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SIMILARITY INVARIANT SEMIGROUPS GENERATED BY
NON-FREDHOLM OPERATORS

IZTOK KAVKLER

Let A 6 B(H) be a bounded non-compact operator that is not semi-Predholm. The
similarity invariant semigroup generated by A is shown to consist of all operators that
are not semi-Fredholm and satisfy obvious inequalities for the nullity and co-nullity.

1. INTRODUCTION

Let A be a bounded operator on a separable, infinite dimensional Hilbert space
H. Moreover, assume that A is not in the set C + K(H) of operators expressible as
a sum of a scalar multiple of identity and a compact operator. What is the smallest
similarity invariant semigroup containing operator A? Equivalently, which operators can
be expressed as products of operators, similar to A?

A partial answer to the above question was obtained in 2003 by Fong and Sourour [6].
They proved that if operator A & C + K(H) is invertible, every invertible operator is a
product of operators, similar to A. The author extended their results to semi-invertible
operators [7] and later to semi-Fredholm operators in a so far unpublished article. In
these cases we must account for the Fredholm index, which makes precisely specifying
the semigroup very difficult; we only manage to prove that it contains all operators with
index that is a large enough multiple of ind A.

In this article we consider the operators that are not semi-Fredholm, termed non-
Fredholm operators. We shall see that, although harder to prove, the results are more
conclusive than in the case of semi-Fredholm operators.

Throughout this article we assume that H is a separable, infinite dimensional Hilbert
space. All operators appearing in the article are bounded.

We shall denote the null-space of the operator A by kerA and its range by ran A
The nullity of an operator is defined as

nul>l = dim(ker>l).

The co-nullity of A is the nullity of A* and equals dim(ranA)-1-. An operator is semi-
Fredholm if it has closed range and at least one of the nullities nul A, nul A" is finite.
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408 I. Kavkler [2]

Conversely, operator A is non-Fredholm if and only if either nul A and nul A* are both
infinite or ran^l is non-closed.

Notation A ~ B stands for "operator A is similar to B". By S(A) we denote the
similarity invariant semigroup generated by A. It is defined to be the smallest semigroup
of operators, invariant for similarity, that contains A. The equivalent definition is that
S(A) is the semigroup, generated by the similarity orbit of A.

To express our results in a compact form it is useful to define two simple relations
on the set NU {0, oo} of all possible nullities of an operator. For a pair n ,msNu{0,00}
we write n « m if and only if n and m are both zero, both nonzero finite or both infinite.
We write n £ m if and only if n « m and n > m. Using this notation, the main theorem
of this article can be stated as follows.

THEOREM 1. Let A € B{H) be a non-compact non-Fredholm operator and as-
sume nul A « nul A*. The semigroup S(A) equals the set of all non-Fredholm operators
X € B(H) for which the conditions nulX £ nul A and nulX* £ nul A" hold.

The need for the assumption nul A « nul A* will be discussed at the end of the
article. It is of purely technical nature and we conjecture that it can be dropped.

2. OPERATORS WITH INFINITE NULLITIES AND CO-NULLITIES

It turns out that of all the non-Fredholm operators, the easiest to work with are the
operators for which the equality nul A = nul A* = oo holds. The reason for this is the
following theorem [2, Lemma 3.3].

THEOREM. (Dawlings) Let T be a bounded operator on a separable Hilbert space
and assume nulT = nulT" = oo. Then T is a product of 3 bounded idempotents with
infinite dimensional null-spaces.

We shall require a slightly stronger version of the above statement.

LEMMA 1. Let P € B{H) be a bounded idempotent with infinite nullity and
rank. Every operator T € B(H) satisfying nulT — nulT* = oo is a product of 3
operators similar to P.

PROOF: By the theorem of Dawlings, T is a product of 3 bounded idempotents with
infinite dimensional null-spaces. Since bounded idempotents are similar if and only if they
have isomorphic null-spaces and ranges, all we have to prove is that the idempotents can
be chosen in such a way that they all have infinite ranks.

