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Abstract

Every countable group G can be embedded in a finitely generated group G∗ that is hopfian and complete,
that is, G∗ has trivial centre and every epimorphism G∗ → G∗ is an inner automorphism. Every finite
subgroup of G∗ is conjugate to a finite subgroup of G. If G has a finite presentation (respectively, a finite
classifying space), then so does G∗. Our construction of G∗ relies on the existence of closed hyperbolic
3-manifolds that are asymmetric and non-Haken.
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1. Introduction

In 1971, Miller and Schupp [14] used small cancellation theory to prove that every
countable group G can be embedded in a finitely generated group G∗ that is hopfian and
complete (asymmetric). They construct G∗ as a quotient of a free product G ∗ U(p, q),
where U(p, q) is a free product of finite cyclic groups. In particular, each of the
enveloping groups that they construct has torsion. The purpose of this note is to present
an alternative construction of G∗ that does not introduce torsion. It also preserves
finiteness properties of G.

THEOREM A. Every countable group G can be embedded in a finitely generated group
G∗ such that:

(1) G∗ is hopfian and complete;
(2) every finite subgroup of G∗ is conjugate to a finite subgroup of G;
(3) if G has a finite presentation (respectively, a finite classifying space of dimension

d ≥ 3), then so does G∗.

Our construction of G∗ is more explicit than that of Miller and Schupp. It is
nontrivial in that it relies on the existence of asymmetric hyperbolic groups with
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[2] Complete embeddings of groups 137

FIGURE 1. The knots 10102, 10106, 10107 and 10110.

additional properties, but the basic idea behind it is straightforward: after some gentle
preparation, we are able to assume that G is generated by two finitely generated free
subgroups F1, F2 < G; we then rigidify G by attaching certain complete (asymmetric)
groups A1 and A2 to it along F1 and F2; the groups Ai are constructed so that
any epimorphism ψ of the resulting amalgam G∗ must preserve the decomposition
G∗ = A1 ∗F1 G ∗F2 A2, sending each Ai to itself; by ensuring that the Ai are hopfian,
as well as complete, we force the restrictions ψ|Ai to be the identity; and since
G∗ = 〈A1, A2〉, we conclude that ψ is the identity.

Groups Ai with the properties that we need can be found among the fundamental
groups of closed hyperbolic 3-manifolds obtained by Dehn surgery on the knots shown
in Figure 1, as we shall explain.

2. Preliminaries

We remind the reader of some terminology. A group G is termed hopfian if every
epimorphism G→ G is an isomorphism, and cohopfian if every monomorphism
G→ G is an isomorphism. G is said to be complete (or asymmetric) if it has trivial cen-
tre and every automorphism is inner. A subgroup H < G is malnormal if Hg ∩ H � 1
implies g ∈ H. A group G is said to split over a free group if G can be decomposed
as an amalgamated free product G = A ∗F B or Higman–Neumann–Neumann (HNN)
extension G = B∗F with F free. A group has Serre’s property FA if it fixes a point
whenever it acts on a simplicial tree.

We shall assume that the reader is familiar with the rudiments of Bass–Serre theory
[18] and the homology of groups.

2.1. The mild preparation of G. A classical construction of B. H. Neumann
embeds a countable group G in a finitely generated group ˜G by means of HNN
extensions and amalgamated free products (see [12, page 188]). The finite subgroups of
˜G are conjugate to subgroups of G; in particular, ˜G is torsion-free if G is torsion-free.
Thus, in our attempts to construct G∗, there is no loss of generality in assuming that G
is finitely generated.

Replacing G by G ∗ Z if necessary, we may also assume that our group has a gen-
erating set {a0, a1, . . . , an} where the ai each have infinite order: given G = 〈b1, . . . , bn〉
and x generating Z, define a0 = x and ai = xbi. We assume that this modification
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138 M. R. Bridson and H. Short [3]

has been made. The normal-form theorem for free products then yields the following
results.

