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Abstract. As discovered by W. Thurston, the action of a complex one-variable polynomial
on its Julia set can be modeled by a geodesic lamination in the disk, provided that the
Julia set is connected. It also turned out that the parameter space of such dynamical
laminations of degree two gives a model for the bifurcation locus in the space of quadratic
polynomials. This model is itself a geodesic lamination, the so called quadratic minor
lamination of Thurston. In the same spirit, we consider the space of all cubic symmetric
polynomials fλ(z) = z3 + λ2z in three articles. In the first one, we construct the cubic
symmetric comajor lamination together with the corresponding quotient space of the unit
circle. As is verified in the third paper, this yields a monotone model of the cubic symmetric
connectedness locus, that is, the space of all cubic symmetric polynomials with connected
Julia sets. In the present paper, the second in the series, we develop an algorithm for
generating the cubic symmetric comajor lamination analogous to the Lavaurs algorithm
for constructing the quadratic minor lamination.
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1. Introduction
We use standard notation (R, C for the real/complex numbers, D for the unit disk centered
at the origin, etc). The Riemann sphere is denoted by Ĉ. The boundary (in C) of a set
X ⊂ C is denoted by Bd(X). We consider only complex polynomials P; for such a P, let
JP be its Julia set and KP be its filled Julia set. We normalize the circle so that its length
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2 A. Blokh et al

is 1, and identify numbers of [0, 1) with points on the circle and with the corresponding
angles (so, we talk about the angle 1

2 rather than angle π , etc). A chord is a closed straight
line segment with endpoints on the unit circle S = Bd(D). The reader is referred to [Mil06,
Thu85] for basic notions of complex polynomial dynamics on C, including Fatou and Julia
sets, external rays, landing, etc.

The connectedness locus Md is the space of polynomials of degree d, up to affine
conjugacy, with connected Julia sets. A fundamental problem is to understand the structure
of Md . Major progress has been made for d = 2, but much less is known for d > 2.
Thurston [Thu85] introduced invariant laminations to provide a combinatorial model for
M2. A lamination L is a compact set of chords, called leaves, that are pairwise disjoint
in D (equivalently, do not cross). Given a lamination L, one can consider an equivalence
relation ∼L on S where x, y ∈ S are equivalent if there is a finite chain of leaves of L
connecting x and y. If all ∼L-classes of equivalence are finite and all leaves of L are edges
of their convex hulls, then we say that L is a q-lamination.

Thurston constructs the quadratic minor lamination (QML) whose leaves tag all
invariant quadratic laminations (for d ≥ 2, a lamination is invariant if it is invariant
under the map σd(z) = zd restricted to S, see Definition 2.6). He shows that QML is a
q-lamination; moreover, the quotient space MComb

2 = S/QML of the unit circle S by the
equivalence relation defined by QML is a monotone image of Bd(M2) (conjecturally, this
map is a homeomorphism), cf. [Thu85, Sch09]. No such models exist for d > 2.

A natural next object of study is M3, that is, the space of all cubic polynomials with
connected Julia sets, or its subspaces. Notice that polynomials from M3 are associated,
in a natural fashion, with invariant cubic laminations. Similarly to the quadratic case, one
can expect that to provide a model for a subspace of M3, one may need to describe the
appropriate subspace of cubic laminations. We adopt this approach in a series of papers
in which we consider symmetric cubic polynomials P(z) = z3 + λ2z with connected Julia
sets; these form the cubic symmetric connected locus denoted by M3,s (see Figure 1).

It is easy to see that the natural association between polynomials from M3,s and their
laminations leads to the space of all cubic invariant symmetric laminations defined as
cubic invariant laminations that are also invariant under the map that sends each leaf �

to the leaf −� (that is, under the rotation of the unit circle by the angle π ). In [BOSTV1],
we define the ‘parametric’ q-lamination CsCL (this stands for cubic symmetric comajor
lamination) together with the induced factor space S/CsCL of the unit circle S. This
lamination parameterizes all cubic invariant symmetric laminations similar to how QML
parameterizes all quadratic invariant laminations. Then, in [BOSTV3], we verify that
S/CsCL is a monotone model of M3,s .

The present paper is devoted to the construction of CsCL and aims at understanding its
structure and at obtaining suitable pictures of it. To this end, we obtain two main results.
We state them here in §1 to make reading more focused and purposeful (we thank the
referee for this suggestion).

Let us normalize the circle length to 1. For each chord � = ab, let |�| be the length of
the shorter of the two circle arcs with endpoints a and b. Let c be a non-degenerate chord
of length at most 1

6 . It is easy to see that there are two chords Mc and M ′
c that are disjoint,

have the same σ3-image as c, and have lengths at least 1
6 . Denote by S(Mc) the component
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Lavaurs algorithm for cubic symmetric polynomials 3

FIGURE 1. The parameter space of symmetric cubic polynomials M3,s .

of D \ (Mc ∪ M ′
c) that contains both Mc and M ′

c in its boundary. Non-degenerate chords
{c, −c} of length at most 1

6 such that the chords from the σ3-orbits of c and −c do not cross
and never enter the set S(Mc) ∪ −S(Mc) form a legal pair (see Definition 3.18). A chord
c such that {c, −c} is a legal pair is said to be a comajor.

The lamination CsCL is formed by all legal pairs and is in fact a q-lamination
[BOSTV1]. Consider a special subset of CsCL that consists of co-periodic comajors
(a leaf is co-periodic if it is not periodic but its image is). In the first main result of the
paper, Theorem 4.15, we show that co-periodic comajors are dense in the entire CsCL. To
state our second main result we need some definitions.

A 2n-periodic point x of σ3 with σn
3 (x) = −x is said to be of type B. All other periodic

points of σ3 are said to be of type D. For example, 1
4 is a periodic point of type B, while

1/26 is a periodic point of type D. Our choice of symbols B and D for the types of periodic
orbits follows Milnor’s notation for polynomial hyperbolic components and stands for
Bi-transitive and Disjoint, respectively. A periodic leaf of a symmetric lamination is of type
B if its endpoints are of type B, and of type D if its endpoints are of type D. By Lemma 5.9,
all periodic leaves of symmetric laminations are of type B or of type D. A co-periodic leaf
of a symmetric lamination is of type B if its image is a periodic leaf of type B, and of type
D otherwise. A periodic point (leaf) of type B and period 2n has lock period n; so, 1

4 is
a periodic point of period 2 but of block period 1. A periodic point (leaf) of type D and
period n has block period n; so, 1/26 is a periodic point of period 3 and block period 3.
A co-periodic leaf is said to be of block period n if its image is of block period n.

Given a chord � = ab with |�| < 1
2 , set H(�) to be a circle arc of length |�| with

endpoints a and b. If � and �′ are chords disjoint inside D with H(�′) ⊂ H(�), then
we write �′ ≺ �. Suppose that co-periodic comajors c and c′ are such that c′ ≺ c, both
c and c′ are either of type B or type D, and c and c′ have the same block period n.
In Theorem 5.13, we prove that then there exists a co-periodic comajor d with c′ ≺ d ≺ c
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4 A. Blokh et al

FIGURE 2. Three initial steps in the construction of the symmetric cubic comajor lamination CsCL. Boldface
curves indicate leaves of block period 1 constructed in the first step, normal thickness leaves are leaves of block
period 2 constructed in the second step, and the dotted leaves are of block period 3 constructed in the third step.

Darker leaves are co-periodic comajors of type B, lighter leaves are co-periodic comajors of type D.

such that d is of block period j < n. This yields an algorithm allowing one to inductively
construct the family of all co-periodic comajors (dense in CsCL as we know). We call it the
L-algorithm.

The L-algorithm is similar to the famous Lavaurs algorithm [Lav86, Lav89] that defines
a dense (in QML) set of pairwise disjoint σ2-periodic chords. The co-periodic comajors
play for CsCL the same role as the periodic minors for QML. In a nutshell, the L-algorithm
is as follows. Start with marking the co-periodic comajors of block period 1, namely, the
chords

1
6

1
3 , 2

3
5
6 , 5

12
7
12 , 11

12
1
12 .

Of these four leaves, the first two are of type D, and the last two are of type B, cf. Figure 2.
Once all co-periodic comajors of block periods from 1 to k − 1 are constructed, generate
those of block period k as follows. Mark all type-D points of preperiod 1 and block period
k. Next, connect these points consecutively while bypassing the already generated leaves.
Similarly, mark type-B points of block period k and connect them. Every time there is a
choice between longer connections and shorter ones, the latter must be preferred. Details
are given in Theorem 5.13.

Figure 2 shows the three initial steps of the construction.
The L-algorithm defines an involution on the family of all co-periodic comajors

reminiscent of the quadratic case and the title of Lavaurs’ paper [Lav86] (we thank the
referee for bringing this to our attention).
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Lavaurs algorithm for cubic symmetric polynomials 5

Now we would like to address the issue of the tools used in the paper. We follow
Thurston’s approach, implemented so successfully in his seminal preprint that started
circulating in 1985 and was, in our view, a key step in the development of polynomial
dynamics. We were influenced by it, and decided to apply similar ideas to cubic symmetric
polynomials. Thus, our choice here was partially a matter of taste. Another reason for
not using analytic machinery when constructing a model space for M3,s was that while
Thurston’s approach is involved, it is also elementary and, for this reason, can be potentially
accessible to a wider audience. Finally, combining analytic and combinatorial methods in
one construction seems to us less attractive and elegant as it is less structured and requires
going back and forth between different methods. This explains the choice of techniques.

