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Abstract

Let Γ be a graph of valency at least four whose automorphism group contains a minimally vertex-transitive
subgroup G. It is proved that Γ admits a nowhere-zero 3-flow if one of the following two conditions holds:
(i) Γ is of order twice an odd number and G contains a central involution; (ii) G is a direct product of a
2-subgroup and a subgroup of odd order.
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1. Introduction

Graphs considered in this paper are finite, undirected, loopless, but allowed to have
multiple edges. Let Γ be a graph. As usual, we use V(Γ) and E(Γ) to denote the vertex
set and edge set of Γ, respectively. An orientation D of Γ is an assignment of one
of the two possible orientations for every e ∈ E(Γ). Let ϕ be a mapping from E(Γ) to
the set of integers and k a positive integer. For every v ∈ V(G), we use ϕ+(v) to denote
the sum of values ϕ(e) of edges e with orientation originating from v and ϕ−(v) the
sum of values ϕ(e) of edges e with orientation pointing to v. If −k < ϕ(e) < k for every
e ∈ E(Γ) and ϕ+(v) = ϕ−(v) for every v ∈ V(Γ), then we call the ordered pair (D,ϕ) a
k-flow of Γ. If further ϕ(e) � 0 for every e ∈ E(Γ), then we call (D,ϕ) a nowhere-zero
k-flow of Γ. For convenience, we useNZk to denote the family of graphs which admit
a nowhere-zero k-flow.

Tutte proposed three conjectures in the middle of the last century on integer
flows which are still unsolved, namely the 5-flow, 4-flow and 3-flow conjectures.
The 3-flow conjecture (see, for example, [16, Conjecture 1.1.8]) is stated as follows:
every 4-edge-connected graph is contained in NZ3. By the equivalent version of
the 3-flow conjecture given by Kochol [6], it suffices to prove this conjecture for
5-edge-connected graphs. However, it was conjectured by Jaeger [5] that every
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k-edge-connected graph is contained in NZ3 for some given positive integer k. This
so called weak 3-flow conjecture was solved by Thomassen [14] who proved that
the statement holds for an 8-edge-connected graph. Lovász et al. [8] improved this
breakthrough by proving that the statement of the weak 3-flow conjecture is true when
k = 6. However, the 3-flow conjecture remains wide open for 5-edge-connected graphs.
In this situation, it is natural to attempt to verify the conjecture for interesting families
of graphs, for example, vertex-transitive graphs.

A graph Γ is vertex-transitive if its automorphism group Aut(Γ) acts transitively
on V(Γ). A subgroup G of Aut(Γ) is said to be minimally vertex-transitive if G is
transitive on V(Γ), but any proper subgroup of G is intransitive on V(Γ). In particular,
if G acts regularly (transitively and every nontrivial element fixes no vertex) on
V(Γ), then Γ is called a Cayley graph on G. A graph is said to be k-regular (or
regular for short) if each of its vertices has valency k where k is a positive integer.
It is obvious that every vertex-transitive graph is regular. In [9], it was proved that
the edge connectivity of a connected vertex-transitive simple graph is equal to its
valency. Thus, the 3-flow conjecture for vertex-transitive graphs asserts that every
vertex-transitive simple graph of valency at least four is contained in NZ3. In this
direction, the 3-flow conjecture was verified for Cayley graphs on abelian groups
[11], nilpotent groups [10], dihedral groups [15], generalised dihedral groups [7],
generalised quaternion groups [7], generalised dicyclic groups [1], groups of order pq2

( p and q are two primes) (J. Zhang and Z. Zhang, ‘Nowhere-zero 3-flows in Cayley
graphs of order pq2’, submitted for publication) and two families of supersolvable
groups [17]. Very recently, the first author and Zhou [18] proved that a graph of valency
at least four is contained in NZ3 if its automorphism group has a vertex-transitive
nilpotent subgroup.