LEMMA 2.1. In G ∗ 〈s, t〉, the subsets {s, a0t, . . . , an(s−ntsn)} and {s, t, a0t} generate free
subgroups of ranks n + 2 and 3, respectively.

COROLLARY 2.2. Replacing G by G ∗ 〈s, t〉 if necessary, we may assume that
G = 〈F1, F2〉, where F1 and F2 are finitely generated free groups with noncyclic
intersection and the centraliser of F1 ∩ F2 in G is trivial.

2.2. Asymmetric hyperbolic manifolds.

LEMMA 2.3. Given integers r > 0 and d ≥ 3, one can construct a complete,
torsion-free, cohopfian (Gromov) hyperbolic group A(d) and a malnormal free
subgroup L < A(d) of rank r such that:

(1) A(d) has a finite classifying space of dimension d;
(2) A(d) does not split over any free group; and
(3) A(d)/〈〈L〉〉 is infinite.

PROOF. By Mostow rigidity, if M is a closed orientable hyperbolic manifold of
dimension d ≥ 3, then π1M is complete (asymmetric) if and only if M is asymmetric,
that is, M has no nontrivial isometries. There exist such manifolds in every dimension
d ≥ 3: Kojima [10] constructed examples in dimension 3 (along with manifolds that
have any prescribed finite group of symmetries) and, inspired by arguments of Long
and Reid [11], Belolipetsky and Lubotzky [1] constructed examples in each dimension
d ≥ 3. Let M be such a d-manifold and let A(d) = π1M. Note that M is a classifying
space for A(d).

If A(d) splits nontrivially as an amalgamated free product, say A(d) = D ∗C B, then
there is a Mayer–Vietoris exact sequence for integral homology groups

· · ·HdD ⊕ HdB→ HdM → Hd−1C · · · .

By Poincaré duality, HdM � Z and (as D, B < π1M are of infinite index) HdD =
HdB = 0. Thus, Hd−1C is infinite. In particular, since d ≥ 3, the group C cannot be
free. A similar argument shows that π1M does not split as an HNN extension over a
free group either.

Any subgroup of infinite index in A(d) has lower cohomological dimension than
A(d), and a subgroup of finite index cannot be isomorphic to A(d) by Mostow rigidity.
Thus, A(d) is cohopfian.

Every nonelementary hyperbolic group contains proper, normal subgroups of
infinite index, and Kapovich [8] shows that inside such a subgroup one can find a
malnormal free subgroup of rank 2, and inside that one can find a malnormal subgroup
of any finite rank. �
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[4] Complete embeddings of groups 139

3. The main argument

Given a countable group G, we modify it to arrive in the situation G = 〈F1, F2〉
described in Corollary 2.2. Let ri be the rank of the free group Fi and construct groups
Ai = A(di) with malnormal free subgroups Li < Ai of rank ri as in Lemma 2.3. We may
assume that A1 is not isomorphic to A2 (Remark 3.2). Let

G∗ = A1 ∗F1 G ∗F2 A2,

where the amalgamation identifies Fi < G with Li < Ai. Note that since G = 〈F1, F2〉,
we have G∗ = 〈A1, A2〉.

THEOREM 3.1. G∗ is complete.

PROOF. The centre of G∗ is trivial because the centre of any amalgamated free product
lies in the intersection of the edge groups, and the edge groups in the defining
decomposition of G∗ are centreless.

Let φ : G∗ → G∗ be an automorphism; we must argue that φ is inner. As Ai does not
split over a free group, the action of φ(Ai) on the Bass–Serre tree of the given splitting
of G∗ must fix a vertex. Thus, each of φ(A1) and φ(A2) is contained in a conjugate of
A1, A2 or G.

We have chosen the Ai so that Qi := Ai/〈〈Fi〉〉 is infinite. Note that Q1 � G∗/〈〈G, A2〉〉
and Q2 � G∗/〈〈G, A1〉〉. Thus, a pair of conjugates of A1, A2 or G can only generate G∗

if one of the pair is a conjugate of A1 and the other is a conjugate of A2. If φ maps
A1 into a conjugate of A2, then φ2 would map A1 to a conjugate of itself, and since A1
is cohopfian, the image would be the whole of this conjugate. This forces φ(A1) to be
equal to the conjugate of A2 containing it, which is impossible since we have chosen
A1 and A2 to be not isomorphic. We conclude that φ maps Ai isomorphically onto a
conjugate of itself for i = 1, 2.

