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Abstract

Let I be a graph of valency at least four whose automorphism group contains a minimally vertex-transitive
subgroup G. It is proved that I admits a nowhere-zero 3-flow if one of the following two conditions holds:
(1) I is of order twice an odd number and G contains a central involution; (ii) G is a direct product of a
2-subgroup and a subgroup of odd order.
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1. Introduction

Graphs considered in this paper are finite, undirected, loopless, but allowed to have
multiple edges. Let I" be a graph. As usual, we use V(I') and E(I') to denote the vertex
set and edge set of I, respectively. An orientation D of T is an assignment of one
of the two possible orientations for every e € E(I'). Let ¢ be a mapping from E(I') to
the set of integers and k a positive integer. For every v € V(G), we use ¢*(v) to denote
the sum of values ¢(e) of edges e with orientation originating from v and ¢~ (v) the
sum of values ¢(e) of edges e with orientation pointing to v. If —k < ¢(e) < k for every
e € E(I') and ¢*(v) = ¢~ (v) for every v € V(I), then we call the ordered pair (D, ) a
k-flow of T'. If further ¢(e) # O for every e € E(I'), then we call (D, ) a nowhere-zero
k-flow of T'. For convenience, we use N Z; to denote the family of graphs which admit
a nowhere-zero k-flow.

Tutte proposed three conjectures in the middle of the last century on integer
flows which are still unsolved, namely the 5-flow, 4-flow and 3-flow conjectures.
The 3-flow conjecture (see, for example, [16, Conjecture 1.1.8]) is stated as follows:
every 4-edge-connected graph is contained in NZ3. By the equivalent version of
the 3-flow conjecture given by Kochol [6], it suffices to prove this conjecture for
5-edge-connected graphs. However, it was conjectured by Jaeger [5] that every
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k-edge-connected graph is contained in N Z3 for some given positive integer k. This
so called weak 3-flow conjecture was solved by Thomassen [14] who proved that
the statement holds for an 8-edge-connected graph. Lovész et al. [8] improved this
breakthrough by proving that the statement of the weak 3-flow conjecture is true when
k = 6. However, the 3-flow conjecture remains wide open for 5-edge-connected graphs.
In this situation, it is natural to attempt to verify the conjecture for interesting families
of graphs, for example, vertex-transitive graphs.

A graph T is vertex-transitive if its automorphism group Aut(I') acts transitively
on V(I'). A subgroup G of Aut(I') is said to be minimally vertex-transitive if G is
transitive on V(I'), but any proper subgroup of G is intransitive on V(I'). In particular,
if G acts regularly (transitively and every nontrivial element fixes no vertex) on
V('), then I is called a Cayley graph on G. A graph is said to be k-regular (or
regular for short) if each of its vertices has valency k where k is a positive integer.
It is obvious that every vertex-transitive graph is regular. In [9], it was proved that
the edge connectivity of a connected vertex-transitive simple graph is equal to its
valency. Thus, the 3-flow conjecture for vertex-transitive graphs asserts that every
vertex-transitive simple graph of valency at least four is contained in N Zs. In this
direction, the 3-flow conjecture was verified for Cayley graphs on abelian groups
[11], nilpotent groups [10], dihedral groups [15], generalised dihedral groups [7],
generalised quaternion groups [7], generalised dicyclic groups [1], groups of order pg?
(p and g are two primes) (J. Zhang and Z. Zhang, ‘Nowhere-zero 3-flows in Cayley
graphs of order pg”’, submitted for publication) and two families of supersolvable
groups [17]. Very recently, the first author and Zhou [ 18] proved that a graph of valency
at least four is contained in N'Z3 if its automorphism group has a vertex-transitive
nilpotent subgroup.

In [10], to study nowhere-zero 3-flows in Cayley graphs, Nanasiovéa and Skoviera
introduced the method of decomposing a graph into a union of closed ladders. They
proved that a Cayley graph of valency at least four on a group G is contained in N Z3 if
its connected set contains a central involution of G. They also proved that every Cayley
graph of valency at least four on a group which is a direct product of a 2-subgroup and a
subgroup of odd order is contained in N Z3. In this paper, we attempt to generalise the
above two results to vertex-transitive graphs. We obtain the following two theorems.