The paper is organized as follows. We discuss laminations in §2. In §3, we consider
general results and concepts concerning symmetric laminations introduced in [BOSTV1].
In §4, we state a few specific properties of the space CsCL and use them, and additional
arguments, to verify the Fatou conjecture about the density of hyperbolicity for symmetric
cubic laminations. More precisely, observe that co-periodic comajors correspond to
periodic majors; in §4, we associate them with q-laminations with periodic Fatou gaps
of degree greater than 1 and show that these are dense. Finally, in §5, we describe and
justify the L-algorithm similar to the Lavaurs algorithm.

2. Laminations: classical definitions
Identify S with R/Z and define the map σd : S → S for d ≥ 2 as σd(z) = dzmod 1;
clearly, σd is locally one-to-one on S. A monic (that is, with leading coefficient 1) complex
polynomial P with locally connected Julia set JP gives rise to an equivalence relation
∼P on S so that x ∼P y if and only if the external rays of arguments x and y land at
the same point of JP . Equivalence classes of ∼P have pairwise disjoint convex hulls. The
topological Julia set S/ ∼P = J∼P

is homeomorphic to JP , and the topological polynomial
f∼P

: J∼P
→ J∼P

, induced by σd , is topologically conjugate to P |JP
.

S/ ∼P S/ ∼P

J (P ) J (P )

�
f∼P

�

ψ

�

ψ

�P

An equivalence relation ∼ on S, with similar properties to those of ∼P above, can be
introduced with no reference to complex polynomials.

Definition 2.1. (Laminational equivalence relation) An equivalence relation ∼ on the unit
circle S is called a laminational equivalence relation if it has the following properties:
(E1) the graph of ∼ is a closed subset in S × S;
(E2) convex hulls of distinct equivalence classes are disjoint;
(E3) each equivalence class of ∼ is finite.
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For a closed set A ⊂ S, we denote its convex hull by CH(A). An edge of CH(A) is a
chord of S contained in the boundary of CH(A). Given points a, b ∈ S, let (a, b) be the
positively oriented arc in S from a to b and let ab be the chord with endpoints a and b.

Definition 2.2. (Invariance) A laminational equivalence relation ∼ is (σd -)invariant if:
(I1) ∼ is forward invariant: for a class g, the set σd(g) is a class too;
(I2) ∼ is backward invariant: for a class g, its pre-image σ−1

d (g) = {x ∈ S : σd(x) ∈ g} is
a union of classes;
(I3) for any ∼-class g with more than two points, the map σd |g : g → σd(g) is a covering
map with positive orientation, that is, for every connected component (s, t) of S \ g, the
arc in the circle (σd(s), σd(t)) is a connected component of S \ σd(g).

Definition 2.3. A lamination L is a set of chords in the closed unit disk D, called leaves
of L, if it satisfies the following conditions:
(L1) leaves of L do not cross; (L2) the set L∗ = ⋃

�∈L � is closed.
If condition (L2) is not assumed, then L is called a prelamination.

A degenerate leaf is a point of S. Given a leaf � = ab ∈ L, let σd(�) be the chord with
endpoints σd(a) and σd(b); then, � is called a pullback of σd(�). If a �= b but σd(a) =
σd(b), call � a critical leaf. Let σ ∗

d : L∗ → D be the linear extension of σd over all the
leaves in L. Then, σ ∗

d is continuous and σ ∗
d is one-to-one on any non-critical leaf. If L

includes all points of S as degenerate leaves, then L∗ is a continuum.

Definition 2.4. (Gap) A gap G of a lamination L is the closure of a component of D \ L∗;
its boundary leaves are called edges (of the gap).

Figure 3 illustrates these notions. If G is a leaf/gap of L, then G equals the convex hull
of G ∩ S. If G is a leaf or a gap of L, we let σd(G) be the convex hull of σd(G ∩ S). Notice
that Bd(G) ∩ S = G ∩ S. Points of G ∩ S are called the vertices of G. A gap G is called
infinite (finite) if and only if G ∩ S is infinite (finite). A gap G is called a triangular gap if
G ∩ S consists of three points.

Definition 2.5. Let L be a lamination. The equivalence relation ∼L on S induced by L is
defined by declaring that x ∼L y if and only if there exists a finite concatenation of leaves
of L joining x to y.

Definition 2.6. (Invariant (pre)laminations) A (pre)lamination L is (σd -)invariant if:
(D1) L is forward invariant. For each � ∈ L, either σd(�) ∈ L or σd(�) is a point in S; and
(D2) L is backward invariant.
(1) For each � ∈ L, there exists a leaf �′ ∈ L such that σd(�′) = �.
(2) For each � ∈ L such that σd(�) is a non-degenerate leaf, there exists d disjoint leaves

�1,. . ., �d in L such that � = �1 and σd(�i) = σd(�) for all i.

Definition 2.7. (q-lamination) A lamination L is called a q-lamination if the equivalence
relation ∼L is laminational and L consists of the edges of the convex hulls of ∼L-classes.
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(a) (b)

FIGURE 3. (a) A gap and a leaf. (b) Long pullbacks (dotted) versus short pullbacks (solid).

Remark 2.8. Since a q-lamination L consists of edges of the ∼L classes, two leaves of L
sharing an endpoint must be edges of a finite gap. Also, given a laminational equivalence
relation ≈, we may consider the family of edges of convex hulls of ≈-classes; this family
is denoted by L≈ and is called the lamination generated by ≈. Evidently, such L≈ is a
q-lamination.

Definition 2.9. (Siblings) Two chords are called siblings if they have the same image. Any
d disjoint chords with the same non-degenerate image are called a sibling collection.

Definition 2.10. (Monotone map) Let X, Y be topological spaces and f : X → Y be
continuous. Then, f is said to be monotone if f −1(y) is connected for each y ∈ Y . It is
known that if f is monotone and X is a continuum, then f −1(Z) is connected for every
connected Z ⊂ f (X).

Definition 2.11. (Gap-invariance) A lamination L is gap invariant if for each gap G, the set
σd(G) is a gap, or a leaf, or a single point. In the first case, we also require that σ ∗

d |Bd(G) :
Bd(G) → Bd(σd(G)) maps as the composition of a monotone map and a covering map to
the boundary of the image gap, with positive orientation (that is, as you move through the
vertices of G in a clockwise direction around Bd(G), their corresponding images in σd(G)

must also be aligned clockwise in Bd(σd(G))).

Definition 2.12. (Degree) The degree of the map σ ∗
d |Bd(G) : Bd(G) → Bd(σd(G)), or

of the gap G, is defined as the number of components of (σ ∗
d )−1(x) in Bd(G), for any

x ∈ Bd(σd(G)). In other words, if every leaf of σd(G) has k disjoint pre-image leaves in
G, then the degree of the map σ ∗

d is k. A gap G is called a critical gap if k > 1.

The following results are proved in [BMOV13].

THEOREM 2.13. Every (σd -)invariant lamination is gap invariant.
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8 A. Blokh et al

THEOREM 2.14. The closure of an invariant prelamination is an invariant lamination. The
space of all σd -invariant laminations is compact.

3. Symmetric cubic comajor lamination: preliminaries
This section describes results of [BOSTV1]. From now on, normalize the circle so that its
length is 1; the length of arcs and angles are measured accordingly. Given a chord � = ab,
denote by −� the chord obtained by rotating � by the angle 1

2 . Define the length ‖ab‖ of a
chord ab as the shorter of the lengths of the arcs in S = R/Z with the endpoints a and b.
The maximum length of a chord is 1

2 . Divide leaves into four categories by their length.

Definition 3.1. A short leaf is a leaf � such that 0 < ‖�‖ < 1
6 , a medium leaf is a leaf �

such that 1
6 ≤ ‖�‖ < 1

3 , and a long leaf is a leaf � such that 1
3 < ‖�‖ ≤ 1

2 . Critical leaves
are leaves of length exactly 1

3 .
For brevity, we call a leaf � long/medium if ‖�‖ ≥ 1

6 .

By Definition 2.9, we cannot talk about sibling collections that include critical leaves.
However, it is clear that a non-critical leaf � has siblings. Consider this issue in detail.

LEMMA 3.2. [BOSTV1, Lemma 3.4] The possibilities for leaves in a sibling collection
are:

(sss) all leaves are short;
(mmm) all leaves are medium;

(sml) one leaf is short, one medium, and one long.
A sibling collection is completely determined by its type and one leaf.

These are general facts; let us now become more specific.

Definition 3.3. (Cubic symmetric lamination) A σ3-invariant lamination L is called a
cubic symmetric lamination if:
(D3) for each � ∈ L, we have −� ∈ L.