Now, since all automorphisms of A1 are assumed to be inner, we can compose φ
with an inner automorphism of G∗ to assume that φ|A1 = idA1 , while φ(A2) = Aγ

2 for
some γ ∈ G∗.

Consider the Bass–Serre tree for the splitting G∗ = A1 ∗F1 G ∗F2 A2. We refer to the
vertices as being of type A1, A2 or G, according to whether they are in the G∗ orbit
of the vertices (identity cosets) A1, A2 or G, respectively. Since Fi < Ai is malnormal
for i = 1, 2, no arc of length greater than 2 in this tree has nontrivial stabiliser, and
any arc of length 2 with nontrivial stabiliser must be centred at a vertex of type G. In
particular, the subtree fixed by F1 ∩ F2, which contains the vertices A1, G and A2, has
diameter 2 and centroid G. The centraliser of F1 ∩ F2 in G∗ leaves this subtree and its
centroid invariant, and hence is contained in G. But, by construction, the centraliser of
F1 ∩ F2 in G is trivial, and hence so is its centraliser in G∗.

As φ(A2) = Aγ
2, we have an isomorphism ad(γ)−1 ◦ φ|A2 : A2 → A2. As A2 is com-

plete, this isomorphism is conjugation by some a ∈ A2, so φ|A2 is conjugation by
γa ∈ G∗. But φ restricts to the identity on F1 ∩ F2 < A2, and we know that the
centraliser of F1 ∩ F2 in G∗ is trivial, so γ = a−1 and φ|A2 = idA2 .
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140 M. R. Bridson and H. Short [5]

As G∗ is generated by A1 ∪ A2, we conclude that φ (previously adjusted by a
conjugacy to ensure that φA1 = idA1 ) is the identity, and the theorem is proved. �

REMARK 3.2. In the theorem above, we required A1 � A2. An easy way to arrange this
is to take Ai = A(di) from Lemma 2.3 with d1 � d2. But one is also free to take both Ai
to have the same dimension d ≥ 3, appealing to [1] or Theorem 4.1 below. With this
second choice, if G has geometric (or cohomological) dimension D, then G∗ will have
geometric (or cohomological) dimension max{D, d}.

4. Asymmetric hyperbolic 3-manifolds

A closed orientable 3-manifold M is Haken if it is irreducible and contains a
closed incompressible surface, that is, a closed surface of positive genus such that the
inclusion map S ↪→ M induces a monomorphism of groups π1S ↪→ π1M. If M contains
such a surface, then π1M acts without a fixed point on the tree T that is obtained from
the universal covering p : M̃ → M as follows: the vertex set of T is the set of connected
components of M̃ \ p−1(S); two vertices are connected by an edge if the components
that they represent abut along a component of p−1(S); and the action of π1M on T is
induced by the action of π1M on M̃ by deck transformations.

In the opposite direction, John Stallings proved that if M is irreducible and π1M acts
without a fixed point on a simplicial tree, then M contains an incompressible surface
(see [19]). In particular, a closed orientable 3-manifold M that is aspherical will be
non-Haken if and only if π1M has Serre’s property FA.

Our purpose in this section is to explain how well-known facts about hyperbolic
3-manifolds imply the following result, which will be familiar to experts.

THEOREM 4.1. There exist infinitely many distinct, closed, asymmetric, hyperbolic
3-manifolds M such that π1M has property FA.