If at least one of the idempotents has finite rank, then so does T. It is easy to see
that in this case H can be split as H = M ®N where M and N are infinite dimensional,
so that T = T\ © 0 according to this decomposition. Operator 7\ € B(M) satisfies the
requirements of the above theorem, therefore T\ = P1P2P3 where Pi are idempotents with
infinite nullities on M. Let Qx, Q2 and Q3 be any mutually orthogonal projectors with
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infinite ranks on the space N. Then

Tj © 0 = (P, © Q,)(P2 © Q2)(P3 © Q3),

which is a product of the required form. D

THEOREM 2 . Let A € B{H) be a non-compact operator that satisfies the equality
nul A = nuM* = oo. Every operator B € # ( # ) wit i infinite nullity and co-nullity is a
product of 12 operators similar to A.

P R O O F : Since A is neither compact nor semi-Fredholm, A g C + K(H), [7, Propo-
sition 1] states the following for any A 0 C + K(H). For every unitary operator U there
exists a product of two operators similar to A which has the form aU © y where a > 0
is a number and y is a bounded operator. Here we choose U = I hence the product of
two operators similar to A has the form al © Y. It is obvious that operator Y satisfies
the condition nul Y = nul Y* = oo.

There exist closed subspaces M C k e r F , N C kery* such that d i m M = d i m M x

= oo and dim TV = dim N1 = oo. Let W be a unitary operator that maps TV onto M 1

and Nx onto M. Since r a n y C N-1, we have r a n W y C M and YWYW = 0. A
product of two operators similar to al © Y is

(a/ © Y) {I © W) {al © Y)(I © W)" = o?{I © 0).

Since / © 0 is an idempotent with infinite nullity and rank we can use Lemma 1 to show
that B is a product of 3 operators similar to a(I © 0). Consequently, B is a product of
12 operators similar to A D

The following characterisation shows that in the Calkin algebra every element with-
out both left and right inverse behaves like a Hilbert space operator with infinite nullity
and co-nullity.

LEMMA 2 . Let A be a bounded operator on a Hilbert space H. The following

statements are equivalent.

(i) A is not semi-Fredholm.

(ii) The image of A in the Calkin algebra is neither left nor right invertible.

(iii) There exist orthogonal projectors P, Q with infinite ranks on H such that

PA 6 K(H) and AQ € K(H)

(iv) Tiere exists K € K[H) such that nu\{A - K) = nu\(A - K)* = oo.

PROOF: The first two statements are equivalent by the definition; for the proof that
(iii) is equivalent to (ii) see [4, Theorem 1.1].

That (iv) implies (i) is a consequence of the compact perturbation theorem for semi-
Fredholm operators. To prove the opposite, let P and Q be the projectors from (iii).

= (I- P)A(I -Q) + PA(I -Q) + {I- P)AQ + PAQ
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Operator
K = PA(I -Q) + (I- P)AQ + PAQ

is compact by (iii). The statement (iv) now follows since

PROPOSITION 1. Let A and B be bounded non-Fredholm operators. If the
operator A is not compact, there exists K € K(H) such that B + K is a product of 12
operators similar to A.

PROOF: By statement (iv) of the preceding lemma and Theorem 2 there exist com-
pact operators K', K" € K{H) such that B — K" is a product of 12 operators similar
to A — K'. From the fact that K(H) is an ideal it follows that B is up to a compact
perturbation a product of 12 operators similar to A. D

COROLLARY 1. The semigroup of all elements of the Calkin algebra that have
neither left nor right inverse has no non-trivial subsemigroup, invariant for similarity.

3. INVARIANT SEMIGROUPS O F DENSE OPERATORS

Operator A e B(H) is dense if it is injective and its range is dense in H but not
equal to H. Equivalently, A is dense if and only if both A and A* are injective but not
surjective.

It is easy to show that the set of all dense operators is a similarity invariant semi-
group: if A and B are dense, operators AB and (AB)' = B*A* are both injective but not
surjective. Moreover, for every invertible operator T, operators TAT'1 and its adjoint
T~l*A*T* are injective but not surjective.