Here, −� denotes the result of the half-turn (rotation by 180 degrees) about the origin of
C applied to �. Note: if the endpoints of � have arguments α and β, then the endpoints of
−� have arguments α + 1

2 and β + 1
2 . Unless otherwise stated, let L be a cubic symmetric

lamination.

Definition 3.4. Suppose that � = ab is a non-critical chord which is not a diameter and
the arc (a, b) is shorter than the arc (b, a). Denote the chord (a + 1

3 )(b − 1
3 ) by �′ and the

chord (a + 2
3 )(b − 2

3 ) by �′′.

As σ3(�
′) = σ3(�

′′) = σ3(�), the chords �, �′, �′′ form a sibling collection. For a
long/medium non-critical leaf � ∈ L, it follows that �′ is long/medium and �′′ is short;
if, moreover, � ∈ L, where L is a cubic symmetric lamination, then its sibling collection
is {�, �′, �′′} (all other possibilities lead to crossings with � or −�). So, for a symmetric
lamination L, a sibling collection of type (mmm) is impossible.
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Lavaurs algorithm for cubic symmetric polynomials 9

Definition 3.5. Given two chords �, �̂ that do not cross, let S(�, �̂) be a component of
D \ [� ∪ �̂] with boundary containing � and �̂; call S(�, �̂) the strip between � and �̂.

The above notation is convenient when dealing with laminations.

Definition 3.6. (Short strips) For a sibling collection {�, �′, �′′} of type (sml), with � and �′
long/medium, let C(�) = S(�, �′) (the short leaf �′′ cannot lie in C(�)). The set C(�) has
two boundary circle arcs of length | 1

3 − ‖�‖| (and so does −C(�)). Given a long/medium
chord � ∈ L, call the region SH(�) = C(�) ∪ −C(�) the short strips (of �) and each of
C(�) and −C(�) a short strip (of �). Call | 1

3 − ‖�‖| = w(C(�)) = w(−C(�)) = w(SH(�))

the width of C(�) (or of −C(�), or of SH(�)). Note that −C(�) = C(−�).

Definition 3.7. A leaf � is closer to criticality than a leaf �̂ if ‖�‖ is closer to 1
3 than ‖�̂‖.

A chord � is closest to criticality (in a family of chords A) if its length is the closest to
criticality among lengths of chords from A.

The next two facts established in [BOSTV1] are similar to important results proven in
[Thu85]. The first one is somewhat technical.

PROPOSITION 3.8. [BOSTV1, Lemma 3.7] If � ∈ L, ‖�‖ > 1
6 , and k ∈ N is minimal

such that �k = σk
3 (�) intersects the interior of SH(�), then ‖�k‖ > 1

6 and �k is closer
to criticality than �. A leaf � that is the closest to criticality in its forward orbit is
medium/long, and no forward image of � enters the interior of SH(�).

Proposition 3.8 implies Theorem 3.9.

THEOREM 3.9. [BOSTV1, Theorem 3.8] Let L be a symmetric lamination and G be a gap
of L. Then, G is preperiodic unless an eventual forward image of G is a leaf or a point.

Call a finite periodic gap of L a periodic polygon.

LEMMA 3.10. [BOSTV1, Lemma 4.5] Let G be a periodic polygon and let g be the first
return map of G. One of the following is true.

(a) The edges of G are permuted transitively under g as a combinatorial rotation, that
is, preserving their cyclic order.

(b) The edges of G form two disjoint periodic cycles, and G eventually maps to the gap
−G. If � and �̂ are two adjacent edges of G, then the leaf � eventually maps to the edge −�̂

of −G.

Definition 3.11. If case (a) from Lemma 3.10 holds, we call a gap G a 1-rotational gap. If
case (b) from Lemma 3.10 holds, we call such a gap a 2-rotational gap.

If c is a short chord, then there are two long/medium chords with the same image as
c. We will denote them by Mc and M ′

c. Also, denote by Qc the convex hull of Mc ∪ M ′
c.

This applies in the degenerate case, too: if c ∈ S is just a point, then Mc = M ′
c = Qc is a

critical leaf � disjoint from c such that σ3(c) = σ3(Mc).

Definition 3.12. (Major) A leaf M ∈ L closest to criticality in L is called a major of L.
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If M is a major of L, then the medium/long sibling M ′ of M is also a major of L, as
well as the leaves −M and −M ′. A lamination has either exactly four non-critical majors
or two critical majors.

Definition 3.13. (Comajor) The short siblings of major leaves of L are called comajors; we
also say that they form a comajor pair. A pair of symmetric chords is called a symmetric
pair. If the chords are degenerate, their symmetric pair is called degenerate, too.

A symmetric lamination has a symmetric pair of comajors {c, −c}.
Definition 3.14. (Minor) Images of majors (equivalently, comajors) are called minors
of a symmetric lamination. Similarly to comajors, every symmetric lamination has two
symmetric minors {m, −m}.

Critical majors of a lamination have no siblings, and we define degenerate comajors and
minors as corresponding points on S. If majors M and −M are non-critical, then there is a
critical gap, say, G with edges M and M ′, and a critical gap −G with edges −M and −M ′.

LEMMA 3.15. [BOSTV1, Lemma 5.4] Let {m, −m} be the minors of L and let � be a leaf
of L. Then, no forward image of � is shorter than min(‖�‖, ‖m‖).
Definition 3.16. For a family A of chords, � is a two-sided limit leaf of A if � is
approximated by chords of A from both sides.

LEMMA 3.17. [BOSTV1, Lemma 5.5] Let c be a comajor and M be a major of L such
that σ3(c) = σ3(M).
(1) If c is non-degenerate, then one of the following holds:

(a) the endpoints of c are both strictly preperiodic with the same preperiod and
period;

(b) the endpoints of c are both not preperiodic, and c is approximated from both
sides by leaves of L that have no common endpoints with c.

(2) If M is non-critical, then its endpoints are either both periodic or both strictly
preperiodic with the same preperiod and period, or both not preperiodic.

In particular, a non-degenerate comajor is not periodic.

Comajors can be described more explicitly.

Definition 3.18. (Legal pairs, [BOSTV1, Definition 5.6]) Let a symmetric pair {c, −c} be
either degenerate or satisfy the following:
(a) no two iterated forward images of c and −c cross; and
(b) no forward image of c crosses the interior of SH(Mc).

Then, {c, −c} is said to be a legal pair.

We will also need an important concept of a pullback of a set.

Definition 3.19. (Pullbacks, [BOSTV1, Definition 5.7]) Suppose that a family A of chords
is given and � is a chord. A pullback chord of � generated by A is a chord �′ with σ3(�

′) = �
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FIGURE 4. Laminations L1 and L2 from Lemma 3.20.

such that �′ does not cross chords from A. An iterated pullback chord of � generated by A
is a pullback chord of an (iterated) pullback chord of �.

Lemma 3.20 considers two specific cases (see Figure 4).

LEMMA 3.20. [BOSTV1, Lemma 5.8] There are only two symmetric cubic laminations
L1, L2 with comajors of length 1

6 , namely as follows.

(1) The lamination L1 has comajors 1
6

1
3 , 2

3
5
6 and invariant critical Fatou gaps U ′

1, U ′′
1 ,

where U ′
1 ∩ S consists of all γ ∈ S such that σn

3 (γ ) ∈ [0, 1
2 ] (for all n), and U ′

1 ∩ S consists

of all γ ∈ S such that σn
3 (γ ) ∈ [ 1

2 , 0]. The gaps U ′
1, U ′′

1 share the edge 0 1
2 ; their other edges

are the appropriate iterated pullbacks of 0 1
2 that never separate 1

6
1
3 , 2

3
5
6 , and 0 1

2 .

(2) The lamination L2 has comajors 11
12

1
12 , 5

12
7
12 and critical Fatou gaps U ′

2, U ′′
2 that

form a 2-cycle, where the set (U ′
2 ∪ U ′′

2 ) ∩ S consists of all γ ∈ S such that σn
3 (γ ) ∈

[ 1
12 , 5

12 ] ∪ [ 7
12 , 11

12 ]. The gaps U ′
2, U ′′

2 share the edge 1
4

3
4 ; their other edges are the

appropriate iterated pullbacks of 1
4

3
4 that never separate 11

12
1
12 , 5

12
7
12 , and 1

4
3
4 .

Though the laminations from Lemma 3.20 are not the pullback laminations described
below, knowing them allows us to consider only legal pairs with comajors of length less
than 1

6 and streamline the proofs.
The construction below repeats that from [BOSTV1]; we add it here for the sake of

completeness and convenience of the reader.

3.1. Construction of a symmetric pullback lamination L(c) for a legal pair {c, −c}.
3.1.1. Degenerate case. For c ∈ S, let ±� = ±Mc (call �, −�, and their pullbacks
‘leaves’ even though we apply this term to existing laminations and we are only construct-
ing one). Consider two cases.
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12 A. Blokh et al

FIGURE 5. The pullback construction in the degenerate non-periodic case. The two critical leaves are shown in
boldface, their first pullbacks are in normal, second pullbacks are dashed, and third pullbacks are dotted.

