4,. The entry in the 4;-th row and
4;-th column is the number of edges from any given vertex in 4; to 4;.
By [4] and (4),

6) A+ A—tI=tF where F is the matrix of degree 5 having 1 in every enlry
in the first column and all other entries ¢.

An essential part of our argument is that the following possibilities for A
can be ruled out at once by consideration of the (2,2)-entry of (6).

(7)  The cases (i) z=1t, w=0, (ii) z=t—1, y=0, (iii) =0, y=¢t—1
and (iv) © =y = (t — 1)/2 are impossible.

The first application is
(8) A(P) and I'(P) are faithful H-orbits.

Proof. Write T = Hypy If T+#1 then T|I'(P)#1 and T is either
transitive, has ¢ orbits of length 2 or 2 orbits of length t. Take Q=4(P), then
T<H, and the set of k—21—1=1¢ vertices in I'(P) adjacent to @ is a
union of T-orbits. Hence T has 2 orbits I", and I', of length ¢ in I'(P), Q
is joined to all ¢ points of one of these, say I',, and none of the other.
But I, and I', are orbits for a ¢-Sylow subgroup S(t)<< H and the corres-

https://doi.org/10.1017/50027763000014082 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014082

92 D.G. HIGMAN
ponding matrix A has the form

7

t t 0 0

h Y
Il

0
1
1y
0
0

contrary to (7).

9) If the minimal normal subgroup M of G is regular and 1if H= Ny(S(¢)) for
some t-Sylow subgroup S(t) of G then G is of Singer type.

Proof. As a primitive rank 3 group G has a unique minimal normal
subgroup M which is elementary abelian if it is regular [3]. Hence, assum-
ing M is regular, we must have 4f+1=5" p an odd prime, under our
assumption (5).

We may identify M with the additive group of F;, and regard H as a
group of automorphisms of M. Let & be a primitive element of F;,, iden-
tified with the automorphism 2z —xé of M. Then S(¢)= <& is ¢-Sylow
subgroup of Aut M so we may assume that S(¢)<< H. Since Nauwu(S(?)) =
Nauwen(<E) = <&,z> where ¢ is the automorphism z —z* of M, and since
(&) is transitive on M — {0}, we may assume that H= <&,7> if Hs= (&%,
proving (9).

(10) H|4(P) and H|IL(P) are imprimitive.

Proof. By Wielandt’s theorem [7; Th. 31.2], if H|4(P) is primitive then
either it is doubly transitive or has rank 3 with subdegrees 1, s(2s + 1),
(s4+1)(2s+1). The first case is ruled out because 130, 2t —1. In the
second case the subdegrees of H|4(P) must be 1, 2=¢—1, ¢, giving ¢ = 1,
contrary to hypothesis.

The rest of our proof of Theorem 2 breaks up into two cases according
as H|4(P) has imprimitive blocks of length # or not.

4. Case A. Let 4(P)=4,+ 4, be a decomposition of 4(P) into imprimitive
blocks of length ¢ and let H,= H,, = H,, so that H: H,= 2.

(11)  Hyug= Hyy=1.
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Proof. If Hyup#+1 then by (8), its restriction to 4, is +=1 and hence
transitive. Hence Qe4, is adjacent to 0 points of 4, and all ¢ — 1 points
of 4,— {Q}. 4, and 4, are orbits for a ¢-Sylow subgroup S(t)<H of G
and the corresponding matrix A has the form

0 ¢t ¢t 00

1¢—-10 z w
A=|1 o

0 =z *

0 w

contrary to (7).

(12) Hy|4, is not doubly transitive.

Proof. Suppose that H,|4; is doubly transitive and take Qe4,. If @
is adjacent to one point of 4, it is adjacent to all # —1 points of 4, — {Q}
and none of 4,, which is impossible as in the proof of (11). Hence @ is
adjacent to 0 points of 4, and ¢ —1 points of 4, giving an A of the form

(VR t 00

1 0 =12z w
A=| 1 t-1

0 =z *

0 w

contrary to (7).
We complete the proof of Theorem 2 in case A by proving

(13) G is of Singer type.

Proof. By a Theorem of Burnside [7; Th. 11.7], (12) implies that H|4,
is either regular of Frobenius, and hence H=N;(S(¢)) where S(¢) is a #-Sylow
subgroup of G. Let M be a minimal normal subgroup of G. If M is regular
then G is of Singer type by (9). Otherwise Mp <=1, so that either |[Mp| =2
and 2| |M]|, or ¢|| |M]|. In either case M is simple. The first case is
impossible since there are no such simple groups. In the second case
M : Ny(S(¢)) =1+ 4¢ and we may apply the theorem of Brauer and Rey-
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nolds [1]. The single possibility ¢=5 survives the conditions of this theorem,
but in this case |[M| = 420 or 840 which is impossible.