To study similarity invariant semigroups of dense operators we shall need some basic
results from the theory of operator ranges. See the survey article [5] for more information
on this topic.

Bounded operators A and B on a Hilbert space are equivalent if there exist invertible
operators X and Y such that B = YAX. Denote by ran A and ran B ranges of A and
B. We say that ran A and rani? are similar if ran .4 = T( ranB) for some invertible
operator T. The following proposition [3] characterises equivalence of operators in terms
of operator ranges.

PROPOSITION 2 . Let A and B be bounded operators on a Hilbert space.

(i) Tiere exists an operator X € B{H) that solves the operator equation

B = AX if and only if ran B C ran A Moreover, operator X is unique if

we further require that ker X = ker B and ker X* = ker A.

(ii) There exists an invertible operator X satisfying B = AX if and only if

ran A = ran B and nul A = nul B.

https://doi.org/10.1017/S0004972700035243 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035243
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(iii) A and B are equivalent if and only if their ranges are similar and nul A
= nul B.

Not every linear subspace of a Hilbert space is an operator range; the characterisation
below is a part of [5, Theorem 1.1].

PROPOSITION 3 . Linear subspace H C H is an operator range if and only if
there exists a sequence {Hn}nefi of mutually orthogonal subspaces of H such that

{ oo oo ^

53 xn; xn e Hn and £ ( 2 n ||xn||)
2 < oo \ .

n=l n=l J
oo

In this case, 72. = Yl Hn.
n=l

It is obvious that operator ranges 72 and Q are similar if and only if there exist
sequences {Hn}nefi and {Kn}n£li that belong to 72. and Q respectively in the sense of the
above proposition such that

(i) dim Hn = dim Kn for all n € N,
(ii) dim(^Hn) = dim

([5, Theorem 3.3] states a condition for any two sequences of orthogonal subspaces to
belong to similar operator ranges. We don't need it in all its generality.)

LEMMA 3 . Let X, Y € B(H) be dense operators on H. Assume that for every
dense non-compact operator Z the semigroup S(Z) contains some operators X' and Y'
equivalent to X and Y respectively. Then for every dense non-compact operator A the
semigroup S(A) contains operator X © Y.

PROOF: Let U be the bilateral shift of infinite multiplicity. Since A is not in the set
C + K(H), by [7, Proposition 1] there exists a product Z of two operators similar to A
that has the form all © B for some a > 0 and some bounded operator B.

It is obvious that the operator Z is dense and non-compact. Moreover, Z is similar
to aU © Z because of the similarity all ~ aU © all.

By the assumption, S(Z) contains an operator X' equivalent to X. Then
X' = P\XP2 where P\ and P2 are invertible operators. The product P\XP2 is obvi-
ously similar to P2PiX. Setting P = P2P\ we see that PX € S(Z) for some invertible
operator P. By analogy there exists an invertible operator Q such that YQ 6 S(Z).

Then [7, Lemma 1] states that every invertible operator is a product of 6 (or more)
operators similar to bilateral shift of infinite multiplicity. In particular, P'1 and Q~\ can
both be expressed as products of operators similar to aU. Thus PX(&Q~l and P~X@YQ
can both be expressed as products of operators similar to aU © Z. Their product

(P-1 © YQ)(PX 0 Q~l) = X © Y
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is therefore an element of S(A).

NOTE, there might be a problem if X' is a product of less than 6 operators, similar to
Z. In that case we define Z to be Zk ~ akU ® Bk for sufficiently large k and use the fact
that X' G S{Z). D

An operator range is of type Js if all the spaces Hn in Proposition 3 are infinite
dimensional and their sum equals H. We define a canonical operator with range of type

00

Js to be Jo = © 2~n///n. Operator Jo is obviously dense.
n=l

LEMMA 4 . Let A be a non-compact dense operator. The semigroups (A) contains
operator Jo.

PROOF: Let Z be any non-compact, dense operator. By Proposition 1 there exists
an operator K € K(H) such that T — Jo + K is a product of 12 operators similar to Z.