(a) If � and −� do not have periodic endpoints, then the family of all iterated pullbacks
of �, −� generated by �, −� is denoted by Cc (see Figure 5).

(b) Suppose that � and −� have periodic endpoints p and −p. Then, there are two
similar cases. First, the orbits of p and −p may be distinct (and hence disjoint). Then,
iterated pullbacks of � generated by �, −� are well defined (unique) until the nth step (n
equals the period of p and the period of −p), when there are two iterated pullbacks of � that
have a common endpoint x and share other endpoints with �. Two other iterated pullbacks
of � have a common endpoint y �= 0 and share other endpoints with �. These four iterated
pullbacks of � form a collapsing quadrilateral Q with diagonal �; moreover, σ3(x) = σ3(y)

and σn
3 (x) = σn

3 (y) = z is the non-periodic endpoint of �. Evidently, σ3(Q) = σ3(p)σ3(x)

is the (n − 1)st iterated pullback of �. Then, in the pullback lamination L(c) that we are
defining, we postulate the choice of only the short pullbacks among the above listed iterated
pullbacks of � (see Figure 3(b)). So, only two short edges of Q are included in the set of
pullbacks Cc. A similar situation holds for −� and its iterated pullbacks.

In general, the choice of pullbacks of the already constructed leaf �̂ is ambiguous only if
�̂ has an endpoint σ3(±�). In this case, we always choose short pullbacks of �̂. Evidently,
this defines a set Cc of chords in a unique way.

We claim that Cc is an invariant prelamination. To show that Cc is a prelamination, we
need to show that its leaves do not cross. Suppose otherwise and choose the minimal n
such that �̂ and �̃ are pullbacks of � or −� under at most the nth iterate of σ3 that cross.
By construction, �̂, �̃ are not critical. Hence, their images σ3(�̂), σ3(�̃) are not degenerate
and do not cross. It is only possible if �̂, �̃ come out of the endpoints of a critical leaf of
L. We may assume that ‖�̂‖ ≥ 1

6 (if �̂ and �̃ are shorter than 1
6 , then they cannot cross).

However, by construction, this is impossible. Hence, Cc is a prelamination. The claim that
Cc is invariant is straightforward; its verification is left to the reader. By Theorem 2.14,
the closure of Cc is an invariant lamination denoted L(c). Moreover, by construction, Cc

is symmetric (this can be easily proven using induction on the number of steps in the
process of pulling back � and −�). Hence, L(c) is a symmetric invariant lamination. See
Figure 7(a), for an illustration of L(c).

3.1.2. Non-degenerate case. As in the degenerate case, we will talk about pullback
leaves even though we are still constructing a lamination. By Lemma 3.20, we may assume
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that |c| < 1
6 . Set ±M = ±Mc, ±Q = ±Qc. If d is an iterated forward image of c or −c,

then, by Definition 3.18(b), it cannot intersect the interior Q or −Q. Consider the set of
leaves D formed by the edges of ±Q and

⋃∞
m=0{σm

3 (c), σm
3 (−c)}. It follows that leaves

of D do not cross among themselves. The idea is to construct pullbacks of leaves of D in
a step-by-step fashion and show that this results in an invariant prelamination Cc as in the
degenerate case.

More precisely, we proceed by induction. Set D = C0
c . Construct sets of leaves Cn+1

c

by collecting pullbacks of leaves of Cn
c generated by Q and −Q (the step of induction is

based upon Definitions 3.18 and 3.19). The claim is that except for the property (D2)(1)
from Definition 2.6 (a part of what it means for a lamination to be backward invariant), the
set Cn

c has all the properties of invariant laminations listed in Definition 2.6. Let us verify
this property for C1

c . Let � ∈ C1
c . Then, σ3(�) ∈ D, so property (D1) from Definition 2.6

is satisfied. Property (D2)(2) is, evidently, satisfied for edges of Q and −Q. If � is not
an edge of ±Q, then, since leaves ±σ3(Q) = σ3(±c) do not cross σ(�), and since on
the closure of each component of S \ [Q ∪ −Q] the map is one-to-one, then � will have
two sibling leaves in C1

c as desired. Literally the same argument works for � ∈ Cn+1
c and

proves that each set Cn+1
c has properties (D1) and (D2)(2) from Definition 2.6. This implies

that
⋃

i≥0 Ci
c = Cc has all properties from Definition 2.6 and is, therefore, an invariant

prelamination. By Theorem 2.14, its closure L(c) is an invariant lamination.
The lamination L(c) is called the pullback lamination (of c); we often use c as the

argument, instead of the less discriminatory {c, −c}.
LEMMA 3.21. [BOSTV1, Lemma 5.9] A legal pair {c, −c} is the comajor pair of the
lamination L(c). A symmetric pair {c, −c} is a comajor pair if and only if it is legal.

Theorem 3.22 contains the main results of [BOSTV1]. Co-periodic comajors are
defined as preperiodic comajors of preperiod 1. The name is due to the fact that a
co-periodic comajor is a sibling of a periodic major.

THEOREM 3.22. The set of all comajors of cubic symmetric laminations is a q-lamination.
Co-periodic comajors are disjoint from all other comajors.

Based on this theorem, we define the main object of our interest.

Definition 3.23. All comajors of cubic symmetric laminations form a lamination CsCL

called the cubic symmetric comajor lamination.

The following useful notation is justified by Theorem 3.22.

Definition 3.24. For a non-diameter chord n = ab, the smaller of the two arcs into which
n divides S is denoted by H(n). Denote the closed subset of D bounded by n and H(n) by
R(n). Given two comajors m and n, write m ≺ n if m ⊂ R(n), and say that m is under n.

LEMMA 3.25. [BOSTV1, Lemma 5.14] Let {c, −c} and {d , −d} be legal pairs, where c
is degenerate and c ≺ d . Suppose that c is not an endpoint of d, or σ3(c) is not periodic.
Then, d ∈ L(c). In addition, the following holds.
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14 A. Blokh et al

(1) Majors D, D′ of L(d) are leaves of L(c) unless L(c) has two finite gaps G, G′ that
contain D, D′ as their diagonals, share a critical leaf M of L(c) as a common edge,
and are such that σ3(G) = σ3(G

′) is a preperiodic gap.
(2) If majors of L(d) are leaves of L(c) and � ∈ L(d) is a leaf that never maps to a short

side of a collapsing quadrilateral of L(d), then � ∈ L(c).

4. Combinatorial analog of the Fatou conjecture on density of hyperbolicity
We begin by stating a few results that will be used in what follows.

Definition 4.1. If a symmetric lamination L has a periodic Fatou gap of degree greater
than 1 (that is, if it has properties listed in Lemma 4.10), then L is called hyperbolic.

We need a result of [BMOV13]. Recall that, as in Definition 2.5, a lamination L
generates an equivalence relation ∼L on S by declaring that a ∼L b if and only if a finite
concatenation of leaves of L connects points a ∈ S and b ∈ S.

Definition 4.2. (Proper lamination, [BMOV13, Definition 4.1]) Two leaves with a com-
mon endpoint v and the same image which is a leaf (and not a point) are said to form a
critical wedge (the point v then is said to be its vertex). A lamination L is proper if it
contains no critical leaf with periodic endpoint and no critical wedge with periodic vertex.

Proper laminations generate laminational equivalence relations.

THEOREM 4.3. [BMOV13, Theorem 4.9] Let L be a proper invariant lamination. Then,
∼L is an invariant laminational equivalence relation.

We also need a nice result due to Kiwi [Kiw02].

THEOREM 4.4. [Kiw02] Let L be a σd -invariant lamination. Then, any infinite gap of L
is (pre)periodic. For any finite periodic gap G of L, its vertices belong to at most d − 1
distinct cycles except when G is a fixed return d-gon. In particular, a cubic lamination
cannot have a fixed return n-gon for n > 3. Moreover, if all images of a k-gon G with
k > d have at least d + 1 vertices, then G is preperiodic.

Finally, here are several important claims from [BOSTV1].

COROLLARY 4.5. [BOSTV1, Corollary 4.8] If E is a preperiodic polygon of a symmetric
lamination such that E is not precritical, then no diagonal of E can be a leaf of a symmetric
lamination.

LEMMA 4.6. [BOSTV1, Lemma 6.2] Let c ∈ CsCL be a non-degenerate comajor. If
� ∈ L(c), � ≺ c, and ‖�‖ > ‖c‖/3, then � ∈ CsCL. In particular, if ci ∈ L(c), ci ≺ c,
and ci → c, then cn ∈ CsCL for sufficiently large n.

LEMMA 4.7. [BOSTV1, Lemma 6.6] Let c ∈ CsCL be a non-degenerate comajor such
that σ3(c) is not periodic. If there exists a sequence of leaves ci ∈ L(c) with c ≺ ci and
ci → c, then c is the limit of co-periodic comajors ĉj ∈ L(c) with c ≺ ĉj for all j.
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COROLLARY 4.8. [BOSTV1, Corollary 6.7] Every not eventually periodic comajor c is a
two-sided limit leaf in the cubic symmetric comajor lamination CsCL.