PROOF. In the light of the preceding discussion, what we must show is that there are
infinitely many distinct hyperbolic 3-manifolds that are asymmetric and non-Haken.
The manifolds that we shall describe are obtained by Dehn surgery on the knots shown
in Figure 1. These are the only four knots K with at most 10 crossings that have
the three properties that we are interested in: first, each K is prime and alternating
(and nontorus), hence hyperbolic [13]; second, the knot complement S3 \ K has no
nontrivial symmetries, so by Mostow rigidity its fundamental group is complete
(asymmetric); and third, S3 \ K is small, that is, contains no closed incompressible
surface other than the tori parallel to the boundary of a regular neighbourhood of
K. The first of these properties is immediately visible in the diagrams, the second is
established in the census of Henry and Weeks [6] who calculated the symmetry groups
of all knots up to 10 crossings (alternatively Kodama and Sakuma [9]), and the third
is recorded in the census [4] of Burton et al., who calculated all knots with at most 12
crossings that are small.

Thurston’s celebrated Dehn surgery theorem [20] states that all but finitely many
of the closed manifolds obtained by Dehn surgery on these knots will support a
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[6] Complete embeddings of groups 141

hyperbolic metric. And Hatcher’s theorem on boundary slopes [5] implies that all but
finitely many of these closed manifolds will be non-Haken. Thus, we will be done
if we can argue that all but finitely many of these closed hyperbolic manifolds are
asymmetric. And this is what Kojima’s arguments show [10], as we shall now explain.

In Dehn filling, one starts from the manifold MK with torus boundary obtained by
removing an open tubular neighbourhood of a hyperbolic knot K in S3. A framing
of the knot gives an identification Z2 = π1∂Mk. Given a reduced fraction p/q, one
attaches a thickened 2-disc D to an annular neighbourhood of a simple closed curve
on ∂MK representing the homotopy class (p, q) ∈ Z2. The boundary of the resulting
manifold MK ∪ D is a 2-sphere, which one caps off with a 3-ball to obtain the
manifold MK(p, q). (Note that the union of D and this 3-ball is a solid torus.) For
all but finitely many choices of p/q, Thurston [20] provides a hyperbolic metric
on MK(p, q), and by Mostow rigidity this metric is unique. As |p| + |q| → ∞ this
metric converges to the complete hyperbolic metric on MK , and when |p| + |q| is
sufficiently large, the unique shortest geodesic in MK(p, q) is the core of the solid
torus added during Dehn filling [20]. Thus, by restriction, we obtain a homomorphism
Isom(MK(p, q))→ Homeo(M′K), where M′K is the interior of MK . By Mostow rigidity,
every homeomorphism of M′K is homotopic to a unique isometry of the complete
hyperbolic metric on M′K , so, passing to homotopy classes, we have a homomorphism
ρ : Isom(MK(p, q))→ Isom(M′K) (where the isometries of M′K are with respect to its
complete hyperbolic metric, not the restriction of the metric on MK(p, q)). Mostow
rigidity also tells us that, for any complete, finite-volume hyperbolic 3-manifold
N, the natural map Isom(N)→ Out(π1N) is an isomorphism. Thus, an isometry φ
of MK(p, q) will lie in the kernel of ρ only if its restriction to M′K induces an
inner automorphism of π1MK . But if this is the case, then the map that φ induces
on π1MK(p, q) (a quotient of π1M′K) will also be inner, and therefore φ is trivial.
Thus, ρ : Isom(MK(p, q))→ Isom(M′K) is injective. In particular, for K with π1MK
complete, the triviality of Isom(M′K) � Out(π1M′) implies that Out(π1MK(p, q)) �
Isom(MK(p, q)) is trivial when |p| + |q| is sufficiently large. �

We shall also need the following lemma. Note that a finitely generated group with
property FA has finite abelianisation.

LEMMA 4.2. Let M be a closed hyperbolic 3-manifold. If H1M is finite, then every
nontrivial homomorphism f : π1M → π1M is an isomorphism.