Operators T and y/TT* have the same range. Because Jo is positive and it equals T
in the Calkin algebra, we have y/TT* = Jo + K' for some K' e K(H). For each n € N,
2~n is an eigenvalue of infinite multiplicity of Jo and that doesn't change if we perturb
it by a compact operator. Therefore y/TT* is positive and has 2~n as an eigenvalue of
infinite multiplicity for all n G N.

Now we use the fact that for a positive operator we can use images of spectral
projections E[2~n, 2~n+1) as spaces Hn in Proposition 3. They are all infinite dimensional,
therefore T has operator range of type Js- Operators T and Jo are both dense and have
similar ranges. By Proposition 2 they are equivalent.

Since S{Z) contains an operator equivalent to Jo for every dense non-compact op-
erator Z, we can use Lemma 3 to show that S{A) contains the operator Jo © Jo which is
similar to Jo. D

LEMMA 5 . For every dense operator A, the semigroup S(Jo) contains an operator
equivalent to A.

PROOF: We may assume that A is positive. If it is not, replace it by the equivalent
operator y/AA*. Using spectral theorem we can decompose A as A = A\ ® A2 where Ax

and A-i are both dense.
In [5, proof of Theorem 3.6] it is shown that every non-closed operator range is a

subset of some range of type Js. Since we can replace A\ with an equivalent operator,
we may assume that ran.4i C ran Jo. By part (i) of Proposition 2 there exists a bounded
operator Bi such that Ai = JQB\.

Let {Hn} be the sequence of Proposition 3 subspaces belonging to the range of
Jo and {Kn} the corresponding sequence for B\. For each n we decompose the space
Hn = H'n@ H% in such a way that dimH'n = oo and dimH'^ = dimKn. According to
this decomposition .
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(
OO \ / OO v

0 H'n) © ( © H'n)- The first part obviously equals Jo; the second we
n=l ' V=l '

label C\. By the remark after Proposition 3, operator Ci is equivalent to B\. There exist

invertible operators X\ and Y\, such that C\ = X\B{Y\. Then
Jo = Jo ® Cx = Jo © XrBiYi ~ Jo © BiViATj.

By analogy we find an operator B2 such that A2 — B2Jo and show that Jo is similar to

Y2X2B2 © Jo- Multiplying both operators similar to Jo we obtain

{Y2X7B2 © Jo) (Jo 0 BMXi) = Y2X2B2J0 © J0BlYlXl

= {Y2X2 © I)(A2 © Ax)(J © YXXX).

The last product is obviously equivalent to A. U

LEMMA 6 . Every dense operator A E B(H) can be expressed as a product of six

operators A = T{T2 .. .T& where each TJ is similar to a positive dense operator.

PROOF: Since A is dense, A has the polar decomposition A = UP, where U is

unitary and P is a positive dense operator. Using [8, Proposition 5], U = PiP2...P6

where Pi are all positive, invertible operators. Now

UP - PxP2 ...P6P

= P1P2...P6v/Pv/P

~ {Pll2P2 ... Pe^/PPr1'2) {Pll2JPPl>2)

T6 := Pl'2y/PPl12 is a dense positive operator, while P\I2P2.. .P6-/PP~l/2 is similar

to P2P$. •. P^y/P which can be expressed as 7\ . . . T5 by repeating the above calculation

four more times. D

THEOREM 3 . Let A be a non-compact dense operator. The semigroup S(A) is

equal to the set of all dense operators.

PROOF: We have already proved tha t the set of dense operators is itself a similarity

invariant semigroup and therefore contains S(A).

Now we prove tha t S(A) contains every dense operator. We already know tha t

Jo € S(Z) for every dense non-compact operator Z.

Let P be an arbitrary positive, dense operator. It can be decomposed as

P = P\@ P2 where P\ and P2 are both dense and positive. By Lemma 5 the semi-

group 5 ( Jo) = S(Z) contains operators P[ and P2 equivalent to Pi and P 2 respectively.

This fulfils the assumptions of Lemma 3. We infer tha t Pi © P 2 € S(A).