LEMMA 4.9. [BOSTV1, Lemma 6.8] A co-major which is non-degenerate and preperi-
odic of preperiod at least 2 is a two-sided limit leaf of CsCL or an edge of a finite gap H
of CsCL all of whose edges are limits of comajors of CsCL disjoint from H.

Let us now describe laminations related to co-periodic comajors.

LEMMA 4.10. Let L be a symmetric lamination with a periodic Fatou gap of degree
greater than 1. Then, L has two critical Fatou gaps of degree greater than 1. Moreover, L
is a q-lamination.

Proof. Because of the symmetry, a hyperbolic symmetric lamination L has two critical
Fatou gaps of degree greater than 1. These gaps either belong to the same cycle of
Fatou gaps, or belong to two distinct cycles of Fatou gaps. Moreover, by Theorem 4.3,
the equivalence ∼L is laminational. We claim that L coincides with the q-lamination L̂
generated by ∼L. We need to show that any leaf of L is a leaf of L̂.

In general, edges of a Fatou gap U may form a finite concatenation, in which case, U is
not a gap of the corresponding q-lamination (by definition, in the q-lamination, we add one
more leaf to the concatenation to make it into a finite gap; this extra leaf will be an edge of
a new, smaller Fatou gap of the q-lamination). However, this cannot happen in our case: if
it did, it would yield a symmetric q-lamination with fixed return finite gaps contradicting
Lemma 3.10. Hence, the Fatou gaps of L are gaps of L̂. Otherwise, if � ∈ L is not a leaf
of L̂, then � must be a diagonal of a finite gap G of L̂. However, by Corollary 4.5, this is
impossible. Hence, L = L̂ is a q-lamination as desired.

Hyperbolic laminations are constructed in Theorem 4.11.

THEOREM 4.11. A preperiodic point q ∈ S of preperiod 1 and period k is an endpoint of
a non-degenerate co-periodic comajor c of period k of a cubic symmetric lamination. Take
the short edges of ±Qc, and remove their backward orbits from L(c). Then, the resulting
lamination L̂(c) is a hyperbolic q-lamination with comajor pair {c, −c}.
Proof. Let � = x0p be the critical leaf with σ3(�) = σ3(q) and a k-periodic endpoint p.
Consider the pullback lamination L(q). Let G be the central symmetric gap or leaf of
L(q) located between � and −�. Then, G contains the origin and has leaves ±M closest
to criticality. Let M ′ and d be the medium and short siblings of M. Clearly, the short
siblings ±d of leaves ±M form a legal pair. Hence, if � shares an endpoint with M, then,
by Lemma 3.21, we can set c = d . Assume now that leaves ±� are disjoint from ±M .

If the orbits of p and −p are disjoint, let n = k. Otherwise, k = 2n for some n, while
σn

3 (p) = −p and σn
3 (−p) = p. We will assume in the rest of the proof that k = n; the

case k = 2n is similar. Observe that L(q) contains the critical leaf � = x0p with periodic
endpoint p, which in fact implies that L(q) contains caterpillar gaps (see Figure 6). Indeed,
consider the strip S between M and M ′. Let s = x0x1 be the short pullback of � under σk

3 ,
which is included in L(q) by construction; then σk

3 (s) = x0p. Hence, there is another leaf

https://doi.org/10.1017/etds.2024.126 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.126


16 A. Blokh et al

FIGURE 6. Illustration of the proof of Theorem 4.11.

x1x2 such that σk
3 (x1x2) = x0x1. The leaf x1x2 is short as if x1x2 is long/medium, then

its kth image s is short and non-disjoint from the interior of its short strips, contradicting
Lemma 3.8. Repeating this, we get a concatenation A of pullbacks of � under powers of
σk

3 ; A consists of short leaves of L(q), begins with � ∪ x0x1 ∪ x1x2, converges to a point
t ∈ S of period k, and points x0, x1, . . . belong to the short circular arc I that bounds S and
does not contain p. Since t and p belong to distinct circle arcs on the boundary of S, then
t �= p.

Clearly, an infinite periodic gap U of L(q) contains A in its boundary, and there is a gap
U ′ with the same image as U that shares an edge � with U. Consider the chord pt ; it is
periodic of period k, and there is another chord x0t ′ with the same image as pt . The chord
pt is compatible with L(q) because, by construction, its images stay inside images of U
and never cross leaves of L(q). Moreover, the iterated images of pt do not cross, as for this
to happen, some leaves from the concatenation A must cross, and this is not the case. We
claim that then pt never enters the strip between itself and x0t ′. Indeed, if it does, then, by
Lemma 3.8, it will have to cross �, which is a contradiction. Likewise, images of pt never
cross −�. By definition, this implies that the short sibling qy of pt , together with −qy,
form a legal pair. Thus, qy = c is a comajor of a symmetric lamination as desired.

The leaf σ3(c) = σ3(pt) is a k-periodic leaf of L(q). By Proposition 3.8, the leaf
σk

3 (c) = pt is a major of L(c). Let Qc = Q be the critical quadrilateral of L(c) with
edge pt , and x̄ and ȳ be the two short edges of Q. Removing them and their backward
orbits from L(c) yields the family of chords L̂; we claim that L̂ is an invariant lamination,
too. Indeed, by definition, L(c) has two quadrilaterals X and Y attached to Q at x̄ and
ȳ, respectively. This implies that both x̄ and ȳ are isolated in L(c). So, L̂ is obtained
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by removing a countable family of isolated leaves from L; hence, L̂ is closed. The other
properties of invariant laminations for L̂ are immediate. Thus, L̂ is an invariant lamination.
Evidently, L̂ is symmetric.

Consider the gap U of L̂ with U ⊃ Q. Countably many pullbacks of Q are consecutively
attached to one another and contained in U. Hence, U is an infinite periodic gap that maps
forward 2-to-1, that is, U is a Fatou gap of degree two. By definition, L̂ is hyperbolic.
Moreover, by the construction, c remains a leaf of L̂. Hence, {c, −c} is the comajor pair
of L̂.

We now consider preperiodic points of preperiod greater than 1 or periodic points
(by Lemma 3.17, there are no non-degenerate periodic comajors). Recall that a dendrite
is a locally connected continuum that contains no Jordan curves. A q-lamination with
no infinite gaps gives rise to a topological Julia set which is a dendrite; we call
such q-laminations dendritic (see [BOPT17, BOPT19]). We will also need [BOSTV1,
Theorem 2.19]. This theorem coincides with [BOPT20, Lemma 2.31] except for two extra
claims proven in [BOSTV1]

THEOREM 4.12. [BOPT20, Lemma 2.31], [BOSTV1, Theorem 2.19] Let G be an infinite
n-periodic gap and K = Bd(G). Then, σn

d |K is the composition of a covering map and a
monotone map of K. If σn

d |K is of degree one, then either statement (1) or statement (2)
below holds.
(1) The gap G has countably many vertices, finitely many of which are periodic and the

rest are preperiodic. All non-periodic edges of G are (pre)critical and isolated. There
is a critical edge with a periodic endpoint among edges of gaps from the orbit of G.

(2) The map σn
d |K is monotonically semi-conjugate to an irrational circle rotation so

that each fiber is a finite concatenation of (pre)critical edges of G. Thus, there are
critical leaves (edges of some images of G) with non-preperiodic endpoints.

In particular, if all critical gaps/leaves of a lamination are finite and have strictly
preperiodic vertices, then the lamination has no infinite gaps.

Consider now the preperiodic case of preperiod greater than 1.

LEMMA 4.13. Let x ∈ S be preperiodic of preperiod n > 1 and let L(x) = L be the cor-
responding pullback lamination. Then, L is proper and ∼L is a laminational equivalence
relation that defines a q-lamination L̂. The lamination L̂ is symmetric, dendritic, and
coincides with the family of limit leaves of iterated pullbacks of the critical leaves ±Mx

of L. Let ±G be the critical gaps/leaves of L̂. Then, ±G are preperiodic of preperiod n,
finite, and contain ±Mx . Let T be the sibling gap/leaf of G in L̂. Then, x ∈ T and T is a
gap/leaf of CsCL or a singleton disjoint from gaps/leaves of CsCL. Moreover:
(1) if T is degenerate, then there are no non-degenerate comajors containing x;
(2) if T is a non-degenerate leaf, then T is a comajor that is the limit from both sides of

comajors disjoint from T;
(3) if T is a gap, then all edges of T are comajors that are limits of comajors disjoint

from T.
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(a) (b)

FIGURE 7. Illustration of the proof of Lemma 4.13. (a) Pullback lamination for x = 17/18 (that is, of preperiod 2
and period 1). (b) Proof in case (1) of the lemma.

Proof. The critical leaves ±Mx of L have preperiodic endpoints. Hence, by Definition 4.2,
L is a proper lamination. By Theorem 4.3, the equivalence relation ∼L is laminational. Let
L̂ be the q-lamination generated by ∼L.