In [10], to study nowhere-zero 3-flows in Cayley graphs, Nánásiová and Škoviera
introduced the method of decomposing a graph into a union of closed ladders. They
proved that a Cayley graph of valency at least four on a group G is contained inNZ3 if
its connected set contains a central involution of G. They also proved that every Cayley
graph of valency at least four on a group which is a direct product of a 2-subgroup and a
subgroup of odd order is contained inNZ3. In this paper, we attempt to generalise the
above two results to vertex-transitive graphs. We obtain the following two theorems.

THEOREM 1.1. Let Γ be a vertex-transitive graph of order twice an odd number
and valency at least 4. Let G be a minimally vertex-transitive subgroup of the
automorphism group of Γ. If G contains a central involution, then Γ ∈ NZ3.

THEOREM 1.2. Let Γ be a graph of valency at least four. If there exists a subgroup of
Aut(Γ) which acts transitively on V(Γ) and is a direct product of a 2-subgroup and a
subgroup of odd order, then Γ ∈ NZ3.

The proof of Theorem 1.2 relies on Theorem 1.1 and the main result of [18].
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2. Preparations

Let Γ1 and Γ2 be two graphs. The Cartesian product Γ := Γ1�Γ2 of Γ1 and Γ2 is the
graph defined as follows:

• V(Γ) = V(Γ1) × V(Γ2);
• E(Γ) = V(Γ1) × E(Γ2) ∪ E(Γ1) × V(Γ2);
• each (u1, e2) ∈ V(Γ1) × E(Γ2) is an edge with ends (u1, u2) and (u1, v2), where e2 is

an edge in E(Γ2) with ends u2 and v2;
• each (e1, u2) ∈ E(Γ1) × V(Γ2) is an edge with ends (u1, u2) and (v1, u2), where e1 is

an edge in E(Γ1) with ends u1 and v1.

Let Cn be the cycle of length n which has vertex set {1, . . . , n} and edge set
{{1, 2}, . . . , {n − 1, n}, {n, 1}}. Let K2 be the complete graph of order two with vertex
set {0, 1}. The graph CLn := Cn�K2 is called a circular ladder. The Möbius ladder Mn
is a graph obtained from CLn by replacing the edges {(1, 0), (n, 0)} and {(1, 1), (n, 1)}
with {(1, 0), (n, 1)} and {(1, 1), (n, 0)}, respectively (see Figure 1). A graph is called a
closed ladder if it is a circular ladder or a Möbius ladder. In a closed ladder Γ, every
edge of the form {(i, 0), (i, 1)} is called a rung of Γ. We use R(Γ) to denote the set of all
rungs of Γ.

In [10], the method of decomposing a graph into a union of closed ladders was
introduced to study nowhere-zero 3-flows in Cayley graphs. The following lemma,
given in [7], is derived from the proof of [10, Theorem 3.3].

LEMMA 2.1. Let Γ :=
⋃s

i=1Θi be a connected graph where every subgraph Θi is a
closed ladder. If E(Θi) ∩ E(Θj) = R(Θi) ∩ R(Θj) for any pair of distinct i, j ∈ {1, . . . , s}
and each edge of

⋃s
i=1 R(Θi) is contained in at least two closed ladders in {Θ1, . . . ,Θs},

then Γ is contained in NZ3.

A graph is said to be even if each of its vertices is of even valency. It is well known
[2, Theorem 21.4] that every even graph is contained inNZk for all integers k ≥ 2. Let
Γ be a graph and E a subset of E(Γ). We use Γ − E to denote the subgraph of Γ with
vertex set V(Γ) and edge set E(Γ) − E. A subgraph Γ′ of Γ is called a parity subgraph
of Γ if Γ − E(Γ′) is even. It is also well known [2, Theorem 21.5] that a cubic bipartite
graph is contained in NZ3. All that leads to the following obvious lemma.

LEMMA 2.2. Let Γ be a graph and Γ′ a parity subgraph of Γ. If Γ′ ∈ NZ3, then
Γ ∈ NZ3. In particular, if every vertex of Γ is of odd valency and Γ′ is a spanning
cubic bipartite subgraph of Γ, then Γ ∈ NZ3.