THEOREM 1.1. Let T' be a vertex-transitive graph of order twice an odd number
and valency at least 4. Let G be a minimally vertex-transitive subgroup of the
automorphism group of I. If G contains a central involution, then T € NZ3.

THEOREM 1.2. Let I be a graph of valency at least four. If there exists a subgroup of
Aut(I') which acts transitively on V(I') and is a direct product of a 2-subgroup and a
subgroup of odd order, then T € NZs.

The proof of Theorem 1.2 relies on Theorem 1.1 and the main result of [18].
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2. Preparations

Let I'; and I'; be two graphs. The Cartesian product I' :=T'10l'; of I'y and I'; is the
graph defined as follows:

V(T) = V(') x V()

ET) = V(') X E(,) UET) X V(L)

* each (u,ep) € V(I'y) X E(I') is an edge with ends (u;, ) and (i1, v2), where e, is
an edge in E(I';) with ends u, and v;;

* each (ej,up) € E(I'}) X V(I';) is an edge with ends (u;, ) and (vy, u;), where e; is

an edge in E(I'y) with ends u; and v;.

Let C, be the cycle of length n which has vertex set {1,...,n} and edge set
{{1,2},...,{n — 1,n},{n, 1}}. Let K, be the complete graph of order two with vertex
set {0, 1}. The graph CL,, := C,0K;, is called a circular ladder. The Mobius ladder M,
is a graph obtained from CL, by replacing the edges {(1,0), (n,0)} and {(1, 1), (n, 1)}
with {(1,0), (n, 1)} and {(1, 1), (n, 0)}, respectively (see Figure 1). A graph is called a
closed ladder if it is a circular ladder or a Mobius ladder. In a closed ladder I', every
edge of the form {(7, 0), (i, 1)} is called a rung of I'. We use R(I') to denote the set of all
rungs of I'.

In [10], the method of decomposing a graph into a union of closed ladders was
introduced to study nowhere-zero 3-flows in Cayley graphs. The following lemma,
given in [7], is derived from the proof of [10, Theorem 3.3].

LEMMA 2.1. Let T := | Ji_, ®; be a connected graph where every subgraph ©; is a
closed ladder. If E(®;) N E(®;) = R(©;) N R(®;) for any pair of distinct i,j € {1,...,s)}
and each edge of | J;_, R(®;) is contained in at least two closed ladders in {@y, .. ., Oy},
then I is contained in NZs.

A graph is said to be even if each of its vertices is of even valency. It is well known
[2, Theorem 21.4] that every even graph is contained in N Z; for all integers k > 2. Let
I be a graph and E a subset of E(I'). We use I' — E to denote the subgraph of I with
vertex set V(I') and edge set E(I') — E. A subgraph I"” of T is called a parity subgraph
of 'if ' — E(I"”) is even. It is also well known [2, Theorem 21.5] that a cubic bipartite
graph is contained in N Z3. All that leads to the following obvious lemma.

LEMMA 2.2. Let I be a graph and 1" a parity subgraph of I. If I € NZ3, then
I' € NZs. In particular, if every vertex of T is of odd valency and I is a spanning
cubic bipartite subgraph of T, then T’ € NZs.

In [4], it was proved that the Cartesian product of two nontrivial connected bipartite
graphs is contained in N Z3. This result was generalised in [13] by proving that the
Cartesian product of every pair of graphs is contained in N Z3 except when one factor
has a cut edge and every block of another factor is a circuit of odd length. By using
Lemma 2.1, we prove the following lemma.
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FIGURE 1. CL, and M,,.

LEMMA 2.3. Let 'y be an even graph with minimum valency at least four and T, be
an arbitrary graph. Then I'10@'; is contained in N Z5.