We claim that all gaps of L̂ are finite. Indeed, suppose that U is an infinite gap of L̂.
Since L̂ is a q-lamination generated by ∼L and by definition, then U must be an infinite
gap of L. However, by Theorem 4.12, the lamination L has no infinite gaps. Hence, the
topological Julia set J∼L is a dendrite, and there are no isolated leaves in L̂. Clearly, L̂
is symmetric, with critical sets G ⊃ Mx , −G ⊃ −Mx , and there is a convex hull T of
a ∼L-class, with σ3(T ) = σ3(G). It follows that ±G are preperiodic of preperiod n and
finite.

Take a leaf � of L̂. Suppose that it is not a limit leaf for pullbacks of ±Mx . Then, since
by Theorem 4.12 L has only finite gaps, it follows that either � is a diagonal of a finite gap
of L, or � is a pullback of Mx or −Mx , and on either side of �, there is a finite gap of L. In
either case, we arrive at a contradiction with the assumption that � is a leaf of L̂. Hence,
every leaf of L̂ is a limit leaf for pullbacks of ±Mx .

To prove condition (1), assume that T = {x}; then, L̂ has critical leaves ±G = ±Mx .
Suppose that there is a sequence of L̂-gaps Hi that converges to Mx . By Theorem 3.9, all
of them are (pre)periodic. We may assume that H1 = H has an edge c that separates the
interior of H from Mx , with endpoints close to the endpoints of Mx . We may follow the
orbit of H and c, and choose the closest to criticality iterated image d of c (it is always
possible since the orbit of c is finite and c never maps to ±Mx). By Proposition 3.8, the
leaf d never enters its short strips SH(d). Hence, the short sibling d ′′ of d, together with
−d ′′, forms a legal pair. Evidently, d ′′ separates a short circle arc containing x from the
rest of the circle. Since by Theorem 3.22 comajors form a q-lamination, non-degenerate
comajors cannot contain x as claimed (see Figure 7).

If there are no gaps located close to Mx , then, since σ3-periodic points are dense in
S, we can choose a sequence of periodic leaves of L̂ converging to Mx , and repeat for
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them the above argument. So, the case when T = {x} is a singleton is considered. If T is a
leaf/gap, then it is easy to check that any leaf on the boundary of T is legal. Hence, in this
case, T is a gap or leaf of CsCL as desired.

To prove condition (2), observe that if T is a non-degenerate leaf, then by the above,
it is the limit of leaves of L̂ from both sides. Therefore, it is the limit of pullbacks of
±Mx from both sides. Since, under our assumptions, critical leaves ±Mx are contained in
the critical quadrilaterals ±G, then, in fact pullbacks of ±G accumulate on T from both
sides. By definition, it means that leaves of the pullback lamination L(T ) approach T from
both sides. It now follows from Lemmas 4.6 and 4.7 that T is the limit from both sides of
comajors disjoint from T as desired.

To prove condition (3), observe that, by definition, T has edges that are comajors; then,
the desired follows from Lemma 4.9.

Definition 4.14. A preperiodic comajor c of preperiod greater than 1 or a periodic comajor
(necessarily degenerate) is called a Misiurewicz comajor, and any symmetric lamination
with a Misiurewicz comajor pair is said to be a Misiurewicz symmetric lamination.

We are ready to prove the density of hyperbolicity (Fatou conjecture) for symmetric
laminations.

THEOREM 4.15. Co-periodic comajors are dense in CsCL.

Proof. Consider a non-degenerate comajor c ∈ CsCL that is not co-periodic. We have two
cases here.

(a) There is a sequence of leaves ci ∈ L(c) with c ≺ ci and ci → c. Then, by
Lemma 4.7, the comajor c is the limit of co-periodic comajors ĉi such that c ≺ ĉi .

(b) A sequence of leaves ci ∈ L(c) converging to c with c ≺ ci does not exist. Then, c
is an edge of a gap G of L(c) with all vertices of G outside of H(c). The lamination L(c)

has critical quadrilaterals ±Qc = ±Q. If σ3(c) eventually maps to an edge of Q, then this
edge is periodic, which shows that c is co-periodic, and this is a contradiction with our
assumption. Hence, σ3(c) never maps to an edge of Q and, therefore, G never maps to
a leaf or point. By Theorem 3.9, this implies that G and c are preperiodic of preperiod
greater than 1 (recall that c is not periodic by Lemma 3.17).

We claim that all edges of G are comajors. Properties of laminations imply that there
are two gaps, L and R, attached to Qc at the appropriate majors of L(c) and such that
σ3(L) = σ3(R) = σ3(G). Now, choose among the edges of G the edge � with the greatest
length. Then, clearly, G ∩ S ⊂ H(�). Set M = M�, M ′ = M ′

�. Then, M (or M ′) cannot
enter the strip S between M and M ′ as otherwise, by Proposition 3.8, their images would
have to cross edges of L, R, or Qc. This implies that, in fact, any edge d of G is a comajor
because {d , −d} is legal.

It follows now that this is exactly the situation described in Lemma 4.13 and that L(c)

gives rise to a laminational equivalence relation ∼L(c) which, in turn, gives rise to a
dendritic q-lamination L̂ such that G is a gap of L̂ (the last claim follows, e.g., from the fact
that, by Theorem 3.22, comajors form a q-lamination). Since there are no isolated leaves
in L̂, the comajor c is approximated by uncountably many leaves �̂ of L̂ such that �̂ ≺ c.
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By Lemma 4.6, we may assume that all these leaves of L̂ are comajors. Now, choose a
sequence of them that converges to c and satisfy the conditions of case (a) of this proof. By
case (a) these leaves are all limits of co-periodic comajors, and hence so is c as desired.

5. L-algorithm
In this section, we provide an algorithm for constructing all co-periodic comajor leaves.
By Theorem 4.15, they are dense in CsCL, and hence this renders the entire CsCL. The
algorithm is similar to the famous Lavaurs algorithm for Thurston’s QML [Lav86, Lav89]
(see [BBS21, Bha21] for an extension of this algorithm to the degree d unicritical case).
We call it the L-algorithm.

5.1. Preliminaries.

LEMMA 5.1. [BOSTV1] A co-periodic comajor leaf is disjoint from all other comajors in
CsCL.

The following is [BOSTV1, Definition 6.4].

Definition 5.2. Let � be a leaf of a symmetric lamination L and k > 0 be such that
σk

3 (�) �= � (in particular, the leaf � is not a diameter). If the leaf σk
3 (�) is under �, then

we say that the leaf � moves in by σk
3 ; if σk

3 (�) is not under �, then we say that the leaf �

moves out by σk
3 . If two leaves � and �̂ with � ≺ �̂ of the same lamination both move in or

both move out by the map σk
3 , then we say that the leaves move in the same direction. If

one of the leaves �, �̂ moves in and the other moves out, then we say that the leaves move
in opposite directions. There are two ways of moving in opposite directions: if � moves out
and �̂ moves in, we say they move toward each other; if � moves in and �̂ moves out, we
say that they move away from each other.

The strip S(�, �̂) between non-crossing chords �, �̂ was introduced in Definition 3.5.

LEMMA 5.3. [BOSTV1, Lemma 6.5] Let �̂ �= � be non-periodic leaves of a symmetric
lamination L with �̂ � �. Given an integer k > 0, let h : S → S be either the map σk

3 or
the map −σk

3 . Suppose that the leaves � and �̂ move toward each other by the map h and
neither the leaves � and �̂, nor any leaf separating them, can eventually map into a leaf
(including degenerate) with both endpoints in one of the boundary arcs of the strip S(�, �̂).
Then, there exists a σ3-periodic leaf y ∈ L that separates � and �̂.

For the notion of two-sided limit leaves, see Definition 3.16.

Definition 5.4. We say a gap G weakly separates two leaves �1 and �2 if �1 \ G and �2 \ G

are non-empty sets in two different components of D \ G. Similarly, we say a leaf � weakly
separates two leaves �1 and �2 if �1 \ � and �2 \ � are non-empty sets in two different
components of D \ �.

LEMMA 5.5. Let �′ �= � be two leaves in a cubic symmetric lamination L such that � ≺ �′.
Suppose that:
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(i) the leaves � and �′ move away from each other under σk
3 ;

(ii) no leaf weakly separating � and �′ maps to a critical chord of S under the map σ i
3

for i < k.
Then, there exists a periodic leaf y = ab with σk

3 (a) = a, σk
3 (b) = b that weakly

separates � and �′.

Proof. A gap G of L with edges �, �′ does not exist as otherwise, the gap σk
3 (G) would

strictly cover the gap G. Hence, the family of leaves C ⊂ L that consists of �, �′, and the
leaves that weakly separate � and �′ has at least one leaf that weakly separates � and �′.
Clearly, C is closed.