The semigroup S{A) contains all positive dense operators. Using Lemma 6 we prove

that it contains all dense operators. D

COROLLARY 2 . All proper, similarity invariant subsemigroups of the semigroup

of all dense operators are contained in the set of compact operators.
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4. OPERATORS WITH FINITE NULLITIES AND CO-NULLITIES

In this section we consider those operators with non-closed range that have both
nullity and co-nullity nonzero and finite. We shall show that using similarity and mul-
tiplication we can force the null-spaces of such operators and their adjoints to behave
quite nicely. In this way we shall be able to reduce the problem to the case of a dense
operator.

One complication may arise: even though the operator A we started with is not
compact, we can destroy the non-compactness by reckless multiplication of similar oper-
ators. This would be bad, because the whole theory of the preceding section works only
for non-compact operators. Let me first explain how to avoid this problem.

Let A\ and A2 be non-compact operators. We know that their product may hap-
pen to be compact. On the other hand, we can always replace A\ and A2 with sim-
ilar operators in such a way that their product is non-compact: since Ai and A2 are
not compact, by [5, Theorem 2.5] there exist closed infinite dimensional subspaces Mi
C ran/ii and M2 C ran.4.2. Let Nx — A^(Mi). Codimension of the space Ni is infinite
because dim(ran.Ai/Mi) = oo, hence there exists a unitary operator U that maps M2

onto N\. The range of A\UA2U* contains M\ therefore A\UA2U* is non-compact.
Now let A\ and A2 be such that A\A2 is not compact. If we choose invertible

operators 7\ and T2, when can we be certain that the product

is still non-compact? One thing is certain: if we make sure that 7\ and T2 are both in
the space C + K(H), it is obvious that B = A\A2 + K where A' is a compact operator.
Since the operator A\A2 is not compact, neither is B.

The null-spaces of operators and their adjoints that we are shuffling around by
similarity are all finite dimensional. Therefore we can constrain the similarity coefficients
to be equal to identity on some subspace of finite codimension. With this in mind we
shall use the above remark implicitly.

LEMMA 7 . Let A be a bounded operator with non-closed range on H and nul A,
nul A* < oo. Assume N and R are closed subspaces of H satisfying the conditions

(i) dim TV = nul A,

(ii) dimRx =nu\A*,
(iii) dim(N D R) = dim(ker A ("I ran A).

Then there exists an invertible operator T € C + K(H) such that

kei{T-lAT) = N and ran(T-MT) = R.

PROOF: Set NI = N nR and N2 = N © JVi. By analogy, set N[ = ker A D ran A
and N2 = ker A © N[. Moreover let Ri — RQ Ni and R\ = ran A © ./V{. Spaces Ri and
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[9] Similarity invariant semigroups 415

R\ have finite codimensions in H hence the space M = Ri n R[ has finite codimension
in both Ri and R\. Let S = Ri G M and 5 ' = R\ 9 M. Finally, let L = (iV + i?)x and

Space # is the non-orthogonal direct sum H = L + N1+N2 + S + M. On the other
hand H = L'+N[+N2+S'+M. From the assumptions it is easy to verify that every space
has equal dimension as its primed counterpart. Moreover, the only infinite dimensional
subspace in the above sum is M. Consequently there exists a bounded invertible operator
T satisfying equalities T{L) = L', T(N{) = N[ for i = 1,2, T(S) = S' and T\M = I.
The operator T is in the set C + K(H) because it is equal to identity on the subspace M
of finite codimension. The following identities also hold

T{N)=T{Nl)+T{N2) = ker A,

= T~\M) +T~l(S') + T'^N^ = R.

We see that T is indeed the required operator. D

The following is a well known formula for the nullity of the product of operators. It
will be used on several occasions throughout this section.

(1) nul(,4£) = nul B + dim(ran B D ker A)

We shall also need an inequality of this type for the complement of the range

(2) dim(ran AB)L ^ dim(ran A)1 + dim(ran B + ker A)L,

which follows from the formula (1) for A* and B* considering

(rani? + ker A)1 = ker B' n ran A*.