PROOF. Let I'yy,..., I}, be all the connected components of I';. Then I'jOl; is an
edge-disjoint union of I'j;al, ..., [',,00%. Therefore, I'i0l, € N Z3 if and only if
I',ol; € NZs forevery 1 <i < m. Since I'; is an even graph with minimum valency
at least four, I';; is an even graph with minimum valency at least four for every
1 < i < m. Therefore, we assume that I'; is connected (for otherwise, we consider its
components). By Veblen’s theorem [2, Theorem 2.7], every even graph is an edge
disjoint union of cycles. Therefore, there is a family ¥, of edge disjoint cycles of I’
such that (Jser,  =T'1. Let %, be the decomposition of I'; such that every member
of ¥ is either a complete graph of order two or a trivial graph with just one isolated
vertex in I, (note that every graph has such a decomposition).

Consider an arbitrary member A € F,. If A is a trivial graph, then I';/OA is
isomorphic to I'; and therefore an even graph. Since every even graph is contained
in NZ3, we have I''OA € NZ5. Now consider the case that A is the complete
graph of order two. Set #, = {X,...,%;} and ©; = £,0A for every X; € ¥1. Then
F :={01,...,0,} is a family of circular ladders. It is obvious that I';OA = |J;_, ©;.
Moreover, ['|OA is connected as both I'; and A are connected. Let 1 <i <j <s. Since
%; and X; have no common edge, E(0O;) N E(O;) = R(®;) N R(O;). Since the minimum
valency of I'; is at least four, every vertex of I'; is contained in at least two cycles in 7.
It follows that each edge of | J;_, R(®;) is contained in at least two members of 7. By
Lemma 2.1, I'/OA € NZ5.

Set 5 ={A4,...,A;}. By the above discussion, I''OA; € NZ3 for every
A; € F». Since I'iOl; is the edge disjoint union of I''OAy,...,['JOA,, we have
ol e N.Z3 O

The following lemma is extracted from [18, Lemma 4.8].

LEMMA 2.4. Let I" be a graph of valency five whose automorphism group contains
a vertex-transitive subgroup G having a central involution z. Suppose that T has a
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perfect matching M of which every edge is of the form {v,z(v)}, ve V(). If T is an
edge-disjoint union of M, I'y and T';, where I'y and 'y are both spanning 2-regular
subgraphs of T preserved by G, then ' € NZ3.

3. Proof of Theorems 1.1 and 1.2

PROOF OF THEOREM 1.1. Let I" be a graph of order 2n, where n is an odd number.
We assume that I' is of odd valency as I' € NZ5 if I is even. Let G be a minimally
vertex-transitive subgroup of the automorphism group of I' and z a central involution
of G.

We first prove that z does not fix any vertex of I'. Otherwise, if z(v) = v for some
v e V(I), then z(g(v)) = zg(v) = gz(v) = g(v) for all g € G. Since G acts transitively on
V(I'), it follows that z fixes all vertices of I'. This contradicts the fact that z is not the
identity automorphism of I'.

Since z does not fix any vertex of I" and |V(I')| = 2n, we conclude that z is a permu-
tation factorising into n disjoint transpositions. Therefore, z is an odd permutation on
V(T') as n is an odd number. Let H be a subset of G consisting of all even permutations
of G. Then z ¢ H and H is a normal subgroup of G of index 2. Since both (z) and H
are normal in Gand{z) N H = 1, we get G = {z) X H.

Since G is minimally transitive on V(I'), we deduce that H is intransitive on
V(D). Let u be an arbitrary vertex of I'. Then |G : G,| = |V(I')| =2n and |H : H,| is a
nontrivial divisor of 2n. Since |H : H,| = (1/2)|G : H,| = (1/2)|G : G,| = n, it follows
that |H : H,| = n. Therefore, the action of H on V(I') has two orbits. Let U be the orbit
of u under the action of H on V(I'). Then z(U) is the orbit of z(«) under the action of
H on V(I') as zh = hz for all h € H. Since G = (z) X H acts transitively on V(I'), we
have U N z(U) = @ and U U z(U) = V(I'). Let I'[U] and I'[z(U)] be the subgraphs of I
induced by U and z(U), respectively. Then I'[U] and I'[z(U)] are isomorphic and have
no common edges. Since U is the orbit of u under the action of H and H preserves
I'[U], we conclude that I'[U] is a regular graph. Assume that I'[U] is of valency s.
Since I'[U] and I'[z(U)] are isomorphic and have no common edges, ['{U] U I'[z(U)] is
an s-regular graph. Let I be the graph obtained from I" by removing all the edges of
['[U] U T[z(U)]. ThenI" is a regular bipartite graph with bipartition {U, z(U)}. Assume
that I is of valency ¢. Then I is of valency s + t. In particular, s + ¢ is an odd number
at least five. Since I'[U] is an s-regular graph of odd order, s is an even number and
therefore 7 is an odd number.