Let A be the set of leaves of C that move in under σk
3 such that for every leaf m ∈ A, if a

leaf n weakly separates � and m, then n also moves in under the map σk
3 . So, all the leaves

in A move in under σk
3 . Then, the closure A of A (with respect to the Hausdorff metric)

is a family of leaves, too; let y ∈ A be the leaf of A farthest from � (that is, every leaf in
A \ {�, y} weakly separates � from y). By continuity, either y ∈ A or σk

3 (y) = y. We claim
that σk

3 (y) = y. Indeed, suppose that y moves in under σk
3 . There are two cases. First, it

can be that y is approximated by leaves with endpoints outside H(y) (see Definition 3.24).
However, this contradicts the choice of y. Second, y can be an edge of a gap G with vertices
outside of H(y), while all vertices of σk

3 (G) belong to H(y). If now �̂ is the edge of G
with y ≺ �̂, then �̂ ∈ A, which is a contradiction.

Thus, y = ab = σk
3 (y). We claim that σk

3 fixes the endpoints of the leaf y. Assume that
σk

3 flips y, and consider cases. If y is a two-sided limit leaf and t ∈ A is close to y, then the
leaf t would move out under σk

3 , which is a contradiction. If y is an edge of a gap G, then y
is an edge of the gap G′ = σk

3 (G), the gaps G and G′ are on both sides of the leaf y, and σk
3

maps one gap to the other. Hence, there is an edge t ≺ y of G or G′ that belongs to A but
moves out under σk

3 , which is a contradiction. Finally, σk
3 (y) = y is non-degenerate.

LEMMA 5.6. [BOSTV1, Lemma 6.3] Suppose that L is a cubic symmetric lamination with
comajor pair {c, −c} and that a short leaf �s ∈ L with c ≺ �s is such that the leaf �m =
σ3(�s) never maps under ±�m. Then, there exists a cubic symmetric lamination L(�s) with
comajor pair {�s , −�s}.

5.2. The description of the L-algorithm. According to [Mil93, Mil09], cubic polyno-
mials with Fatou domains whose first return map is of degree 4 are said to be of type
B (Bi-transitive) and cubic polynomials with two cycles of Fatou domains are said to be
of type D (Disjoint); in the latter case, first return maps on periodic Fatou domains are,
evidently, of degree 2. We classify co-periodic comajors in a similar fashion below. Recall
that, by Theorem 4.11, co-periodic comajors c generate hyperbolic q-laminations L̂(c).

The nature of cubic symmetric laminations gives rise to two notions describing two
types of periodic points and related (pre)periodic objects. We give a general definition that
applies to all of them. Recall that for x ∈ S, we write −x for the point symmetric to x
with respect to the center of S. Under the identification between S and R/Z, the point −x

identifies with x + 1
2 .
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Definition 5.7. (Types B and D) A 2n-periodic point x of σ3 such that σn
3 (x) = −x is said

to be of type B. All other periodic points of σ3 are said to be of type D. A periodic leaf of a
symmetric lamination is of type B if its endpoints are of type B, and of type D otherwise.
A co-periodic leaf of a symmetric lamination is of type B if its image is a periodic leaf of
type B, and of type D otherwise.

LEMMA 5.8. [BMOV13, Corollary 3.7] Suppose that � and �̂ are two leaves of a
σd -invariant lamination that share an endpoint and have non-degenerate distinct images.
Then, the orientation of the triple of their endpoints is preserved under the map σd .

To justify Definition 5.7, we need the next lemma.

LEMMA 5.9. A periodic leaf of a symmetric lamination L cannot have one endpoint of
type B and the other endpoint of type D.

Proof. Suppose that � = xy is a periodic leaf of L such that x is of type B while y is of
type D. Then, x is of period 2n and σn

3 (x) = −x. It follows that y is also of period 2n, but
σn

3 (y) �= −y. Since (−x)(σn
3 (y)) = σn

3 (�) is a leaf of L, then the leaf x(−σn
3 (y)) is a leaf

of L, too. Thus, the union of leaves � = xy and x(−σn
3 (y)) is mapped by σn

3 to the union
of leaves (−x)(σn

3 (y)) and (−x)(−y). However, it is easy to see that the orientation of
the triple (y, x, −σn

3 (y)) is opposite to the orientation of the triple (σ n
3 (y), −x, −y). This

contradicts Lemma 5.8 and completes the proof.

Evidently, the σ3-image of an object of type B or D is an object of the same type;
co-periodic comajors can be either of type B or of type D. Also, Definition 5.7 allows us
to talk about majors, comajors, and minors of types B or D. In the type-B case, a periodic
major M = ab eventually maps to −M so that a and b of M eventually map to the −a and
−b, respectively. In the type-D case, the orbits of a and −a (and also b and −b) are disjoint.
Thus, if a co-periodic comajor c is of type B, then the lamination L̂(c) from Theorem 4.11
has a pair of symmetric Fatou gaps whose first return map is of degree 4; if c is of type D,
then L̂(c) has a pair of symmetric Fatou gaps whose first return map is of degree 2.

Definition 5.10. A periodic point (leaf) of type B and period 2n is said to be of block
period n. A periodic point (leaf) of type D and period n is said to be of block period n. A
co-periodic leaf is said to be of block period n if its image is of block period n.

In [BOSTV1], we considered the map τ that rotates the unit disk by 180 degrees. If
L is a cubic symmetric lamination, then τ acts on leaves and gaps of L. We will also
interchangeably use the notation −� for τ(�) and −G for τ(G), where � is a leaf of L and
G is a gap of L. Define the map gj = τ ◦ σ

j

3 : L → L for some j. Lemma 5.11 is similar
to Lemma 5.5. We state it without proof.

LEMMA 5.11. Let �′ �= � be two leaves in a cubic symmetric lamination L such that � ≺ �′.
Suppose that:
(i) the leaves � and �′ move away from each other under gk;

(ii) no leaf weakly separating � and �′ maps to a critical chord of S under the map gi for
i < k.
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Then, there exists a periodic leaf y of period 1 under the map gk that weakly separates
� and �′.

The next lemma deals with dynamics of comajors.

LEMMA 5.12. Suppose that c′ ≺ c are distinct co-periodic comajors that are leaves of a
lamination L. Then, there is no finite gap H of L such that both c′ and c are edges of H.

Proof. The leaves m′ = σ3(c
′) ≺ m = σ3(c) are periodic. By way of contradiction,

assume that both are edges of a periodic gap σ3(H) = G of L. Then, their endpoints stay
in the same circular order along their periodic orbits. By Lemma 3.10, if G is 1-rotational,
then the leaf m will eventually map to the leaf m′, and if G is 2-rotational, then the leaf m
will eventually map to the leaf −m′, in either case, contradicting that m is the shortest leaf
in its orbit (see Lemma 3.15).

Now, the main theorem needed for the L-algorithm is as follows.

THEOREM 5.13. Suppose that co-periodic comajors c and c′ have the following
properties:

(i) c′ ≺ c;
(ii) both c and c′ are either of type B or type D; and

(iii) c and c′ have the same block period n.
Then, there exists a co-periodic comajor d with c′ ≺ d ≺ c such that d is of block period

j < n.

Proof. Choose a preperiodic point p of preperiod bigger than 1 and period bigger than n
in the arc H(c′). By Lemma 4.13, there exists a cubic symmetric dendritic q-lamination
L with a pair of finite critical gaps/leaves {�, −�} such that σ3(p) ∈ σ3(�) (that is, the
critical leaves ±� of L(p) are contained in the critical sets � and −�), iterated preimages
of ±� converge to all sides of � and −�, so that pullbacks of the critical sets are dense
in L, and c and c′ are leaves of L. The leaves m = σ3(c) and m′ = σ3(c

′) are periodic
and such that m′ ≺ m. Since preimages of ±� are dense in L, then it follows from
Lemma 5.12 that for a minimal k, the set � (or −�) separates σk

3 (m) and σk
3 (m′). Consider

cases.
(i) comajors c and c′ are of type D. Then, the periodic orbits of m and −m (and also

m′ and −m′) are disjoint and have period n. We claim that k �= n − 1. If k = n − 1, then
σk

3 (m) and σk
3 (m′) are long/medium siblings of c and c′, respectively. Hence, they must

be separated by �. The circular order of the four endpoints of m and m′ is preserved
in the leaves σn−1

3 (m) and σn−1
3 (m′), but when σ3 is applied one more time, exactly

one of the leaves σn−1
3 (m) and σn−1

3 (m′) flips because of the critical gap between
them. Hence, the order among the endpoints of σn

3 (m) = m and σn
3 (m′) = m′ cannot

be the same as the order among the endpoints of m and m′, which is absurd. Thus,
0 ≤ k < n − 1.

(a) it is � that separates the leaves σk
3 (m) and σk

3 (m′). Since the leaves and gaps
separating m and m′ map one-to-one under σk

3 , there is a set �∗ separating m and m′
with σk

3 (�∗) = �. Moreover, since σ3(p) ≺ m′, σk+1
3 (�∗) = σ3(�) ≺ m′ (see Figure 8).
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(a) (b)

FIGURE 8. (a) Cases (i)(a) and (ii)(a) of the proof of Theorem 5.13. (b) Cases (i)(b) and (ii)(b) of the proof of
Theorem 5.13.