In [4], it was proved that the Cartesian product of two nontrivial connected bipartite
graphs is contained in NZ3. This result was generalised in [13] by proving that the
Cartesian product of every pair of graphs is contained inNZ3 except when one factor
has a cut edge and every block of another factor is a circuit of odd length. By using
Lemma 2.1, we prove the following lemma.
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FIGURE 1. CLn and Mn.

LEMMA 2.3. Let Γ1 be an even graph with minimum valency at least four and Γ2 be
an arbitrary graph. Then Γ1�Γ2 is contained in NZ3.

PROOF. Let Γ11, . . . , Γ1m be all the connected components of Γ1. Then Γ1�Γ2 is an
edge-disjoint union of Γ11�Γ2, . . . , Γ1m�Γ2. Therefore, Γ1�Γ2 ∈ NZ3 if and only if
Γ1i�Γ2 ∈ NZ3 for every 1 ≤ i ≤ m. Since Γ1 is an even graph with minimum valency
at least four, Γ1i is an even graph with minimum valency at least four for every
1 ≤ i ≤ m. Therefore, we assume that Γ1 is connected (for otherwise, we consider its
components). By Veblen’s theorem [2, Theorem 2.7], every even graph is an edge
disjoint union of cycles. Therefore, there is a family F1 of edge disjoint cycles of Γ1
such that

⋃
Σ∈F1
Σ = Γ1. Let F2 be the decomposition of Γ2 such that every member

of F2 is either a complete graph of order two or a trivial graph with just one isolated
vertex in Γ2 (note that every graph has such a decomposition).

Consider an arbitrary member Λ ∈ F2. If Λ is a trivial graph, then Γ1�Λ is
isomorphic to Γ1 and therefore an even graph. Since every even graph is contained
in NZ3, we have Γ1�Λ ∈ NZ3. Now consider the case that Λ is the complete
graph of order two. Set F1 = {Σ1, . . . ,Σs} and Θi = Σi�Λ for every Σi ∈ F1. Then
F := {Θ1, . . . ,Θs} is a family of circular ladders. It is obvious that Γ1�Λ =

⋃s
i=1Θi.

Moreover, Γ1�Λ is connected as both Γ1 and Λ are connected. Let 1 ≤ i < j ≤ s. Since
Σi and Σj have no common edge, E(Θi) ∩ E(Θj) = R(Θi) ∩ R(Θj). Since the minimum
valency of Γ1 is at least four, every vertex of Γ1 is contained in at least two cycles in F1.
It follows that each edge of

⋃s
i=1 R(Θi) is contained in at least two members of F . By

Lemma 2.1, Γ1�Λ ∈ NZ3.
Set F2 = {Λ1, . . . ,Λt}. By the above discussion, Γ1�Λi ∈ NZ3 for every

Λi ∈ F2. Since Γ1�Γ2 is the edge disjoint union of Γ1�Λ1, . . . , Γ1�Λt, we have
Γ1�Γ2 ∈ NZ3. �

The following lemma is extracted from [18, Lemma 4.8].

LEMMA 2.4. Let Γ be a graph of valency five whose automorphism group contains
a vertex-transitive subgroup G having a central involution z. Suppose that Γ has a
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perfect matching M of which every edge is of the form {v, z(v)}, v ∈ V(Γ). If Γ is an
edge-disjoint union of M, Γ1 and Γ2, where Γ1 and Γ2 are both spanning 2-regular
subgraphs of Γ preserved by G, then Γ ∈ NZ3.

3. Proof of Theorems 1.1 and 1.2

PROOF OF THEOREM 1.1. Let Γ be a graph of order 2n, where n is an odd number.
We assume that Γ is of odd valency as Γ ∈ NZ3 if Γ is even. Let G be a minimally
vertex-transitive subgroup of the automorphism group of Γ and z a central involution
of G.