We obtain inequality instead of equality because ran .4* C ran A*.

LEMMA 8. Let A\ and A2 be non-compact operators with non-closed ranges and
finite nullities and co-nullities. Ifn,m€'N are such that

nul A2 < n ^ nul Ax + nul A2,

nul A\ ^ m ̂  nul A\ + nul A2,

there exist operators B\ ~ Ai and B2 ~ A2 such that B\B2 is not compact, nu\(BiB2)
— n and mil(BiB2)' = m.

PROOF: AS shown at the beginning of this section, we may assume that A\A2 is not
compact. Let T be an invertible operator that maps ker Ai to a subspace of ran^42 and
C = TA\T~X. Operator C has the properties

kerC =
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r a n C = (kerC)1 3 ran.A2 = kerj42.

Since ran A2 is not closed, there exists a subspace M C ran A2 with dimension nul A\ such
that dim(M D v&nA2) = n — nul J42. [This follows from the fact that dim(7£/72.) = 00
for any non-closed operator range 7Z-. See [5, Corollary of Theorem 2.3].] Choose an
invertible operator P that leaves invariant the subspaces ran A2 and ( r a n / ^ ) 1 such that
P{M) = kerC and let B2 = PA2P~l. Notice that

nul(CB2) — n u l ^2 + dim(ker C D ran B2) = nul A2 + (n - nul A2) = n.

Analogously we choose a subspace AT C ran C* of dimension nul A2 satisfying

dim(N n ran C) - m - nul C.

Take an invertible operator 5 that leaves subspaces ker C and ran C* invariant and maps
N to kerB2*. Setting Bi = (S'^CS' we infer

nul(BiB2)* = nul C* + dim(AT n ran C) = m.

Note that operators T, P and 5 can be chosen from the set C + K(H). In this case,
operator B\B2 is not compact. D

LEMMA 9. Let A be a. non-compact operator with non-closed range, satisfying
the inequality 0 < nul A, nul .4* < 00. For any integers n ^ nuU and m ^ nul A' the
semigroup S(A) contains a non-compact operator B with non-closed range such that
nul B — n and nul B* = m.

PROOF: Using the previous lemma k times we see that such an operator B exists
for integers n, m satisfying nul A ^ n ^ A;(nul>l) and nul .4* ^ m ^ A^nuM*). Since
nul A 7̂  0 and nuM* ^ 0, n and m can be arbitrarily large provided that we choose a
large enough k. 0

LEMMA 10. Let A be a non-compact operator with non-closed range and finite
nullity and co-nullity. Let X be an operator with non-closed range. Assume that the
following conditions hold

ker A = ker X,

ran A — TanX,

ker A (1 ran A C ran A.

Then there exists an invertible operator T such that

ranX D ra.n(TAT~l) D ranX
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[11] Similarity invariant semigroups 417

P R O O F : Let K — ker^lDran A and L — ran .A6 K. Space Lflran A is a dense range
of a non-compact operator in L. That it is an operator range follows from the fact that
intersection of operator ranges is an operator range and because L has finite codimension
in ran A it is the range of a non-compact operator. To prove the denseness define PL to
be the orthogonal projector on L and notice that since K C ran A, the space L n ran A
equals P^&nA) which is dense in L.

Space R = (K + ran X) n L is another operator range in L. By [5, proof of Theo-
rem 3.6] there exists a subrange of L n ran A which is unitarily equivalent to R. Hence
there exists unitary operator U on L that maps L D ran A to a superset of R. By setting
U\K = / we extend U to a unitary operator on ran A. Using the modularity law along
with the facts K C ran A, K + L = ran A we obtain K + (L (~\ ran A) = ran A and
K + R = K + ran X therefore

U{ranA) = U(K + (Lni&nA)) DK + RDranX.