By [2, Corollary 16.5], every regular bipartite graph has a perfect matching.
Therefore, " has a perfect matching. If # > 3, then, by removing a number of perfect
matchings, one can get a spanning cubic bipartite subgraph I’ of I” which is also a
spanning cubic bipartite subgraph of I'. By Lemma 2.2, " € NZ5.

From now on, we assume that r = 1. Then there exists a permutation ¢ on U such
that zu(v) is the unique vertex in z(U) adjacent to v for all v € U. Since z € Aut(I'),
we see that z(v) is the unique vertex in z(U) adjacent to u(v). Therefore, u?(v) = v. It
follows that u fixes at least one vertex in U as the number n of vertices of U is odd.
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Without loss of generality, assume p(u) = u. Then u is adjacent to z(u). Since H is
transitive on U and zh = hz for all h € H, we conclude that v is adjacent to z(v) for all
v € U. In other words, y is the identity permutation. Note that I'[U] is an even regular
graph of valency at least four. Let X = T'[U]OK, be the Cartesian product of I'TU] and
K,, where K; is the complete graph of order two with vertex set {0, 1}. By Lemma 2.3,
¥ € NZ;. Define a mapping ¢ from V(I') to V() as follows:

oo ifvew.
v = {(z(v), D ifvez).

It is straightforward to check that ¢ is a well-defined bijection from V(I') to V(Z). We
further prove that i is an isomorphism.

Let v; and v, be two vertices of I'. Since I'[U] is an induced subgraph of T', every
edge in I joining two vertices in U is contained in I'[U]. Therefore, if v, v, € U, then
by the definition of a Cartesian product, the number of edges in I" joining v; and v,
is equal to the number of edges in X joining (v{,0) and (v5,0). If v, v, € z(U), then
z(v1), z(v2) € U. Since z € Aut(I'), the number of edges in I joining v; and v, is equal
to the number joining z(v;) and z(v,). It follows that the number of edges in I joining
vi and v, is equal to the number of edges in X joining (z(v), 1) and (z(v2), 1). Now
consider the case that one of the two vertices v; and v, is contained in U and another
is contained in z(U). Without loss of generality, assume that v; € U and v, € z(U).
Then

vy is adjacentto vy inI' &= v, = z(vy)
v =2z2(v)
& (v1,0) is adjacent to (z(v,), 1) in X.

The discussion above implies that the number of edges joining v; and v, in I is equal
to the number of edges in X joining ¥(v) and ¥/(v;). Therefore, i is an isomorphism
from I to X. Since £ € NZ3, we have I' € NZ3. o

PROOF OF THEOREM 1.2. Let I be a graph of valency at least four and G a subgroup
of Aut(I') acting transitively on V(I') and being a direct product of a 2-subgroup Q and
a subgroup H of odd order. We assume that I" is of odd valency as I' € N Z3 whenever
the valency of I" is even. Then I' is of even order and it follows that Q is nontrivial.

We proceed by induction on the order |Q| of Q. By Theorem 1.1, I' e NZ3 if
|Q| = 2. Now assume |Q| > 2. Suppose that the theorem is true for all graphs whose
automorphism groups have a vertex-transitive subgroup which is a direct product of a
2-subgroup of order less that |Q] and a subgroup of odd order.

It is well known [12, Theorem 4.2] that every 2-group has a nontrivial centre. Let z
be an involution contained in the centre of Q. Since G = Q X H, we see that z is also
contained in the centre of G. Therefore, (z) is a normal subgroup of G and z does not fix
any vertex of I'. Set ¥ := {v, z(v)} for every v € V(I') and V= {v|ve V(@) Let I'[¥]
be the subgraph of I' induced by 7. Since G acts transitively on V(I'), it follows that
I'[&] and I'[¥] are isomorphic for every pair of vertices u, v € V(I'). Set I'” = ;e I'[P]
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and [ =T — EI"”). Then both I'” and I are spanning subgraphs of I preserved by G.
Therefore, [” and I'”” are both vertex-transitive. Assume that the valency of I and I'”/
are s and ¢, respectively. Then I' is of valency s + ¢. In particular, s + 7 is odd.