We first prove that z does not fix any vertex of Γ. Otherwise, if z(v) = v for some
v ∈ V(Γ), then z(g(v)) = zg(v) = gz(v) = g(v) for all g ∈ G. Since G acts transitively on
V(Γ), it follows that z fixes all vertices of Γ. This contradicts the fact that z is not the
identity automorphism of Γ.

Since z does not fix any vertex of Γ and |V(Γ)| = 2n, we conclude that z is a permu-
tation factorising into n disjoint transpositions. Therefore, z is an odd permutation on
V(Γ) as n is an odd number. Let H be a subset of G consisting of all even permutations
of G. Then z � H and H is a normal subgroup of G of index 2. Since both 〈z〉 and H
are normal in G and 〈z〉 ∩ H = 1, we get G = 〈z〉 × H.

Since G is minimally transitive on V(Γ), we deduce that H is intransitive on
V(Γ). Let u be an arbitrary vertex of Γ. Then |G : Gu| = |V(Γ)| = 2n and |H : Hu| is a
nontrivial divisor of 2n. Since |H : Hu| = (1/2)|G : Hu| ≥ (1/2)|G : Gu| = n, it follows
that |H : Hu| = n. Therefore, the action of H on V(Γ) has two orbits. Let U be the orbit
of u under the action of H on V(Γ). Then z(U) is the orbit of z(u) under the action of
H on V(Γ) as zh = hz for all h ∈ H. Since G = 〈z〉 × H acts transitively on V(Γ), we
have U ∩ z(U) = ∅ and U ∪ z(U) = V(Γ). Let Γ[U] and Γ[z(U)] be the subgraphs of Γ
induced by U and z(U), respectively. Then Γ[U] and Γ[z(U)] are isomorphic and have
no common edges. Since U is the orbit of u under the action of H and H preserves
Γ[U], we conclude that Γ[U] is a regular graph. Assume that Γ[U] is of valency s.
Since Γ[U] and Γ[z(U)] are isomorphic and have no common edges, Γ[U] ∪ Γ[z(U)] is
an s-regular graph. Let Γ′ be the graph obtained from Γ by removing all the edges of
Γ[U] ∪ Γ[z(U)]. Then Γ′ is a regular bipartite graph with bipartition {U, z(U)}. Assume
that Γ′ is of valency t. Then Γ is of valency s + t. In particular, s + t is an odd number
at least five. Since Γ[U] is an s-regular graph of odd order, s is an even number and
therefore t is an odd number.

By [2, Corollary 16.5], every regular bipartite graph has a perfect matching.
Therefore, Γ′ has a perfect matching. If t ≥ 3, then, by removing a number of perfect
matchings, one can get a spanning cubic bipartite subgraph Γ′′ of Γ′ which is also a
spanning cubic bipartite subgraph of Γ. By Lemma 2.2, Γ ∈ NZ3.

From now on, we assume that t = 1. Then there exists a permutation μ on U such
that zμ(v) is the unique vertex in z(U) adjacent to v for all v ∈ U. Since z ∈ Aut(Γ),
we see that z(v) is the unique vertex in z(U) adjacent to μ(v). Therefore, μ2(v) = v. It
follows that μ fixes at least one vertex in U as the number n of vertices of U is odd.
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Without loss of generality, assume μ(u) = u. Then u is adjacent to z(u). Since H is
transitive on U and zh = hz for all h ∈ H, we conclude that v is adjacent to z(v) for all
v ∈ U. In other words, μ is the identity permutation. Note that Γ[U] is an even regular
graph of valency at least four. Let Σ = Γ[U]�K2 be the Cartesian product of Γ[U] and
K2, where K2 is the complete graph of order two with vertex set {0, 1}. By Lemma 2.3,
Σ ∈ NZ3. Define a mapping ψ from V(Γ) to V(Σ) as follows:

ψ(v) =

⎧
⎪⎪⎨
⎪⎪⎩

(v, 0) if v ∈ U,
(z(v), 1) if v ∈ z(U).