To complete the proof we extend U to an operator T on H in such a way that T(ker X)

D

LEMMA 1 1 . Let X be an operator with non-closed range that has finite nullity
and co-nullity. If A\ and Ai are non-compact operators with non-closed ranges satisfying
nu\Ai = nulv42 = nulX and milA{ = nuMj = nulX*, there exist operators B\ ~ Ax

and Bi ~ Az such that

ran AT 3 ran.B1.B2 2 ran AT.

PROOF: We may assume that AXA2 is not compact. Let J\ — ran X and K2 = ker X.
It is easy to verify that there exists a closed subspace J2 ^ H such that Jx + J2 — H,
dim J2 = nul A2 and

dim(J2 n K2) = dim(ker^2 n ran A2).

Using Lemma 7 we obtain an operator C2 similar to A2 such that kerC2 = K<i and
ran C2 = J2-

Assume for a moment that there exists a space K\ ^ H with dimension nuMi
satisfying the requirements

(i) dim(Ji D Kx) = dim(kerA1 Oran^ i ) =: n,

(ii) Kx n ran C2 = 0,

(iii) K1 + J2 = H,

(iv) K1nK2 = 0.

By (i) and Lemma 7 there exists an operator C\ ~ Ai that has Kx as the null-space and
J\ as the closure of the range. We use (ii) together with the formula for the nullity of
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the product
nul(CiC2) = nul C2 + dim(ran C2 l~l ker Cx)

to show that n\i\(CiC2) — nulC2 therefore ker(CiC2) = kerC2 = K2. Now use the
inequality (2) for the complements of range

dim(ran CXC2)
L ^ dim(ran CX)L + dim(ran C2 + ker Cx)

x.

From here and (iii) we infer that ran(CiC2) = ranC2 = Jx. The statement (iv) will be
needed later in the proof.

Now we prove that the space Kx exists. Because we want Kx + J2 = H the equation

dim(/i'1 nJ2) = nuMi — dim J2
L =: m

will have to hold. But Kx + Jx C H and since dim Jf- = dim J£ it will also be true that

dim(ATi n Jx) = n ^ dim(A'1 n J2).

Space JiC\J2C\K2 has finite codimension therefore we can choose m-dimensional subspace
K\ of J\ n J2 D K2 such that K[ D ran C2 = 0. Then we can extend K[ to a n-dimensional
space K'{ C Jx in such a way that K" nK2 = 0 and K'{ n J2 = K{. Finally, extend K'{
to a (nul yli)-dimensional subspace K\ in H satisfying K\C\ Jx = K" and KXC\K2 = 0.
From the fact that Kx <1 J2 = K[ we infer Kx n ran C2 = 0 and Kx + J2 = H (the last
equality is proved by calculating the codimension). The space Kx constructed in this way
satisfies the conditions (i)-(iv).

There exist subspaces Nx, N2 C Jx n J2 with dimension d i m ^ n K2) such that
NXDN2 = 0, Ci(iVi) = N2 and

(iVi + iV2) n (Kx + K2) = 0.

How do we know that? Since Cx & C + K(H), by [1, Corollary 3.4] there exists a
subspace M with infinite dimension such that Cx (M) n M = 0. Because Jx D J2 has finite
codimension,

M' = M n (Jt n J2) n ( id + K2)
L

is still infinite dimensional. The space

M" = M' n Cf1 ( d ( M ' ) n ( j , n J2) n ( ^ + K2)
x)

is also infinite dimensional. Now any subspace Ni C M" with the same dimension as
Jx n /C2 and corresponding N2 = Ci(Nx) will do.

By a simple calculation (similar to the proof of Lemma 7), there exists an invertible
operator T € C + K(H) such that

T(NX) = Nu T(N2) = Jxn K2, T(J,) = Jx
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and
T(KX) = KL

Define Bx - TCXT~X. As for Cx we can prove that ker Si = Kx and ran^Bj" = Jx. The
following equality also holds

M ) = Jx n K7.

Moreover, there exists an invertible operator 5 € C + K{H) such that

S(KX) = Ku S(K2) = K2, S{h) = J2

and
S{NX) CranC 2 .

