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Abstract

This study extends the loss function-based parameter estimation method for diagnostic classification
models proposed by Ma, de la Torre, et al. (2023, Psychometrika) to consider prior knowledge and
uncertainty of sampling. To this end, we integrate the loss function-based estimation method with the
generalized Bayesian method. We establish the consistency of attribute mastery patterns of the proposed
generalized Bayesian method. The proposed generalized Bayesian method is compared in a simulation
study and found to be superior to the previous nonparametric diagnostic classification method—a special
case of the loss function-based method. Moreover, the proposed method is applied to real data and
compared with previous parametric and nonparametric estimation methods. Finally, practical guidelines
for the proposed method and future research directions are discussed.

Keywords: diagnostic classification models; generalized Bayesian method; loss function-based method; parameter
estimation

1. Introduction

Learning is an important aspect of human life. The current status of individual knowledge or depth
of understanding must be evaluated to ensure efficient learning. Test analysis models called diagnostic
classification models (DCMs; Rupp et al., 2010; von Davier & Lee, 2019) have been popularly employed
to capture an individual’s learning status. Notably, DCMs provide useful statistical tools to reveal
individuals’ current learning status based on the test’s item responses. Latent knowledge or cognitive
elements are called attributes and are expressed as latent categorical variables in DCMs. Moreover,
DCMs are known as restricted latent class models (e.g., Rupp & Templin, 2008; Xu, 2017), wherein each
possible set of attributes represents a latent class. In other words, attribute mastery patterns indicate
the attributes that are either mastered or not mastered. Therefore, one of the DCMs’ final outputs is the
estimate of the attribute mastery patterns of individuals or attribute mastery probabilities.

Various parameter estimation methods for the DCMs have been actively developed. Parametric
and nonparametric estimation methods are commonly used in DCMs. Parametric estimation methods
assume parametric item response functions and structural models. Therefore, parametric estimation
methods employ a likelihood function under the assumed model and include (penalized or regularized)
maximum likelihood estimation (e.g., Chen et al., 2015; de la Torre, 2009; Ma, Ouyang, & Xu, 2023) and
Bayesian estimation methods (e.g., Culpepper, 2015; Yamaguchi & Okada, 2020; Yamaguchi & Templin,
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2022b), incorporating prior distributions for model parameters. Numerous parametric estimation
methods have been developed and their properties have been studied (e.g., von Davier & Lee, 2019).

On the other hand, nonparametric methods (e.g., Chiu et al., 2018; Chiu & Douglas, 2013) do not use
probabilistic item response models; instead, they use an ideal response to define a type of discrepancy
function, which will be formally defined in a later section. Such discrepancy functions are defined based
on the distance between each item’s ideal and actual responses. Intuitively, nonparametric methods
directly estimate attribute mastery patterns, which minimize the discrepancy function. Therefore,
nonparametric methods do not require a probabilistic item response function. Nonparametric methods
exhibit satisfactory statistical properties, such as consistency under certain conditions (Chiu & Köhn,
2019; Wang & Douglas, 2015).

Recently, a general parameter estimation method that can uniformly express parametric and non-
parametric methods was developed by Ma, de la Torre, and Xu (2023). The unified estimation method
developed by Ma, de la Torre, and Xu (2023) is a loss function-based estimation method for DCMs. If we
select cross-entropy for a loss function, its minimization corresponds to maximizing the joint maximum
likelihood (Chiu et al., 2016). The distance or discrepancy function in nonparametric methods is a well-
known loss function. Additionally, by adding penalty terms to a cross-entropy loss function, we obtain
the maximum a posteriori (MAP) estimates, classical Bayesian estimates, to minimize it. These examples
indicate that the loss function-based estimation method is flexible and can represent various estimation
methods in a unified manner. Furthermore, a unified estimation algorithm for the loss function-based
estimation method was available.

However, loss function-based methods exhibit certain limitations. First, these methods only provide
point estimates, which may be problematic because we cannot evaluate how point estimates vary due
to sampling or estimation variations. Therefore, we cannot evaluate the uncertainty of attribute mastery
using the loss function-based method. Furthermore, attribute mastery probabilities for each individual
are not expressed in the loss function-based method. This is the same problem that occurs in DCMs’
nonparametric estimation method. However, attribute mastery probabilities represent a more nuanced
situation than attribute mastery pattern results, with or without mastery. Another limitation of these
methods is that prior information on weight parameters in the generalized nonparametric method that
defines generalized ideal responses is generally not considered. However, DCM users may have prior
knowledge of the test items’ conjunctive and disjunctive nature. If so, domain-specific knowledge must
be included to improve parameter estimates.

It is not only loss function-based methods that have limitations that need to be addressed; several
limitations of previous parametric and nonparametric estimation methods likewise need to be noted.
First, parametric estimation methods need to specify data-generating distributions, which determine
the likelihood function. The likelihood function provides a connection between data and model param-
eters such as attribute mastery patterns. Moreover, likelihood functions make it possible to evaluate
estimation uncertainty with the asymptotical theory within the maximum likelihood framework or
the posterior distribution within the Bayesian framework. However, the data-generating process is
not always specified. DCMs are part of the educational measurement model family that need various
constraints and limitations, making it difficult to specify the model.

Some of the limitations of the nonparametric methods are the same as those of the loss function-
based methods. For instance, current nonparametric methods for DCMs cannot evaluate the uncer-
tainty of attribute mastery estimates. The nonparametric methods for DCMs were developed in studies
with small sample sizes (Chiu & Douglas, 2013). Ultimately, the nonparametric method for DCMs can
be applied to individuals; however, the parameter estimates need to be evaluated with variability of
parameter estimates. Currently, the nonparametric methods simply select attribute mastery patterns
to minimize prespecified distance functions so the parameter uncertainty evaluation is not included
in the framework. The parameter estimates with nonparametric methods can be changed by small
differences in the loss function. One main purpose of DCMs is the diagnosis of individual knowledge.
Thus, such variations in parameter estimates due to small differences in the distance functions may be
a fundamental problem for application.
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To overcome these limitations and extend the previous loss function-based estimation method for
DCMs, we employ the generalized Bayesian (GB; Bissiri et al., 2016) method. The usual Bayesian param-
eter update determines the likelihood function and updates the model parameters in the likelihood with
the observed dataset. By contrast, the GB method can express parameter updating with a dataset via loss
functions. Therefore, Bayesian inference is applicable to nonparametric-based estimation methods as
well as to likelihood-based methods. Moreover, other benefits of the GB method are as follows. First, the
GB method originally assumes the M-open setting (Bernardo & Smith, 2009, Chap. 6), which implies
that the GB method provides a valid inference even if the assumed model does not match the true data-
generating mechanism. Various DCMs have been developed; however, selecting an appropriate item
response function that expresses the true data-generating mechanism is not always possible. The GB
method does not require an entire data-generating model but instead sets a loss function related to the
parameter sets of interest. This means that we do not need to find a correct data-generating model,
which is always unknown and often misspecified. We expect the GB method to overcome the practical
difficulties of DCMs’ applications.

Second, the GB method allows the use of flexible loss functions and priors. The uncertainty of
the parameters expressed in the loss functions is easily demonstrated in the generalized posteriors
generated using the GB method. In other words, the GB method can handle the amount of uncertainty
of attribute mastery estimates. Not only point estimates but also uncertainty variation are important
for careful decisions in diagnostic evaluation. The GB method provides a useful tool for addressing
the above problems, which both parametric and nonparametric methods have. Furthermore, the
generalized posterior is easily obtained using a Markov chain Monte Carlo (MCMC) routine, such as
the Metropolis–Hastings method. Third, we can control the relative importance between the dataset
and the prior via the learning rate parameter. If the obtained data’s quality is questionable, an inference
that is completely dependent on the data may lead to inappropriate decisions. In such cases, the data’s
relative importance can be reduced. The learning rate parameter enables a more flexible inference.

Based on these discussions, we develop a GB method to overcome the limitations of the loss function-
based estimation method for DCMs (Ma, de la Torre, & Xu, 2023). The remainder of this article is
organized as follows: The second section demonstrates the basic setup of the DCMs and the previous
loss function-based estimation method. The third section provides the GB method’s fundamentals and
its application to DCMs based on their loss functions. Therein, the MCMC algorithm for a generalized
posterior is also discussed. The GB method’s mathematical properties under certain conditions are
discussed in the fourth section. The fifth and sixth sections comprise simulation and real data analysis
examples of GB inference for DCMs, wherein we compare previous nonparametric estimation methods
in a simulation study. Finally, the seventh section serves as the discussion, where the limitations of the
GB inference and future directions of DCMs’ estimation methods are discussed.

2. Model setup and previous estimation methods

2.1. Model setup of DCMs
First, we express an individual’s attribute mastery pattern using a vector of length K,αi ∈ {0,1}K,
where i ∈ {1,2, . . . ,I}. The kth element of the attribute mastery pattern vector αi is αik ∈ {0,1}, where
k ∈ {1,2, . . . ,K}; it takes one if individual i masters attribute k, and otherwise, it takes 0. In this study, we
assume unconditional attribute mastery patterns, where all possible attribute mastery patterns and the
number is L = 2K . Therefore, the l ∈ {1,2, . . . ,L}-th attribute mastery pattern can be written as αl. The set
of attribute mastery patterns for all individuals is A = {αi}I

i=1. To define the parametric measurement
model, we also need to specify the diagnostic relationship between the attributes and item sets.

The diagnostic relationship between the attributes and test items is called the q-vector, qj ∈
{0,1}K/{0K}, where j ∈ {1,2, . . . ,J}; if the kth attribute is required for item j,qjk = 1; otherwise qjk = 0.
Additionally, 0K is a vector of length K and all its elements are 0. Here, we assume there is no item with
qj = 0K . The Q-matrix (Tatsuoka, 1985) is a J×K matrix defined by (q⊺1 ,q

⊺
2 , . . . ,q

⊺
J )
⊺.
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Parametric DCMs define their measurement models using attribute mastery patterns and a q-
vector. For example, one of the most general DCMs, known as the log linear cognitive diagnostic
model (LCDM; Henson et al., 2009), uses an item parameter vector λj = (λj0,λj1, . . . ,λj12...K)⊺, and the
measurement model of Xij = 1, which is a conditional response probability of individual i for item j, is:

P(Xij = 1 ∣ λj,qj,αi = αl) =
exp(f (λj,qj,αi))

1+exp(f (λj,qj,αi))
, (1)

where f (λj,αi) is:

f (λj,qj,αi) = log
P(Xij = 1 ∣ λj,qj,αi = αl)

1−P(Xij = 1 ∣ λj,qj,αi = αl)

= λj0 +
K
∑
k=1

λjkqjkαik +
K
∑
k=1

∑
k′<k

λjkk′qjkqjk′αikαik′ +⋯+λj12...K∏K
k=1qjkαik. (2)

The LCDM has several parameters. The first parameter is the intercept λj0, which determines the baseline
correct item response probability. Attribute mastery patterns that do not master any attributes requiring
item j take response probability. The main effect parameters were λj1,λj2, . . . ,λjK ; each parameter affected
the correct item response probabilities with the corresponding attributes. The first-order interaction
parameter λjkk′ is the effect of simultaneously mastering the attributes k and k′. Similarly, we introduce
the highest interaction term as λj12...K . General cognitive diagnosis models that are similar to LCDM
have also been proposed in the literature, including the generalized DINA (GDINA) model (de la Torre,
2011) and general diagnostic model (GDM; von Davier, 2008).

As some attributes are not measured by item j, the number of estimated item parameters under
LCDM is 2∑k qjk ≤ 2K . Moreover, notably, one-to-one mapping exists between the LCDM item param-
eters and conditional item response probabilities (Rupp et al., 2010). Therefore, it is convenient to use
conditional item response probabilities to develop parameter estimation methods. The same strategy
was adopted in previous studies (Yamaguchi & Okada, 2020; Yamaguchi & Templin, 2022b), where
DCMs are a restricted version of latent class models (e.g., Rupp & Templin, 2008; Xu & Shang, 2018).

Therefore, let the correct item response probability be parameter θjl:

θj,αl = P(Xij = 1 ∣ λj,qj,αi = αl), (3)

Additionally, the attribute mastery mixing parameters πα1,πα2, . . . ,παL ∈ (0,1) are defined as παl =
P(αi = αl), satisfying ∑l παl = 1. From this notation, the complete data likelihood function of the LCDM
is:

L(A,Θ,π ∣ X) =
I
∏
i=1

J
∏
j=1

L
∏
l=1

{πlθ
xij
j,αl

(1−θj,αl)
1−xij}

I(αi=αl)
, (4)

where X = {xij}N,J
i,j=1,Θ = {θjl}

J,L
j,l=1,π = (πα1,πα2, . . . ,παL)⊺, and I (⋅) is an indicator function.

We add some remarks on the correct item response probabilities for item j. First, as mentioned
previously, some attribute mastery patterns have the same item response probabilities because of the
setting of the q vector. Moreover, some submodels of the LCDM assume fewer parameters than the
general LCDM and have parsimonious model forms. The model settings for each item can differ, but
we assume that all test items have the same general LCDM form.