It is straightforward to check that ψ is a well-defined bijection from V(Γ) to V(Σ). We
further prove that ψ is an isomorphism.

Let v1 and v2 be two vertices of Γ. Since Γ[U] is an induced subgraph of Γ, every
edge in Γ joining two vertices in U is contained in Γ[U]. Therefore, if v1, v2 ∈ U, then
by the definition of a Cartesian product, the number of edges in Γ joining v1 and v2
is equal to the number of edges in Σ joining (v1, 0) and (v2, 0). If v1, v2 ∈ z(U), then
z(v1), z(v2) ∈ U. Since z ∈ Aut(Γ), the number of edges in Γ joining v1 and v2 is equal
to the number joining z(v1) and z(v2). It follows that the number of edges in Γ joining
v1 and v2 is equal to the number of edges in Σ joining (z(v1), 1) and (z(v2), 1). Now
consider the case that one of the two vertices v1 and v2 is contained in U and another
is contained in z(U). Without loss of generality, assume that v1 ∈ U and v2 ∈ z(U).
Then

v1 is adjacent to v2 in Γ⇐⇒ v2 = z(v1)
⇐⇒ v1 = z(v2)
⇐⇒ (v1, 0) is adjacent to (z(v2), 1) in Σ.

The discussion above implies that the number of edges joining v1 and v2 in Γ is equal
to the number of edges in Σ joining ψ(v1) and ψ(v2). Therefore, ψ is an isomorphism
from Γ to Σ. Since Σ ∈ NZ3, we have Γ ∈ NZ3. �

PROOF OF THEOREM 1.2. Let Γ be a graph of valency at least four and G a subgroup
of Aut(Γ) acting transitively on V(Γ) and being a direct product of a 2-subgroup Q and
a subgroup H of odd order. We assume that Γ is of odd valency as Γ ∈ NZ3 whenever
the valency of Γ is even. Then Γ is of even order and it follows that Q is nontrivial.

We proceed by induction on the order |Q| of Q. By Theorem 1.1, Γ ∈ NZ3 if
|Q| = 2. Now assume |Q| > 2. Suppose that the theorem is true for all graphs whose
automorphism groups have a vertex-transitive subgroup which is a direct product of a
2-subgroup of order less that |Q| and a subgroup of odd order.

It is well known [12, Theorem 4.2] that every 2-group has a nontrivial centre. Let z
be an involution contained in the centre of Q. Since G = Q × H, we see that z is also
contained in the centre of G. Therefore, 〈z〉 is a normal subgroup of G and z does not fix
any vertex of Γ. Set ṽ := {v, z(v)} for every v ∈ V(Γ) and Ṽ := {ṽ | v ∈ V(Γ)}. Let Γ[ṽ]
be the subgraph of Γ induced by ṽ. Since G acts transitively on V(Γ), it follows that
Γ[ũ] and Γ[ṽ] are isomorphic for every pair of vertices u, v ∈ V(Γ). Set Γ′ =

⋃
ṽ∈Ṽ Γ[ṽ]
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and Γ′′ = Γ − E(Γ′). Then both Γ′ and Γ′′ are spanning subgraphs of Γ preserved by G.
Therefore, Γ′ and Γ′′ are both vertex-transitive. Assume that the valency of Γ′ and Γ′′

are s and t, respectively. Then Γ is of valency s + t. In particular, s + t is odd.

Case 1: s ≥ 2. Note that every connected component of Γ′ is a graph with two vertices
joined by s edges. Therefore, Γ′ is a bipartite graph. If s ≥ 3, then Γ′ has a spanning
cubic bipartite graph which is also a spanning cubic bipartite graph of Γ. It follows
from Lemma 2.2 that Γ ∈ NZ3. If s = 2, then t is odd. By [3, Theorem 3.51], every
vertex-transitive graph of odd valency has a perfect matching. Therefore, Γ′′ has a
perfect matching M. Since every connected component of Γ′ is a graph with two
vertices joined by two edges, every connected component of Γ′ ∪M is a graph obtained
from an even length cycle by adding a parallel edge to each edge of one of the two
perfect matchings of this cycle. Therefore, Γ′ ∪M is a spanning cubic bipartite graph
of Γ and it follows from Lemma 2.2 that Γ ∈ NZ3.