Let �∗ be the side of �∗ that separates m and m′ and is closest to the leaf m. Then, �∗
moves in under the map σk+1

3 . However, the leaf σk+1
3 (m) is neither under the leaf m nor

under the leaf −m because the minor is the shortest leaf in its orbit. Hence, the leaves m
and �∗ move away from each other under the map σk+1

3 .
Let us verify condition (2) from Lemma 5.5. Note that σk

3 (�∗) = M is a major of L. For
i ≤ k, the map σ i

3 takes the leaves separating �∗ and m in the strip S(�∗, m) one-to-one
to the leaves separating σ i

3(�
∗) and σ i

3(m) in the strip S(σ i
3(�

∗), σ i
3(m)). As there are no

critical chords of S in S(σ i
3(�

∗), σ i
3(m)) for i < k, no leaf separating �∗ and m maps to a

critical chord of S under the map σ i
3 for i < k. Moreover, if i = k, then all such leaves are

situated between � and M and, hence, can also not be critical. Hence, by Lemma 5.5, there
is a periodic leaf y ∈ L of period k + 1 < n separating m and �∗.

Let C be the collection of leaves separating m and m′. Let C1 be the collection of all
σ3-periodic leaves in C of period smaller than n. Let C2 be the collection of all fixed leaves
under the maps gi = −σ i

3, 0 < i < n in C; we associate the minimal such i with all leaves
from C2. Since y ∈ C1, then C1 �= ∅, but C2 could be empty.

Let y1 be a leaf of the least period j1 ≤ k + 1 < n in C1. Choose y1 to be the closest to
m among leaves of C1 of period j1. Similarly, choose a −σ

j2
3 -fixed leaf y2 in C2 such that

j2 is the smallest possible; choose y2 to be the closest to m among −σ
j2
3 -fixed leaves in

C2. If j1 ≤ j2, then we claim that the leaf d, which is the short pullback of y1 in L, is the
desired comajor of block period j = j1 < n (recall that y1 is located between the minors
m and m′). By Lemma 5.6, it suffices to prove that the leaf y1 neither maps under itself nor
under the leaf −y1 under the map σ i

3 for any i < j1.
(1) If y1 maps under itself under σ i

3 for some i < j1, then the leaves y1 and m move
away from each other under σ i

3. By Lemma 5.5, there is a σ3-periodic leaf y′
1 of period

i < j1 separating m and y1; which is a contradiction with the minimality of j1.
(2) If y1 maps under −y1 under σ i

3 for some i < j1, then the leaf gi(y1) is under
the leaf y1. Now, the leaves y1 and m move away from each other under gi = −σ i

3. By
Lemma 5.11, there is a −σ i

3-fixed leaf y′
1 that separates m and y1. Clearly, y′

1 separates m
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and m′, too. Then, i < j1 ≤ j2 is the block period associated with y1, which contradicts
the choice of j2.

Thus, the short pullback d of y1 in L is the desired comajor of block period j = j1 < n.
Similarly, if j2 < j1, then we obtain that the short pullback d of y2 in L is the desired
comajor of block period j = j2 < n.

(b) it is −� that separates the leaves σk
3 (m) and σk

3 (m′), not �. We use the arguments
from case (a) and find a gap �∗ with σk

3 (�∗) = −� separating m and m′. Then, we have
the gap σk+1

3 (�∗) going under the leaf −m′. The only difference in the arguments is that
we use Lemma 5.11 first to find a leaf y separating m and m′ such that gk+1(y) = y. Thus,
the collection C2 is non-empty here, whereas collection C1 could be empty. The rest of the
argument follows exactly as before and we end up with a comajor d between c and c′ of a
block period j < n.

(ii) comajors c and c′ are of type B. The leaves m and m′ are now periodic of period
p = 2n and have symmetric orbits (the orbits of m and −m are the same). Similarly, the
orbits of the leaves m′ and −m′ are the same as well. In this case, the proof is very similar
to that of case (i) (see Figure 8).

First, we show that there exists an integer k with 0 ≤ k < n − 1 such that � or −�

separates the leaves σk
3 (m) and σk

3 (m′). Indeed, let k be the smallest integer between 0
and p = 2n such that the leaves σk

3 (m) and σk
3 (m′) are separated by a critical gap/leaf.

As the orbits of both the leaves m and m′ are symmetric, the strips formed by the leaves
σ i

3(m) and σ i
3(m

′), where 0 < i ≤ n − 1, are symmetric to the strips formed by the leaves
σ r

3 (m) and σ r
3 (m′), where n ≤ r < 2n. It follows that, for the first time, the separation by

one of the critical gaps/leaves � and −� happens during the first half of the cycle, that is,
0 ≤ k ≤ n − 1.

To see that k cannot be equal to n − 1, assume the contrary. Since σn
3 (m) = −m and

σn
3 (m′) = −m′, the leaves σn−1

3 (m) and σn−1
3 (m′) must be long/medium siblings of −c

and −c′, respectively. Hence, they are separated by −�. The circular order of the four
endpoints of m and m′ is preserved in the leaves σn−1

3 (m) and σn−1
3 (m′), and exactly one

of them flips under the next iteration because of a critical gap between them. Without
loss of generality, assume that the leaf σn−1

3 (m) flips its endpoints when it maps to
the leaf −m = σn

3 (m). Since no additional flip takes place under the remaining part of
the orbit, it would follow that m returns to itself under σ 2n

3 with its endpoints flipped,
which is a contradiction. Thus, 0 < k < n − 1. We have two subcases here similar to
case (i).

(a) it is � that separates the leaves σk
3 (m) and σk

3 (m′). Then, following the similar
arguments as in case (i)(a), we find a comajor d of block period j < k + 1 = n separating
the leaves c and c′.

(b) it is −� that separates the leaves σk
3 (m) and σk

3 (m′), not �. Then, using similar
arguments to case (i)(b), we find a comajor d of block period j < k + 1 = n separating
the leaves c and c′.

Theorem 5.13 allows us to describe an algorithm for finding co-periodic cubic comajors
similar to the Lavaurs algorithm [Lav86, Lav89] for finding periodic quadratic minors.
We call this algorithm the L-algorithm.
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L-algorithm. Draw co-periodic comajors of block period 1. It is easy to verify that
type-D co-periodic comajors of period 1 are 1

6
1
3 and 2

3
5
6 . Similarly, type-B co-periodic

comajors of block period 1 are 5
12

7
12 and 11

12
1
12 .

We proceed by induction. Suppose that all preperiodic comajors of block periods from
1 to k (inclusively) have been drawn. Denote the family of them by Fk . Consider a
component A of D \ ⋃

�∈Fn
�. Then, there are two cases.

(a) Suppose that there is a comajor �0 such that all points of A are located under �0.
Then, there may be several comajors �1, . . . , �s located under �0 with endpoints in A ∩ S

(this collection of comajors may be empty). Consider the set B = {b1 < · · · < bt } of
preperiodic points of type B of preperiod 1 and block period k + 1 that belong to A ∩ S.
These points (if any) must be connected to create several comajors. By Lemma 5.1, these
comajors are pairwise disjoint. By Theorem 5.13, no two comajors from that collection
can be located so that one of them is under the other one. Hence, t = 2r is even and the
comajors in question are b1b2, . . . , b2r−1b2r . We can also consider the set D of preperiodic
points of type D of preperiod 1 and block period k + 1 that belong to A ∩ S. These points
should be connected similar to how points from B were connected, that is, consecutively.

Do this for all components A for which there is a comajor �0 such that all points of A
are located under �0.

(b) There is exactly one component C of D \ ⋃
�∈Fn

� for which there is no comajor �0

with all points of A located under �0. This is the ‘central’ component left after the closures
of all components described in case (a) are removed from D. Evidently, this component
contains the center of D and is unique.

As before, let B be the set of preperiodic points of type B of preperiod 1 and
block period k + 1 that belong to C ∩ S. However, unlike before, let us divide B
into four subsets: B1 = B ∩ (1/12, 1

6 ), B2 = B ∩ ( 1
3 , 5/12), B3 = B ∩ (7/12, 2

3 ), and
B4 = B ∩ ( 5

6 , 11/12). Since comajors are short, a comajor cannot connect two points from
two distinct B-sets. Hence, as in case (a), comajors connect points from B consecutively
within B-sets. If, e.g., B1 = {b1 < · · · < bt }, then, as in case (a), t = 2r is even, and the
corresponding comajors are b1b2, . . ., b2r−1b2r . Points of type D that belong to ∂C should
be treated similarly.

Thus, the L-algorithm for cubic symmetric laminations is as follows. First, we take step
1 and draw the comajors 11

12
1
12 , 1

6
1
3 , 5

12
7
12 , and 2

3
5
6 . Then, on each next step, say, k + 1,

we first plot all type-B points of preperiod 1 and block period k + 1 and connect them
consecutively, starting from the smallest positive angle. Then, we plot all type-D points of
preperiod 1 and block period k + 1, and connect them consecutively, too, starting from the
smallest positive angle.
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