Second, the correct item response probabilities for item j exhibit an ordinal relationship: These
relationships are known as monotonicity constraints (Xu & Shang, 2018). The formal expression of the
monotonicity constraints proposed by Xu and Shang (2018) is:

max
α∶α≽qj

θj,α = min
α∶α≽qj

θj,α ≥ θj,α′ ≥ θj,0K , (5)
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where we write α≽ qj if αk ≽ qjk,∀k; otherwise, α⋡ qj. These constraints imply that the patterns mastering
all skills measured in item j(α ∶ α ≽ qj) should have the highest of all the patterns. By contrast, all
nonmastering patterns had the lowest correct item response probability. The middle mastering patterns
satisfying α′ ⋡ qj have response probabilities between these two probabilities.

2.2. Loss function-based parameter estimation
This section introduces the loss function-based parameter estimation method proposed in Ma, de la
Torre, and Xu (2023). First, we describe certain elements of the loss function-based method. In this
framework, we introduce the length J centroid parameter vector: μαl

= (μ1,αl,μ2,αl, . . . ,μJ,αl)⊺ ∈ R
J .

Additionally, a penalty term for the mixing parameter παl is introduced as h(παl) ∈ R. Furthermore,
an element-wise loss function taking item response vector xi and a centroid parameter vector μαl

is
expressed as �(xi,μαl

); its codomain is real positive numberR+. The �(xi,μαl
) is the individual-level loss

function. Therefore, the loss function of the entire dataset is based on the individual-level loss function:

L(A,μ,π) =
L
∑
l=1

∑
i∶αi=αl

{�(xi,μαl
)+h(παl)} . (6)

The second summation takes over the individuals with the attribute mastery pattern αl.
Parameter estimates are obtained to minimize the loss function defined above:

{Â,μ̂,π̂} = argmin
A,μ,π

L(A,μ,π) . (7)

Directly minimizing the above loss function is not easy; therefore, we use the iterative update rule
instead. In the estimation algorithm, we first set initial parameters {μ(0),π(0)}. When we have param-

eter estimates at tth iteration, {μ(t),π(t)}, the following update steps are repeated:

Step 1 ∶ {A(t+1)} = argmin
A

L(A,μ(t),π(t)), (8)

Step 2 ∶ {μ(t+1),π(t+1)} = argmin
μ,π

L(A(t+1),μ,π) .

If the predetermined convergence criterion is satisfied, for example, ε > 1−∑i (I (α(t+1)
i = α(t)i ))/

I,0 < ε < 1, the update process is stopped, and the parameter estimates become output: {Â,μ̂,π̂} =
{A(t+1),μ(t+1),π(t+1)}.

Many previous estimation methods can be viewed as special cases of the general loss function
formulation framework. The joint likelihood estimation of the parametric DCM is a first example. In
the following, we focus on the deterministic inputs noisy, “and” gate model (DINA model; Junker &
Sijtsma, 2001; MacReady & Dayton, 1977; Maris, 1999) as an example because it is well-known and
considered the most parsimonious DCM. The loss function further used to obtain the MAP estimation,
which is the negative of the sum of the log-likelihood and log-prior density functions, is also presented.
Subsequently, a nonparametric classification method (NPC; Chiu & Douglas, 2013; Wang & Douglas,
2015) and generalized NPC (GNPC; Chiu & Köhn, 2019; Chiu et al., 2018) are formulated under the
above framework. Furthermore, NPC and GNPC are extended to the GB framework in a later section.

The DINA model is the simplest and most fundamental DCM, which is a special case of the LCDM.
The DINA model assumes only the intercept and the highest interaction terms of the LCDM item
parameters. Let the subscript set of attributes measured by item j be K = {k;qjk = 1,k = 1,2, . . . ,K} and
let the LCDM kernel for the DINA model be reduced to:

f (λj,qj,αi) = λj0 +λjK∏
k∈K

αik. (9)
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In the conventional DINA formulation, two-item response probabilities are represented by estimating
the gj and slipping sj parameters:

gj =
exp(λj0)

1+exp(λj0)
, (10)

1− sj =
exp(λj0 +λjK ∏

k∈K
αik)

1+exp(λj0 +λjK ∏
k∈K

αik)
. (11)

The guessing parameter gj indicates the chance level of a correct item response for attribute mastery
patterns that lack at least one attribute required by item j. The slipping parameter sj is the incorrect
response probability of all-mastering-attribute mastery patterns required by item j. Both gj and sj can
be represented as functions of the ideal responses

ηDINA
j (αl) =

K
∏
k=1

αqjk
lk . (12)

The ideal response represents the response of an individual who belongs to the lth attribute mastery
pattern for item j without errors. Then, gj and sj are represented as conditional probabilities:

gj = P(Xj = 1 ∣ ηDINA
j (αl) = 0), (13)

sj = P(Xj = 0 ∣ ηDINA
j (αl) = 1) . (14)

Using the item response probabilities, the centroid parameter under the DINA model is:

θjl = g
1−ηDINA

j (αl)

j (1− sj)ηDINA
j (αl). (15)

Assuming a cross-entropy loss, which is − logy, the likelihood-based loss function for the DINA model
is:

L(A,μ,π) = −
I
∑
i=1

L
∑
l=1

I (αi = αl)
⎡⎢⎢⎢⎢⎣

J
∑
j=1

{xij logθjl +(1−xij) log(1−θjl)}+ logπαl

⎤⎥⎥⎥⎥⎦
. (16)

We assume h(παl) = − logπαl . The loss function defined in Equation 16 is equivalent to a negative
log complete likelihood function. Therefore, minimizing equation 16 corresponds to maximizing the
likelihood function; the minimizers {Â,μ̂,π̂} can be considered as the maximum likelihood estimate.

Subsequently, we examine the NPC and GNPC methods. Following Chiu and Douglas (2013), the
loss function in the NPC method is defined by the Hamming distance between the individual item
response vector and the ideal response vector:

�(xi,μαl
) =

J
∑
j=1

�(xij,μj,αl) =
J
∑
j=1

∣xij −ηDINA
j (αl)∣ . (17)

In the NPC method, the centroid parameter is the ideal response μj,αl . The NPC estimates are obtained
to minimize Equation 17 for each individual:

α̂i = argmin
αl

J
∑
j=1

∣xij −ηDINA
j (αl)∣,∀i. (18)

Clearly, the Hamming distance is a loss function, and the NPC method is a loss function-based
estimation method.

As introduced in Chiu et al. (2018), the GNPC is a type of generalization that employs DINA-type and
deterministic inputs noisy, “or” gate (DINO; Templin & Henson, 2006)-type ideal responses to define a
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generalized ideal response. The DINO-type ideal response is

ηDINO
j (αl) = 1−

K
∏
k=1

(1−αlk)qjk, (19)

and ηDINO
j (αl) becomes one if pattern l masters at least one attribute required for item j; otherwise, it

becomes 0. The generalized ideal response is then defined as

η(w)j (αl) = wjlηDINA
j (αl)+(1−wjl)ηDINO

j (αl), (20)

where wjl ∈ [0,1] is a weight parameter that determines an item’s tendency. If the item is more like
DINA or conjunctive, wjl is close to one. By contrast, a wjl near zero means that the item is DINO-like
or disjunctive in nature. The GNPC assumes a Euclidean distance for its loss function

d(xj,η(w) (αl)) =
I
∑
i=1

I (αi = αl)(xij −η(w)j (αl))
2
, (21)

where η(w) (αl) = (η(w)1 (αl),η(w)2 (αl), . . . ,η(w)J (αl))
⊺

. The weight parameter is estimated via ẁjl = 1−
∑I

i=1I (αi = αl)xij/∑I
i=1I (αi = αl). The loss function of the GNPC is

L({A,W}) =
J
∑
j=1

L
∑
l=1

d(xj,η(w) (αl)) =
J
∑
j=1

L
∑
l=1

I
∑
i=1

I (αi = αl)(xij −η(w)j (αl))
2
, (22)

where W = {wjl}
J,L
j,l=1. The GNPC requires iterative updates of weight wjl and attribute mastery patterns.

The detailed update rule is described in Chiu et al. (2018). Note that if ηDINA
j and ηDINO

j are not
distinguished for some items and attribute patterns, the weight value is fixed to a value close to zero
or one. See Chiu et al. (2018) for a detailed discussion.

As demonstrated above, parametric and nonparametric estimation methods can be treated in a
unified loss function-based framework (C. Ma, de la Torre, & Xu, 2023). However, these loss function-
based parameter estimates usually only provide point estimates, and uncertainty quantification in
the parameter estimates has been considered less serious. Furthermore, different specifications of the
measurement model precipitate significantly different attribute mastery patterns (e.g., Li et al., 2016).
However, assessing all possible measurement models for all test items may be difficult. The GNPC is a
promising estimation method that can be used in varied situations, even when the measurement model
is unknown. However, prior knowledge of the weight parameters in the GNPC is often not considered.
These problems can be solved using the GB method introduced in the following section.

3. GB method for DCMs

3.1. Construction of the generalized posterior
The GB method is a decision theory under a model misspecification situation (Bissiri et al., 2016).
In other words, the assumed model may not accurately represent the true data-generating process,
or the relationship between the model parameters and data may not be described via the assumed
model, which is known as the M-open situation (Bissiri et al., 2016, p. 1111). The GB method is
a coherent belief update procedure that uses a loss function even in the M-open situation. Thus,
the GB method extends the applicability of the typical Bayesian methods, which require a likelihood
function.

Let datasets and parameter sets be y and Θ, respectively. Additionally, the loss function and prior
distribution are �(y;Θ) and p(Θ). Then, the generalized posterior of the parameter p(Θ ∣ y) is:

p(Θ ∣ y) ∝ exp(−ω�(y;Θ))p(Θ), (23)
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where ω is called the learning rate, a tuning parameter that controls a dataset’s importance. Methods for
determining the learning rate are still being studied (Wu & Martin, 2023); notably, no standard has been
established thus far. The generalized posterior function is the result of updating the prior distribution
based on the loss function. If we select a negative log-likelihood function for the loss function and ω = 1,
the generalized posterior becomes the usual Bayesian posterior function.

Bissiri et al. (2016), pp. 1106–1107) discussed some of the validity requirements for loss functions.
First, the solution of the loss function must exist. Second, the loss function must satisfy the following
condition:

0 < ∫ exp(−�(y;Θ))p(Θ)dΘ <∞. (24)

Some major loss functions considered in this study, such as the Hamming distance, Euclid distance,
or cross-entropy loss, satisfy the above integral conditions. Additionally, Bissiri et al. (2016), p. 1107)
identified natural assumptions for deriving a generalized posterior from a loss function. We should
also point out that we only need to construct loss functions given a set of data for only the parameter
of interest to employ the GB method. In this article, the GB method employed the loss function for
attribute mastery patterns. The loss function is based on the GNPC: quadratic of Euclid distance. It
satisfies the above conditions and is valid.

3.2. General form of the GB method for DCMs
The general form of the GB method for DCMs can be expressed using Equations 6 and 23:

p({A,μ,π} ∣ X) ∝ exp(−ω{L({A,μ,π})})p(μ)p(π),

∝ exp
⎛
⎝
−ω

L
∑
l=1

∑
i∶αi=αl

{�(xi,μαl
)+h(παl)}

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠

p(μ)p(π) . (25)

The penalty term was h(παl) = − logπαl .
Using the GNPC loss function defined in Equation 22 and adding a penalty term for the mixing

parameter π, the generalized posterior is:

p({A,μ,π} ∣ X) ∝ exp
⎛
⎝
−ω

L
∑
l=1

I
∑
i=1

⎧⎪⎪⎨⎪⎪⎩
I (αi = αl)

⎡⎢⎢⎢⎢⎣

J
∑
j=1

(xij −η(w)j (αl))
2
⎤⎥⎥⎥⎥⎦
− logπαl

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠

p(W)p(π) . (26)

Notably, we treat weight W as a parameter and assume a prior instead of a centroid parameter μ because
the centroid parameter η(w) (αl) is determined by two ideal responses and weight parameters; thus, it
is natural. Priors for the mixing parameters and weight parameters are assumed Dirichlet and Beta
distributions:

p(π) ∝
L
∏
l=1

πδ0
l −1

l , (27)

p(W) ∝
J
∏
j=1

L
∏
l=1

w
a0

jl−1
jl (1−wjl)

b0
jl−1

, (28)

where δ0
1,δ0

2, . . . ,δ0
L ≥ 0,∑l δ0

l = 1, and a0
jl,b

0
jl ≥ 0.

The posterior was numerically obtained using MCMC techniques, such as Metropolis–Hastings
within the Gibbs sampling method, or MCMC software, such as JAGS (Plummer, 2003) or Stan
(Carpenter et al., 2017). The conditional distribution of αi is categorical:

p(αi ∣ xi,W,π) ∝
L
∏
l=1

rI(αi=αl)
il ,ril =

ρil

∑l ρil
,ρil = exp

⎛
⎝
−ωI (αi = αl)

⎡⎢⎢⎢⎢⎣

J
∑
j=1

(xij −η(w)j (αl))
2
⎤⎥⎥⎥⎥⎦
− logπαl

⎞
⎠
.