Case 2: s = 0. In this case, ṽ is an independent set of Γ for every ṽ ∈ Ṽ . Use Γ̃ to denote
the graph with vertex set Ṽ and every pair of vertices ũ and ṽ being joined by � edges
if and only if the subgraph Γ[ũ ∪ ṽ] of Γ induced by ũ ∪ ṽ is �-regular (we treat an
independent set as a 0-regular graph). Then Γ̃ is a graph of odd valency at least five
and Γ is a cover (see [11]) of Γ̃. Furthermore, Aut(Γ̃) contains G/〈z〉 as a subgroup
acting transitively on the vertex set Ṽ of Γ̃. Note that G/〈z〉 = Q/〈z〉 × H〈z〉/〈z〉 and
Q/〈z〉 is of order less than Q. By the induction hypothesis, Γ̃ ∈ NZ3. It is known [11,
Proposition 2.3] that if a graph admits a nowhere-zero 3-flow, then each of its covers
does too. Therefore, Γ ∈ NZ3.

Case 3: s = 1. In this case, Γ′ is a perfect matching of Γ. Since every group of odd
order is solvable, H is a solvable group. Let H′ be the derived subgroup of H. Then
H′ is a proper subgroup of H and normal in G. If H is abelian, then G (= Q × H) is
nilpotent. By [18, Theorem 1.1], Γ ∈ NZ3. Now assume that H is nonabelian. Then
H′ is nontrivial and G/H′ = QH′/H′ × H/H′ is nilpotent. Use v̄ to denote the orbit
of v under the action of H′ and Γ[v̄] the subgraph of Γ induced by v̄. Then Γ[v̄] is a
vertex-transitive graph of odd order as H′ acts transitively on v̄. Therefore, Γ[v̄] is a
regular graph of even valency, say r. Set Σ =

⋃
v∈V(Γ) Γ[v̄]. Then Γ′ ∪ Σ is of valency

r + 1 and the automorphism group of every connected component of Γ′ ∪ Σ contains
〈z〉 × H′ as a subgroup acting transitively on the vertex set. If r ≥ 4, then by
Theorem 1.1, every connected component of Γ′ ∪ Σ is contained inNZ3 and therefore,
Γ′ ∪ Σ ∈ NZ3. Since Γ′ ∪ Σ is a parity subgraph of Γ, it follows from Lemma 2.2 that
Γ ∈ NZ3. If t − r ≥ 4, then the subgraph Γ∗ := Γ − E(Σ) of Γ is of odd valency at least
five. Let Γ∗ be the graph with vertex set {v̄ | v ∈ V} and every pair of vertices ū and v̄
being joined by �-edges if and only if ū ∪ v̄ induces a �-regular subgraph of Γ∗. Then
Γ∗ is a cover of Γ∗. Note that Aut(Γ∗) contains QH′/H′ × H/H′ as a subgroup acting
transitively on the vertex set. Since QH′/H′ × H/H′ is nilpotent, it follows from [18]
that Γ∗ ∈ NZ3. By [11, Proposition 2.3], Γ∗ ∈ NZ3. Since Γ∗ is a parity subgraph of Γ,
by Lemma 2.2, we have Γ ∈ NZ3. Now we assume that both r and t − r are less than
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four. Since t ≥ 4 and r is even, we have r = t − r = 2. Then Σ and Γ′′ − E(Σ) are both
spanning 2-regular subgraphs of Γ preserved by G. Note that Γ′ is a perfect matching
of which every edge is of the form {v, z(v)}. Note also that Γ is an edge-disjoint union
of Γ′, Σ and Γ′′ − E(Σ). By Lemma 2.4, Γ ∈ NZ3. �
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