Case 1: s > 2. Note that every connected component of I is a graph with two vertices
joined by s edges. Therefore, [ is a bipartite graph. If s > 3, then ["” has a spanning
cubic bipartite graph which is also a spanning cubic bipartite graph of I'. It follows
from Lemma 2.2 that ' € N Z3. If s = 2, then ¢ is odd. By [3, Theorem 3.51], every
vertex-transitive graph of odd valency has a perfect matching. Therefore, ["” has a
perfect matching M. Since every connected component of I is a graph with two
vertices joined by two edges, every connected component of [ U M is a graph obtained
from an even length cycle by adding a parallel edge to each edge of one of the two
perfect matchings of this cycle. Therefore, " U M is a spanning cubic bipartite graph
of I" and it follows from Lemma 2.2 thatI" € N Z5.

Case 2: s = 0. In this case, ¥ is an independent set of I for every ¥ € V. Use I" to denote
the graph with vertex set V and every pair of vertices i and ¥ being joined by ¢ edges
if and only if the subgraph I'[it U 9] of I" induced by & U ¥ is {-regular (we treat an
independent set as a O-regular graph). Then I is a graph of odd valency at least five
and T is a cover (see [11]) of . Furthermore, Aut(I") contains G/{z) as a subgroup
acting transitively on the vertex set V of . Note that G/{z) = Q/{z) x H(z)/{z) and
Q/(z) is of order less than Q. By the induction hypothesis, [ e NZ. It is known [11,
Proposition 2.3] that if a graph admits a nowhere-zero 3-flow, then each of its covers
does too. Therefore, I € NZs3.

Case 3: s = 1. In this case, I"” is a perfect matching of I'. Since every group of odd
order is solvable, H is a solvable group. Let H" be the derived subgroup of H. Then
H’ is a proper subgroup of H and normal in G. If H is abelian, then G (= Q X H) is
nilpotent. By [18, Theorem 1.1], I' € NZ5. Now assume that H is nonabelian. Then
H’ is nontrivial and G/H’ = QH’/H’ x H/H’ is nilpotent. Use ¥ to denote the orbit
of v under the action of H” and I'[¥] the subgraph of I" induced by ¥. Then I'[¥] is a
vertex-transitive graph of odd order as H’ acts transitively on v. Therefore, I'[7] is a
regular graph of even valency, say r. Set £ = (U,ey ) ['[V]. Then I'" U X is of valency
r+ 1 and the automorphism group of every connected component of [” U X contains
(z) X H' as a subgroup acting transitively on the vertex set. If r >4, then by
Theorem 1.1, every connected component of [” U X is contained in N Z3 and therefore,
I["UX e NZ;. Since I U X is a parity subgraph of T, it follows from Lemma 2.2 that
I'e NZ5. If t — r > 4, then the subgraph ['* := I — E(X) of I is of odd valency at least
five. Let I'* be the graph with vertex set {V | v € V} and every pair of vertices # and v
being joined by {-edges if and only if it U v induces a {-regular subgraph of I'*. Then
I'* is a cover of I'*. Note that Aut(I'*) contains QH’/H’ x H/H’ as a subgroup acting
transitively on the vertex set. Since QH’/H’ x H/H’ is nilpotent, it follows from [18]
thatT* € N'Zs. By [11, Proposition 2.3], " € N'Z3. Since I'* is a parity subgraph of T,
by Lemma 2.2, we have I' € NZ3. Now we assume that both r and # — r are less than
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four. Since 7 > 4 and r is even, we have r =t — r = 2. Then £ and I'"” — E(Z) are both
spanning 2-regular subgraphs of I" preserved by G. Note that [ is a perfect matching
of which every edge is of the form {v, z(v)}. Note also that I is an edge-disjoint union
of ", Zand I — E(X). By Lemma 2.4, " e NZ5. |
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