(29)

Downloaded from https://www.cambridge.org/core. 27 Feb 2025 at 01:46:27, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Psychometrika 9

The conditional distribution of the mixing parameters was a Dirichlet distribution:

p(π ∣ X) ∝
L
∏
l=1

πδ∗l −1
l ,δ∗l = ω

I
∑
i=1

I (αi = αl)+δ0
l . (30)

The conditional distribution of the weight parameter is not easily expressed; therefore, its MCMC update
was performed using the Metropolis–Hastings method. The candidate was generated by a random walk
using a uniform distribution: w(cand)

jl = w(now)
jl +u,u ∼ Unif (−0.05,0.05). Using the above distributions

and updating rules, the MCMC for a generalized posterior is numerically approximated as follows: The
mixing and weight parameters were initialized as{π(0),W(0)}, and the hyperparameters were set to δ0

l =
1,∀l and a0

jl = 2,b0
jl = 1,∀j,l for example. Then, at the tth MCMC iteration (t = 1,2, . . . ,T ∈N),α(t+1)

i is
generated from the categorical distribution expressed in Equation 29 with the tth MCMC sample of the
parameter set at {α(t),W(t)}. The (t+1)th MCMC sample of the mixing parameter is generated from
the Dirichlet distribution shown in Equation 30 using A(t+1). W(t+1) is obtained using the Metropolis–
Hastings method.

Under the hyperparameter setting, the Dirichlet distribution for mixing parameters becomes a
uniform distribution. This represents a scenario in which we have no information about the population
attribute mastery ratio. In this means, the prior of the attribute mastery pattern has almost no
information. The mean and SD of the prior of the weight parameter are 0.667 and 0.236, respectively.
Under this setting, interval [0.158,0.987] covers 95% of the support of the parameter. The data analyst
expected the items in the test to have a slightly conjunctive nature, which means the items behave more
like in the DINA model than in the DINO model. However, the expectation is not particularly strong
because the interval covering 95% of the support of the parameter is wide. This interpretation indicates
that the prior conveys some information about the weight parameters.

4. Mathematical properties of the proposed method: Consistency of the MAP estimators

First, we formally introduce the estimators under the GB framework and subsequently discuss their
statistical behaviors under certain conditions. The appendix provides the full proofs. In this work,
we assume that the item responses were generated from the Bernoulli distribution with parameter Θ
defined by Equation 3; the attribute mastery patterns were generated from a categorical distribution
with a mixing parameter π. Although several alternatives exist, MAP estimation provides a relatively
natural and simple choice. Furthermore, MAP estimators of the GB method (Â,Θ̂,π̂) are estimators of
the true parameters (A0,Θ0,π0) in the data-generating process. These are obtained by minimizing the
loss function of (A,Θ,π) under the constraint imposed by the Q-matrix, as follows:

L(A,Θ,π ∣ X) =
I
∑
i=1

⎛
⎝

J
∑
j=1

�(Xij,θj,αi)+h(παi)
⎞
⎠
+∑

j,l
log fj,αl (θj,αl)+

L
∑
l=1

loggαl (παl), (31)

where h(⋅) is a continuous nonincreasing regularization function of the proportion parameters πα, often
taken as h(π) = − logπ; fj,α and gα are the prior density functions of θj,α and πα, respectively. Note that
we consider a model sequence indexed by (I,J), where both I and J tend to infinity, while K is held
constant.

Several regularity conditions are required to ensure the consistency of MAP estimators. The first
assumption is as follows.

Assumption 1. There exists δ1,δ2 > 0 such that

min
1≤j≤J

⎧⎪⎪⎨⎪⎪⎩
min

αl○q0
j ≠αl′○q0

j

(θ0
j,αl −θ0

j,αl′
)2
⎫⎪⎪⎬⎪⎪⎭
≥ δ1,

and δ2 ≤ minj,α θ0
j,α < maxj,α θ0

j,α ≤ 1−δ2.
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The first condition in Assumption 1 serves as an identification condition for local latent classes at each
item level. The gap denoted by δ measures the separation between the latent classes, thereby quantifying
the signals’ strength. The second condition in Assumption 1 keeps the true parameters away from the
boundaries of the parameter space to prevent unusual behaviors of the element-wise loss.

Assumption 2 pertains to the discrete structures of Q and is expressed as the following.

Assumption 2. All proportion parameters πα are strictly greater than zero, and there exist {δJ}⊂ (0,∞)
such that

min
1≤k≤K

1
J

J
∑
j=1

I {q0
j = ek} ≥ δJ . (32)

This assumption holds that Q includes an increasing number of identity submatrices, IK , as J grows.
Notably, by attaching the subscript J to the lower bound (32) in Assumption (2), we allow it to decrease
to zero as J approaches infinity. As the following theorems show, if the rate at which variable δJ decreases
meets certain mild requirements, the consistency of (Â,Θ̂) can be ensured.

The subsequent assumption concerns the element-wise loss function �.

Assumption 3. The loss function �(X,θ) is twice continuously differentiable in θ on (0,1) and ∃bU >
bL > 0 such that bL ≤ ∂θ2�(R,θ) ≤ bU for θ in a compact subset of (0,1). The total loss (31) is minimized
at class means given the subjects’ membership, as in, θ̂j,α =∑I

i=1I {α̂i = α}Xij/∑I
i=1I {α̂i = α}.

Assumption 3 imposes smoothness conditions on the element-wise loss function, rendering it convex.
The upper bound of the second derivative is necessary to control the remaining term in the expansion
of the first-order condition, and the lower bound allows us to quantify the estimator drift caused by
the given priors. For the sample average assumption, we can verify that both �2 and cross-entropy loss
functions satisfy Assumption 3.

Assumption 4 states that the true parameters minimize the element-wise loss functions and quantify
the deviations when θ is not a true parameter. This assumption is expressed as follows:

Assumption 4. There exist constants η ≥ 2,c > 0 such that

E[�(Xij,θ)]−E[�(Xij,θ0
j,α0

i
)] ≥ c∣θ−θ0

j,α0
i
∣
η
. (33)

Assumption 4 holds for both the �2 loss and the cross-entropy loss.
Assumption 5 is a technical assumption that allows us to control the effects of prior distributions on

the estimators.

Assumption 5. h(⋅) in (31) is a continuous nonincreasing function of the proportion parameters, and
C > c > 0 exists such that for any j and α,C > fj,α,gα > c on a compact parameter subspace of (0,1).

We can verify that the Dirichlet and Beta distributions satisfy this assumption.
Under the aforementioned regularity conditions, we demonstrate the consistency properties of the

GB method with constraints for different attribute mastery patterns αl and αl′,l ≠ l′ (Ma, de la Torre, &
Xu, 2023; Xu, 2017):

(αl ○qj = αl′ ○qj)?⇒(θj,αl = θj,αl′ ), (34)

where α ○ qj = (α1⋅qj1, . . . ,αK ⋅qjk) denotes the element-wise product of binary vectors α and qj. This
implies that the item response parameter θj,α depends only on whether the attribute mastery pattern α
contains the required attributes Kj ∶= {k ∈ [K] ;qjk = 1} for item j.

Based on the above five assumptions, we can derive consistent results for the GB method. The
following main theorem first validates the clustering consistency of the GB method under the constraint
(34), providing a bound for its convergence rate in recovering the attribute mastery patterns.

Downloaded from https://www.cambridge.org/core. 27 Feb 2025 at 01:46:27, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Psychometrika 11

Theorem 1 (Clustering Consistency). Consider (Â,Θ̂,π̂) = argmin(A,Θ,π)L(A,Θ,π ∣ X) under the
constraint (34). When I,J →∞ jointly, suppose

√
J = O(I1−c) for some small constant c ∈ (0,1) . Under

Assumption 1 to Assumption 5. the clustering error rate is:

1
I

I
∑
i=1

I {α̂i ≠ α0
i } = op

⎛
⎝
(log J)ε̃/η

δJ(J)1/η

⎞
⎠
, (35)

where for a small positive constant ε̃ > 0.
Theorem 1 bounds the error of the estimator Â, which establishes the clustering consistency of the
MAP estimators of the GB method, allowing the rate δJ to go to zero. Notably, the scaling condition
only assumes that J goes to infinity jointly with I, but at a slower rate.

The following result demonstrates that the MAP estimator of the item parameters can be uniformly
estimated consistently as I,J →∞:

Theorem 2 (Item parameters consistency). Under Assumptions 1 to 5 and the scaling conditions given in
Theorem 1, we have the following uniform consistency result for all j ∈ [J] and α ∈ {0,1}K ∶

max
j,α

∣̂θj,α −θ0
j,α∣ = op(

1√
I1−c̃

)+op
⎛
⎝
(log J)ε̃/η

δJ(J)1/η

⎞
⎠
, (36)

where c̃ and ε̃ are small positive constants.
On the first error term, the condition πα > 0 for all α ∈ {0,1}K ensures that with probability one, there

are enough samples within each class to provide accurate estimates of item parameters. Notably, c̀ the
first error term arises because the number of parameters approaches infinity jointly with the sample size
I, which causes a slight deviation from the optimal error rate of Op (1/

√
I). The maximum deviation

maxj,α ∣̂θj,α −θ0
j,α∣ is also affected by the classification error. This is indicated in the second error term

op ((log J)ε̃/δJ
√

J).
We can easily establish the consistency of the mixing parameter estimator π̂. When h(π) = − logπ,

the mixing parameters will be estimated as the sample average form ∑iI {α0 = α}/I, which converge
in probability to π0

α because of the clustering consistency.

Corollary 1 (Proportion parameters consistency). Under Assumptions 1 to 5 and the scaling conditions
given in Theorem 1, when h(π) is taken as − logπ, we have π̂α

P→ π0
α.

5. Simulation study

This section compares the previous (G)NPC and the corresponding GB methods using the loss functions
in NPC and GNPC, named as GBNPC and GBGNPC, respectively. This simulation study primarily
aims to assess the behavior of the GB method’s parameter estimates under finite small sample and
item situations. As the GBNPC and GNPC are based on loss function in nonparametric methods, the
most interesting parameters are attribute mastery patterns. In this simulation study, we mainly focus
on the comparisons of the point estimates from these methods. To represent the uncertainty of the
estimates, we also present attribute mastery probabilities using the GBGNPC and GBNPC methods,
which indicate the benefit of the proposed method against the nonparametric methods.

The code for this simulation study is available on the Open Science Framework (OSF) webpage:
https://osf.io/sau6j/.

5.1. Simulation settings
Five factors are manipulated in the simulations. All factors had two conditions; hence, 25 = 32 simulation
settings were used. The first factor was the data-generating model: DINA or general DCM (e.g., LCDM).
The DINA model condition is a simpler data-generating situation, whereas the general DCM model is
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Table 1. The four-attribute Q-matrix

Item Attribute

1 2 3 4

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 1 0 0 0

6 0 1 0 0

7 0 0 1 0

8 0 0 0 1

9 1 1 0 0

10 1 0 1 0

11 1 0 0 1

12 0 1 1 0

13 0 1 0 1

14 0 0 1 1

15 1 1 1 0

16 1 1 0 1

17 1 0 1 1

18 0 1 1 1

19 1 1 1 1

more complex. The second factor was the Q-matrix; four or five attributes are listed in Tables 1 and 2.
Table 1 contains 19 items: eight simple items (i.e., measuring only one attribute), six items measuring two
attributes, five items requiring three attributes, and the most complex item measuring all four attributes.
Table 2 lists 30 items: eight simple items, ten items measuring two attributes, and ten items measuring
three attributes.

Sample size was the third factor, with 30 or 300 participants assumed. The sample size setting of
30 participants mimicked classroom size. The sample size of 300 participants was 10 times larger than
that of other classroom settings. The fourth condition was attribute correlation: independent (ρ = 0) or
highly correlated (ρ = 0.8). The independent attribute condition was unrealistic but represented an ideal
condition. The highly correlated condition was more realistic because the DCMs application indicated
a high correlation among attributes (e.g., von Davier, 2008). The fifth condition was item quality. The
high-item-quality condition indicates a high description of all nonmastering attributes and all perfectly
mastering attributes. Under the high-item-quality condition, the correct response probability of the all
nonmastering pattern was 0.1 and that of the all-mastering pattern was 0.9. On the other hand, in the
low-item-quality condition, the corresponding probabilities were 0.3 and 0.7. The correct item response
probabilities of the intermediate mastering patterns are generated based on Yamaguchi and Templin
(2022b) or Yamaguchi and Templin (2022a).