Define B2 = S~lC2S. Then

kerB2 — K2, ranB2 = J2, ran

and

ranB2 2 M-

As for C\C2 we see that ker(J3iB2) = K2 and ran(f?iB2) = J\. What we gained is that

= JiC\K2= ker(BiB2) n ra~njBi~B2).

Operator 5 i B 2 clearly fulfills all the requirements of Lemma 10 which completes this
proof. D

THEOREM 4 . Let A be a non-compact operator with non-closed range such that
0 < nul A, nul A* < oo. Tie semigroup S(A) is equal to the set M of all bounded
operators X with non-closed range that satisfy inequalities

nul A ^ nulX < oo and nul A' ^ nul A"* < oo.

PROOF: First we prove that M is a similarity invariant semigroup. It is obvious
that any finite product X of operators similar to A satisfies inequality nul A ^ nul X < oo
and the analogous inequality for adjoints. Moreover, every such product will have non-
closed range; if its range is closed it is a Fredholm operator and cannot be expressed as
a product of non-Fredholm operators. Hence the semigroup S(A) is contained in M.

To prove 5 (4) 2 M. we first show that the semigroup S(A) contains every operator
Z e M with kerZ = kerZ' . Choose an integer n ^ max {nul A, nul A*}. By Lemma 9,
S(A) contains a non-compact operator Y' with nul Y' = nul Y" = n. Now it follows from
Lemma 11 that S(A) contains a non-compact operator Y with the property

ker Y = ker Z = ker Z' = ker Y*.
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Every such operator Y is similar to a block diagonal operator Yx © 0 € B(H © kerV)
where Y\ is an injective operator with dense range. Using the results of the previous
section, S(A) contains all operators of the form Z' © 0 € B(H © kerV). Operator Z is
similar to an operator of this form.

Let X be any operator in M. We may assume that nul-X" ^ mil A"*; otherwise we
prove that X* € S(A') which is enough, since it is easy to check that S(A') = S(A)'.

There exists an operator X' with the same null-space and closure of range as X,
while its range is non-closed and strictly contains the range of X. For example, take any
v e (ran X \ ran X) and choose an appropriate operator with the range ran X + Lin {v}.

Using Lemma 9 we obtain a non-compact operator B G S(A) that satisfies the
conditions null? = nulX and null?* = nulX*. Now use Lemma 11 on two operators
similar to B to see that there exists an operator C € S[A) with the properties kerC
= ker X and ran C 2 ran X'.

By Proposition 2 there exists a unique operator Z satisfying kerZ = kerJf and
ker Z* = ker X such that X = CZ. The range of Z is non-closed because ran C properly
contains ran X, while ker Cflran Z = 0. As shown in the first part of this proof, every such
operator Z is an element of S(A). This proves that X € S(A) and finally M C S(A). D

5. CONCLUSION

PROOF: [Proof of Theorem 1] Since nn\A « nul .A* there are three possibilities.
When nul A = nul A* = 0, operator A is a dense operator and we use Theorem 3. The
case nul A = nul A* = oo is handled by Theorem 2. Theorem 4 solves the problem in the
remaining case when 0 < nul A, nul A* < oo. It is trivial to see that the results of all
three theorems agree with Theorem 1. D

As mentioned in the introduction, the case of the operator A with non-closed range
and nulyl 96 nul .4* remains open. More verbosely, such operators satisfy either

(3) nul ,4 = 0 and nu\A'^Q

or

(4) nul A < co and nul A* = 00

or any of the dual conditons. In fact the second case can be reduced to the first, therefore
it is enough to consider operators satisfying the condition (3).

We cannot hope to reduce an operator of this kind to a direct sum of 0 and a dense
operator as we did in the preceding section. On the other hand, most of the statements
used in Section 3 for dense operators can be adapted to any injective non-Fredholm
operators. The only real problem is that there is no obvious analogue of Lemma 6.
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Of course, Lemma 6 is too strong for our purposes: all that is needed is a proof that

every operator with non-closed range for which (3) holds is expressible as a product of

operators of the form Ax (BA2, where A\ and A2 are also operators with non-closed range

that satisfy the condition (3).
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