5. Case B. We now assume that neither H|4(P) nor H|I'(P) has impri-
mitive blocks of length ¢. Then for each Q=4(P) there is a unique point
QFf = Q in 4(P) such that H, = H,P, and for each point RerI'(P) there is a
unique point RP #= R in I'(P) such that Hp= H,P. Let 2 be the set of
imprimitive blocks {Q,QF} for H|4(P). We begin the elimination of this
situation by proving.

(14) |Hygl <2.

Proof. Put V = Hy, let S(t)<H be a t-Sylow subgroup of G and let
4, and 4, be the S(#)-orbits in 4(P). For Se4(P), 14,n{S,SP}| =1 (i=1,2).
Take Qe 4, and suppose V,=V, s for some Sed,— {Q}. Then Vyo=V;
and hence Vo=V, for all Ted4, since S(¢) acts transitively on the set
{VolQed,}. Hence Vy=1 and |V|<2.

If Vo # Vs for all Se4,—{Q} then @ adjacent to S implies @ adjacent
to S?, and the matrix A determined by S(#) has the form

0 t t. 0 0
t—1 -1
1 5 5 z w
t—1
1 2
0 z *
“ 0 w

contrary to (7).

(15) H|Q is doubly transitive.

Proof. If H|Q is not doubly transitive then S(¢) X H by Burnside’s
Theorem [7; Th. 11.7] and (14). Hence the S(f)-orbits are imprimitive blocks
for H|4(P), contrary to assumption.

(16) The fixed-point set of Hy for Qe A(P) is a 5-element set, and Hy = Gg,s for
any two distinct points R and S in it.»

3) The proof of (16), considerably simplifying the author’s original elimination of case
B, was provided by Robert Liebler.
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Proof. Suppose that QP€4(Q). Then H, has no orbits of length 1 in
4(P)NI(Q), and since the nontrivial orbits of H, in 4(P) have length divisilbe
by t—z_ 1 by (15) and since |[4(P)NI(Q)| = ¢, we find that ¢ =3, contrary
to (5). Hence Q7<r(Q).

Certainly H, = Gp,q fixes every point of the set B= {P, @, Q7,P¢, P},
and for R, S distinct points of this set, Gp,o=<Ggs. But for any two dis-
tinct points U, Vin X, G : Gy, = (4t + 1)2.. Hence Gp o = Gg,s and we see
that B is the full set of fixed points of Gp,, and |[B| =5.

(17) For QEA(P) and R = Pe, mQ,QP} = H{R,RP}.

Proof. The number of 5-element subsets B = {P,Q, Q%, R, R?}, R = P¢,

is M—t;—lﬂ— , since any two distinct points lie on exactly one so that each
point lies on exactly ¢t. Hence Hy: Hy=2. But Hyg ¢r)<<Hjz so Hq,qry=Hp.
Similarly Hg, zry = Hp.

We now complete the proof of Theorem 2 by proving

(18) Case B is impossible.

Proof. We assume first that Hyg,er; is transitive on 4(P)— {Q,QF}.
Since Hiq,qry fixes the union of 4(Q)N4(P) and 4(QF)N4(P), these two sets
must be disjoint. Put R = P®, then Hig ¢r) = Hig zr} is transitive on I'(P)—
{R, R?} and fixes the union of 4(Q)NI'(P) and 4(QP)NI'(P) so that these two
sets must be disjoint. Hence 4(Q)n 4(Q?)={P}, giving =1, a contradiction.

We are left with the case in which Hy,er; has two orbits of length
t—1in 4(P)—{Q,Q"}. In this case we conclude from the fact that Hyg, qr,
fixes the union of 4(Q)N4(P) and 4(QF)N 4(P) that

(x)  4@Q)NA(P) = 4QF)NA(P).

Let 4, and 4, be the S(¢)-orbits in 4(P), where S(¢) is a ¢-Sylow subgroup
of G, S(t)< H, with Q&4,so that QP=4,. From (x) we see that the number
of edges from @ to 4; is equal to the number from QF to 4, (i =1,2).
Hence A determined by S(#) has the form
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0 ¢t ¢t 0 0)
1l vy z w
1 oy
0
*
0
But then 2=y = t—2-1 , contrary to (7).
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