The data generation process used herein was similar to those in previous studies, such as Chiu and
Douglas (2013), Yamaguchi and Templin (2022b), and Yamaguchi and Templin (2022a). First, for each
individual, we generated a continuous latent variable vector α̃i = (α̃i1, . . . ,α̃iK)⊺ from K-dimensional
normal distributions with zero means and compound symmetry covariance with a correlation of 0 or
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Table 2. The five-attribute Q-matrix

Item Attribute Item Attribute

1 2 3 4 5 1 2 3 4 5

1 1 0 0 0 0 16 0 1 0 1 0

2 0 1 0 0 0 17 0 1 0 0 1

3 0 0 1 0 0 18 0 0 1 1 0

4 0 0 0 1 0 19 0 0 1 0 1

5 0 0 0 0 1 20 0 0 0 1 1

6 1 0 0 0 0 21 1 1 1 0 0

7 0 1 0 0 0 22 1 1 0 1 0

8 0 0 1 0 0 23 1 1 0 0 1

9 0 0 0 1 0 24 1 0 1 1 0

10 0 0 0 0 1 25 1 0 1 0 1

11 1 1 0 0 0 26 1 0 0 1 1

12 1 0 1 0 0 27 0 1 1 1 0

13 1 0 0 1 0 28 0 1 1 0 1

14 1 0 0 0 1 29 0 1 0 1 1

15 0 1 1 0 0 30 0 0 1 1 1

0.8, and variances of 1. Subsequently, the continuous latent variable vector ὰi1 was converted into an
attribute mastery pattern. More precisely, if α̃ik was greater than Φ(k/(1+K))−1,αik = 1; otherwise,
αik = 0, where Φ(⋅)−1 is the inverse cumulative normal distribution function. The simulated item
responses were randomly generated using these attribute mastery patterns, an assumed data-generating
model (DINA or general DCM), and item response probabilities. As mentioned in the previous section,
the parameters of the priors in the GB method were set to a0

jl = 2,b0
jl = 1,∀j,l and δ0

l = 1,∀l. The step size
of the Metropolis update was fixed at 0.05. A one-chain MCMC with 1,000 iterations was employed.
The first 500 iterations are discarded as the burn-in period; therefore, 500 MCMC samples were used to
approximate the posterior distributions.

The main target parameter is attribute masteries, and they are categorical latent variables. However,
common MCMC convergence criteria, such as Gelman-Rubin’s R̀, are for continuous variables, which
means the indicators may not be applicable to categorical variables. Therefore, performing a convergence
check of categorical variables in MCMC is not easy in this context. Instead of directly checking for
the convergence of attribute mastery, we calculated the average correlations of the attribute mastery
probabilities, which we estimated for the first and second halves of the MCMC iterations after the burn-
in period. If the estimated results of the attribute mastery probabilities with the first half after the burn-in
period are consistent with those of the later MCMC iterations, we consider the attribute mastery results
to be stable.

The attribute mastery pattern of the i-individual was calculated based on the posterior attribute
mastery probabilities. If the probability of the kth attribute was <0.5, the attribute was considered mas-
tered. Each estimation method was evaluated using two attribute mastery recovery indices: attribute-
level agreement ratio (AAR) and pattern-level agreement ratio (PAR). AAR and PAR were calculated as
follows:

AARk =
1

IM

M
∑
m=1

I
∑
i=1

I (α̂(m)ik = α(True )
ik ),∀k (37)
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Table 3. The average correlations of attribute mastery probabilities estimated by first and second halves of MCMC

iterations after the burn-in period

Data generating Sample Attribute Item GBGNPC GBNPC

model size correlation quality

Three Four Three Four

attributes attributes attributes attributes

DINA 30 0 High .994 .994 .998 .998

Low .984 .983 .993 .994

0.8 High .996 .995 .998 .998

Low .984 .983 .995 .995

300 0 High .997 .998 .998 .999

Low .992 .993 .993 .995

0.8 High .999 .999 .999 .999

Low .992 .993 .995 .996

General 30 0 High .990 .989 .996 .997

Low .981 .980 .994 .995

0.8 High .994 .994 .998 .998

Low .982 .982 .995 .995

300 0 High .997 .997 .997 .997

Low .992 .993 .994 .995

0.8 High .999 .999 .999 .999

Low .991 .993 .996 .996

Note: GBGNPC, generalized Bayesian method with generalized nonparametric loss function; GBNPC, generalized Bayesian method

with nonparametric loss function.

PAR = 1
IM

M
∑
m=1

I
∑
i=1

I (α̂(m)i = α(True )
i ), (38)

where α̂(m)i = (α̂(m)i1 ,α̂(m)i2 , . . . ,α̂(m)iK )
⊺

is an estimate of the attribute mastery pattern for individual i in

the mth simulation, and α(True )
i = (α(True )

i1 ,α(True )
i2 , . . . ,α(True )

iK )
⊺

is the true attribute vector of individual
i, where M is the total number of simulations, which is M = 100.

5.2. Results
Table 3 shows the results, which indicate correlations >0.98. Therefore, this result can be interpreted as
an indication that the MCMC iterations were stable and attribute mastery can be estimated from the
MCMC samples after the burn-in period.

Figures 1 and 2 present the simulation results of the DINA data generation with four- and five-
attribute Q-matrix conditions, respectively. In this simulation, the AARs and PARs of the two Q-
matrix conditions demonstrated similar tendencies; therefore, our discussion here focuses on the four-
attribute Q-matrix condition. The high-item-quality conditions presented in the four left panels of
Figure 1 indicated that all four estimation methods provide high AARs and PARs. The low-item-quality
conditions presented in the four right panels of Figure 1 indicated lower AARs and PARs than the high-
item-quality conditions, and the low-item-quality conditions exhibited some differences among the
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Figure 1. Simulation results of the DINA data generation with four-attribute Q-matrix conditions.
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Figure 2. Simulation results of the DINA data generation with five-attribute Q-matrix conditions.
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four estimation methods. Attribute correlations under low-item-quality conditions affected AARs and
PARs more significantly. Furthermore, GBNPC and GBGNPC demonstrated higher AARs and PARs
than the corresponding NPC and GNPC methods under the 30-sample size, 0.8 attribute correlation,
and low-item-quality conditions. Interestingly, GBNPC exhibited the highest AARs and PARs under
the 300-sample size, 0.8 attribute correlation, and low-item-quality conditions. Moreover, under these
conditions, GBGNPC had similar AARs and PARs to the NPC, and the GNPC produced the least
optimal result.

Figures 3 and 4 present the results of the general DCM data generation with four- and five-attribute
Q-matrix conditions, respectively. Again, the AARs and PARs of the two Q-matrix conditions exhibited
similar patterns; hereafter, we predominantly focus on results of the four-attribute Q-matrix conditions.
Under high-item-quality conditions, GNPC and GBGNPC outperformed NPC and GBNPC. Further-
more, under high-attribute correlation conditions, GBGNPC was superior to GNPC; the same pattern
was observed between GBNPC and NPC under the same conditions. In the low-item-quality conditions
presented in the four right panels of Figure 3, GBGNPC and GBNPC tended to have higher AARs and
PARs than GNPC and NPC. In particular, a sample size of 300, a high-attribute correlation, and low-
item-quality conditions indicated better AARs and PARs for GBGNPC and GBNPC than GNPC or
NPC.

We also checked attribute mastery probabilities of the GBGNPC and GBNPC methods that rep-
resented uncertainty of parameter estimates. Figures 5 and 6 represent box plots of average attribute
mastery probabilities of the four- and five-attribute conditions under the DINA model-based data-
generating process. Interestingly, the GBNPC method tended to show higher average attribute mas-
tery probabilities than the GBGNPC. The differences between the GBGNPC and GBNPC meth-
ods were relatively small in the first attribute but the discrepancy became larger as the attribute
number increased. The later attributes were more difficult to master and the number of individuals
mastering them was small. These tendencies also occurred in the general data-generating process
situations, which are shown in Figures 7 and 8. These posterior probabilities of attribute mastering
represent estimation uncertainty, so we can carefully check the attribute mastery status. For example,
the attribute mastery probabilities around cutoff values might represent indeterminacy of mastery
or nonmastery. Such uncertainty quantification results cannot be obtained through the GNPC or
NPC methods.

In summary, NPC and GBNPC tended to have higher AARs and PARs under DINA data genera-
tion, low-item-quality conditions, and high-attribute correlations. However, GBGNPC was sometimes
similar to NPC under the DINA data generation conditions, whereas GNPC was the least optimal. By
contrast, under general DCM data generation conditions, GBGNPC and GNPC performed better than
GBNPC and GNPC for high-quality items. For low-quality items, GBGNPC and GBNPC performed
better. Based on these results, GBGNPC appears the optimal choice for attribute mastery estimation. If
the DINA type item response mechanism is confirmed, GBNPC is the optimal choice among the four
estimation methods from the perspective of attribute recovery.

The possible reason for the superiority of the GBGNPC over the GNPC is prior settings. In our
simulation setting, sample sizes were relatively small in the situations in which the nonparametric
methods were employed. Under such conditions, estimation of weight parameters might be difficult
for the GNPC, especially under the low-item-quality conditions. The GBGNPC, on the other hand,
assumed priors for the weight parameters, and the prior conveyed information of item characteristics
and succeeded in estimating attribute mastery patterns. Another reason may be that the GBGNPC can
deal with uncertainty in parameter estimation. This means that the GNPC uses parameter estimates
to minimize the loss function, which simply selects the attribute mastery pattern that provides the
minimum value of loss function without considering the second or third best attribute mastery patterns.
By contrast, the GBGNPC can consider and use the second-best attribute mastery pattern for estimating
attribute mastery probabilities. If these considerations are correct, even if we use noninformation priors
for the GNPC method, the GBGNPC may remain superior. The effects of prior settings are also an
important topic for detailed research in future studies.
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Figure 3. Simulation results of the general DCM data generation with four-attribute Q-matrix conditions.

Downloaded from https://www.cambridge.org/core. 27 Feb 2025 at 01:46:27, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Psychometrika 19

Figure 4. Simulation results of the general DCM data generation with five-attribute Q-matrix conditions.
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Figure 5. Box plots of attribute mastery probabilities of the DINA data generation with four-attribute Q-matrix conditions.

In addition, the effects of manipulated factors are discussed here. First, attribute correlation affected
attribute mastery recovery. The GB method provided better attribute mastery recovery than the non-
parametric methods. The nonparametric loss could not include such information, but the generalized
posteriors have such information based on the data. The attributes generally correlate with each other,
making the GB methods generally better than the nonparametric methods. We did not explicitly include
a loss related to the attribute correlations, but the GB method allows us to include a loss term of
the attribute correlations or attribute structure. This may be a good extension for constructing a loss
function for the GB method.

Second, item quality also affected attribute mastery recovery results. The GB methods showed better
results than the nonparametric methods, especially under low-item-quality conditions. Under such
conditions, prior information might help to improve attribute recovery. This means the GB method
can utilize not only the loss function but also prior information. This makes the GB method the
preferred method compared to the current nonparametric methods, which cannot do this. Thus, based
on the simulation study, the GB methods are always better than the nonparametric methods from the
perspective of attribute mastery recovery.

6. Real data example

The real data example aimed to compare the four estimation methods used in the simulation study
and examine how these estimation methods provide different attribute mastery results. This real data
comparison provided an example of the behavior of the proposed GB method for DCMs.

To show the superiority of their proposed methods, Ma and Jiang (2021) used k-fold cross-validation
with the log marginal likelihood. From our understanding, the log marginal likelihood does not contain
individual parameters that are attribute mastery patterns. In the cross-validation procedure, model
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Figure 6. Box plots of attribute mastery probabilities of the DINA data generation with five-attribute Q-matrix conditions.

parameters estimated with a training dataset are plugged in to calculate the log marginal likelihood
of the test dataset. In our context, the loss functions in the GB method and nonparametric methods do
not contain model parameters and only estimate attribute mastery patterns that relate to individuals.
Therefore, the attribute mastery patterns in a training data set are not contained in a test dataset.
Exploring the appropriate quantitative evaluation for the GB method in the DCMs is an important
direction for future research.

6.1. Data analysis settings
The Examination of the Certificate of Proficiency in English (ECPE) data were selected as an example.
ECPE data have been analyzed in various previous studies, such as Templin and Hoffman (2013) and
Templin and Bradshaw (2014). The ECPE data contained 2,922 responses for 28 items. Table 4 presents
a 28 × 3 Q-matrix that assumes three attributes: Morphosyntactic (α1), cohesive (α2), and lexical
rules (α3). The settings of the GB methods were the same as those used in previous simulations. One
difference was that we employed GNPC and NPC estimates as initial values for GBGNPC and GBNPC.
The data analysis code can be obtained from the OSF webpage https://osf.io/sau6j/.

6.2. Results
The same correlations as in the simulation study were calculated. Again, the correlations of the three
attributes with the GBNPC and GBGNPC methods were all greater than 0.99. This indicated that the
MCMC iterations for attribute mastery were stable.

Table 6 lists the frequencies and ratios of the attribute mastery patterns for the four estimation
methods. Several differences are observed in Table 6. First, GBGNPC and GBNPC estimated the pattern
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Figure 7. Box plots of attribute mastery probabilities of the general data generation with four-attribute Q-matrix conditions.

Table 4. The Q-matrix of ECPE data

Item Attribute Item Attribute

Morphosyntactic Cohesive Lexical Morphosyntactic Cohesive Lexical

rules: α1 rules: α2 rules: α3 rules: α1 rules: α2 rules: α3

1 1 1 0 15 0 0 1

2 0 1 0 16 1 0 1

3 1 0 1 17 0 1 1

4 0 0 1 18 0 0 1

5 0 0 1 19 0 0 1

6 0 0 1 20 1 0 1

7 1 0 1 21 1 0 1

8 0 1 0 22 0 0 1

9 0 0 1 23 0 1 0

10 1 0 0 24 0 1 0

11 1 0 1 25 1 0 0

12 1 0 1 26 0 0 1

13 1 0 0 27 1 0 0

14 1 0 0 28 0 0 1
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Figure 8. Box plots of attribute mastery probabilities of the general data generation with five-attribute Q-matrix conditions.