PROOF. Scott’s compact core theorem [16] implies that every nontrivial subgroup of
infinite index in π1M has infinite abelianisation, and therefore cannot be the image of f.
In more detail, if the finitely generated group G = f (π1M) has infinite index, then the
corresponding covering space M′ = M̃/G of M has a compact submanifold C such that
C ↪→ M′ is a homotopy equivalence. A standard argument using Poincaré–Lefschetz
duality (‘half lives, half dies’) shows that the rank of H1(∂C) is twice the rank of the
image of H1(∂C) in H1M′. Since C has at least one component of positive genus, both
H1∂C and H1M′ are infinite.
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142 M. R. Bridson and H. Short [7]

The lemma now follows from the fact that every epimorphism from π1M to a
subgroup of finite index in itself is an isomorphism (see [2] or [17]). In more
detail, an argument of Hirshon [7] shows that if a finitely generated, torsion-free
group Γ is residually finite, then every homomorphism from Γ to a subgroup of
finite index in itself is injective, and Mostow rigidity implies that π1M (which is
residually finite because it is linear, and torsion-free because M is aspherical) cannot be
isomorphic to a subgroup of finite index in itself (because such a subgroup has greater
covolume). �

5. The proof of Theorem A

Towards proving items (2) and (3) of the theorem, first note that the process by
which a given finitely generated group G was transformed into the conditioned state
described in Corollary 2.2 involved only free products with free groups, so it preserves
the finiteness properties in (3), and any finite subgroup of the conditioned group is
conjugate to a subgroup of the original G. This last property is also true in the case of
a countable group that is first embedded in a finitely generated group using Neumann’s
embedding (as we noted in Section 2).

In the main construction, we defined G∗ = A1 ∗F1 G ∗F2 A2, where the Ai are
torsion-free and the Fi are finitely generated free groups. Every finite subgroup of an
amalgamated free product is conjugate to one of the vertex groups, and amalgamating
groups that are finitely presented (respectively, have a finite classifying space of
dimension at most d) along finitely generated free groups preserves these properties.
Thus, (2) is proved, and (3) will be proved if we can argue that both A1 and A2 can be
taken to be three-dimensional hyperbolic groups.

In the light of Theorems 3.1 and 4.1, the following proposition completes the proof
of Theorem A.

PROPOSITION 5.1. If the complete groups A1 � A2 used in the construction of G∗ are
the fundamental groups of hyperbolic 3-manifolds that have property FA, then G∗ is
hopfian.

PROOF. We have G∗ = A1 ∗F1 G ∗F2 A2. Let φ : G∗ → G∗ be an epimorphism. The
action of φ(A1) on the Bass–Serre tree for G∗ has a fixed point, as A1 has property FA,
so φ(A1) lies in a conjugate of one of the vertex groups, A1, G, A2. The same argument
applies to A2.

As in the proof of Theorem 3.1, we use the fact that a pair of conjugates of A1, A2
or G can only generate G∗ if one of the pair is a conjugate of A1 and the other is
a conjugate of A2. From this, and the surjectivity of φ, we deduce that φ2(A1) is a
nontrivial subgroup of a conjugate of A1 and φ2(A2) is a nontrivial subgroup of a
conjugate of A2. Lemma 4.2 then forces φ2|A1 and φ2|A2 to be isomorphisms onto
conjugates of A1 and A2, respectively. We can then proceed exactly as in the proof
of Theorem 3.1 to conclude that φ is an inner automorphism of G∗. �
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[8] Complete embeddings of groups 143

REMARK 5.2. (1). Let G be a group that has a finite classifying space and contains
an element γ � 1 conjugate to its inverse. Our construction embeds G in a group G∗

that retains these properties and is complete. This recovers the main theorem of [3].
To obtain a specific example, one can take G = 〈x, y | xyx−1y〉.

(2) A second (less concise and explicit) proof of Theorem A can be obtained
by means of a careful application of relative small cancellation theory, following
Miller and Schupp’s method in [14] but avoiding the use of finite groups. In outline,
one constructs a two-generator perfect hyperbolic group B, takes a free product
(G × Z2) ∗ (B × Z) and then forms the quotient by a set of relators satisfying a strong
small cancellation condition [15]. A key point in [14] is that automorphisms preserve
the different finite orders of elements, while here they preserve the different ranks of
centralisers of elements.
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