Table 5. Means and SDs of posterior attribute mastery probabilities for

GBGNPC and GBNPC methods

Estimation method Attribute Mean SD

GBGNPC Morphosyntactic rules: α1 .551 .388

Cohesive rules: α2 .985 .077

Lexical rules: α3 .939 .198

GBNPC Morphosyntactic rules: α1 .807 .326

Cohesive rules: α2 .978 .103

Lexical rules: α3 .949 .187

(001) to be lower than GNPC and NPC estimates. Second, as pattern (011) indicates, the frequency of
pattern (011) for GBGNPC was the highest (1203), that for the GNPC was the second (955), that for
the NPC was the third (522), and that for the GBNPC was the last (386). The GBGNPC and GBNPC
produced lower frequencies than the GNPC and NPC for patterns (100), (101), and (110). The final
difference is indicated in pattern (111). GBGNPC and GNPC had relatively smaller numbers than
GBNPC and NPC.

Table 5 shows the means and SDs of the attribute mastery probabilities for the GBGNPC and GBNPC
methods. The attribute mastery probability for the first attribute (Morphosyntactic rules) of GBGNPC
was mean = .551(SD = .388) and that of GBNPC was mean = .807(SD = .326). The discrepancy was
the largest among the three attributes. The attribute mastery probabilities for the second (cohesive rules)
and third (lexical rules) attributes using the GBGNPC and GBNPC methods were higher than 0.90 so
these attributes tended to be mastered.
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Table 6. Frequencies and ratios of the estimated attribute mastery patterns with the four estimation methods

Pattern GBGNPC GBNPC GNPC NPC

Frequency Ratio Frequency Ratio Frequency Ratio Frequency Ratio

000 24 .008 35 .012 29 .010 44 .015

001 2 .001 3 .001 155 .053 91 .031

010 88 .030 64 .022 88 .030 82 .028

011 1201 .411 384 .131 955 .327 522 .179

100 3 .001 3 .001 38 .013 27 .009

101 0 .000 0 .000 82 .028 87 .030

110 45 .015 36 .012 157 .054 96 .033

111 1559 .534 2397 .820 1418 .485 1973 .675

Note: GBGNPC, generalized Bayesian method with generalized nonparametric loss function; GB-NPC, generalized Bayesian

method with nonparametric loss function; GNPC, generalized nonparametric method; NPC, nonparametric method.

Table 7. Contingency table of the estimated attribute mastery patterns by

GBGNPC and GNPC

GBGNPC GNPC

000 001 010 011 100 101 110 111

000 18 1 0 0 5 0 0 0

001 0 1 0 0 1 0 0 0

010 7 1 54 0 9 0 17 0

011 4 152 34 924 11 6 41 29

100 0 0 0 0 3 0 0 0

101 0 0 0 0 0 0 0 0

110 0 0 0 0 5 0 40 0

111 0 0 0 31 4 76 59 1389

Note: GBGNPC, generalized Bayesian method with generalized nonparametric loss func-

tion; GNPC, generalized nonparametric method.

Table 7 shows the estimated attribute mastery patterns of GBGNPC and GNPC. A large portion of
the GBGNPC pattern (011) corresponds to patterns (001), (001), and (010) of the GNPC. Furthermore,
patterns (011), (100), (101), and (110) of the GNPC correspond to pattern (111) of the GBGNPC. From
these results, the GBGNPC tended to overestimate the number of attributes compared with the GNPC.

Table 8 presents the GBNPC’s and NPC’s estimated attribute mastery patterns. The results in Table 8
are similar to those of GBGNPC and GNPC. For example, patterns (000), (001), (010), and (010) with
the NPC are sometimes estimated as pattern (011) in GBGNPC. Furthermore, patterns (000) to (110)
in the NPC were classified as pattern (111) in the GBGNPC. Therefore, the GBNPC overestimates the
number of attributes compared with the NPC.

We checked individual differences between the GBGNPC and GNPC methods. Table 9 shows that
some individuals indicated the largest pattern discrepancy of attribute mastery between GBGNPC and
GNPC methods. The GBGNPC and the GNPC provided α = (0,1,1) and α = (1,0,0), respectively. The
response patterns did not indicate systematic tendency but the sum scores of the individuals ranged from
11 to 15, which meant they could answer more than half of the test items. The maximum subscores for
attributes one, two, and three were 13, 6, and 18, respectively, so the individuals in Table 9 received half
points out of the maximum total subscores. In addition, the sum scores of the individuals ranged from
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Table 8. Contingency table of the estimated attribute mastery patterns by

GBNPC and NPC

GBNPC NPC

000 001 010 011 100 101 110 111

000 26 5 1 0 3 0 0 0

001 0 3 0 0 0 0 0 0

010 10 0 37 0 8 0 9 0

011 7 54 32 278 3 0 10 0

100 0 0 0 0 3 0 0 0

101 0 0 0 0 0 0 0 0

110 0 0 2 0 3 0 31 0

111 1 29 10 244 7 87 46 1973

Note: GBNPC, generalized Bayesian method with nonparametric loss function; NPC,

nonparametric method.

Table 9. Individual differences in estimated patterns for GBGNPC and GNPC methods, response patterns, sum- and subscores,

and attribute mastery probabilities

ID Attribute mastery Response pattern Sum- Subscore Attribute mastery

pattern score probability

GBGNPC GNPC α1 α2 α3 α1 α2 α3

813 011 100 1000100110100100000011101100 11 5 3 6 .130 .882 .516

1060 011 100 1000011101011000111010001101 14 7 3 9 .418 .956 .864

2378 011 100 1110110111110010010000001011 15 7 3 9 .420 .996 .982

2607 011 100 1000110000101000110010101100 11 5 3 7 .110 .874 .556

Note: GBGNPC, generalized Bayesian method with a generalized nonparametric loss function; GBNPC, generalized Bayesian method with a

nonparametric loss function.

Table 10. Generalized posterior of attribute mastery pattern by GBNPC and NPC

Estimation method ID Attribute mastery pattern

000 100 010 110 001 101 011 111

GBGNPC 813 .102 .016 .264 .102 0 0 .504 .012

1060 .008 .022 .020 .086 .006 .008 .548 .302

2378 .002 0 .004 .012 0 .002 .574 .406

2607 .104 .012 .246 .082 .010 0 .530 .016

GBNPC 813 .282 .012 .316 .250 .006 0 .106 .028

1060 .022 .008 .004 .016 0 .004 .066 .880

2378 .006 .002 .004 .016 .002 .002 .072 .896

2607 .520 .028 .082 .054 .022 0 .244 .050

Note: GBGNPC: generalized Bayesian method with a generalized nonparametric loss function, GBNPC: generalized

Bayesian method with a nonparametric loss function.
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11 to 15, which is about half the maximum sum-score of 28. Thus, the pattern (1,0,0) might saliently
underestimate the latent attributes, making the pattern (0,1,1) possibly more likely. Furthermore, some
attribute mastery probabilities were close to the cutoff value 0.5. For example, the mastery probability of
the third attribute for the ID 813 individual was 0.516. Additionally, the mastery probabilities of the first
attribute for the ID 1060 and 2378 individuals were 0.418 and 0.420. Furthermore, the attribute mastery
probability of the third attribute for the ID 2607 individual was 0.556. These values might indicate the
mastery of corresponding attributes was not strongly supported. The posterior probabilities for the
proposed GBGNPC and GBNPC methods can be used in such cases. However, this is not possible if
we use typical nonparametric methods.

The attribute mastery probabilities information provides estimation uncertainty of mastery and
nonmastery of an attribute for an individual. It may be better to empathize even if we judge an
individual to have mastered an attribute as the mastery might be just slightly over the cutoff value.
The nonparametric methods cannot provide such information. Therefore, it may be better to introduce
the third category representing the midpoint between mastery and nonmastery in DCM applications.

In addition to each attribute mastery probability, we also added posterior attribute mastery pattern
probabilities with the GBGNPC and GBNPC methods in Table 10. The individual’s posterior attribute
pattern probabilities represent the relative possibilities of attribute mastery patterns. From Table 10,
we can see that some attribute patterns showed almost the same posterior probabilities. For example,
individual ID 2378 indicated relatively high posterior probabilities 0.574 and 0.406 for (011) and
(111) according to the GBGNPC method. A similar tendency was shown by the ID 1060 students
with the GBGNPC method. The posterior based on the GBNPC method provided more nuanced
estimates for the ID 813 student. This individual had similar posterior probabilities for (000), (010),
and (110), with values of 0.282,0.316, and 0.250, respectively. It may not be better to provide diagnostic
feedback with such unstable posterior probabilities. Previous nonparametric methods cannot provide
such uncertainty information, which can be used for careful diagnosis of attribute mastery.

7. Discussions and future directions

This study extends the loss function-based estimation method proposed by Ma, de la Torre, and
Xu (2023) to the GB method, which considers estimation uncertainty and prior knowledge. The
proposed estimation method can be used for any type of loss function and has great flexibility.
This study’s contribution is that the proposed method provides a novel approach for estimating the
DCMs’ parameters. The GB method is flexible because we can select any type of loss function and
consider the uncertainty of the parameter estimation. Furthermore, the proposed method relaxes the
assumption of the typical Bayesian method, which requires a likelihood function. The theoretical
analysis revealed consistent results for the proposed GB method under mild regularity conditions.
Additionally, the simulation study revealed that the GB method improved attribute mastery recoveries
compared to previous nonparametric methods. The real data example indicated that the proposed GB
method with the nonparametric loss function tended to overestimate attribute mastery compared to the
nonparametric methods.

The theoretical results not only guarantee the consistency of the MAP estimation results but also
give convergence rate results, which is helpful in characterizing the finite sample estimate errors. All
these results are new to the literature and provide theoretical justification for using the nonparametric
methods and the proposed GB approach. Moreover, the theoretical results in the paper are established
for the general loss function under the proposed assumptions. It covers popular loss functions, such as
the GNPC and log-likelihood loss functions, which are used in Ma, de la Torre, and Xu (2023).

One interesting future research problem is to establish consistent results for other Bayesian esti-
mators, such as expected a posteriori (EAP). However, this is a more challenging question as it involves
deriving the limiting distribution of the Bayesian posterior distribution. Intuitively, given our theoretical
results of MAP, EAP would also be consistent, but technically this is not easy to determine and needs
the development of new mathematical tools. Moreover, Assumption 2 may be further relaxed to allow
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for some latent attribute mastery patterns that do not exist in the population. In particular, if we
know which attribute mastery patterns have zero probability, such as in hierarchical DCMs, then our
theoretical results would still apply. However, if this information is unknown, while some latent attribute
mastery patterns have zero probability, the model itself may have some identifiability issues under the
nonparametric DCM setting. This is another interesting topic for future study.

Another future research direction is to explore how to determine the learning rate from data,
especially under the M-open setting. Intuitively, the learning rate controls the relative importance
between prior information and the loss function. We can set a relatively small value for the learning rate
if we have enough prior information about the attribute mastery distribution and use several new items
whose nature we do not know. In this case, we put relatively great importance on the prior information
rather than the obtained data. However, it may not be realistic to set the learning rate greater than one.
Such a high learning rate would amplify the effect of the loss function but might indicate an overreliance
on the data. It may not be suitable for the M-open setting that the data-generating process is unknown.
Therefore, we need to explore how to determine the learning rate from data.

As mentioned previously, no scholarly agreement exists regarding how to determine the learning
rate, which is an important topic for future research especially in the DCM context. In particular, data-
driven learning rate determination procedures were studied in Wu and Martin (2023), where several
selection methods such as the SafeBayes algorithm based on the cumulative log-loss (Grünwald & van
Ommen, 2017), information gain perspective (Holmes & Walker, 2017), modified weighted likelihood
bootstrap approach (Lyddon et al., 2019), and the approximate achievement of nominal frequentist
coverage probability (Syring & Martin, 2019) were compared. However, all of these methods have
different foundations, and we need to explore which one is most appropriate for the DCM context.

Another topic that requires further investigation is model data fit evaluation. From our under-
standing, the GB method avoids explicit model representation in the framework. Therefore, the model
evaluation scheme is not included in the procedure of the GB method. This is also true for the GBGNPC
method proposed in this study. Therefore, future research needs to explore what kind of statistics can
be used for model data fit. In particular, previously developed methods of model data fit assessment in
psychometrics and Bayesian data analysis could be employed in our setting. Following Sinharay (2006),
discrepancy measures such as observed score distribution, point biserial correlation, and statistical
measures of association among the item pairs could be used for posterior predictive model checking
(PPMC). For further details on PPMC methods for Bayesian networks and IRT models, see also
Sinharay (2006) and Sinharay (2016). Moreover, PPMC for person fit (Sinharay, 2015) would also
provide an important measure to assess the model fit for the attribute mastery patterns at the personal
level, which is often of interest in cognitive diagnosis.

As a final note about the choice of estimation methods, it is necessary to consider estimation time.
The GB method employs an MCMC procedure, so it has a longer estimation time than that of the
nonparametric methods. In our simulation, the estimation times were less than ten seconds, so it is
not irritatingly time consuming. However, if we need immediate feedback, the time difference between
the two kinds of methods may be crucial. We also need to consider estimation time for the requirement
of real data analysis.
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1. Appendix

Proofs of Theorems 1 and 2
A.1. Preparation for the Proofs
In this appendix, we provide some basic tools and introduce helpful notations for the proofs of Theorems 1 and 2. The proofs
are presented in the subsequent sections.

Motivated by the constraint (34), we introduce the concept of a “local” latent class at the item level. Considering item j with
q-vector qj, the constraint (34) divides the collection of attribute mastery profiles α, which is {0,1}K , based on an equivalence
relationship where αl∼jαl′ is defined by αl ○ qj = αl′ ○ qj; here, the subscript ∼j emphasizes that the equivalence relationship

is determined by the jth item qj. On this basis, we introduce a function ξ ∶ {0,1}K ×{0,1}K → N where ξ(qj,αl) = ξ(qj,αl′)
is equivalent to αl ○qj = αl′ ○qj. This function assigns numbers to the equivalent classes induced by item j based on specific

rules. In the following context, we refer to ξ(q0
j ,α) as the local latent class of α induced by item j. It is straightforward to verify

that the number of local latent classes induced by item j, denoted by ∣ξ(qj,{0,1}K)∣, is equal to Lj = 2Kj . Here, Kj = ∑K
k=1 q0

jk

represents the number of latent attributes required for item j; consequently, the range of function ξ satisfies ξ(qj,{0,1}K) =
[Lj] ∶= {1, . . . ,Lj}. As the local latent classes are identified up to permutations on [Lj], owing to their categorical nature, the
mapping rules between ξ(qj,{0,1}K) and [Lj] need not be completely specified in our discussion.

For brevity, we use the general notation Z = (zij) to denote the collection of local latent classes for all items j ∈ [J] and
subjects i ∈ [I], where zij represents ξ(q0

j ,αi). Given that ξ(q0
j ,αl) = ξ(q0

j ,αl′) implies θj,αl = θj,αl′ by the definition of ξ, we
express θj,αi as θj,zij to directly incorporate the constraint (34) into the loss function (31). For notational simplicity, we may
write θj,zij as θj,zi . Consequently, we define:

Pij = P(Xij = 1) = θ0
j,z0

i
. (A.1)

Then, the loss function (31) can be rewritten as:

L(A,Θ,π ∣ X) =
I
∑
i=1

⎛
⎝

h(παi)+
J
∑
j=1

�(Xij,θj,zi)
⎞
⎠
+∑

j,a
log fja (θja)+∑

α
loggα (πα), (A.2)
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where a ∈ [Lj]. Observe that X2
ij =Xij, and E[Xij] = Pij, we denote the expectation of the aboveL(A,Θ,π ∣ X) byL(A,Θ,π) ∶=

E[L(A,Θ,π ∣ X)].
Notably, Z = (zij) is determined only byA because Q0 is known. In the subsequent context, the quantities determined by

the latent attribute profilesA are sometimes denoted by the superscriptA to emphasize their relationships withA. Considering
an arbitraryA, we denote it as:

L(A) = inf
Θ,π
L(A,Θ,π(A) ∣ X) = L(A,Θ̂(A),π̂(A) ∣ X), (A.3)

L(A) = L(A,
↼
Θ
(A)

,π̂(A)), (A.4)

where (Θ̂(A),π̂(A)) ∶= argminΘ,πL(A,Θ,π ∣ X) and the definition of
↼
Θ
(A)

is provided later. Notably, (
↼
Θ
(A)

,π̂(A))may

not minimizeL(A,Θ,π) for a givenA. Then, under any realization ofA, if the prior distribution of Θ is uniform, the following
equations hold for any local latent class a ∈ [Lj]:

θ̂(A)ja =

I
∑
i=1
I {z(A)ij = a}Xij

I
∑
i=1
I {z(A)ij = a}

,
↼
θ
(A)

ja =

I
∑
i=1
I {z(A)ij = a}Pij

I
∑
i=1
I {z(A)ij = a}

. (A.5)

To derive (A.5), note the sum∑J
j=1∑I

i=1 �(Xij,θj,zi) equals the sum∑J
j=1∑

Lj
a=1∑zi=a �(Xij,θja). When estimating θ̂ja, we focus

on minimizing ∑zi=a �(Xij,θja). By substituting E[Xij] = Pij into (A.5), we find that E[θ̂ja] =
↼
θ ja holds for any (j,a). In the

following section, we use the second formula in (A.5) to define
↼
Θ
(A)

given in (A.4). When the prior distribution is not a
uniform distribution, θ̂ja is obtained from minimizing∑zi=a �(Xij,θja)+ log fja (θja), where fja (θja) is the prior density of θja.
To avoid ambiguity, we denote θ̂ja ∶= argminθ∑zi=a �(Xij,θja)+ log fja (θja), and θ̃ja ∶= argminθ∑zi=a �(Xij,θja). It is clear that

E[θ̃ja] =
↼
θ ja.

Before discussing the details of our proof, we provide technical remarks to simplify the discussion. Notably, although we
assume that the latent attributes have proportion parameters π0, they are still treated as unknown but fixed parameters that
need to be estimated. As all the proportion parameters π0

α are strictly greater than zero, with the probability converging to
1,ε1 > 0 exists such that minα∑I

i=1I {α0
i = α} ≥ Iε1. Subsequently, we use this fact interchangeably with the first condition in

Assumption 2.
The second point concerns the compact parameter space specified in Assumptions 2 and 3. Some loss functions may exhibit

unusual behavior near the boundary of the parameter space. Although Assumption 2 confines the true item parameters to a
compact subset within (0,1), the estimated item responses can still approach zero or one, making theoretical analysis more
difficult. For any pair (j,a),θja lies within [δ2,1−δ2]. We add a condition to Â, stating that there exists an ε2 > 0 such that for
each α, the sum∑I

i=1I {α̂i = α} is at least Iε2. With a probability approaching one, this constraint is satisfied by the true latent
attribute mastery patternsA0. With this constraint, for any pair (j,a), the probability that ∣θ̃ja −θja∣ exceeds t can be bounded by
2 exp(−Iε2t2) using Hoeffding’s inequality. Thus, the probability that maxj,a ∣θ̃ja −θja∣ exceeds t is less than J2K+1 exp(−Iε2t2).
Based on the scaling condition in Theorem 1, maxj,a ∣θ̃ja −θja∣ = op(1), implying that with probability converging to 1, all the
θ̃ja values fall within [δ2/2,1−δ2/2]. Based on this result, we assume that in the later content, the estimators (Â,Θ̂) are
obtained by minimizing the total loss (A.2), under the constraints that minα∑iI {α̂i = α} ≥ Iε2 and Θ̂ ⊂ [δ3,1−δ3], for two
small positive constants ε2,δ3 > 0.

The third comment concerns how to quantify the effect of prior density fja on the corresponding estimator θ̂ja. Actually,
under the smoothness and shape constraints given in Assumption 5 and Assumption 3, the additional term log fja (θja)might
cause the estimator θ̂ja to have a Op (1/

√
I) level drift from the sample average form θ̃ja given in (A.6). By considering the

Taylor expansion formula, we have:

log fja (θja)+ ∑
zij=a

�(Xij,θja) = log fja (θja)+ ∑
zij=a

�(Xij,θ̃ja)+
⎛
⎝∑zij=a

∂θ�(Xij,θ̃ja)
⎞
⎠
(θja − θ̃ja)

+ 1
2
∂θ2�(Xij,θ̀ja)(θja − θ̃ja)2

,

= log fja (θja)+ ∑
zij=a

�(Xij,θ̃ja)+
1
2
∑
zij=a

∂θ2�(Xij,θ̀ja)(θja − θ̃ja)2
,

where θ̀ja is between θ̃ja and θja according to the mean value theorem; the second equality holds owing to Assumption 3.
According to the above equation, we can find that θ̂ja = argminθ∈[δ3,1−δ3] log fja (θ)+∑zij=a∂θ2�(Xij,θ̀ja)(θ− θ̃ja)2/2. Note
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that if we take θ= θ̃ja, log fja (θ)+∑zij=a∂θ2�(Xij,θ̀ja)(θ− θ̃ja)2/2= log fja (θ̃ja). Based on Assumption 5, there exists a constant
C > 0 such that ∣log fja (θ̃ja)∣ ≤ supθ∈[δ3,1−δ3]

∣log fja (θ)∣ < C, implying the following:

2C ≥ 1
2
∑
zij=a

∂θ2�(Xij,θ̀ja)(̂θja − θ̃ja)
2

≥ bL

2
∑
zij=a
(̂θja − θ̃ja)

2 =
bLija

2
(̂θja − θ̃ja)

2
,

where ija ∶= ∑I
i=1I {z(A)ij = a}. Thus, a constant C̃ > 0 exists such that for any pair (j,a), we have:

(̂θja − θ̃ja)
2 ≤ C̃i−1

ja .

This inequality will be used several times afterwards. In the theoretical analysis of the estimators above, uniform bounds related
to the quantities of element-wise loss �(⋅,⋅) and prior densities fja are frequently used. The existence of these uniform bounds
requires restricting the parameter space of the item response parameters to a compact subspace. Therefore, discussing the
compact parameter subspace of the item parameters is necessary.

A.2. Outline of the first half of the proof

Step 1: Express the upper bound of ∣ L(A)−L(A) ∣ in terms of (b/2)⋅(∑J
j=1∑

Lj
a=1 ija(θ̃ja −

↼
θ ja)

2
)+ ∣ E[Y]−Y ∣ +Op(J),

where Y ∶= ∑i∑j �(Xij,
↼
θ
(A)

j,zi
) depending on Y and

↼
Θ
(A)

under A,b is the upper bound of the second-order derivative of

the �(⋅,⋅).

Step 2: Bound∑j∑i ija(θ̂ja −
↼
θ ja)

2
and ∣Y−E[Y] ∣ separately to obtain a uniform convergence rate supA ∣ L(A)−L(A) ∣=

op (δIJ)

Step 3: Based on the definition of Â, it follows that 0 ≤L(Â)−L(A0) ≤ 2supA ∣ L(A)−L(A) ∣= op (δIJ), which controls
the deviation L(Â)−L(A0).

In some classical statistical inference contexts, consistent results for the parameters of interest are typically established
through the uniform convergence of random functions associated with these parameters. For instance, if supθ∈Θ ∣ �̂(θ) −
�(θ) ∣ P→ 0, and if we further assume that � has a unique minimum θ̃ on Θ, argminΘ �̂(θ)=∶̂θ P→ θ̃ under some regularity
conditions. The regular conditions may vary across settings. ConsideringA as the parameter to be estimated, the primary aim
of the first three steps is to demonstrate thatAminimizes the expected loss and establishes a uniform convergence result for
its random loss function ofA.

A.3. Outline of the second half of the proof
Step 4: Define Ij

a,b = ∑I
i=1I {z0

ij = a}I {̂zij = b},a,b ∈ [Lj] to represent the samples with the wrong local latent class assign-
ments. Derive some upper bounds for the quantities based on Ij

a,b using L(Â)−L(A0) with the help of the identification
assumptions.

Step 5: Bound the∑I
i=1I {α̂i ≠ α0} using the quantities based on Ij

a,b with the help of the discrete structure of the Q-matrix,
then obtain the desired classification error rate.

Assumptions 1–5 are the regularity conditions for achieving clustering consistency based on the uniform convergence
results established in the first half of the proof. We have provided further details regarding the assumptions in later proofs.

A.4. First Half of the Proof of Theorem 1
Step 1. The idea of decomposing L(A)−L(A) is to consider:

�(Xij,θ̂j,zi)−E[�(Xij,
↼
θ j,zi)] = (�(Xij,θ̂j,zi)−�(Xij,

↼
θ j,zi))

+(�(Xij,
↼
θ j,zi)−E[�(Xij,

↼
θ j,zi)]) .
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The variability in the first term of the right-hand side mainly emerges from the fluctuation in ∣̂θja −
↼
θ ja∣, while the randomness

in the second term is attributable to the stochastic nature of Xij.

Lemma 1. Let (Xij;1 ≤ i ≤ I,1 ≤ j ≤ J) denote independent Bernoulli trials with parameters
(Pij;1 ≤ i ≤ I,1 ≤ j ≤ J). In a general latent class model, given arbitrary latent attribute mastery
patternsA,

∣L(A)−L(A)∣ ≤ b
2
⋅
⎛
⎝

J
∑
j=1

Lj

∑
a=1

ija (̂θja −θja)
2⎞
⎠
+∣Y −E(Y)∣+Op(J), (A.6)

where Y =∑J
j=1∑I

i=1 �(Xij,
↼
θ j,zi)is a random variable depending onAandLjdenotes the number of the distinct local latent classes

induced by qj for item j.

Proof. By noting the decomposition that we mentioned at the beginning of Step 1, ∣ Y −E[Y] ∣ is easy to check. It is sufficient
for us to prove that

0 ≤∑
i
∑

j
(�(Xij,

↼
θ j,zi)−�(Xij,θ̂j,zi)) ≤

b
2
⋅
⎛
⎝

J
∑
j=1

Lj

∑
a=1

ija(θ̃ja −
↼
θ ja)

2⎞
⎠
+Op(J).

◻

The first inequality is clear by the definition of θ̃j,zi (minimizing the loss). For the second part, using the mean value theorem
for second-order derivatives, we obtain

∑
i
∑

j
(�(Xij,

↼
θ j,zi)−�(Xij,θ̃j,zi))

=
J
∑
j=1

Lj

∑
a=1
∑
zi=a
(�(Xij,

↼
θ ja)−�(Xij,θ̃ja))

=
J
∑
j=1

Lj

∑
a=1
∑
zi=a
(∂θ�(Xij,θ̃ja)(

↼
θ ja − θ̃ja)+

1
2
∂θ2 (Xij,θ̀ja)(θ̃ja − θ̂ja)

2) (A.7)

=
J
∑
j=1

Lj

∑
a=1
∑
zi=a
( 1

2
∂θ2 (Xij,θ̀ja)(

↼
θ ja − θ̃ja)

2
)

≤
J
∑
j=1

Lj

∑
a=1
∑
zi=a
( bU

2
(
↼
θ ja − θ̃ja)

2
) = bU

2
⎛
⎝

J
∑
j=1

Lj

∑
a=1

ija(θ̄ja − θ̃ja)2⎞
⎠
,

where θ̀ja is between θ̃ja and
↼
θ ja according to the mean value theorem. The third equality holds true since by Assumption 3,

we have

∑
zi=a

∂θ�(Xij,θ̃ja) = 0.

Similarly, using (̂θja − θ̃ja)
2 ≤ C̃i−1

ja , we have:

∑
i
∑

j
(�(Xij,θ̂j,zi)−�(Xij,θ̃j,zi))

=
J
∑
j=1

Lj

∑
a=1
∑
zi=a
(�(Xij,θ̂ja)−�(Xij,θ̃ja))

=
J
∑
j=1

Lj

∑
a=1
∑
zi=a
(∂θ�(Xij,θ̃ja)(̂θja − θ̃ja)+

1
2
∂θ2 (Xij,θ̀ja)(θ̃ja − θ̂ja)

2)

=
J
∑
j=1

Lj

∑
a=1
∑
zi=a
( 1

2
∂θ2 (Xij,θ̀ja)(̂θja − θ̃ja)

2)

≤
J
∑
j=1

Lj

∑
a=1
∑
zi=a
( bU

2
(̂θja − θ̃ja)

2) =
J
∑
j=1

Lj

∑
a=1

bU C̃
2
≤ (bU C̃2K) J,

which concludes the proof of this lemma. ◻
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Lemma 2. The following event happens with a probability of at least 1−δ,

max
A

⎧⎪⎪⎨⎪⎪⎩

J
∑
j=1

Lj

∑
a=1

ija(θ̃ja −
↼
θ ja)

2⎫⎪⎪⎬⎪⎪⎭
< 1

2
(I log2K + J2K log( I

2K
+1)− logδ) .

Proof. Under any realization ofA, each θ̃ja is an average of ija independent Bernoulli random variables x1j, . . . ,xIj with mean
↼
θ ja. By applying the Hoeffding inequality, we have

P(θ̃ja ≥
↼
θ ja + t) ≤ exp(−2ijat2),P(θ̃ja ≤

↼
θ ja − t) ≤ exp(−2ijat2) . (A.8)

◻

Notably, considering a fixed A, each θ̃ja can take values only in the finite set {0,1/ija,2/ija, . . . ,1} of cardinality ija + 1. We

denote this range of θ̃ja by Θ̃ja and the range of the matrix Θ̃ = (θ̃ja) by Θ̃. Subsequently, P(θ̃ja = v) ≤ exp(−2ija(v−
↼
θ ja)

2
)

for any v ∈ Θ̃j,a. As each of the J × 2K entries in Θ̃, θ̃ja can independently take on ija + 1 different values, there is
∣ Θ̃ ∣= ∏j∏

Lj
a=1 (ija +1) with constraint ∑Lj

a=1 ija = I. As Lj = 2Kj ≤ 2K , we have ∏Lj
a=1 (ija +1) ≤ (1+ I/2K)2K

. Denote Θ̃ε =

{Θ̀ ∈ Θ̃ ∶ ∑j∑a ija(θ̀ja −
↼
θ ja)

2
≥ ε},Θ̃ε ⊆ Θ̃, and

P
⎛
⎝∑j

Lj

∑
a=1

ija(θ̃ja −
↼
θ ja)

2
≥ ε
⎞
⎠
= ∑

Θ̀∈Θ̃ε

P(Θ̃ = Θ̀)

≤ ∑
Θ̀∈Θ̃ε

∏
j
∏

a
exp(−2ija(θ̀ja −

↼
θ ja)

2
)

= ∑
Θ̀∈Θ̃ε

exp
⎛
⎝
−2ija∑

j
∑

a
(θ̀ja −

↼
θ ja)

2⎞
⎠

(A.9)

≤ ∑
Θ̀∈Θ̃ε

exp(−2ε) ≤ ∣Θ̃∣e−2ε ≤ ( I
2K
+1)

J2K

e−2ε.

The above result holds for any fixedA when we apply a union bound over all the (2K)I possible assignments ofA to obtain

P
⎛
⎝

max
A

⎧⎪⎪⎨⎪⎪⎩
∑

j
∑

a
ija(θ̃ja −

↼
θ ja)

2⎫⎪⎪⎬⎪⎪⎭
≥ ε
⎞
⎠
≤ 2KI( I

2K
+1)

J2K

e−2ε. (A.10)

Take δ = 2KI( I
2K +1)J2K

e−2ε; then, 2ε = I log2K + J2K log(1+ I/2K)− logδ. This concludes the proof of lemma 2. ◻

Lemma 3. Define the random variable Y =∑i∑j �(Xij,
↼
θ
(A)

j,zi
), and denote Yij = �(Xij,

↼
θ j,zi). Note that

↼
θ ja ∈ [δ2,1−δ2] and

�(⋅,⋅) are continuous on θ in (0,1). Since continuous functions on the compact set are bounded, a constant U > 0 exists such that

∣�(Xij,
↼
θ j,zi)∣ ≤U,∀(i,j). By applying Hoeffding’s inequality to bound ∣ Y −E[Y] ∣ for any realization ofA, we have:

P(∣Y −E[Y] ∣ ≥ ε) ≤ 2exp{− ε2

(4U2) IJ
} . (A.11)

With the help of Lemma 2 and Lemma 3, subsequently, we prove the following proposition:

Proposition 1. Under the following scaling for some small positive constant c > 0,
√

J =O(I1−c)

we have maxA ∣ L(A)−L(A) ∣= op (δIJ) where δIJ = I
√

J(log J)ε̃ for a small positive ε̃ > 0.

Proof. First, note that under the given scaling condition, J = o(I
√

J). Combining the results of Lemma 2 and Lemma 3, since
there are (2K)I possible assignments ofA, we apply the union bound to obtain
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P(max
A
∣L(A)−L(A)∣ ≥ 3εδIJ) ≤ (2K)IP

⎡⎢⎢⎢⎢⎣

⎧⎪⎪⎨⎪⎪⎩
∑

j
∑

a
ija(θ̃ja −

↼
θ ja)

2
≥ εδIJ

⎫⎪⎪⎬⎪⎪⎭
∪{∣Y −E[Y]∣ ≥ εδIJ}

⎤⎥⎥⎥⎥⎦

+P
⎛
⎝

max
A
∑

i
∑

j
(�(Xij,θ̂j,zi)−�(Xij,θ̃j,zi)) ≥ J(log)ε̃⎞

⎠

≤ exp(I log(2K)+ J2K log( I
2K
+1)−2εδIJ)

+2exp(I log(2K)−
ε2δ2

IJ

4U2IJ
)

+P
⎛
⎝

max
A
∑

i
∑

j
(�(Xij,θ̂j,zi)−�(Xij,θ̃j,zi)) ≥ J(log)ε̃⎞

⎠
. (A.12)

◻

For the third term, note that the following inequality holds for any givenA:

∑
i
∑

j
(�(Xij,θ̂j,zi)−�(Xij,θ̃j,zi)) ≤ (bU C̃2K) J

For the second term on the right-hand side of the aforementioned display to converge to zero, we set δIJ = I
√

J(log J)ε̃ for a
small positive constant ε̃. Moreover, under this δIJ , for the first term to converge to zero as I,J increase, the scaling

√
J =O(I1−c)

given in the theorem results in P(maxA ∣L(A)−L(A)∣ ≥ εδIJ) = o(1), which implies the result in Proposition 1.

Step 3. (A.5) implies that
↼
θ
(A0)

j,zi
= Pij, which means that if we plug into the true latent attribute mastery pattern A0, the

estimators will be the corresponding true parameters. According to this property, the following lemma indicates that A0

minimizes expected loss.

Lemma 4. By Assumption 4, E[�(Xij,
↼
θ j,zi)]−E[�(Xij,θ0

j,z0
i
)] ≥ c(

↼
θ j,zi −θ0

j,z0
i
)

η
for some η ≥ 2,c > 0, then we have

L(A)−L(A0) ≥ c⋅
⎛
⎝∑i

∑
j
(Pij −

↼
θ j,zi)

η⎞
⎠
≥ 0. (A.13)

Notably, while Lemma 4 holds for anyA, it also holds for the estimator Â, then

0 ≤ L(Â)−L(A0) = [L(Â)−L(Â)]+[L(Â)−L(A0)]+[L(A0)−L(A0)] . (A.14)

As Â = argminAL(A), we have L(Â)−L(A0) ≤ 0. Substituting this into A.14, we can derive that

0 ≤ L(Â)−L(A0) ≤ 2sup
A
∣ L(A)−L(A) ∣= op (δIJ)

A.5. Second Half of the Proof of Theorem 1
By applying Hölder’s inequality, we have

(IJ)1− η
2
⎛
⎝∑i

∑
j
(Pij −

↼
θ j,zi)

2⎞
⎠

η
2

≤∑
i
∑

j
(Pij −

↼
θ j,zi)

η
= op (δIJ) .

By letting (IJ)1−η/2(S)η/2 = δIJ , we can check that∑i∑j(Pij −
↼
θ j, ẑi)

2
= op(S)where S ∶= I(J)1−1/η(log J)2ε̃/η. In the following,

we derive a lower bound for∑i∑j(Pij −
↼
θ j,zi)

2
because it is easier to work with than (Pij −

↼
θ j,zi)

η
.

Step 4. Motivated by Assumption 2, we define J ∶= {j ∈ [J] ;∃k ∈ [K] s.t. q0
j = ek}, which represents the set of all items

j that depend on only one latent attribute. Notably, ∀j ∈ J , ∣{α○q0
j ;α ∈ {0,1}K}∣ = 2, as qj only contains one required latent

attribute, then ξ(q0
j ,α) ∈ {1,2} for all j ∈ J . Without loss of generality, we assume that if α ○ q0

j ≠ 0, then let ξ(q0
j ,α) = 2,

otherwise, let ξ(q0
j ,α) = 1. Further, we assume that θ0

j,2 > θ0
j,1,∀j ∈ J , which aligns with the concept that subjects possessing
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the required latent attribute tend to perform better. For any j ∈ J , define

Ij
a,b ∶=

I
∑
i=1
I {z0

ij = a}I {̂zij = b}, (a,b) ∈ {1,2}2. (A.15)

Note Pij = I {z0
ij = 2}θ0

j,2 +I{z0
ij = 1}θ0

j,1 and Ij
2,2 + Ij

1,2 = ∑I
i=1I {̂zij = 2}, Ij

2,1 + Ij
1,1 = ∑I

i=1I {̂zij = 1}. By using (A.5), there
are

↼
θ
(Â)

j,2 =

I
∑
i=1
I {̂zij = 2}Pij

I
∑
i=1
I {̂zij = 2}

=

I
∑
i=1
I {̂zij = 2}(I {z0

ij = 2}θ0
j,2 +I{z0

ij = 1}θ0
j,1)

I
∑
i=1
I {̂zij = 2}

=
Ij

2,2θ0
j,2 + Ij

1,2θ0
j,1

Ij
2,2 + Ij

1,2

;
↼
θ
(Â)

j,1 =
Ij

2,1θ0
j,2 + Ij

1,1θ0
j,1

Ij
2,1 + Ij

1,1

. (A.16)

Under Â, we impose a natural constraint
↼
θ
(Â)

j,2 >
↼
θ
(Â)

j,1 ,∀j ∈ J on Â for identifiability purpose. This constraint does not
change the previous results as θ0

j,2 > θ0
j,1 allows L(Â)−L(A0) ≤ 0 in (A.14) still holds; thus, L(Â)−L(A0) = op (δIJ) still

holds under this constraint. Combining
↼
θ
(Â)

j,2 >
↼
θ
(Â)

j,1 and θ0
j,2 > θ0

j,1, there is

↼
θ
(Â)

j,2 >
↼
θ
(Â)

j,1 ⇐⇒(Ij
2,2Ij

1,1 − Ij
1,0Ij

0,1)θ0
j,2 > (Ij

2,2Ij
1,1 − Ij

1,0Ij
0,1)θ0

j,1 ⇐⇒ Ij
2,2Ij

1,1 > Ij
2,1Ij

1,2. (A.17)

From (A.15), we can obtain

∣θ0
j,1 −

↼
θ
(Â)

j,1 ∣ =
Ij

2,1 (θ0
j,2 −θ0

j,1)

Ij
2,1 + Ij

1,1

, ∣θ0
j,2 −

↼
θ
(Â)

j,2 ∣ =
Ij

1,2 (θ0
j,2 −θ0

j,1)

Ij
2,2 + Ij

1,2

,

∣θ0
j,2 −

↼
θ
(Â)

j,1 ∣ =
Ij

1,1 (θ0
j,2 −θ0

j,1)

Ij
2,1 + Ij

1,1

, ∣θ0
j,1 −

↼
θ
(Â)

j,2 ∣ =
Ij

2,2 (θ0
j,2 −θ0

j,1)

Ij
2,2 + Ij

1,2

.

Therefore,

J
∑
j=1

I
∑
i=1
(Pij −

↼
θ j, ẑi)

2
≥ ∑

j∈J

I
∑
i=1
(Pij −

↼
θ j, ẑi)

2

= ∑
j∈J

⎛
⎝

Ij
1,1(θ0

j,1 −
↼
θ
(Â)

j,1 )
2

+ Ij
2,1(θ0

j,2 −
↼
θ
(Â)

j,1 )
2

+ Ij
1,2(θ0

j,1 −
↼
θ
(Â)

j,2 )
2

+ Ij
2,2(θ0

j,2 −
↼
θ
(Â)

j,2 )
2⎞
⎠

= ∑
j∈J

⎛
⎜
⎝

Ij
1,1(I2,1)2 + Ij

2,1(I1,1)2

(Ij
2,1 + Ij

1,1)
2 +

Ij
1,2(I2,2)2 + Ij

2,2(I1,2)2

(Ij
2,2 + Ij

1,2)
2

⎞
⎟
⎠
(θ0

j,2 −θ0
j,1)

2

= ∑
j∈J

⎛
⎝

Ij
2,1Ij

1,1

Ij
2,1 + Ij

1,1

+
Ij

2,2Ij
1,2

Ij
2,2 + Ij

1,2

⎞
⎠
(θ0

j,2 −θ0
j,1)

2

≥ δ∑
j∈J

⎛
⎝

Ij
2,1Ij

1,1

Ij
2,1 + Ij

1,1

+
Ij

2,2Ij
1,2

Ij
2,2 + Ij

1,2

⎞
⎠

≥ 1
2

δ∑
j∈J
(min{Ij

2,1,I
j
1,1}+min{Ij

2,2,I
j
1,2}) . (A.18)

The second inequality holds since by Assumption 1, (θ0
j,2 −θ0

j,1)
2
≥ δ. One ideal scenario is that for most j ∈J ,min{Ij

2,1,I
j
1,1}+

min{Ij
2,2,I

j
1,2} = Ij

2,1 + Ij
1,2 = ∑I

i=1I {z0
ij ≠ ẑij}; thus the misclassification error for the local latent classes could be bounded

relatively tight. The following result confirms this intuition.

Lemma 5. Define the following random set depending on the estimated latent attribute mastery patterns Â under constraint
↼
θ
(A)

j,2 >
↼
θ
(A)

j,1 ,∀j ∈ J :
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J0 = {j ∈ J ; Ij
2,1 < Ij

1,1,I
j
1,2 < Ij

2,2} ;

J1 = {j ∈ J ; Ij
2,1 < Ij

1,1,I
j
1,2 > Ij

2,2} ;

J2 = {j ∈ J ; Ij
2,1 > Ij

1,1,I
j
1,2 < Ij

2,2},

then under Assumption 1 and Assumption 2, there are ∣J1∣ = op (S/I), ∣J2∣ = op (S/I).

Proof. If j ∈ J1,min{Ij
2,1,I

j
1,1}+min{Ij

2,2,I
j
1,2} = Ij

2,1 + Ij
2,2 =∑I

i=1I {z0
ij = 2}. Under Assumption 2,

I
∑
i=1
I {z0

ij = 2} ≥ Iε

then

P(∣J1∣ ≥
S
δI
)

≤ P
⎛
⎝∑j∈J1

Ij
2,1 + Ij

2,2 ≥
S
δI
⋅ Iε
⎞
⎠

≤ P
⎛
⎝∑i

∑
j
(Pij −

↼
θ j,̂zi)

2
≥ εS

2
⎞
⎠
.

By noting∑i∑j(Pij −
↼
θ j, ẑi)

2
= op(S), then ∣J1∣ = op (S/I). Similar arguments yield ∣J2∣ = op (S/I), which concludes the proof

of Lemma 5. ◻
Note (A.17) implies that min{Ij

2,1,I
j
1,1}+min{Ij

2,2,I
j
1,2} ≠ Ij

1,1+ Ij
2,2,∀j ∈ J , thusJ =J0∪J1∪J2. Lemma 5 implies that

when δJ goes to 0 with a mild rate, the number of elements inJ0 dominates the number of elements inJ1∪J2; thus for most
j ∈ J ,min{Ij

2,1,I
j
1,1}+min{Ij

2,2,I
j
1,2} should be Ij

2,1 + Ij
1,2 = ∑I

i=1I {z0
ij ≠ ẑij}, which represents the number of subjects with

the incorrectly assigned local latent classes.

Step 5. (A.18) implies that ∑i∑j(Pij −
↼
θ j, ẑi)

2
≥ δ∑j∈J0∑

I
i=1I {z0

ij ≠ ẑij}/2. Next we focus on obtaining a lower bound of

∑j∈J0∑
I
i=1I {z0

ij ≠ ẑij} to control the classification error rate I−1∑I
i=1I {α0

i ≠ α̂i}.

Motivated by Assumption 2, for each latent attribute k, denote j1
k as the smallest integer j such that item j has a q-vector ek,

and denote j2
k as the second smallest integer j such that qj = ek, etc. For positive integer m, denote

Bm = {jm
1 , . . . ,j

m
K} . (A.19)

For each k ∈ {1, . . . ,K}, denote

Jmin = min
1≤k≤K

∣{j ∈ J0;q0
j = ek}∣, J̃min = min

1≤k≤K
∣{j ∈ J ;q0

j = ek}∣ . (A.20)

Then, we have that Bm ∩Bl = ∅ for any m ≠ l, thus

I
∑
i=1
∑

j∈J0

I {ξ(q0
j ,α

0
i ) ≠ ξ(q0

j ,α̂i)}

≥
I
∑
i=1

Jmin

∑
m=1

∑
j∈Bm

I {ξ(q0
j ,α

0
i ) ≠ ξ(q0

j ,α̂i)}

= Jmin
I
∑
i=1

K
∑
k=1
I {ξ(ek,α0

i ) ≠ ξ(ek,α̂i)} . (A.21)

The last inequality holds since ∑K
k=1I {ξ(ek,α0

i ) ≠ ξ (ek,α̂i)} ≥ I {α0
i ≠ α̂i}. Note (A.21) implies op (S/I) ≥ JminI−1∑I

i=1
I {α0

i ≠ α̂i}. For simplicity,

γJ =
S
IJ
= J−

1
η (log J)

ε̃
η .

Note that (32) in Assumption 2 implies that ∣ J ∣ /J ≥ J̃min/J ≥ δJ and Jmin ≥ J̃min − ∣J1 ∪J2∣ ; by plugging these results into
op (S/I) ≥ JminI−1∑I

i=1I {α0
i ≠ α̂i}, we can obtain

op(
S
I
)+ ∣J1 ∪J2∣ ≥

J̃min

I

I
∑
i=1
I {α0

i ≠ α̂i} ≥
JδJ

I

I
∑
i=1
I {α0

i ≠ α̂i} .
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From Lemma 5, we have ∣Ji∣ = op (S/I) for i = 1,2, which implies that ∣J1 ∪J2∣ = op (S/I). By substituting this into the above
inequality, we can conclude that

op(
S
I
) ≥ JδJ

I

I
∑
i=1
I {α0

i ≠ α̂i},

which is equivalent to I−1∑I
i=1I {α0

i ≠ α̂i} = op (γJ/δJ). The proof of this theorem is complete.
The inequality (32) in Assumption 2 bridges between the misclassification error for the local latent classes and the

misclassification error for the latent attribute mastery patterns Â by using the inequality ∑K
k=1I {ξ(ek,α0

i ) ≠ ξ (ek,α̂i)} ≥
I {α0

i ≠ α̂i}.

A.6. Proof of Theorem 2
For notational simplicity, denote i0

ja =∑I
i=1I {z0

ij = a}. Thus, Assumption 2 implies that∀α ∈ {0,1}K,∑I
i=1I {α0

i = α} ≥ εI and

i0
ja ≥

2K

2Kj
Iε ≥ Iε. (A.22)

Recall that

θ̃ja =

I
∑
i=1
I {̂zij = a}Xij

I
∑
i=1
I {̂zij = a}

.

Rewrite θ0
ja as similar form

θ0
ja =

I
∑
i=1
I {z0

ij = a}θ0
ja

I
∑
i=1
I {z0

ij = a}
=

I
∑
i=1
I {z0

ij = a}Pij

I
∑
i=1
I {z0

ij = a}
.

By triangle inequality, we have

max
j,a
∣θ̃ja −θ0

ja∣

= max
j,a

RRRRRRRRRRRRRRRRRRR

I
∑
i=1
I {̂zij = a}Xij

I
∑
i=1
I {̂zij = a}

−

I
∑
i=1
I {z0

ij = a}Pij

I
∑
i=1
I {z0

ij = a}

RRRRRRRRRRRRRRRRRRR

≤ max
j,a

RRRRRRRRRRRRRRRRRRR

I
∑
i=1
I {̂zij = a}Xij

I
∑
i=1
I {̂zij = a}

−

I
∑
i=1
I {̂zij = a}Xij

I
∑
i=1
I {z0

ij = a}

RRRRRRRRRRRRRRRRRRR

+max
j,a

RRRRRRRRRRRRRRRRRRR

I
∑
i=1
I {̂zij = a}Xij

I
∑
i=1
I {z0

ij = a}
−

I
∑
i=1
I {z0

ij = a}Xij

I
∑
i=1
I {z0

ij = a}

RRRRRRRRRRRRRRRRRRR

+max
j,a

RRRRRRRRRRRRRRRRRRR

I
∑
i=1
I {z0

ij = a}Xij

I
∑
i=1
I {z0

ij = a}
−

I
∑
i=1
I {z0

ij = a}Pij

I
∑
i=1
I {z0

ij = a}

RRRRRRRRRRRRRRRRRRR
≡ I1 +I2 +I3.

Thereafter, we analyze these three terms separately. For the first term,

I1 ≤max
j,a
(∑

i
I {̂zij = a}Xij)⋅

∑
i
∣I {̂zij = a}−I {z0

ij = a}∣

i0
ja∑

i
I {̂zij = a}
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≤max
j,a

∑
i
∣I {̂zij = a}−I {z0

ij = a}∣

i0
ja

≤ 1
εI
∑

i
I {α0

i ≠ α̂i} = op(
γJ

δJ
) .

The last inequality holds since ∀j ∈ [J],j ∈ [Lj],∑i ∣I {̂zij = a}−I {z0
ij = a}∣ ≤ ∑iI {α0

i ≠ α̂i}. For the second term, we have

I2 =max
j,a

∑
i
∣Xij (I {̂zij = a}−I {z0

ij = a})∣

i0
ja

≤max
j,a

∑
i
∣I {̂zij = a}−I {z0

ij = a}∣

i0
ja

.

For the same reason as I1
P→ 0, we can also conclude that I2 = op (γJ/δJ); thus, I1 +I2 = op (γJ/δJ). For the third term, we

apply Hoeffding’s inequality for bounded random variables and obtain

P
⎛
⎜⎜
⎝

∑
i
I {z0

ij = a}(Xij −Pij)

i0
ja

≥ t
⎞
⎟⎟
⎠
≤ 2exp(−2i0

jat2) ≤ 2exp(−2εIt2) .

Note the number of (j,a) pairs less than or equal to J2K under Assumption 2, we have for ∀t > 0,

P(I3 ≥ t) ≤ J2K+1 exp(−2εIt2) . (A.23)

Notably, 2K+1 remains a constant as K is fixed. By choosing t = 1/
√

I1−c̃ for a small c̃ > 0, the tail probability in A.23 converges
to zero when the scaling condition

√
J =O(I1−c) holds. This implies that I3 = op (1/

√
I1−c̃). Bringing together the preceding

results, we have

max
j,a
∣θ̃ja −θ0

ja∣ = op(
γJ

δJ
)+op(

1
√

I1−c̃
) .

Note for any (j,a), we have (θ̃ja − θ̂ja)
2 ≤ C̃i−1

ja and ija ≥ Iε2 with the probability approaching 1 ; thus maxj,a ∣θ̃ja − θ̂ja∣ =
Op (I−1/2). Therefore,

max
j,a
∣̂θja −θ0

ja∣ ≤max
j,a
∣θ̃ja −θ0

ja∣+max
j,a
∣θ̃ja − θ̂ja∣ = op(

γJ

δJ
)+op(

1
√

I1−c̃
) .

◻
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